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study.
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1. Introduction

Linear inverse problems, where the data is available not on the object of primary
interest but only in the form of its linear transform, appear in a variety of fields:
medical imaging (X-ray tomography, CT and MRI), astronomy (blurred im-
ages), finance (model calibration of volatility) to mention just a few. The main
difficulty in solving inverse problems is due to the fact that most of practically
interesting and relevant cases fall into the category of so-called ill-posed prob-
lems, where the solution cannot be obtained numerically by simple inversion of
the transform. In statistical inverse problems the data is, in addition, corrupted
by random noise that makes the solution even more challenging.

Statistical linear inverse problems have been intensively studied and there
exists an enormous amount of literature devoted to various theoretical and ap-
plied aspects of their solutions. We refer a reader to [7] for review and references
therein.

Let G and H be two separable Hilbert spaces and A : G → H be a bounded
linear operator. Consider a general statistical linear inverse problem

y = Af + ε, (1.1)

where y is the observation, f ∈ G is the (unknown) object of interest, ε is a
white noise with a (known) noise level σ. For ill-posed problems A−1 does not
exist as a linear bounded operator.

Most of approaches for solving (1.1) essentially rely on reduction of the orig-
inal problem to a sequence model using the following general scheme:

1. Choose some orthonormal basis {φj} on G and expand the unknown f in
(1.1) as

f =
∑
j

〈f, φj〉G φj (1.2)

2. Define ψj as the solution of A∗ψj = φj , where A∗ is the adjoint operator,
that is, ψj = A(A∗A)−1φj . Reduce (1.1) to the equivalent sequence model:

〈y, ψj〉H = 〈Af, ψj〉H + 〈ε, ψj〉H = 〈f, φj〉G + 〈ε, ψj〉H , (1.3)

where for ill-posed problems Var (〈y, ψj〉H) = σ2‖ψj‖2H increases with j.
Following the common terminology, an inverse problem is called mildly
ill-posed, if the variances increase polynomially and severely ill-posed if
their growth is exponential (see, e.g., [7]).
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3. Estimate the unknown coefficients 〈f, φj〉G from empirical coefficients

〈y, ψj〉H : ̂〈f, φj〉G = δ{〈y, ψj〉H}, where δ(·) is some truncating/shrinking/
thresholding procedure (see, e.g., [7], Section 1.2.2.2 for a survey), and re-
construct f as

f̂ =
∑
j

̂〈f, φj〉G φj

Efficient representation of f in a chosen basis {φj} in (1.2) is essential. In
the widely-used singular value decomposition (SVD), φj ’s are the orthogonal
eigenfunctions of the self-adjoint operator A∗A and ψj = λ−1

j Aφj , where λj

is the corresponding eigenvalue. SVD estimators are known to be optimal in
various minimax settings over certain classes of functions (e.g., [20]; [10]; [9]).
A serious drawback of SVD is that the basis is defined entirely by the operator
A and ignores the specific properties of the object of interest f ∈ G. Thus, for
a given A, the same basis will be used regardless of the nature of a scientific
problem at hand. While the SVD-basis could be very efficient for representing
f in one area, it might yield poor approximation in the other. The use of SVD,
therefore, restricts one within certain classes G depending on a specific operator
A. See [15] for further discussion.

In wavelet-vaguelette decomposition (WVD), φj ’s are orthonormal wavelet
series. Unlike SVD-basis, wavelets allows sparse representation for various
classes of functions and the resulting WVD estimators have been studied in
[15], [2], [21], [19]. However, WVD imposes relatively stringent conditions on
A that are satisfied only for specific types of operators, mainly of convolution
type.

A general shortcoming of orthonormal bases is due to the fact that they may
be “too coarse” for efficient representation of unknown f . Since 90s, there was
a growing interest in the atomic decomposition of functions over overcomplete
dictionaries (see, for example, [23],[11], [16]). Every basis is essentially a mini-
mal dictionary that allows only a unique (not necessarily sparse) representation.
Such scarceness usually causes poor adaptivity [23]. Application of overcomplete
dictionaries improves adaptivity of the representation, because one can choose
now the most efficient (sparse) one among many available. One can see here
an interesting analogy with colors. Theoretically, every other color can be gen-
erated by combining three basic colors (green, red and blue) in corresponding
proportions. However, a painter would definitely prefer to use the whole avail-
able palette (overcomplete dictionary) to get the hues he needs! Selection of
appropriate subset of atoms (model selection) that allows a sparse representa-
tion of a solution is a core element in such an approach. It becomes even more
important for ill-posed inverse problems, where for large models the variance
component in the risk of the estimator increases drastically. Pensky in [24] was
probably the first to use overcomplete dictionaries for solving inverse problems.
See the discussion on advantages of overcomplete dictionaries in applications to
ill-posed problems in her paper.

Pensky in [24] utilized the Lasso techniques for model selection within the
overcomplete dictionary, established oracle inequalities with high probability
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and applied the proposed procedure to several examples of linear inverse prob-
lems. However, as usual with Lasso, it required restrictive compatibility condi-
tions on the design matrix Φ.

In this paper we propose two alternative approaches for overcomplete dic-
tionaries based estimation in linear ill-posed problems. The first estimator is
obtained by minimizing penalized empirical risk with a penalty on model M
proportional to

∑
j∈M ‖ψ2

j ‖. The second one is based on a Q-aggregation type
procedure that is specifically designed for solution of linear ill-posed problems.
We establish oracle inequalities for both estimators that hold with high prob-
abilities and in expectation. Moreover, for the Q-aggregation estimator, the
inequalities are sharp. Simulation study shows that the new techniques produce
more accurate estimators than Lasso.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions and some preliminary results. The model selection and aggregation-type
procedures are studied respectively in Section 3 and Section 4. The simulation
study is described in Section 5. All proofs are given in the Appendix.

2. Setup and notations

Consider a discrete analog of a general statistical linear inverse problem (1.1):

y = Af + ε, (2.1)

where y ∈ Rn is the vector of observations, f ∈ Rm is the unknown vector to be
recovered, A is a known (ill-posed) n ×m (n ≥ m) matrix with rank(A) = m,
and ε ∼ N(0, σ2In).

In what follows ‖ · ‖ and 〈·, ·〉 denote respectively Euclidean norms and inner
products. Let φj ∈ Rm, j = 1, · · · , p with ‖φj‖ = 1 be a set of normalized
vectors (dictionary), where typically p > m (overcomplete dictionary). Let Φm×p

be the complete dictionary matrix with the columns φj , j = 1, . . . , p, and Ψn×p

is such that ATΨ = Φ, that is, Ψ = A(ATA)−1Φ and ψj = A(ATA)−1φj . Let
rΦ = rank(Φ) and assume that any rΦ columns of Φ are linearly independent.

For any 1 ≤ r ≤ rΦ define the r-sparse minimal and maximal eigenvalues of
ΦTΦ as

ν2r = min
x∈Rp,‖x‖0≤r

‖Φx‖2
‖x‖2

and

κ2
r = max

x∈Rp,‖x‖0≤r

‖Φx‖2
‖x‖2

Note that for normalized φj , 0 < ν2r ≤ 1 ≤ κ2
r.

Fix 1 ≤ r ≤ rΦ/2 and consider a set of models Mr = {M ⊆ {1, . . . , p} :
|M | ≤ r} of sizes not larger than r. For a given model M ∈ Mr define a diagonal
indicator matrix DM ∈ Rp×p with diagonal entries dMj = I{j ∈ M}. The
design matrix corresponding to M is then ΦM = ΦDM , while ΨM = ΨDM =
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A(ATA)−1ΦM . Let HM = ΦM (ΦT
MΦM )−1ΦT

M be the projection matrix on a
span of nonzero columns of ΦM and

fM = HMf = ΦM (ΦT
MΦM )−1ΦT

M f = ΦM (ΦT
MΦM )−1ΨT

M Af

be the projection of f on M . Denote

z = (ATA)−1AT y = f + ξ, where ξ = (ATA)−1AT ε. (2.2)

Consider the corresponding projection estimator

f̂M = HMz = HM (ATA)−1AT y = ΦM (ΦT
MΦM )−1ΨT

M y = ΦM θ̂M , (2.3)

where the vector of projection coefficients θ̂M = (ΦT
MΦM )−1ΨT

M y. By straight-

forward calculus, f̂M ∼ N(fM , σ2HM (ATA)−1HM ) and the quadratic risk

E‖f̂M − f‖2 = ‖fM − f‖2 + σ2Tr
(
(ATA)−1HM

)
(2.4)

The oracle model is the one that minimizes (2.4) over all models M ∈ Mr and
the ideal oracle risk is

R(oracle) = inf
M∈Mr

E‖f̂M − f‖2 = inf
M

{
‖fM − f‖2 + σ2Tr

(
(ATA)−1HM

)}
(2.5)

The oracle risk is unachievable but can be used as a benchmark for a quadratic
risk of any available estimator.

3. Model selection by penalized empirical risk

Fix 1 ≤ r ≤ rΦ/2 and consider the set of models Mr of sizes at most r. For

a given model M ∈ Mr and z defined in (2.2), f̂M in (2.3) minimizes the

corresponding empirical risk ‖z− f̃M‖2. By Pythagoras’ theorem, ‖z− f̂M‖2 =

‖z‖2 − ‖f̂M‖2. Select a model M̂ by minimizing the penalized empirical risk:

M̂ = argmin
M∈Mr

{
‖z − f̂M‖2 + Pen(M)

}
= argmin

M∈Mr

{
−‖f̂M‖2 + Pen(M)

}
, (3.1)

where Pen(M) is a penalty function on a modelM . The proper choice of Pen(M)
is the core of such an approach.

For direct problems (A = I), the penalized empirical risk approach, with
the complexity type penalties Pen(|M |) on a model size, has been intensively
studied in the literature. In the last decade, in the context of linear regression,
the in-depth theories (risk bounds, oracle inequalities, minimaxity) have been
developed by a number of authors. See, e.g., [18], [4],[5], [1], [25], [27] among
many others.

For inverse problems, [9] considered a truncated orthonormal series estimator,
where the cut-off point was chosen by SURE criterion corresponding to the AIC-
type penalty Pen(M) = 2σ2Tr((ATA)−1HM ) and established oracle inequalities
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for the resulting estimator f̂
M̂
. It was further generalized and improved by risk

hull minimization in [8].
To the best of our knowledge, [24] was the first to consider model selections

within overcomplete dictionaries by empirical risk minimization for statistical
inverse problems. She utilized Lasso penalty. However, as usual with Lasso, it
required restrictive compatibility conditions on the design matrix Φ (see [24] for
more details).

In this paper, we utilize the penalty Pen(M) that depends on the Frobenius
norm of the matrix ΨM :

‖ΨM‖2F =
∑
j∈M

‖ψj‖2 = Tr
(
(ATA)−1ΦMΦT

M

)
The following theorem provides nonasymptotic upper bounds for the quadratic
risk of the resulting estimator f̂

M̂
both with high probability and in expectation:

Theorem 1. Consider the model (2.1) and the penalized empirical risk estima-

tor f̂
M̂
, where the model M̂ is selected w.r.t. (3.1) with the penalty

Pen(M) ≥ 4σ2(δ + 1)

aν22r
‖ΨM‖2F ln p (3.2)

for some δ > 0 and 0 < a < 1. Then,

1. With probability at least 1−
√

2
π p−δ

‖f̂
M̂

− f‖2 ≤ 1 + a

1− a
min

M∈Mr

{
‖f̂M − f‖2 + 2

1 + a
Pen(M)

}
(3.3)

2. If, in addition, we restrict the set of admissible models to Mr,γ = {M ∈
Mr : ‖ΨM‖2F ≤ γ2n} for some constant γ,

E‖f̂
M̂

− f‖2 ≤ 1 + a

1− a
min

M∈Mr,γ

{
E‖f̂M − f‖2 + 3

2(1 + a)
Pen(M)

}
+

4σ2γ2

a(1− a)ν22r
n2 p−δ/2

(3.4)

The additional restriction on the set of models Mr in the second part of
Theorem 1 is required to guarantee that the oracle risk in (2.5) does not grow
faster than n.

Note that for the direct problems, ΨM = ΦM , while ‖ΦM‖2F = |M | (recall
that φj ’s are normalized to have unit norms).Thus, the penalty (3.2) is the
RIC-type complexity penalty of [18] of the form Pen(M) = C|M | ln p and the
additional restriction on the set of admissible models required for (3.4) trivially
holds with γ = 1. It is important to note that for inverse problems Pen(M)
depends on the model itself rather on its size only. Furthermore, the presence
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of ν22r in the penalty is essential. As a result, although the risk bounds obtained
in Theorem 1 hold for any fixed 1 ≤ r ≤ rΦ/2, they increase with r due to the
variance component that dominates strongly for large models. However, the use
of overcomplete dictionaries allows one to assume that the unknown f has a
sparse representation in φj ’s and, therefore, makes reasonable to consider Mr

with relatively small r to control the variance.
We can compare the quadratic risk of the proposed estimator with the oracle

risk R(oracle) in (2.5). Consider the penalty

Pen(M) =
4σ2(δ + 1)

aν22r
‖ΨM‖2F ln p (3.5)

for some 0 < a < 1. Assume that p ≥ n (overcomplete dictionary) and choose
δ ≥ 4. Then, the last term in the RHS of (3.4) turns to be of a smaller order
and we obtain

E‖f̂
M̂

− f‖2 ≤ C1 min
M∈Mr,γ

{
‖fM − f‖2 + C2

γσ2

ν22r
‖ΨM‖2F ln p

}
for some positive constants C1, C2 depending on a and δ only. By standard linear
algebra arguments, ‖ΨM‖2F = Tr

(
(ATA)−1ΦMΦT

M

)
≤ κ2

2r Tr
(
(ATA)−1HM

)
and, therefore, the following oracle inequality holds:

Corollary 1. Assume that p ≥ n and consider the penalized empirical risk
estimator M̂ from Theorem 1, where M̂ is selected w.r.t. (3.1) over Mr,γ with
the penalty (3.5) for some 0 < a < 1 and δ ≥ 4. Then,

E‖f̂
M̂

− f‖2 ≤ C0
κ2
2r

ν22r
ln p R(oracle)

for some constant C0 > 0 depending on a, δ and γ only.

Thus, the quadratic risk of the proposed estimator f̂
M̂

is within ln p-factor of the
ideal oracle risk. The ln p-factor is a common closest rate at which an estimator
can approach an oracle even in direct (complete) model selection problems (see,
e.g., [17], [4], [1], [25] and also [24] for inverse problems). For an ordered model
selection within a set of nested models, it is possible to construct estimators
that achieve the oracle risk within a constant factor (see, e.g., [9] and [8]).

Similar oracle inequalities (even sharp with the coefficient in front of ‖fM −
f‖2 equals to one) with high probability were obtained for the Lasso estimator
but under the additional compatibility assumption on the matrix Φ (see [24]).

4. Q-aggregation

Note that inequalities (3.3) and (3.4) in Theorem 1 for model selection estima-
tor are not sharp in the sense that the coefficient in front of the minimum is
greater than one. In order to derive sharp oracle inequalities both in probabil-
ity and expectation, one needs to aggregate the entire collection of estimators:
f̂ =

∑
M∈Mr

θM f̂M rather than to select a single estimator f̂
M̂
.
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[22] considered exponentially weighted aggregation (EWA) with θM ∝
πM exp{−‖z − f̂M‖2/β}, where π is some (prior) probability measure on Mr

and β > 0 is a tuning parameter. They established sharp oracle inequalities in
expectation for EWA in direct problems. [14] proved sharp oracle inequalities
in expectation for EWA of affine estimators in nonparametric regression model.
Their paper offers limited extension of the theory to the case of mildly ill-posed
inverse problems where Var(〈y, ψ〉H) = σ2‖ψj‖2H increase at most polynomially
with j. However, their results are valid only for the SVD decomposition and
require block design which seriously limits the scope of application of their the-
ory. Moreover, [12], [13] and [3] argued that EWA cannot satisfy sharp oracle
inequalities with high probability and proposed instead to use Q-aggregation.

Define a general Q-aggregation estimator of f as

f̂θ̂ =
∑

M∈Mr

θM f̂M , (4.1)

where the vector of weights θ̂ is the solution of the following optimization prob-
lem:

θ̂ = argmin
θ∈ΘMr

{
α
∑

M∈Mr

θM‖z − f̂M‖2 + (1− α)
∥∥∥z − ∑

M∈Mr

θM f̂M

∥∥∥2 + Pen(θ)

}
(4.2)

for some 0 < α < 1 and a penalty Pen(θ), and ΘMr is the simplex

ΘMr = {θ ∈ R|Mr| : θM ≥ 0,
∑

M∈Mr

θM = 1} (4.3)

In particular, [12] and [13] considered Pen(θ) proportional to the Kullback-
Leibler divergence KL(θ, π) for some prior π on ΘMr . For direct problems, they
derived sharp oracle inequalities both in expectation and with high probability
for Q-aggregation with such penalty. In fact, EWA can also be viewed as an
extreme case of Q-aggregation for α = 1 (see [26]). However, the results for
Q-aggregation with Kullback-Leibler-type penalty are not valid for ill-posed
problems. A slightly different form of Q-aggregation was considered in [3].

In this section we propose a different type of penalty for Q-aggregation in
(4.2) that is specifically designed for the solution of inverse problems. In partic-
ular, this penalty allows one to obtain sharp oracle inequalities both in expec-
tation and with high probability in both mild and severe ill-posed linear inverse
problems (see Introduction). We consider the penalty Pen(θ) of the form

Pen(θ) =
∑

M∈Mr

θMPen(M), (4.4)

where Pen(M) ≥ 4σ2(δ+1)
aν2

2r
||ΨM ||2F ln p for some δ > 0 and 0 < a < 1 as in (3.2).
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For such type of a penalty Pen(θ) and α = 1/2, the resulting θ̂ is

θ̂ = argmin
θ∈ΘMr

{ ∑
M∈Mr

θM

(
‖z − f̂M‖2 + Pen(M)

)
+
∥∥∥z − ∑

M∈Mr

θM f̂M

∥∥∥2}
(4.5)

Note that the first term in the minimization criteria (4.5) is the same as in model
selection (3.1). The presence of the second term is inherent for Q-aggregation.

In fact, the model selection estimator f̂
M̂

from Section 3 is a particular case of

a Q-aggregate estimator f̂θ̂ with the weights obtained by solution of problem
(4.2) with α = 1.

The non-asymptotic upper bounds for the quadratic risk of f̂θ̂, both with
high probability and in expectation, are given by the following theorem :

Theorem 2. Consider the model (2.1) and the Q-aggregate estimator f̂θ given
by (4.1), where the weights θ are selected as a solution of the optimization prob-
lem (4.5) with the penalty (4.4).

1. Then, with probability at least 1−
√

2
π p−δ

‖f̂θ̂ − f‖2 ≤ min
M∈Mr

{
‖f̂M − f‖2 + 2 Pen(M)

}
(4.6)

2. If, in addition, we restrict the set of admissible models to Mr,γ defined in
Theorem 1 for some γ, then

E‖f̂θ̂ − f‖2 ≤ min
M∈Mr,γ

{
E‖f̂M − f‖2 + 3

2
Pen(M)

}
+

4σ2γ2

ν22r
n2p−δ/2

(4.7)

Unlike Theorem 1 for model selection estimator, inequalities in both (4.6)
and (4.7) for Q-aggregation are sharp. For A = I, the results of Theorem 2 are
similar to those obtained in [13] and [3] for Q-aggregation in direct problems.

5. Simulation study

In this section we present results of a simulation study that illustrates the per-
formance of the model selection estimator M̂ from (3.1) with the penalty (3.5)

and the Q-aggregation estimator f̂θ̂ given by (4.1) with the weights defined in
(4.5).

The data were generated w.r.t. a (discrete) ill-posed statistical linear problem

(2.1) corresponding to the convolution-type operator Af(t) =
∫ t

0
e−(t−x)f(x)dx,

0 ≤ t ≤ 1, on a regular grid ti = i/n:

Aij = e−
i−j
n I(j ≤ i), i, j = 1, . . . , n,

where I(·) is the indicator function and n = 128.
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We considered the dictionary obtained by combining two wavelet bases of
different type: the Daubechies 8 wavelet basis {φD

3,0, ..., ψ
D
3,0, ..., ψ

D
6,63} and the

Haar basis {φH
3,0, ..., ψ

H
3,0, ..., ψ

H
5,53}, with the overall dictionary size p = 128 +

64 = 192. In our notations, φD and φH are the scaling functions, while ψD and
ψH are the wavelets functions of the Daubechies and Haar bases respectively
with the initial resolution level J0 = 3.

In order to investigate the behavior of the estimators, we considered test
functions of various sparsity and several noise levels. In particular, we used
four test functions presented in Figure 2, that correspond to different sparsity
scenarios:

1. f1 = φD
3,4 + φH

3,0 (high sparsity)

2. f2 = φD
3,0 + φD

3,6 + ψD
3,7 + φH

3,6 (moderate sparsity)

3. f3 = φD
3,1 + φD

3,5 + φD
3,7 + ψD

3,0 + ψD
3,3 + ψD

3,5 + φH
3,0 + φH

3,3 (low sparsity)
4. f4 is the well-known HeaviSine function from [17] (uncontrolled sparsity)

For each test function, we used three different values of σ that were chosen to
ensure a signal-to-noise ratios SNR = 10, 7, 5, where SNR(f) = ‖f‖/σ.

The accuracy of each estimator was measured by its relative integrated error:

R(f̂) = ‖f − f̂‖2/‖f‖2

Since the model selection estimator f̂
M̂

involves minimizing a cost function of the

form −‖f̂M‖2+4σ2λ ln p‖ΨM‖2F over the entire model space Mr of a very large
size, we used a Simulated Annealing (SA) stochastic optimization algorithm for
an approximate solution. The SA algorithm is a kind of a Metropolis sampler
where the acceptance probability is “cooled down” by a synthetic temperature
parameter (see [6], Chapter 7, Section 8). More precisely, if M (r) is a solution
at step r > 0 of the algorithm, at step r + 1 a tentative solution M∗ is selected
according to a given symmetric proposal distribution and it is accepted with
probability

a(M∗,M (r)) = min

{
1, exp

(
−π(M∗)− π(M (r))

T (r)

)}
. (5.1)

where T (r) is a temperature parameter at step r. The expression (5.1) is mo-
tivated by the fact that while M∗ is always accepted if π(M (r)) ≥ π(M∗),
it can still be accepted even if π(M (r)) < π(M∗) in spite of being worse
than the current one. The chance of acceptance of M∗ for the same value of
π(M (r))−π(M∗) < 0 diminishes at every step as the temperature T (r) decreases
with r. The law that reduces the temperature is called the cooling schedule, in
particular, here we choose T (r) = 1/(1 + log(r)).

In this paper we adopted the classical symmetric uniform proposal distri-
bution and selected a starting solution M (0) according to the following initial
probability

p(j) = C exp{〈ψj , y〉2 − c‖ψj‖2}, for j = 1, . . . , p (5.2)
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where c =
∑

j〈ψj , y〉2/
∑

j ‖ψj‖2 and C =
[∑p

j=1 exp{〈ψj , y〉2 − c‖ψj‖2}
]−1

is

the normalizing constant. Observe that the argument in the exponent in (5.2) is
the difference of 〈ψj , y〉2 and ‖ψj‖2 where the first term 〈ψj , y〉2 is the squared
j-th empirical coefficient while the second term ‖ψj‖2 is the increase in the
variance due to the addition of the j-th dictionary function. Hence, the prior
p(j) is more likely to choose dictionary functions with small variances that are
highly correlated to the true function f .

Thus, the adopted SA procedure can be summarized as follows:

• generate a random number m ≤ n/ log(p). Set T (1) = 1
• generate a starting solution M (0) with card(M (0)) = m by sampling in-

dices j ∈ {1, . . . , p} according to the probability given by equation (5.2)
• repeat for r = 1, 2, ...rmax

1. generate a variable j∗ ∼ Uniform (1, ..., p)

2. if j∗ /∈ M (r) propose M∗ = M (r) ∪ {j∗}
else

propose M∗ = M (r) − {j∗}
3. with probability a(M∗,M (r)) given in equation (5.1) assignM (r+1) =

M∗, otherwise M (r+1) = M (r)

4. update the temperature parameter T (r+1) = 1/(1 + log(r + 1))

While various stopping criteria could be used in the SA procedure, we found
rmax = 100, 000 to be sufficient for obtaining a good approximation of the global
minimum in (3.1). Once the algorithm is terminated, we evaluated f̂

M̂
, where

M̂ = argmin0≤r≤rmax π(M
(r)) was the “best” model in the chain of models

generated by SA algorithm.
Similarly, the Q-aggregation estimator f̂θ̂ involves computationally expensive

aggregation of estimators over the entire model space Mr. We, therefore, ap-
proximated it by aggregating over the subset M′

r of the last 50 “visited” models

in the SA chain, i.e. f̂θ̂ =
∑

M∈M′
r
θ̂M f̂M with θ̂ being a solution of (4.5).

For f1, f2 and f3 we also considered the oracle projection estimator f̂oracle
based on the true model. In addition, we compared the proposed estimators
with the Lasso-based estimator f̂Lasso =

∑p
j=1 θ̂jφj of [24], where the vector of

coefficients θ̂ is a solution of the following optimization problem

θ̂ = argmin
θ

⎧⎪⎨⎪⎩
∥∥∥∥∥∥

p∑
j=1

θjφj

∥∥∥∥∥∥
2

− 2

p∑
j=1

θj〈y, ψj〉+ λ

p∑
j=1

|θj | ‖ψj‖2

⎫⎪⎬⎪⎭ ,

and λ is a tuning parameter.
The tuning parameters λ for f̂

M̂
and f̂Lasso, were chosen by minimizing the

error on a grid of possible values. To reduce heavy computational costs we used
the same λ of f̂

M̂
for all 50 aggregated models used for calculating f̂θ̂.
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Fig 1. The boxplots of the relative integrated errors of f̂oracle, f̂M̂ , f̂θ and f̂Lasso over 100
independent runs. Top row: f1, second row: f2, third row f3, bottom row f4.

Figure 1 presents the boxplots of R(f̂) over 100 independent runs for f̂oracle
(for f1, f2 and f3), f̂M̂ , f̂θ̂ and f̂Lasso. Performances of all estimators deteriorate
as SNR decreases especially for the less sparse test functions. The estimators
f̂
M̂

and f̂θ̂ always outperform f̂Lasso and, as it is expected from our theoretical

statements, f̂θ̂ yields better results than f̂
M̂
. We expect that the differences in

precisions of f̂
M̂

and f̂θ̂ would be more significant if we carried out aggregation
over a larger portion of the model space than the last 50 visited models. Fig-
ure 2 illustrates these conclusion by displaying examples of the estimators for
SNR = 5. We should also mention that estimator f̂

M̂
was usually more sparse

than f̂Lasso.

Appendix

The proofs of the main results are based on the following auxiliary lemmas.

Lemma 1. For any x > 0,

P

(
sup

M∈Mr

{
‖ΨT

Mε‖2 − 2σ2‖ΨM‖2F (ln p+ x)
}
≤ 0

)
≥ 1−

√
2

π
e−x
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Fig 2. The test functions, observed data and estimators for SNR = 5. In each block of figures
corresponding to four test functions, the left panel shows the data y and the true Af ; the right
panel shows the true f and the four estimators. Top left: f1; top right: f2; bottom left: f3;
bottom right: f4.

Proof. For any model M ∈ Mr, ‖ΨT
Mε‖2 =

∑
j∈M (ψT

j ε)
2, where ψT

j ε ∼
N(0, σ2‖ψj‖2). By Mill’s ratio

P
(
(ψT

j ε)
2 > 2σ2‖ψj‖2(ln p+ x)

)
≤
√

2

π
p−1e−x

for any x > 0. Then,

P

⎛⎝ ⋂
j∈M

{
(ψT

j ε)
2 − 2σ2‖ψj‖2(ln p+ x) ≤ 0

}⎞⎠
≥ 1−

∑
j∈M

P
(
(ψT

j ε)
2 − 2σ2 ‖ψj‖2(ln p+ x) > 0

)
≥ 1−

√
2

π
e−x
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and, therefore,

P

(
sup

M∈Mr

{
‖ΨT

Mε‖2 − 2σ2‖ΨM‖2F (ln p+ x) ≤ 0
})

≥ P

⎛⎝ ⋂
M∈Mr

⋂
j∈M

{
(ψT

j ε)
2 − 2σ2 ‖ψj‖2(ln p+ x) ≤ 0

}⎞⎠
= P

⎛⎝ p⋂
j=1

{
(ψT

j ε)
2 − 2σ2 ‖ψj‖2(ln p+ x) ≤ 0

}⎞⎠ ≥ 1−
√

2

π
e−x

Lemma 2. For any M1,M2 ∈ Mr, one has

||ΨM1∪M2 ||2F ≤ ||ΨM1 ||2F + ||ΨM2 ||2F (5.3)

Proof. The proof of (5.3) is straightforward by noting that

Tr(ΨT
M1∪M2

ΨM1∪M2) =
∑

j∈M1∪M2

‖ψj‖2 ≤ Tr(ΨT
M1

ΨM1) + Tr(ΨT
M2

ΨM2)

Lemma 3. If θ ∈ ΘMr where ΘMr is defined in (4.3), then, for any function
f̃ ∑

M∈Mr

θ̂M‖f̃ − f̂M‖2 = ‖f̃ − f̂θ̂‖
2 +

∑
M∈Mr

θ̂M‖f̂θ̂ − f̂M‖2. (5.4)

Proof. Note that for any f̃ one has∑
M∈Mr

θ̂M‖f̃ − f̂M‖2 =
∑

M∈Mr

θ̂M‖f̃ − f̂θ̂‖
2 +

∑
M∈Mr

θ̂M‖f̂M − f̂θ̂‖
2

+ 2〈f̃ − f̂θ̂ ,
∑

M∈Mr

θ̂M (f̂θ̂ − f̂M 〉,

where for θ ∈ ΘMr , the scalar product term in the last identity is equal to
zero.

Proof of Theorem 1

Let z be defined in (2.2). Since M̂ is the minimizer in (3.1), for any given model
M ∈ Mr

‖z − f̂
M̂
‖2 + Pen(M̂) ≤ ‖z − f̂M‖2 + Pen(M)

and, by a straightforward calculus, one can easily verify that

‖f̂
M̂

− f‖2 ≤ ‖f̂M − f‖2 + 2〈ξ, f̂
M̂

− f̂M 〉+ Pen(M)− Pen(M̂) (5.5)

Denote M̃ = M̂ ∪M and recall that, by the definition of Mr, |M̃ | ≤ 2r. By the
Cauchy-Schwarz inequality

2〈ξ, f̂
M̂

− f̂M 〉 = 2〈H
M̃
ξ, f̂

M̂
− f̂M 〉 ≤ 2||H

M̃
ξ|| ||f̂

M̂
− f̂M ||, (5.6)
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where by the definition of ν22r

||H
M̃
ξ||2 = ||H

M̃
(ATA)−1AT ε||2 = εTΨ

M̃
(ΦT

M̃
Φ

M̃
)−1ΨT

M̃
ε ≤ 1

ν22r
||ΨT

M̃
ε||2

(5.7)
Using inequalities 2

√
uv ≤ au+ 1

av for any positive a, u, v > 0 and ‖u− v‖2 ≤
2(‖u‖2 + ‖v‖2), from (5.6) and (5.7) obtain

2〈ξ, f̂
M̂

− f̂M 〉 ≤ a‖f̂
M̂

− f‖2 + a‖f̂M − f‖2 + 2

aν22r
‖ΨT

M̃
ε‖2

Thus, from (5.5) it follows that for any 0 < a < 1

(1−a)‖f̂
M̂
−f‖2 ≤ (1+a)‖f̂M −f‖2+Pen(M)+

2

aν22r
‖ΨT

M̃
ε‖2−Pen(M̂) (5.8)

Applying Lemma 1 with x = δ ln p for any δ > 0, one has

‖ΨT
M̃
ε‖2 ≤ 2σ2‖Ψ

M̃
‖2F (δ + 1) ln p ≤ 2σ2

(
‖Ψ

M̂
‖2F + ‖ΨM‖2F

)
(δ + 1) ln p (5.9)

w.p. at least 1 −
√

2
π p−δ. Hence, for the penalty Pen(M) in (3.2), after a

straightforward calculus, (5.8) and (5.9) imply that w.p. at least 1−
√

2
π p−δ,

(1− a)‖f̂
M̂

− f‖2 ≤ (1 + a)‖f̂M − f‖2 + 2 Pen(M) (5.10)

simultaneously for all models M ∈ Mr that proves (3.3).
To prove the oracle inequality in expectation (3.4), consider again (5.8) with

Pen(M) in (3.2) and note that ‖ΨT
M̃
ε‖2 ≤ ‖ΨT

M̂
ε‖2+‖ΨT

Mε‖2. Therefore, taking
expectation in (5.8), for the penalty Pen(M) in (3.2) derive

(1− a)E‖f̂
M̂

− f‖2 ≤(1 + a)E‖f̂M − f‖2 + Pen(M) +
2σ2

aν22r
‖ΨM‖2F + EΔ

≤(1 + a)E‖f̂M − f‖2 + 3

2
Pen(M) + EΔ,

(5.11)

where Δ ≤ 2
aν2

2r
‖ΨT

M̂
ε‖2−Pen(M̂). By Lemma 1, P (Δ > 0) ≤

√
2
πp

−δ, so that

for M̂ ∈ Mr,γ , by straightforward calculus,

EΔ ≤ E (Δ · I{Δ > 0}) ≤ 2γ2n

aν22r

√
E‖ε‖4

√
P (Δ > 0)

≤ 2γ2σ2

aν22r
n
√

n(n+ 2)

(
2

π

)1/4

p−δ/2 ≤ 4γ2σ2

aν22r
n2p−δ/2

Combining the last inequality with (5.11) obtain

(1− a)E‖f̂
M̂

− f‖2 ≤ (1 + a)‖f̂M − f‖2 + 3

2
Pen(M) + +

4γ2σ2

aν22r
n2p−δ/2

which yields (3.4).
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Proof of Theorem 2

The beginning of the proof goes along the lines of the proof of Theorem 1 of
[13] for Q-aggregation in direct problems.

Denote

Ŝ(θ) =
1

2

∑
M∈Mr

θM‖z − f̂M‖2 + 1

2
‖z − f̂θ‖2

and

S(θ) =
1

2

∑
M∈Mr

θM‖f − f̂M‖2 + 1

2
‖f − f̂θ‖2

Hence,

S(θ̂)−S(θ) =
1

2

∑
M∈Mr

(θ̂M−θM )‖f−f̂M‖2+1

2

(
‖f − f̂θ̂‖

2 − ‖f − f̂θ‖2
)

(5.12)

and also

Ŝ(θ) = S(θ) + ‖z‖2 − ‖f‖2 − 2〈ξ, f̂θ〉, (5.13)

where ξ is defined in (2.2). By definition of θ̂, one has

Ŝ(θ̂) +
∑

M∈Mr

θ̂MPen(M) ≤ Ŝ(θ) +
∑

M∈Mr

θMPen(M) (5.14)

where Pen(M) = 4ν−2
r σ2(δ + 1) ‖ΨM‖2F ln p. Then, (5.13) and (5.14) yield

S(θ̂)− S(θ) ≤
∑

M∈Mr

(θM − θ̂M )Pen(M) + 2〈ξ, f̂θ̂ − f̂θ〉 (5.15)

Fix β ∈ (0, 1) and a model M0 ∈ Mr. Let eM0 ∈ R|Mr| be a vector from a
canonical basis in R|Mr| corresponding to M0 and consider a vector of weights
θ̃ = (1− β)θ̂ + βeM0 . Thus,

f̂θ̃ = (1− β)f̂θ̂ + βf̂M0 (5.16)

Since ‖f − f̂M0‖2 − ‖f − f̂θ̂‖2 − ‖f̂θ̂ − f̂M0‖2 = 2〈f − f̂θ̂, f̂θ̂ − f̂M0〉, one can
write

‖(1− β)(f − f̂θ̂) + β(f − f̂M0)‖2

= (1− β)‖f − f̂θ̂‖
2 − β(1− β)‖f̂θ̂ − f̂M0‖2 + β‖f − f̂M0‖2

and combining the last equality with (5.16) obtains

‖f − f̂θ̂‖
2 − ‖f − f̂θ̃‖2

= β
(
‖f − f̂θ̂‖

2 + ‖f̂θ̂ − f̂M0‖2 − ‖f − f̂M0‖2
)
− β2‖f̂θ̂ − f̂M0‖2.
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Plugging the last equality into (5.12) derive

1

β

(
S(θ̂)− S(θ̃)

)
=

1

2
‖f − f̂θ̂‖

2 − 1

2
‖f − f̂M0‖2 +

1− β

2
‖f̂θ̂ − f̂M0‖2 +

1

2
Δ1,

(5.17)
where by Lemma 3 with f̃ = f ,

Δ1 =
1

β

∑
M∈Mr

(θ̂M − θ̃M )‖f − f̂M‖2 =
∑

M∈Mr

θ̂M‖f − f̂M‖2 − ‖f − f̂M0‖2

=
∑

M∈Mr

θ̂M‖f̂θ̂ − f̂M‖2

Combining the last formulae with (5.17) yields

1

β

(
S(θ̂)− S(θ̃)

)
= ‖f − f̂θ̂‖

2 − ‖f − f̂θ̂‖
2

+
1

2

{ ∑
M∈Mr

θ̂M‖f̂θ̂ − f̂M‖2 + (1− β)‖f̂θ̂ − f̂M0‖2
} (5.18)

From (5.16) one has

2〈ξ, f̂θ̂ − f̂θ̃〉 = 2β〈ξ, f̂θ̂ − f̂M0〉 (5.19)

Similarly,

∑
M∈Mr

(θ̂M − θ̃M )Pen(M) = β

( ∑
M∈Mr

θ̂MPen(M)− Pen(M0)

)
. (5.20)

Plugging (5.18)–(5.20) into (5.15) and setting β → 0 imply

‖f − f̂θ̂‖
2 ≤ ‖f − f̂M0‖2+Pen(M0)−

∑
M∈Mr

θ̂MPen(M)+2〈ξ, f̂θ̂ − f̂M0〉−
1

2
Δ2

(5.21)

where, applying Lemma 3 with f̃ = f̂M0 ,

Δ2 =
∑

M∈Mr

θ̂M‖f̂θ̂ − f̂M‖2 + ‖f̂θ̂ − f̂M0‖2 =
∑

M∈Mr

θ̂M‖f̂M − f̂M0‖2 (5.22)

Consider now the inner product term 2〈ξ, f̂θ̂ − f̂M0〉 = 2
∑

M∈Mr
θ̂M 〈ξ, f̂M −

f̂M0〉 in (5.21). Repeating the arguments in the proof of Theorem 1 we have

2〈ξ, f̂M − f̂M0〉 ≤
2

ν22r
||ΨT

M̃
ε||2 + 1

2
||f̂M − f̂M0 ||2, (5.23)

where M̃ = M
⋃

M0, and by (5.9),

||ΨT
M̃
ε||2 ≤ 2σ2(||ΨM ||2F + ||ΨM0 ||2F )(δ + 1) ln p
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w.p. at least 1 −
√

2
πp

−δ simultaneously for all M and M0. Hence, with this

probability, for the penalties Pen(M) in Theorem 2,

2〈ξ, f̂θ̂ − f̂M0〉 ≤ Pen(M0) +
∑

M∈Mr

θ̂MPen(M) +
1

2

∑
M∈Mr

||f̂M − f̂M0 ||2

that together with (5.21) and (5.22) imply ‖f− f̂θ̂‖2 ≤ ||f− f̂M0 ||2+2 Pen(M0)
for all M0 ∈ Mr and, therefore, (4.6) holds.

We now prove (4.7) for M ∈ Mr,γ . From (5.21)-(5.23) it follows that

||f − f̂θ̂||
2 ≤||f − f̂M0 ||2 + Pen(M0) +

∑
M∈Mr,γ

θ̂M

(
2

ν22r
||ΨT

M̃
ε||2 − Pen(M)

)

≤||f − f̂M0 ||2 + Pen(M0) + sup
M∈Mr,γ

(
2

ν22r
||ΨT

M̃
ε||2 − Pen(M)

)
≤||f − f̂M0 ||2 + Pen(M0) +

2

ν22r
||ΨT

M0
ε||2 +Δ,

(5.24)

where Δ = supM∈Mr,γ

(
2

ν2
2r
||ΨT

Mε||2 − Pen(M)
)
. By Lemma 1, P (Δ > 0) ≤√

2
πp

−δ. Taking the expectations in both sides of (5.24) and repeating the ar-

guments in the proof of (3.4) in Theorem 1 for this Δ obtain (4.7).
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[5] Birgé, L. and Massart, P. (2007). Minimal penalties for Gaussian model
selection. Probab. Theory Relat. Fields 138 33–73. MR2288064
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