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Abstract 1 

The Continuous Wavelet Transform (CWT) is a frequently used tool to study 2 

periodicity in climate and other time series. Periodicity plays a significant role in 3 

climate reconstruction and prediction. In numerous studies, the use of CWT revealed 4 

Dominant Periodicity (DP) in climatic time series. Several studies suggested that these 5 

"natural oscillations" would even reverse global warming. It is shown here that the 6 

results of wavelet analysis for detecting DPs can be miss-interpreted in the presence of 7 

local singularities that are manifested in lower frequencies. This may lead to false DPs 8 

detection.  In CWT analysis of synthetic and real-data climatic time series, with local 9 

singularities, CWT indicates on a low frequency DP even if there is no true periodicity 10 

in the time series. It is argued that this is an inherent general property of CWT. Hence, 11 

applying CWT to climatic time series should be re-evaluated and more careful analysis 12 

of the entire wavelet power spectrum is required, focusing on high frequencies as well. 13 

Thus, a cone-like shape in the wavelet power spectrum most likely indicates the 14 

presence of a local singularity in the time series rather than a DP, even if the local 15 

singularity has an observational or a physical basis. It is shown that analyzing the 16 

derivatives of the time series may be helpful in interpreting the wavelet power spectrum. 17 

Nevertheless, this is only a partial remedy that does not completely neutralize the effects 18 

caused by the presence of local singularities. 19 
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1. Introduction 1 

Spectral methods such as the Continuous Wavelet Transform (CWT, frequently 2 

named wavelet analysis) and the Fast Fourier Transform (FFT) have a special appeal 3 

for climate and paleo climate research because they can be used to detect periodicities 4 

in time series and other applications. CWT has therefore become a most common tool 5 

for the study of variations within climate time series, capable to analyse them with 6 

different timescales, which is imperative in climate reconstruction and prediction 7 

(Torrence and Compo, 1998). An appealing feature of CWT is its ability to analyse 8 

non-stationary time series, which is vital in climate research (Lau and Weng, 1995). 9 

Recently, CWT was used in a plethora of climate and geophysical studies (e.g., Gray 10 

et al., 2004; Knight et al., 2005; Li et al., 2011; DeLong et al., 2012; Mccabe-Glynn et 11 

al., 2013; Pike et al., 2013; Cox et al., 2014; Duan et al., 2014; Kreppel et al., 2014; 12 

Magee et al., 2014; Soon et al., 2014; Xu et al., 2014; Burn et al., 2015; Lee et al., 13 

2015; Wright et al., 2015; Novello et al., 2016; Sharma et al., 2016). These studies have 14 

incorporated CWT as a primary tool, chosen from the many other signal analysis tools 15 

within the frequency domain. These authors have highlighted Dominant Periodicity 16 

(DP) in climatic, paleo climatic and geophysical time series, attributing them to natural 17 

origin (e.g., NAO, ENSO, PDO, solar cycles, solar irradiance, thermohaline circulation, 18 

etc.). Cone like shapes, expressing low frequency DPs in the wavelet power spectrum 19 

that emerged in the aforementioned studies have motivated the present work. It is 20 

stressed that low frequency DPs may suggest a long term climatic process as opposed 21 

to local high frequency features. Thus, low frequency DPs are appealing in improving 22 

predictability of the climate system. 23 

Frequently, such studies detected DP’s using a point wise significance testing 24 

procedure applied to the wavelet spectrum (Torrence and Compo, 1998). These authors 25 

have suggested that for a first order auto-regressive process with lag-1 auto-correlation, 26 

a theoretical normalized red-noise power spectrum can be computed. To obtain the 5% 27 

significance level, the red-noise power spectrum is multiplied by the 95% of a chi-28 

square distribution with two degrees of freedom and then the result is divided by two 29 

to remove the degrees of freedom factor. The auto-correlation coefficient can be 30 

estimated by standard methods, e.g., Allen and Smith (1996) used in this study. 31 

 DPs are defined herein as a statistically significant region of the wavelet spectrum 32 

within a band of lower frequencies/periodicities (e.g., Figure 1). It is emphasized that 33 

these higher power regions extend in time and are not very local features in the power 34 
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spectrum. As such, many climatic studies relate DPs to natural cycles of the climate 1 

system, as indicated above. However, point wise testing procedures applied to 2 

simultaneous testing of a large number of wavelet coefficients ignore the severe 3 

multiple testing problem and, therefore, typically result  in detection of spurious patches 4 

in the wavelet power spectrum (e.g., Abramovich and Benjamini, 1995; Maraum et al., 5 

2007). When one performs a test at a specific significance level, by definition one 6 

rejects the null hypothesis at a certain percent (e.g., 5%) even if it is true. Thus, when 7 

performing a test many times, a certain percent would emerge as spuriously significant. 8 

This is referred to as the multiple testing problem mentioned above (Maraun and 9 

Kurths, 2004).  Nevertheless, pointwise significance testing is still the most commonly 10 

used significance test in climate studies. 11 

Several improved significance testing procedures were considered in the literature. 12 

Maraun et al. (2007) proposed an area wise significance test. The main disadvantage of 13 

this test is the complexity of the significance level calculation, which involves a root-14 

finding algorithm. Liu et al. (2007) have addressed the bias problem in the estimate of 15 

the wavelet spectra in atmospheric and oceanic datasets. They have suggested a 16 

rectification procedure, which is the transform coefficient squared divided by the scale 17 

it associates with.  Schulte et al. (2015) developed a Geometric method for significance 18 

testing in the wavelet domain. It was found that this method produces results similar to 19 

the area wise significance test (Schulte et al., 2015) while being more computationally 20 

flexible and efficient. In a most recent study, the Geometric method was improved by 21 

a cumulative area wise significance testing procedure (Schulte, 2016). It was shown 22 

that the latter test implies higher statistical power in most cases, especially when the 23 

signal-to-noise ratio is high (Schulte, 2016). 24 

The purpose of this paper is to show that the CWT, even after applying the 25 

aforementioned state-of-the-art methods, still often identifies artificial lower frequency 26 

DPs arising from local singularities in a time series that can lead to misinterpretation of 27 

the wavelet power spectrum. This observation is particularly important because of the 28 

enormous recent increase in the number of publications using wavelet analysis in 29 

climate research, from 15 publications per year in 1998 to about 550 in 2018 (Science 30 

Direct). 31 

 32 

2. Data and methods 33 
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To demonstrate the detection of artificial DPs in the wavelet power spectrum we 1 

applied the state-of-the-art Cumulative Area Wise (Schulte, 2016) and the Geometric 2 

(Schulte et al., 2015) significance testing procedures 3 

(www.mathworks.com/matlabcentral/fileexchange/ ) to six synthetic and four real 4 

climate time series:  5 

1) A sine time series with a ~200 low frequency periodicity (Figure 1). 6 

2) The sun-spot number time series (SILSO, World Data Center; Figure 2).  7 

3) A local abrupt change (step) time series generated manually (Figure 3).  8 

4) Stratospheric aerosol optical depth time series (Bourassa et al., 2012; Figure 4). 9 

5) A red noise time series (Figure 5).  10 

6) The local abrupt change time series added to the red noise time series (Figure 6).  11 

7) The sine time series added to the red noise time series (Figure 7). 12 

8) The Pacific Decadal Oscillation (PDO) reconstruction (Mann et al., 2009; Figure    13 

8). 14 

9) The daily Nino3.4 index for 12.7.2015 – 6.4.2018 (Reynolds et al., 2007; Figure 15 

9). 16 

10) A time series containing a few local abrupt changes added to red noise (Figure 17 

10). 18 

For all the examples, we applied the above advanced significance testing procedures 19 

of Schulte et al. (2015) and Schulte (2016), where we used the Morlet 6 "mother" 20 

wavelet, which is the most commonly used wavelet in geophysics. All time series were 21 

padded with zeros at the edges as typically recommended in geophysics. We used a red 22 

noise (see introduction) and the applied significance testing procedure were adapted 23 

correspondingly to such a noise background, by generating 1000 realizations of noisy 24 

samples from this surrogate distribution, using Monte-Carlo techniques.  Red noise is 25 

a commonly used background in geophysics (Torrence and Compo, 1998; Maraun et 26 

al., 2007; Schulte et al., 2015; Schulte, 2016).  It is noted that the null distribution (the 27 

time series is similar to a red-noise background) of the normalized area of a significance 28 

patch depends on the choice of null hypothesis, with, for red-noise processes, the 29 

normalized area increases with increasing lag-1 autocorrelation coefficients (Schulte et 30 

al., 2015).  31 

For the sake of comparison, the Fast Fourier Transform, and pointwise wavelet 32 

significance testing (Torrence and Compo, 1998) were also applied to the time series 33 

described above (Figure S1, S2, respectively). The bias rectification procedure (Liu et 34 

http://www.mathworks.com/matlabcentral/fileexchange/
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al., 2007) was further applied to the synthetic time series before using the Cumulative 1 

Area Wise significance test (Schulte 2016; Figure S3). In addition, boundary conditions 2 

may be a considerable source of uncertainty in climate and other time series. Several 3 

options have been presented in the literature. For example, Lin and Franzke (2015) and 4 

Gallegati (2018) have extended their time series using a symmetric/anti-symmetric 5 

extension mode. No clear recommendation has yet been given for climate time series. 6 

Here, the effect of using zero padding is evaluated for the synthetic time series (Figure 7 

S4). We have further investigated the above mentioned time series using alternative 8 

"mother" wavelets including the Paul (Figure S5) and Dog (Figure S6) "mother" 9 

wavelets. 10 

To better distinguish between real DPs and local abrupt changes, it may be helpful 11 

to apply wavelet-based tests to the derivative (the rate of change at each time step) of 12 

the original time series. Taking the derivative does not affect periodicity. On the other 13 

hand, it reduces regularity of a signal, and a local singularity would be stronger 14 

manifested at higher frequencies of the wavelet spectrum. See Mallat (2008, Section 6) 15 

for rigorous mathematical analysis. 16 

 17 

3. Results 18 

CWT should only detect periodicities in the Sine time series (Figure 1), in the sun-19 

spot number time series (Figure 2; SILSO, World Data Center), and in the Sine time 20 

series with red noise (Figure 7) as shown in the Fast Fourier Transform analysis (Figure 21 

S1). However, the wavelet power spectrum indicates the presence of DPs in all 22 

considered time series (Figures 1-10). The detected periodicities in the wavelet power 23 

spectrum in Figures 3-6 and 8-10 are artificial and are caused by local abrupt changes 24 

in the time series. It should be stressed that local abrupt changes may represent a real 25 

physical change in the system. For example, the stratospheric aerosol optical depth 26 

attributed to volcanic eruptions is analyzed here (Figure 4; Bourassa et al., 2012). Two 27 

major local abrupt changes that coincide with the large volcanic eruptions of Krakatoa 28 

in 1883 and of El Chicon and Mount Pinatubo in 1982 and 1991, respectively, produce 29 

DPs at the 10-12 year periods (Figure 4).   The CWT accurately detects the local abrupt 30 

change location on high frequency scales (Figures 3c, e – 10c, e).  However, in the 31 

lower frequencies, the patch expands in time (Figures 3c, e – 10c, e) and results in a 32 

lower frequency band in the wavelet power spectrum, that may be erroneously 33 

interpreted as indication of a DP in the time series. Furthermore, it seems that the 34 
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Cumulative Area Wise test is more susceptible to the emergence of lower frequency 1 

DPs than the Geometric test (Figures 3c, e – 10c, e).  2 

Following our remarks at the end of Section 2, we analyzed also the wavelet 3 

spectrum of the original time series derivative. Figure 1d, f and 2d, f show that the 4 

derivative of the Sine time series and the sun-spot number time series, respectively, 5 

indeed leaves the low frequency periodicity intact. On the other hand, when there are 6 

local abrupt changes in the time series (e.g., Figure 6 and 10), using the derivative 7 

emphasizes the power at higher frequencies in the wavelet power spectrum and reduces 8 

the power in the lower frequency patches (Figure 6d, f and 10d, f).  However, it still 9 

does not completely prevent detection of false DPs. This is further demonstrated in real 10 

reconstructed PDO and Nino3.4 time series (Figure 8d, f and 9d, f). Thus, using the 11 

derivatives is a partial remedy that does not completely neutralize the effects caused by 12 

the presence of local singularities.  13 

It is further shown that the pointwise significance testing procedure (Torrence and 14 

Compo, 1998) also displays significant artificial low frequency DPs in the 15 

aforementioned time series (Figure S2). This test mostly does not find the high 16 

frequency scales as significant, in contrast to the area based tests (Schulte et al., 2015; 17 

Schulte 2016).  18 

Rectifying the wavelet power spectrum may allow the comparison of spectral peaks 19 

across scales (Liu et al., 2007). However, for time series containing local abrupt 20 

changes, the Cumulative Area Wise significance test (Schulte 2016) finds the high 21 

frequency scales as significant but not the real DPs (Figure S3).  22 

Figure S4 displays the effect of using zero padding on the synthetic time series used 23 

in this study. It is shown that using the zero padding procedure (Figure S4 left column) 24 

reduces boundary conditions in all aforementioned time series with respect to no 25 

padding (Figure S4 right column). It is stressed that zero padding is helpful wherever it 26 

smooths the time series at its boundaries, thus reducing the effect of local singularities. 27 

For example, the improvement in the boundary conditions is higher in the left side of 28 

the sine time series then in the right side (Figure S4a, b, respectively). Thus, no clear 29 

recommendation can be given for climate time series since the edge effects will highly 30 

depend on the analyzed time series edges. It is recommended to analyze time series 31 

with different extension procedures to give a better evaluation of edge effects.  32 

Finally, it is found that the Morlet 6 "mother" wavelet is the least susceptible to the 33 

effect of local singularities on lower frequency DPs (Figures 1-10) with respect to the 34 
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Paul (Figure S5) and Dog (Figure S6) "mother" wavelets. Thus, we recommend using 1 

Morlet 6 for climate time series as earlier recommended (Torrence and Compo, 1998; 2 

Maraun et al., 2007; Schulte et al., 2015; Schulte, 2016). 3 

Summarizing, we argue that local singularities, commonly present in climatic time 4 

series (e.g., Yosef et al., 2018) can induce low-frequency power that may be interpreted 5 

as DPs. It is further stressed here that spectral methods have been used to quantify non-6 

linearity in time series (May 1976). Such non-linearity can lead to abrupt changes in 7 

time series and in turn, period doubling bifurcations that will ultimately be exhibited as 8 

a cone like shape in the wavelet power spectrum (Weng and Lau, 1994).   9 

We have demonstrated this problematic feature on synthetic time series and on real 10 

climatic series. However, it should be noted that any series containing local singularities 11 

would necessarily produce a DP at lower frequencies, as this is inherent to wavelet 12 

analysis (Holschneider 1995; Abramovich et al., 2000; Mallat 2008). 13 

 14 

4. Discussion 15 

The results of using CWT for detecting periodicities in climate time series might be 16 

misleading, as demonstrated here on different synthetic as well as real climate time 17 

series. It is shown that the presence of a lower frequency band in the wavelet power 18 

spectrum does not necessarily indicate a real periodicity, but is often caused by local 19 

singularities in the time series (as shown in Figures 3-6 and 8-10).  Note that one can 20 

think of CWT as a series of localized band-pass filters, where low frequencies 21 

correspond to large windows in the time domain. Therefore, local singularities would 22 

be necessarily manifested in the lower frequencies domain of the wavelet power 23 

spectrum (Holschneider, 1995; Abramovich et al., 2000; Mallat, 2008). A finer analysis 24 

of the geometry of patch shapes is required to distinguish between a true DP and an 25 

abrupt change in a time series. The latter typically yields local maxima within a cone 26 

around its location that propagate along high frequencies in the wavelet spectrum (e.g., 27 

Mallat, 2008, Sections 6.1-6.2), while DPs are characterized by temporally long bands 28 

in the low frequency domain. In this case, one could think of some length test for a 29 

patch. The problem, however, is more challenging, as there is occasionally a series of 30 

local singularities with interfering cones that might look similar to a long band in the 31 

low frequency domain (Figures 8-10). Here, we suggest to use the derivative of a time 32 

series as an additional test to distinguish between real periodicity and low frequency 33 
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bands in the wavelet power spectrum emerging from local singularities. However, it 1 

still does not completely prevent detection of false DPs. 2 

Summarizing, in order to distinguish between various possible scenarios, a 3 

topological analysis of the entire wavelet power spectrum is required, focusing on high 4 

frequency as well. Accordingly, whenever a lower frequency dominant periodicity 5 

appears in the wavelet power spectrum, one should also analyze the higher frequency, 6 

to distinguish between a real periodicity and an artificial one, produced by local 7 

singularities. Cone-like shapes in the wavelet power spectrum, propagating from the 8 

higher to the lower frequencies, most likely indicate on an artificial DP. The rigorous 9 

theory for such an analysis is a topic for further research.   10 

 11 
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 4 

Legend to figures 5 

Figure 1 A Sine time series (a) and the derivative of the sine time series (b) Continuous 6 

Wavelet Transform (CWT) applied with (c,d) Cumulative area wise (Schulte 2016) (e,f) 7 

Geometric (Schulte et al., 2015) significance testing using a Morlet 6 "mother" wavelet.  8 

The Wavelet Power Spectrum is shown for both significance testing. The black 9 

contours are regions found to be significant at the 5% level with respect to a red noise 10 

background using 1000 realizations from a Monte Carlo experiment. The shaded 11 

regions mark the cone of influence in which boundary conditions become important. 12 

The Dominant Periodicities (DP) are marked in an arrow. DPs are a statistically 13 

significant region of the wavelet spectrum within a band of lower 14 

frequencies/periodicities. It is emphasized that these higher power regions extend in 15 

time and are not very local features in the power spectrum. 16 

Figure 2 Same as Figure 1 but for the sun-spot number time series (SILSO, World Data 17 

Center). Dominant Periodicities (DP) are marked in arrows. 18 

Figure 3 Same as Figure 1 but for a Local Abrupt Change time series. Local Abrupt 19 

Changes (LAC) and Dominant Periodicities (DP) are marked in arrows. 20 

Figure 4 Same as Figure 1 but for the stratospheric aerosol optical depth time series 21 

(Bourassa et al., 2012). Local Abrupt Changes (LAC) and Dominant Periodicities (DP) 22 

are marked in arrows. 23 

Figure 5 Same as Figure 1 but for a red noise time series. 24 

Figure 6 Same as Figure 1 but for the red noise time series added to the Local Abrupt 25 

Change (LAC) time series. LAC and Dominant Periodicities (DP) are marked in arrows. 26 

Figure 7 Same as Figure 1 but for the sine time series added to the red noise time series. 27 

Dominant Periodicities (DP) are marked in arrows. 28 

Figure 8 Same as Figure 1 but for the reconstructed PDO (Mann et al., 2009). Local 29 

Abrupt Changes (LAC) and Dominant Periodicities (DP) are marked in arrows. 30 

Figure 9 Same as Figure 1 but for the Nino3.4 index 12.7.2015 – 6.4.2018. Local 31 

Abrupt Changes (LAC) and Dominant Periodicities (DP) are marked in arrows. 32 

Figure 10 Same as Figure 1 but for a time series with a few Local Abrupt Changes 33 

(LAC) added to red noise. 34 
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Figure 1 A Sine time series (a) and the derivative of the sine time series (b) Continuous 1 

Wavelet Transform (CWT) applied with (c, d) Cumulative area wise (Schulte 2016) (e, 2 

f) Geometric (Schulte et al., 2015) significance testing using a Morlet 6 "mother" 3 

wavelet.  The Wavelet Power Spectrum is shown for both significance testing. The 4 

black contours are regions found to be significant at the 5% level with respect to a red 5 

noise background using 1000 realizations from a Monte Carlo experiment. The shaded 6 

regions mark the cone of influence in which boundary conditions become important. 7 

The Dominant Periodicities (DP) are marked in an arrow. DPs are a statistically 8 

significant region of the wavelet spectrum within a band of lower 9 

frequencies/periodicities. It is emphasized that these higher power regions extend in 10 

time and are not very local features in the power spectrum. 11 
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Figure 2 Same as Figure 1 but for the sun-spot number time series (SILSO, World Data 1 

Center). Dominant Periodicities (DP) are marked in arrows. 2 
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Figure 3 Same as Figure 1 but for a Local Abrupt Change time series. Local Abrupt 1 

Changes (LAC) and Dominant Periodicities (DP) are marked in arrows. 2 
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Figure 4 Same as Figure 1 but for the stratospheric aerosol optical depth time series 1 

(Bourassa et al., 2012). Local Abrupt Changes (LAC) and Dominant Periodicities (DP) 2 

are marked in arrows.  3 
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Figure 5 Same as Figure 1 but for a red noise time series. 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 



19 
 

Figure 6 Same as Figure 1 but for the red noise time series added to the Local Abrupt 1 

Change (LAC) time series. LAC and Dominant Periodicities (DP) are marked in arrows. 2 
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Figure 7 Same as Figure 1 but for the sine time series added to the red noise time series. 1 

Dominant Periodicities (DP) are marked in arrows. 2 
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Figure 8 Same as Figure 1 but for the reconstructed PDO (Mann et al., 2009). Local 1 

Abrupt Changes (LAC) and Dominant Periodicities (DP) are marked in arrows. 2 
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Figure 9 Same as Figure 1 but for the Nino3.4 index 12.7.2015 – 6.4.2018. Local 1 

Abrupt Changes (LAC) and Dominant Periodicities (DP) are marked in arrows.  2 
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Figure 10 Same as Figure 1 but for a time series with a few Local Abrupt Changes 1 

(LAC) added to red noise. 2 
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