1032 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 9, SEPTEMBER 1997

Some Statistical Remarks on the Derivation of BER in
Amplified Optical Communication Systems

Felix Abramovich and Polina Bayvel

Abstract—We consider the signal detection problem in am- hypothesis testing procedure. Given an observed rngpione
plified optical transmission systems as a statistical hypothesis tests whetheE(t) is a logical ZERO (null hypothesi#) or
testing procedure, and we show that the detected signal has ag logical ONE (alternative hypothesi;). We construct an

well-known chi-squared distribution. In particular, this approach iate test using the Fouri tati fsi Is:
considerably simplifies the derivation of bit-error rate (BER). appropriate test using the Founer representation of signals.

Finally, we discuss the accuracy of the Gaussian approximations oo oo
to the exact distributions of the signal. E(t) — Z CVCQﬂ'Vit/T and e(t) _ Z CVCQﬂ'z/it/T (1)
v=0 v=0
. INTRODUCTION where C,, and ¢, are the Fourier coefficients of a noiseless

N THIS LETTER we consider the analysis and derivatiofignal £(¢) and noisec(t), respectively. Since, prior to the
of the bit-error rate (BER) in an optical transmissiosquare-law detector, the signal is passed through an optical
system with all-optical amplifiers, such that the amplifiergandpass filter (see Fig. 1) whose bandwidth is between
add Gaussian amplified spontaneous emission noise, domiriannd» = v, only these frequencies will remain in (1), so
over other possible noise sources. This is a well-knovihat
problem, studied by a number of authors (see, for example, V2 ‘ v ‘
Marcuse [4]). In this contribution, we consider this problem E(t) = Z Cpe™ T and e(t) = Z ¢, 2t/ T
as a standard statistical hypothesis testing procedure that, in v=u v=u
particular, automatically yields results obtained by Marcuse the Fourier coefficients, of the resulting noisy signai(¢)

through rather complex calculus. The suggested approagh , _ ~ + ¢,, and the observeg is
provides valuable insight into the evaluation of performance v
in optical transmission systems. We also discuss the accuracy _ < 2 < 2
of Gaussian approximations for the exact signal distributions. y=K Z 7l =K Z (7 + 2i)
v=v1 v=rvi

wherez,.,, andz;, are real and imaginary parts ef, respec-
) o _ _ __ tively. Assuming that the nois&t) is Gaussian with a variance

Consider a transmission system with optical ampllfler§27zw ~ N(Chy, 02), 2y ~ N(Cin, 02), and all 2,,,’s, 2;,’S
(Fig. 1) with an input noiseless signalt) being either logical are independent due to the orthogonality of the Fourier series.
ZERQ or Ioglcal ONE. The amplifiers generate spontaneousynder the null hypothesiél, (logical ZERO), the average
emission noise:(t) added.to’_E(t), and the resultmgmsy (y) = 0, while under the alternative hypothest;, (logical
signal z(t) = E(t) + ¢(t) is filtered by a bandpass opticalpnE), (y) = S, (C%, + C2) > 0. Performing any
. . : v=rq TV (3%
filter and_then incident on th_e detector. The detector producggtistical test on noisy data, there are two types of possible
an electrical current proportional to the absolute square valggors: to reject erroneousliy, known in statistics as a Type

from detector isI(t) = K|z()]* = K|E(f) + c(t)*. The [5)), corresponding to an incorrect detection of a logical ONE
output current/(¢) is averaged over one bit peridd and the o, 5 logical ZERO, respectively.

II. OPTICAL TRANSMISSION SYSTEM: STATISTICAL MODEL

observed datuny is In the problem at hand, givep the likelihood ratio test for
1 (T K (T testing Hy versusH; is of the form: rejectd, (and hence,
v=7 / I(t) dt = T / |E(t) + e(t)|? dt. acceptH,) if y > 14, wherely is a critical threshold value.

0 0

The threshold current; is usually chosen to minimize the
Various aspects of statistical analysis of detecting noi¢gtal probability of an error in detecting any signal, i.e., the

signals are considered, for example, in Whalen [5]. Frohit-error rateBER = $[Po(l4) + P1(1a)], where Py(14) and

a statistical viewpoint, detecting a signal is essentially & (;) are probabilities of Type | and Type Il errors.
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Fig. 1. Schematic diagram of an optical communication system.

random variables with zero means and variankes, where variable is an infinite weighted sum of the usual (central) chi-
M = vy — v + 1. Then,y ~ Ko?x2%,,, wherex3,, is a squared densities, where the weights are successive Poisson
(central) chi-squared distribution withl/ degrees of freedom probabilities (Johnson and Kotz, [3]:

[5] whose probability density is , 00 6_|E1|2/2(|E1|2/2)j ,
1 M- XoM;|Er)?2 = Z ] X2M+42;-
2 _ = —xz/2 2 =0 J:
Xz (%) oM —(M— 1)1 ¢ ) J
Thus, the exact probability density gfunder H; is given by
and thus, the probability densi#y/s(y) of ¥ under Hy is the infinite sum
1 _ 1 IEE(E 22, 2
Wo(y) = Ko? X3y (y/Ko?) Wi(y) = Ko? ; ! Xan42;(y/K07)
M M- =
= L Y /2K where the (central) chi-squared distributiop$ are
\2Ke2) (M -1)! ' q RS 42, ()

given in (2). The average and the varianceycdre

Us_lng the_ standard results for the chi-squared distribution, () =a?K(2M + |E1?) = To+ T
one immediately has 9
_ 0'2:20'4K2 2M+2E12 202+—7071 (4)
To = (4) = 2M Ko i ( B =00+ 45
o2 =var(y) = 4MK?o* = T(Q)/M. yvhe_re_Tl = 02K|El|2_ [5]. (Note thato? is erroneously miss-
ing in Marcuse’s definition (23) of;.) Again, (4) coincides
All of these directly obtained results are identical to [4, eq®ith analogous results of Marcuse [4, egs. (46), (47)].
(13), (17), (18)], derived there after rather tedious calculus. The probability of Type Il errorP, (1) = [i¢ Wi(y) dy.
By repeated integration by parts, the probability of Type However, to obtain a closed form fdf; (1), one has to use

error is various approximations fob; (y). Indeed, one of these was
00 used by Marcuse [4, eq. (24)].
Po(1y) = Woly) dy The critical threshold valud, that minimizesBER =
1 $Po(1y) + Pi(1y)] is defined by solving the equation
R Y o = (14/2K02) 3 Wo(la) = Wi(Ia). To derive an analytical approximation for
T oKo2 © Z 4! G I;, W1 (I4) should be replaced by one of its approximations.

=0 The explicit expressions faf; and for the resulting BER are

The sum in (3) can be well approximated by the (las8iVeén in Marcuse [4, Sect. 1], o ,
largest two terms, leading to Marcuse’s approximation (16) Summarizing, we can conclude that the statistical hypothesis
for Po(1y): testing approach introduced in this section allows a direct and

straightforward derivation of BER in optical communication

1 I \V 2K 02 (M — 1) systems.
Po(Iy) ~ ~ 14222
(M -1\ 2Ko 1y
(142K %) IV. GAUSSIAN APPROXIMATION
- C .
In this section, we discuss the Gaussian approximations to
Consider now the distribution af in the case of a logical Wy(y) and W1 (y). This problem was considered by Marcuse
ONE signal. Under the alternative hypothe&ls, y is the sum [4], who demonstrated that the Gaussian approximations are
of squares of2M independent Gaussian random variablesot appropriate for small/. We would like to make some
with meansC,.,’s and C;,’s, and therefore, is distributed statistical comments to clarify this issue.
asy ~ KU?X%M-lEllzv where XgM_lEllz is a noncentral  As already mentionedy is the sum of2A/ independent
chi-squared distribution witi2A/ degrees of freedom andrandom variables (each of them is a squared Gaussian), and
the noncentrality paramete#;|> = X2, (C2, + C2) [5]. therefore, according to the central limit theorem, for large

=v1

The probability density of a noncentral chi-squared randoi, the distribution ofy is asymptotically Gaussian. Thus,
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asymptoticallyfor large M, Wy (y) is N (I, TS/M) andWi(y) which is faster than that in (5), and the corresponding Gaussian
isN(Io+11,034+(2/M)IoI;) or, more precisely, the distribu- approximations work quite satisfactorily, even for small
tions of the standardizegt = (y/(Ko?) —2M)/+/4M under numbers of degrees of freedom [6], [1]. 1931.

Hy and ofy™* = (y/(Ko?) — 2M — |E1[*/\/4(M + |E1[?)

underH; converge to the standard normal distributigif0, 1) V. CONCLUSIONS
as M increases. However, substituting the corresponding cu-i, .-« <hown that the statistical hypothesis testing ap-

mulants_ of tr;?hchl-squtared dl'S:.r i uél_o?_[s,]tl_ntofthe Edgiwortgroach allows a direct and straightforward derivation of the
expansion of the exact cumulative distribution functityty™) detected signal distribution, and hence, error probabilities

of y* under Ho, we have in detecting a signal in an amplified optical transmission
Fo(y™) = ®(y*) — () Holy™) /(3VM) + Haly*)/(AM system. Specifically, it was shown that this distribution is a
o) ") j)(y JiHa(y )O/( _3/)2 2(y")/(4M) well-known chi-squared distribution. The statistical analysis,
+ Hs(y*)/(18M)} + O(M /%) ) introduced here, gives a useful insight into the evaluation of

where @(.), ¢() are the cumulative distribution function andP€rformance in optical communication systems. Moreov.er, this
the density function of the standard normal distribution, ré?lpproach can also be extended to analyze systems with more

spectively, andH,(-) is the Hermite polynomial of degreegeneral noise sources, including noise generated by nonlinear
' J lré;ansmission effects and in the electrical detector circuit. The

7,7 = 2,3,5[2, ch. 4]. The expansion (5) indicates that the ra ) R - .
J:J =235 | P ©) accuracy of the Gaussian approximations to the original chi-

of convergence ofy(-) to ®(-) is rather slow[O(M~1/2)], TR ) : )
and essentially explains why the Gaussian approximation% uared dlsmbutlons Pf the signal was dlscuss_ed, and_ It was
own that it can be improved by using the Wilson—Hilferty

the chi-squared distribution performs satisfactorily when thR .
number of degrees of freedorf2M) is sufficiently large transformation.
(in practice, usually is on the order of 30 or even more).
Since, physically,M represents the optical filter bandwidth, ACKNOWLEDGMENT
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Alternatively, the accuracy of the Gaussian approxi-[l] S. H. Abdel-Aty, “Approximate formulae for the percentage points and
mations can be improved even for smalW by using . .
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