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Some Statistical Remarks on the Derivation of BER in
Amplified Optical Communication Systems

Felix Abramovich and Polina Bayvel

Abstract—We consider the signal detection problem in am-
plified optical transmission systems as a statistical hypothesis
testing procedure, and we show that the detected signal has a
well-known chi-squared distribution. In particular, this approach
considerably simplifies the derivation of bit-error rate (BER).
Finally, we discuss the accuracy of the Gaussian approximations
to the exact distributions of the signal.

I. INTRODUCTION

I N THIS LETTER we consider the analysis and derivation
of the bit-error rate (BER) in an optical transmission

system with all-optical amplifiers, such that the amplifiers
add Gaussian amplified spontaneous emission noise, dominant
over other possible noise sources. This is a well-known
problem, studied by a number of authors (see, for example,
Marcuse [4]). In this contribution, we consider this problem
as a standard statistical hypothesis testing procedure that, in
particular, automatically yields results obtained by Marcuse
through rather complex calculus. The suggested approach
provides valuable insight into the evaluation of performance
in optical transmission systems. We also discuss the accuracy
of Gaussian approximations for the exact signal distributions.

II. OPTICAL TRANSMISSION SYSTEM: STATISTICAL MODEL

Consider a transmission system with optical amplifiers
(Fig. 1) with an input noiseless signal being either logical
ZERO or logical ONE. The amplifiers generate spontaneous
emission noise added to and the resultingnoisy
signal is filtered by a bandpass optical
filter and then incident on the detector. The detector produces
an electrical current proportional to the absolute square value
of the amplitude of the noisy signal, so the output signal
from detector is The
output current is averaged over one bit period and the
observed datum is

Various aspects of statistical analysis of detecting noisy
signals are considered, for example, in Whalen [5]. From
a statistical viewpoint, detecting a signal is essentially a
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hypothesis testing procedure. Given an observed noisyone
tests whether is a logical ZERO (null hypothesis or
a logical ONE (alternative hypothesis We construct an
appropriate test using the Fourier representation of signals:

and (1)

where and are the Fourier coefficients of a noiseless
signal and noise respectively. Since, prior to the
square-law detector, the signal is passed through an optical
bandpass filter (see Fig. 1) whose bandwidth is between

and only these frequencies will remain in (1), so
that

and

The Fourier coefficients of the resulting noisy signal
are and the observed is

where and are real and imaginary parts of respec-
tively. Assuming that the noise is Gaussian with a variance

and all ’s, ’s
are independent due to the orthogonality of the Fourier series.

Under the null hypothesis (logical ZERO), the average
while under the alternative hypothesis (logical

ONE), Performing any
statistical test on noisy data, there are two types of possible
errors: to reject erroneously known in statistics as a Type
I error, and to accept erroneously a Type II error (e.g.,
[5]), corresponding to an incorrect detection of a logical ONE
or a logical ZERO, respectively.

In the problem at hand, given the likelihood ratio test for
testing versus is of the form: reject (and hence,
accept if where is a critical threshold value.
The threshold current is usually chosen to minimize the
total probability of an error in detecting any signal, i.e., the
bit-error rate where and

are probabilities of Type I and Type II errors.

III. D ERIVATION OF BER

To calculate and (and hence, BER), one needs
to derive first the distributions of the test statisticunder both
hypotheses.

We start with under which all and
hence, is the sum of squares of independent Gaussian
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Fig. 1. Schematic diagram of an optical communication system.

random variables with zero means and variances where
Then, where is a

(central) chi-squared distribution with degrees of freedom
[5] whose probability density is

(2)

and thus, the probability density of under is

Using the standard results for the chi-squared distribution,
one immediately has

All of these directly obtained results are identical to [4, eqs.
(13), (17), (18)], derived there after rather tedious calculus.

By repeated integration by parts, the probability of Type I
error is

(3)

The sum in (3) can be well approximated by the (last)
largest two terms, leading to Marcuse’s approximation (16)
for

Consider now the distribution of in the case of a logical
ONE signal. Under the alternative hypothesis is the sum
of squares of independent Gaussian random variables
with means ’s and ’s, and therefore, is distributed
as where is a noncentral
chi-squared distribution with degrees of freedom and
the noncentrality parameter [5].
The probability density of a noncentral chi-squared random

variable is an infinite weighted sum of the usual (central) chi-
squared densities, where the weights are successive Poisson
probabilities (Johnson and Kotz, [3]:

Thus, the exact probability density ofunder is given by
the infinite sum

where the (central) chi-squared distributions are
given in (2). The average and the variance ofare

(4)

where [5]. (Note that is erroneously miss-
ing in Marcuse’s definition (23) of Again, (4) coincides
with analogous results of Marcuse [4, eqs. (46), (47)].

The probability of Type II error
However, to obtain a closed form for one has to use
various approximations for Indeed, one of these was
used by Marcuse [4, eq. (24)].

The critical threshold value that minimizes
is defined by solving the equation

To derive an analytical approximation for
should be replaced by one of its approximations.

The explicit expressions for and for the resulting BER are
given in Marcuse [4, Sect. III].

Summarizing, we can conclude that the statistical hypothesis
testing approach introduced in this section allows a direct and
straightforward derivation of BER in optical communication
systems.

IV. GAUSSIAN APPROXIMATION

In this section, we discuss the Gaussian approximations to
and This problem was considered by Marcuse

[4], who demonstrated that the Gaussian approximations are
not appropriate for small We would like to make some
statistical comments to clarify this issue.

As already mentioned, is the sum of independent
random variables (each of them is a squared Gaussian), and
therefore, according to the central limit theorem, for large

the distribution of is asymptotically Gaussian. Thus,
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asymptoticallyfor large is and
is or, more precisely, the distribu-
tions of the standardized under

and of
under converge to the standard normal distribution
as increases. However, substituting the corresponding cu-
mulants of the chi-squared distribution [3] into the Edgeworth
expansion of the exact cumulative distribution function
of under we have

(5)

where are the cumulative distribution function and
the density function of the standard normal distribution, re-
spectively, and is the Hermite polynomial of degree

[2, ch. 4]. The expansion (5) indicates that the rate
of convergence of to is rather slow
and essentially explains why the Gaussian approximation to
the chi-squared distribution performs satisfactorily when the
number of degrees of freedom is sufficiently large
(in practice, usually is on the order of 30 or even more).
Since, physically, represents the optical filter bandwidth,
practical low-noise optical receivers will restrict to be
less than 10. Hence, it is not surprising that the Gaussian
approximations behave poorly, and the original chi-squared
distributions should be used.

Alternatively, the accuracy of the Gaussian approxi-
mations can be improved even for small by using
the Wilson–Hilferty transformations of the original chi-
squared variables: and

Then, under is
approximately Gaussian with mean and variance

[6], while under is approximately Gaussian
with mean and variance

respectively [1]. It is key to
note that the rate of convergence of the standardized and

to the standard normal distribution is now

which is faster than that in (5), and the corresponding Gaussian
approximations work quite satisfactorily, even for small
numbers of degrees of freedom [6], [1]. 1931.

V. CONCLUSIONS

It was shown that the statistical hypothesis testing ap-
proach allows a direct and straightforward derivation of the
detected signal distribution, and hence, error probabilities
in detecting a signal in an amplified optical transmission
system. Specifically, it was shown that this distribution is a
well-known chi-squared distribution. The statistical analysis,
introduced here, gives a useful insight into the evaluation of
performance in optical communication systems. Moreover, this
approach can also be extended to analyze systems with more
general noise sources, including noise generated by nonlinear
transmission effects and in the electrical detector circuit. The
accuracy of the Gaussian approximations to the original chi-
squared distributions of the signal was discussed, and it was
shown that it can be improved by using the Wilson–Hilferty
transformation.
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