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Model Selection and Minimax Estimation
in Generalized Linear Models

Felix Abramovich and Vadim Grinshtein

Abstract— We consider model selection in generalized linear
models (GLM) for high-dimensional data and propose a wide
class of model selection criteria based on penalized maximum
likelihood with a complexity penalty on the model size. We derive
a general nonasymptotic upper bound for the Kullback–Leibler
risk of the resulting estimators and establish the corresponding
minimax lower bounds for the sparse GLM. For the properly
chosen (nonlinear) penalty, the resulting penalized maximum
likelihood estimator is shown to be asymptotically minimax
and adaptive to the unknown sparsity. We also discuss possible
extensions of the proposed approach to model selection in the
GLM under additional structural constraints and aggregation.

Index Terms— Complexity penalty, generalized linear models,
Kullback-Leibler risk, minimax estimator, model selection,
sparsity.

I. INTRODUCTION

REGRESSION analysis of high-dimensional data,
where the number of potential explanatory variables

(predictors) p might be even large relative to the sample size n
faces a severe “curse of dimensionality” problem. Reducing
the dimensionality of the model by selecting a sparse subset
of “significant” predictors becomes therefore crucial. The
interest to model selection in regression goes back to seventies
(e.g., seminal papers [4], [15], [21]), where the considered
“classical” setup assumed p � n. Its renaissance started in
2000s with the new challenges brought to the door of statistics
by exploring data, where p is of the order of n or even
larger. Analysing the “p larger than n” setup required novel
approaches and techniques, and led to novel model selection
procedures. The corresponding theory (risk bounds, oracle
inequalities, minimax rates, variable selection consistency,
etc.) for model selection in Gaussian linear regression has
been intensively developed in the literature in the last decade.
See [1], [5]–[7], [9], [12], [18], and [20] among many others.
A review on model selection in Gaussian regression for
“p larger than n” setup can be found in [25].
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Generalized linear models (GLM) is a generalization of
Gaussian linear regression, where the distribution of response
is not necessarily normal but belongs to the natural exponential
family of distributions. Important examples include binomial
and Poisson data arising in a variety of statistical applications.
Foundations of a general theory for GLM have been developed
in [16].

Although most of the proposed model selection criteria for
Gaussian regression have been extended and are nowadays
widely used in GLM (e.g., AIC of Akaike [4] and BIC of
Schwarz [21]), not much is known on their theoretical
properties in the general GLM setup. There are some
results on variable selection consistency of several model
selection criteria (e.g., [10], [11]), but a rigorous theory
of model selection for estimation and prediction in GLM
remains essentially terra incognita. We can mention [26]
that investigated the Lasso estimator in GLM and [19] that
considered aggregation problem for GLM. The presented
paper intends to contribute to fill this gap.

We introduce a wide class of model selection criteria for
GLM based on the penalized maximum likelihood estimation
with a complexity penalty on the model size. In particular,
it includes AIC, BIC and some other well-known criteria.
In a way, this approach can be viewed as an extension of
that of [6] and [7] for Gaussian regression. We derive a
general nonasymptotic upper bound for the Kullback-Leibler
risk of the resulting estimator. Furthermore, for the properly
chosen penalty we establish its asymptotic minimaxity and
adaptiveness to the unknown sparsity. Possible extensions to
model selection under additional structural constraints and
aggregation are also discussed.

The paper is organized as follows. The penalized maximum
likelihood model selection procedure for GLM is introduced
in Section II. Its main theoretical properties are presented
in Section III. In particular, we derive the upper bound for
its Kullback-Leibler risk and corresponding minimax lower
bounds, and establish its asymptotic minimaxity over various
sparse settings. We illustrate the obtained general results on the
example of logistic regression. Extensions to model selection
under structural constraints and aggregation are discussed in
Section IV. All the proofs are given in the Appendix.

II. MODEL SELECTION PROCEDURE FOR GLM

A. Notation and Preliminaries

Consider a GLM setup with a response variable Y and a set
of p predictors x1, ..., x p . We observe a series of independent

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



3722 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

observations (xi , Yi ), i = 1, . . . , n, where the design points
xi ∈ R

p are deterministic, and the distribution fθi (y) of Yi

belongs to a (one-parameter) natural exponential family with
a natural parameter θi and a scaling parameter a:

fθi (y) = exp

{
yθi − b(θi)

a
+ c(y, a)

}
(1)

The function b(·) is assumed to be twice-differentiable. In this
case E(Yi ) = b′(θi) and V ar(Yi ) = ab′′(θi ) (see [16]).
To complete GLM we assume the canonical link θi = β t xi

or, equivalently, in the matrix form, θ = Xβ, where Xn×p

is the design matrix and β ∈ R
p is a vector of the unknown

regression coefficients.
In what follows we assume the following assumption on

the parameter space � and the second derivative b′′(·):
Assumption (A):

1) Assume that θi ∈ �, where the parameter space � ⊆ R

is a closed (finite or infinite) interval.
2) Assume that there exist constants 0 < L ≤ U < ∞ such

that the function b′′(·) satisfies the following conditions:

a) supt∈R b′′(t) ≤ U
b) inf t∈� b′′(t) ≥ L

Similar assumptions were imposed in [19] and [26].
Conditions on b′′(·) in Assumption (A) are intended to exclude
two degenerate cases, where the variance V ar(Y ) is infinitely
large or small. They also ensure strong convexity of b(·)
over �. For Gaussian distribution, b′′(θ) = 1 and, therefore,
L = U = 1 for any �. For the binomial distribution, b′′(θ) =

eθ

(1+eθ )2 , U = 1
4 , while the condition (b) is equivalent to the

boundedness of θ : � = {θ : |θ | ≤ C0}, where L = eC0

(1+eC0 )2 .

Let fθ and fζ be two possible joint distributions of the
data from the natural exponential family with n-dimensional
vectors of natural parameters θ and ζ correspondingly.
A Kullback-Leibler divergence K L(θ, ζ ) between fθ and fζ
is then

K L(θ , ζ ) = Eθ

{
ln

(
fθ (Y)

fζ (Y)

)}

= 1

a
Eθ

{
n∑

i=1

Yi (θi − ζi ) − b(θi) + b(ζi )

}

= 1

a

n∑
i=1

{
b′(θi )(θi − ζi ) − b(θi) + b(ζi)

}

= 1

a

(
b′(θ)t (θ − ζ ) − (b(θ) − b(ζ ))t 1

)
,

where b(θ) = (b(θ1), · · · , b(θn)) and b(ζ ) =
(b(ζ1), . . . , b(ζn)).

For a given estimator θ̂ of the unknown θ consider
the Kullback-Leibler loss K L(θ , θ̂) – the Kullback-Leibler
divergence between the true distribution fθ of the data and

its empirical distribution f
θ̂

generated by θ̂ . The goodness of
θ̂ is measured by the corresponding Kullback-Leibler risk:

EK L(θ , θ̂) = 1

a

(
b′(θ)t (θ − E(̂θ)) − (b(θ) − Eb(̂θ))t 1

)
(2)

where the expectation is taken w.r.t. the true distribution fθ .
In particular, for the Gaussian case, where b(θ) = θ2/2 and
a = σ 2, EK L(θ , θ̂) is the mean squared error E ||̂θ − θ ||2
divided by the constant 2σ 2. The binomial distribution will be
considered in more details in Section III-D below.

B. Penalized Maximum Likelihood Model Selection

Consider a GLM (1) with a vector of natural parameters θ

and the canonical link θ = Xβ .
For a given model M ⊂ {1, . . . , p} consider the

corresponding maximum likelihood estimator (MLE) β̂M
of β:

β̂M = arg max
β̃∈BM

�(β̃) = arg max
β̃∈BM

{
n∑

i=1

(Yi (X β̃)i −b((X β̃)i )

}

= arg max
β̃∈BM

{
Yt X β̃ − b(X β̃)t 1

}
, (3)

where BM = {β ∈ R
p : β j = 0 if j 
∈ M and β t xi ∈ �

for all i = 1, . . . , n}. Note that generally BM depends on
a given design matrix X . Except Gaussian regression, the
MLE β̂M in (3) is not available in the closed form but can
be obtained numerically by the iteratively reweighted least
squares algorithm (see [16, Sec. 2.5]).

The MLE for θ is θ̂ M = X β̂M , and the ideally
selected model (oracle choice) is then the one that minimizes
EK L(θ , θ̂ M ) = 1

a

(
b′(θ)t (θ − E(̂θ M )) − (b(θ) − Eb(̂θ M ))t 1

)
or, equivalently, −b′(θ)t

E(̂θ M ) + Eb(̂θ M )t 1 over M from the
set of all 2p possible models M. An oracle chosen model
depends evidently on the unknown θ and can only be used as
a benchmark for any available model selection procedure.

Consider instead an empirical analog K L([b′]−1(Y), θ̂ M )
of EK L(θ , θ̂ M ), where the true EY = b′(θ) is replaced by Y.
A naive approach of minimizing K L([b′]−1(Y), θ̂ M ) yields
maximizing Yt θ̂ M − b(̂θ M )t 1 (or, equivalently, maximizing
�(β̂M )) over M ∈ M and obviously leads to the saturated
model.

A common remedy to avoid such a trivial unsatisfactory
choice is to add a complexity penalty Pen(|M|) on the model
size |M| and consider the corresponding penalized maximum
likelihood model selection criterion of the form

M̂ = arg max
M∈M

{
�(β̂M ) − Pen(|M|)}

= arg min
M∈M

{
1

a

(
b(X β̂M )t 1 − Yt X β̂M

)+ Pen(|M|)
}
,

(4)

where the MLE β̂M for a given model M are given in (3).
The properties of the resulting model selection procedure
depends crucially on the choice of the complexity penalty.
The commonly used criteria for model selection in GLM are

AIC = −2�(β̂M )+ 2|M| of [4], B IC = −2�(β̂M )+|M| ln n
of [21] and its extended version E B IC = −2�(β̂M ) +
|M| ln n + 2γ |M| ln p, 0 ≤ γ ≤ 1 of [10] correspond to
Pen(|M|) = |M|, Pen(|M|) = |M |

2 ln n and Pen(|M|) =
|M |

2 ln n +γ |M| ln p in (4) respectively. A similar extension of
RIC criterion RIC = −2�(β̂M ) + 2|M| ln p of [12] yields
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Pen(|M|) = |M| ln p. Note that all the above penalties
increase linearly with a model size |M|.

III. MAIN RESULTS

In this section we investigate theoretical properties of the
penalized maximum likelihood model selection procedure
proposed in Section II-B and discuss the optimal choice
for the complexity penalty Pen(|M|) in (4). We start from
deriving a (nonasymptotic) upper bound for the expected
Kullback-Leibler risk of the resulting estimator for a given
Pen(|M|) and then establish its asymptotic minimaxity for a
properly chosen penalty. To illustrate the general results we
consider the example of logistic regression.

A. General Upper Bound for the Kullback-Leibler Risk

Consider a GLM (1) with the canonical link θ = Xβ and
the natural parameters θi ∈ � satisfying Assumption (A). Let
r = rank(X). The number of possible predictors p might be
larger than the sample size n. We assume that any r columns
of X are linearly independent and consider only models of
sizes at most r in (4) since otherwise, for any β ∈ BM , where
|M| > r , there necessarily exists another β∗ with at most r
nonzero entries such that Xβ = Xβ∗.

We now present an upper bound for the Kullback-Leibler
risk of the proposed maximum penalized likelihood estimator
valid for a wide class of penalties. Moreover, it does not
require the GLM assumption on the canonical link θ = Xβ

and can still be applied when a link function is misspecified.
Theorem 1: Consider a GLM (1), where θi ∈ �,

i = 1, . . . , n and let Assumption (A) hold.
Let Lk , k = 1, . . . , r be a sequence of positive weights

such that
r−1∑
k=1

(
p

k

)
e−kLk + e−r Lr ≤ S (5)

for some absolute constant S not depending on r , p and n.
Assume that the complexity penalty Pen(·) in (4) is such

that

Pen(k) ≥ 2
U
L k(A + 2

√
2Lk + 4Lk), k = 1, . . . , r (6)

for some A > 1.
Let M̂ be a model selected in (4) with Pen(·) satisfying (6)

and β̂ M̂ be the corresponding MLE estimator (3) of β. Then,

EK L(θ , X β̂ M̂ ) ≤ 4

3
inf

M∈M

{
inf

β̃∈BM

K L(θ, X β̃) + Pen(|M|)
}

+16

3

U
L

2A − 1

A − 1
S (7)

The term inf
β̃∈BM

K L(θ , X β̃) in (7) can be interpreted
as a Kullback-Leibler divergence between a true distribution
fθ of the data and the family of distributions { f

Xβ̃
,

β̃ ∈ BM } generated by the span of a subset of columns of X
corresponding to the model M . The binomial coefficients

(p
k

)
appearing in the condition (5) for 1 ≤ k < r are the numbers
of all possible models of size k. The case k = r is treated
slightly differently in (5). For p = r , there is evidently a single

saturated model. For p > r , although there are
(p

r

)
various

models of size r , all of them are nevertheless undistinguishable
in terms of XβM and can be still associated with a single
(saturated) model.

For Gaussian regression, EK L(Xβ, X β̂ M̂ ) = 1
2σ 2 E||Xβ −

X β̂ M̂ ||2, min
β̃∈BM

K L(Xβ, X β̃) = 1
2σ 2 ||Xβ − XβM ||2,

where XβM is the projection of Xβ on the span of columns
of M , L = U = 1 and the upper bound (7) is similar (up to
somewhat different constants) to those of [6] and [7]. Thus,
Theorem 1 essentially extends their results for GLM.

Consider two possible choices of weights Lk and the
corresponding penalties.

1. Constant weights. The simplest choice of the weights
Lk’s is to take them equal, i.e. Lk = L for all k = 1, . . . , r .
The condition (5) implies then

r−1∑
k=1

(
p

k

)
e−kL + e−r L ≤

p∑
k=1

(
p

k

)
e−kL = (1 + e−L)p − 1

The above sum is bounded by an absolute constant for
L = ln p. It can be easily verified that for L = ln p and
p ≥ 3, there exists A > 1 such that A + 2

√
2L + 4L ≤ 8L.

Thus, 2 U
L k(A + 2

√
2L + 4L) ≤ 16 U

L k ln p that implies the
RIC-type linear penalty

Pen(k) = C
U
L k ln p, k = 1, . . . , r (8)

in Theorem 1 with C ≥ 16.
Note that the AIC criterion corresponding to Pen(k) = 2k

(see Section II-B) does not satisfy (6).
2. Variable weights. Using the inequality

(p
k

) ≤ ( pe
k

)k
(see, e.g., [3, Lemma A1]), one has

r−1∑
k=1

(
p

k

)
e−kLk + e−r Lr ≤

r−1∑
k=1

( pe

k

)k
e−kLk + e−r Lr

=
r−1∑
k=1

e−k(Lk−ln(pe/k) + e−r Lr (9)

that suggests the choice of Lk ∼ c ln
( pe

k

)
, k = 1, . . . , r − 1

and Lr = c for some c > 1, and leads to the nonlinear penalty
of the form Pen(k) ∼ C U

L k ln
( pe

k

)
for k = 1, . . . , r −1 and

Pen(r) ∼ C U
L r for some constant C .

More precisely, for any C > 16 there exist constants
C̃, A > 1 such that C ≥ 16AC̃. Define Lk = C̃ ln

( pe
k

)
,

k = 1, . . . , r − 1 and Lr = C̃ . From (9) one can easily
verify the condition (5) for such weights Lk . Furthermore,
for 1 ≤ k ≤ r − 1 we have

2
U
L k(A + 2

√
2Lk + 4Lk) < 2A

U
L k
(
(1 +√2Lk)

2 + 2Lk

)

< 2A
U
L k
(
(1 + √

2)2 Lk + 2Lk

)

≤ 16A
U
L kLk ≤ C

U
L k ln

( pe

k

)

and similarly, for k = r ,

2
U
L r(A + 2

√
2Lr + 4Lr ) ≤ C

U
L r
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The corresponding (nonlinear) penalty in (6) is therefore

Pen(k) = C
U
L k ln

( pe

k

)
, k = 1, . . . , r − 1 (10)

and

Pen(r) = C
U
L r,

where C > 16. For Gaussian regression such k ln p
k -type

penalties were considered in [1], [6]–[8], and [20].
The choice of C > 16 in (8) and (10) was mostly motivated

by simplicity of calculus and it may possibly be reduced by
more accurate analysis.

B. Risk Bounds for Sparse Models

Theorem 1 established a general upper bound for the
Kullback-Leibler risk without any assumption on the size
of a true underlying model. Analysing large data sets it is
commonly assumed that only a subset of predictors has a
real impact on the response. Such extra sparsity assumption
becomes especially crucial for “p larger than n” setups.
We now show that for sparse models the upper bound (7)
can be improved.

For a given 1 ≤ p0 ≤ r , consider a set of models of size
at most p0. Obviously, |M| ≤ p0 iff the l0 (quasi)-norm of
regression coefficients ||β||0 ≤ p0, where ||β||0 is the number
of nonzero entries. Define B(p0) = {β ∈ R

p : β t xi ∈ �
for all i = 1, . . . , n, and ||β||0 ≤ p0}.

Consider a GLM with the canonical link θ = Xβ

under Assumption (A), where β ∈ B(p0). We refine the
general upper bound (7) for a penalized maximum likelihood
estimator (4) with a RIC-type linear penalty (8) and a nonlinear
k ln p

k -type penalty (10) considered in Section III-A for sparse
models with β ∈ B(p0).

Apply the general upper bound (7) with A corresponding
to the chosen constant C in (8) and (10) (see Section III-A),
and the true θ∗ = Xβ∗, β∗ ∈ B(p0) in the RHS. For both
penalties, we then have

sup
β∈B(p0)

EK L(Xβ, X β̂ M̂ ) ≤ 4

3
Pen(p0) + 16

3

U
L

2A − 1

A − 1
S

≤ C1 Pen(p0) (11)

for some constant C1 > 4/3 not depending on p0, p and n.
Thus, for the RIC-type penalty (8), (11) yields

supβ∈B(p0)
EK L(Xβ, X β̂ M̂ ) = O(p0 ln p), while for

the nonlinear k ln p
k -type penalty (10) the Kullback-Leibler

risk is of a smaller order O
(

p0 ln( pe
p0

)
)

. Moreover, the latter
can be improved further for dense models, where p0 ∼ r .
Indeed, for a saturated model of size r in the RHS of (7), the
penalty (10) yields

sup
β∈B(p0)

EK L(Xβ, X β̂ M̂ ) ≤ sup
β∈B(r)

EK L(Xβ, X β̂ M̂ )

≤ C1 Pen(r) = O(r) (12)

and the final upper bound for an estimator with the penalty (10)
is, therefore,

C1
U
L min

(
p0 ln

pe

p0
, r

)
(13)

with C1 > 4/3.

To assess the accuracy of the upper bound (13) we
establish the corresponding lower bound for the minimax
Kullback-Leibler risk over B(p0).

We introduce first some additional notation. For any given
k = 1, . . . , r , let φmin [k] and φmax [k] be the k-sparse minimal
and maximal eigenvalues of the design defined as

φmin [k] = min
β :1≤||β ||0≤k

||Xβ||2
||β||2 ,

φmax [k] = max
β :1≤||β ||0≤k

||Xβ||2
||β||2

In other words, φmin [k] and φmax[k] are respectively the
minimal and maximal eigenvalues of all k × k submatrices
of the matrix Xt X generated by any k columns of X . Let
τ [k] = φmin [k]/φmax[k], k = 1, . . . , r .

Theorem 2: Consider a GLM with the canonical link
θ = Xβ under Assumptions (A).

Let 1 ≤ p0 ≤ r and assume that B̃(p0) ⊆ B(p0), where
the subsets B̃(p0) are defined in the proof. Then, there exists
a constant C2 > 0 such that

inf
θ̂

sup
β∈B(p0)

EK L(Xβ, θ̂ )

≥
{

C2
L
U τ [2 p0] p0 ln

(
pe
p0

)
, p0 ≤ r

2

C2
L
U τ [p0] r, p0 > r

2

(14)

where the infimum is taken over all estimators θ̂ of θ .

C. Asymptotic Adaptive Minimaxity

We consider now the asymptotic properties of the proposed
penalized MLE estimator as the sample size n increases. The
number of predictors p = pn may increase with n as well,
where we allow p > n or even p � n. In such asymptotic
setup there is essentially a sequence of design matrices Xn,pn ,
where rn = rank(Xn,pn ). For simplicity of notation, in what
follows we omit the index n and denote Xn,pn by X p to
highlight the dependence on p, and let r tend to infinity.
Similarly, we define the corresponding sequences of regression
coefficients β p and sets Bp(p0). The considered asymptotic
GLM setup can now be viewed as a sequence of GLM models
of the form Yi ∼ fθi (y), i = 1, . . . , n, where fθi (y) are given
in (1), θi ∈ �, θ = X pβ p and rank(X p) = r → ∞.

As before, we assume that any r columns of X p are
linearly independent and, therefore, τp[r ] > 0. We distinguish
between two possible cases: weakly collinear design, where
the sequence τp[r ] is bounded away from zero by some
constant c > 0, and multicollinear design, where τp[r ] → 0.
Intuitively, it is clear that weak collinearity of the design
cannot hold when p is “too large” relative to r . Indeed, [1,
Remark 1] shows that for weakly collinear design, necessarily
p = O(r) and, thus, p = O(n).

For weakly collinear design the following corollary is an
immediate consequence of (13) and Theorem 2:

Corollary 1: Consider a GLM with the canonical link
and weakly collinear design. Then, as r increases, under
Assumption (A) and other assumptions of Theorem 2 the
following statements hold:
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1) The asymptotic minimax Kullback-Leibler risk from
the true model over Bp(p0) is of the order

min
(

p0 ln
(

pe
p0

)
, r
)

or essentially p0 ln
(

pe
p0

)
(since

p = O(r) – see comments above), that is, there exist
two constants 0 < C1 ≤ C2 < ∞ depending possibly
on the ratio U

L such that for all sufficiently large r ,

C1 p0 ln

(
pe

p0

)
≤ inf

θ̂
sup

β p∈Bp(p0)

EK L(X pβ p, θ̂)

≤ C2 p0 ln

(
pe

p0

)

for all 1 ≤ p0 ≤ r .
2) Consider penalized maximum likelihood model selection

rule (4) with the complexity penalty Pen(k) =
C U

L k ln
( pe

k

)
, k = 1, . . . , r − 1 and Pen(r) = C U

L r,
where C > 16. Then, the resulting penalized MLE
estimator X pβ̂ pM̂ attains the minimax convergence rates
(in terms of EK L(X pβ p, X p β̂ pM̂ )) simultaneously over
all Bp(p0), 1 ≤ p0 ≤ r .

Corollary 1 is a generalization of the corresponding results
of [1] for Gaussian regression. It also shows that model
selection criteria with RIC-type (linear) penalties (8) of the
form Pen(k) = Ck ln p are of the minimax order for sparse
models with p0 � p but only sub-optimal otherwise.

We would like to finish this section with several important
remarks:

Remark 1: Under Assumption (A), K L(θ , ζ ) � ||θ − ζ ||2
(see Lemma 1 in the Appendix) and Corollary 1 implies
then that X pβ̂ pM̂ is also a minimax-rate estimator for natural
parameters θ p = X pβ p in terms of the quadratic risk
simultaneously over all Bp(p0), p0 = 1, . . . , r . Furthermore,
since ||X pβ̂ pM̂ − X pβ p||2 � ||̂β pM̂ − β p||2 for weakly
collinear design, the same is true for β̂ pM̂ as an estimator
of the regression coefficients β p ∈ Bp(p0).

Remark 2: As we have mentioned, multicollinear design
necessarily appears when p � n. For such type of design,
τp[r ] tends to zero, and there is a gap in the rates in the
upper and lower bounds (13) and (14). Somewhat surprisingly,
multicollinearity, being a “curse” for consistency of variable
selection or estimation of regression coefficients β, may be a
“blessing” for estimating θ = Xβ. For Gaussian regression [1]
showed that strong correlations between predictors can be
exploited to reduce the size of a model (thus, to decrease
the variance) without paying much extra price in the bias
and, therefore, to improve the upper bound (13). The analysis
of multicollinear case is however much more delicate and
technical even for the linear regression (see [1]), and we do
not discuss its extension for GLM in this paper.

Remark 3: Like any model selection criteria based on
complexity penalties, minimization in (4) is a nonconvex
optimization problem that generally requires search over all
possible models. To make computations practically feasible for
high-dimensional data, common approaches are either various
greedy algorithms (e.g., forward selection) that approximate
the global solution of (4) by a stepwise sequence of local ones,
or convex relaxation methods, where the original nonconvex

problem is replaced by a related convex program. The
most well-known and well-studied method is the celebrated
Lasso ([22]). For linear complexity penalties of the form
Pen(|M|) = C|M| it replaces the original l0-norm |M| =
||̂βM ||0 in (4) by the l1-norm ||̂βM ||1. Theoretical properties
of Lasso for Gaussian regression have been intensively studied
in the literature during the last decade (see, e.g., [5]).
van de Geer [26] investigated Lasso in the GLM setup but
with random design. In particular, she showed that under
assumptions similar to Assumption (A) and some additional
restrictions on the design, Lasso with a properly chosen
tuning parameter C behaves similar to the RIC-type estimator
and its Kullback-Leibler risk achieves the sub-optimal rate
O(p0 ln p).

D. Example: Logistic Regression

We now illustrate the obtained general results on logistic
regression.

Consider the Bernoulli distribution Bin(1, p). A simple
calculus shows that it belongs to the natural exponential family
with the natural parameter θ = ln p

1−p , b(θ) = ln(1 + eθ )

and a = 1. Thus, b′′(θ) = eθ

(1+eθ )2 ≤ 1/4 and, as we

have already mentioned in Section II-A, the condition (a) of
Assumption (A) is satisfied with U = 1/4 for any �, while
the condition (b) is equivalent to the boundedness of θ : � =
{θ : |θ | ≤ C0}, where L = eC0

(1+eC0 )2 . In terms of the original

parameter of the binomial distribution p = eθ

1+eθ it means that
p is bounded away from zero and one: δ ≤ p ≤ 1 − δ for
some 0 < δ < 1/2 and L = δ(1 − δ) . The same restriction
on p appears in [26].

Consider now a logistic regression, where a binary data
Yi ∼ Bin(1, pi), xi ∈ R

p are deterministic and ln pi
1−pi

=
β t xi , i = 1, . . . , n. Following (3), for a given model M , the
MLE of β is

β̂M = arg max
β̃∈BM

n∑
i=1

{
xt

i β̃M Yi − ln
(
1 + exp(xt

i β̃M )
)}

, (15)

where BM was defined in (3). The MLE for the resulting

probabilities pMi ’s are p̂Mi = exp(β̂M xi )

1+exp(β̂M xi )
, i = 1, . . . , n.

The model M̂ is selected w.r.t. the penalized maximum
likelihood model selection criterion (4):

M̂ = arg min
M∈M

{
n∑

i=1

(
ln
(
1 + exp(xt

i β̂M )
)− xt

i β̂M Yi
)

+ Pen(|M|)
}

(16)

A straightforward calculus shows that the Kullback-Leibler
divergence K L(p1, p2) between two sample distributions from
Bin(1, p1i) and Bin(1, p2i), i = 1, . . . , n is

K L(p1, p2) =
n∑

i=1

{
p1i ln

(
p1i

p2i

)
+ (1 − p1i) ln

(
1 − p1i

1 − p2i

)}
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Assume that there exists a constant C0 < ∞ such that
max1≤i≤n |β t xi | ≤ C0 or, equivalently, δ ≤ pi ≤ 1 − δ,
i = 1, . . . , n for some positive δ < 1/2 (see above).
Assumption (A) is, therefore, satisfied with U = 1/4 and
L = δ(1 − δ).

Consider the k ln p
k -type complexity penalty (10) Pen(k) =

Ck ln pe
k for k = 1, . . . , r − 1 and Pen(r) = Cr in (16),

where C > 4
δ(1−δ) . From our general results from the

previous sections it then follows that

E K L(p, p̂M̂ ) = O

(
min

(
p0 ln

pe

p0
, r

))
,

where p0 = ||β||0 is the size of the true (unknown) underlying
logistic regression model. For weakly collinear design, as r
increases, it is the minimax rate of convergence.

Similarly, the RIC-type penalty Pen(k) = Ck ln p,
k = 1, . . . , r with C > 4

δ(1−δ) in (16) yields the sub-optimal
rate O (p0 ln p).

IV. POSSIBLE EXTENSIONS

In this section we discuss some possible extensions of the
results obtained in Section III.

A. Model Selection in GLM Under Structural Constraints

So far we considered the complete variable selection, where
the set of admissible models M contains all 2p possible
subsets of predictors x1, . . . , x p. However, in various GLM
setups there may be additional structural constraints on the
set of admissible models. Thus, for the ordered variable
selection, where the predictors have some natural order, x j

can enter the model only after x1, . . . , x j−1 (e.g., polynomial
regression). Models with interactions that cannot be selected
without the corresponding main effects is an example of
hierarchical constraints. Factor predictors associated with
groups of indicator (dummy) variables, where either none or
all of the group is selected, is an example of group structural
constraints.

Model selection under structural constraints for Gaussian
regression was considered in [2]. Its extension to GLM may
be described as follows. Let m(p0) be the number of all
admissible models of size p0. As before we can consider only
1 ≤ p0 ≤ r , where m(r) = 1 if there are admissible models of
size r . Obviously, 0 ≤ m(p0) ≤ ( p

p0

)
, where the two extreme

cases m(p0) = 1 and m(p0) = ( p
p0

)
for all p0 = 1, . . . , r − 1,

correspond respectively to the ordered and complete variable
selection.

Let M be the set of all admissible models. We slightly
change the original definition of BM in (3) by the additional
requirement that β j = 0 iff j /∈ M to have ||β||0 = |M|
for all β ∈ BM . The model M̂ is selected w.r.t. (4) from all
models in M and the penalty Pen(k) is relevant only for k
with m(k) ≥ 1. From the proof (see the Appendix) it follows
that Theorem 1 can be immediately extended to a restricted
set of models M with an obviously modified condition (5) on
the weights Lk . Namely, let

r−1∑
k=1

m(k)e−kLk + e−r Lk ≤ S (17)

and

Pen(k) ≥ 2
U
L k(A + 2

√
2Lk + 4Lk),

k = 1, . . . , r; m(k) ≥ 1

for some A > 1. Then, under Assumption (A)

EK L(θ , X β̂ M̂ ) ≤ 4

3
inf

M∈M

{
inf

β̃∈BM

K L(θ , X β̃) + Pen(|M|)
}

+16

3

U
L

2A − 1

A − 1
S, (18)

See [2], [6], and [7] for similar results for Gaussian regression
under structural constraints.

In particular, (17) holds for Lk = c 1
k max(ln m(k), k),

k = 1, . . . , r; m(k) ≥ 1 for some c > 1 leading to the penalty
of the form

Pen(k) ∼ U
L max(ln m(k), k) (19)

for all 1 ≤ k ≤ r such that m(k) ≥ 1. For the complete
variable selection, the penalty (19) is evidently the k ln p

k -type
penalty (10) from Section III, while for the ordered variable
selection it implies the AIC-type penalty of the form Pen(k) =
C U

L k for some C > 0.
Consider now all admissible models of size p0

and the corresponding set of regression coefficients
B(p0) = ⋃

M∈M:|M |=p0
BM . Repeating the arguments from

Section III-B, for the complexity penalty (19), under
Assumption (A), the general upper bound (18) yields

sup
β∈B(p0)

EK L(Xβ, X β̂ M̂ ) = O (Pen(p0))

= O (max(ln m(p0), p0)) (20)

with a constant depending on the ratio U/L.
The upper bound (20) can be improved further if there exist

admissible models of size r . In this case m(r) = 1 and similar
to (12) for complete variable selection, we have

sup
β∈B(p0)

EK L(Xβ, X β̂ M̂ ) = O(Pen(r)) = O(r)

that combining with (20) yields

sup
β∈B(p0)

EK L(Xβ, X β̂ M̂ ) = O (min (max(ln m(p0), p0), r))

(21)

In the supplementary material we show that if
m(p0) ≥ 1, under Assumption (A) and correspondingly
modified other assumptions of Theorem 2, the minimax lower
bound over B(p0) is

inf
θ̃

sup
β∈B(p0)

EK L(Xβ, θ̃ )

≥
{

C2
L
U max

{
τ [2 p0] ln m(p0)

ln p0
, τ [p0]p0

}
, 1 ≤ p0 ≤ r

2

C2
L
U τ [p0]r, r

2 ≤ p0 ≤ r

(22)

for some C2 > 0.
Thus, comparing the upper bounds (20)–(21) with the

lower bound (22) one realizes that for weakly collinear



ABRAMOVICH AND GRINSHTEIN: MODEL SELECTION AND MINIMAX ESTIMATION IN GLMs 3727

design the proposed penalized maximum likelihood estimator
with the complexity penalty of type (19) is asymptotically
(as r increases) at least nearly-minimax (up to a possible
ln p0-factor) simultaneously for all 1 ≤ p0 ≤ r/2 and for
all 1 ≤ p0 ≤ r if, in addition, m(r) = 1 (i.e., there exist
admissible models of size r ). In particular, for the ordered
variable selection, both bounds are of the same order O(p0).
In Section III we showed that it also achieves the exact
minimax rate for complete variable selection. So far we can
only conjecture that the ln p0-factor can be removed in (22)
for a general case as well. See also [2] for similar results for
Gaussian regression.

B. Aggregation in GLM

An interesting statistical problem related to model selection
is aggregation. Originated by [17], it has been intensively
studied in the literature during the last decade. See, for
example, [8], [14], [20], [23], and [27] for aggregation in
Gaussian regression. Aggregation in GLM was considered
in [19] and can be described as follows.

We observe (xi , Yi ), i = 1, . . . , n, where the distribution
fθi (·) of Yi belongs to the natural exponential family with
a natural parameter θi (1). Unlike GLM regression with the
canonical link, where we assume that θi = β t xi , in aggregation
setup we do not rely on such modeling assumption but simply
seek the best linear approximation θβ =∑p

j=1 β j x j of θ w.r.t.
Kullback-Leibler divergence, where β ∈ B ⊆ R

p , by solving
the following optimization problem:

inf
β∈B

K L(θ , θβ ) (23)

Depending on the specific choice of B ⊆ R
p there are different

aggregation strategies. Following the terminology of [8]) there
are linear aggregation (B = BL = R

p), convex aggregation
(B = BC = {β ∈ R

p : β j ≥ 0,
∑p

j=1 β j = 1}), model
selection aggregation (B = BM S is a subset of vectors with
a single nonzero entry), and subset selection or p0-sparse
aggregation (B = BSS(p0) = {β ∈ R

p : ||β||0 ≤ p0}
for a given 1 ≤ p0 ≤ r ). In fact, linear and model
selection aggregation can be viewed as two extreme cases
of subset selection aggregation, where BL = BSS(r) and
BM S = BSS(1).

Since in practice θ is unknown, the solution of (23) is
unavailable. The goal then is to construct an estimator (linear
aggregator) θ

β̂
that mimics the ideal (oracle) solution θβ

of (23) as close as possible. More precisely, we would like
to find θ

β̂
such that

EK L(θ , θ
β̂

) ≤ C inf
β∈B

K L(θ, θβ ) + �B(θ , θ
β̂

), C ≥ 1

(24)

with the minimal possible �B(θ, θ
β̂

) (called excess-KL)
and C close to one.

For weakly collinear design, [19, Th. 4.1] established the
minimal possible asymptotic rates for �B(θ, θ

β̂
) for linear,

convex and model selection aggregation under Assumption (A)

and assumptions similar to those of Theorem 2:

inf
θ
β̂

sup
θ

�B(θ , θ
β̂

) =

⎧⎪⎨
⎪⎩

O(r), B = BL

O
(
min(

√
n ln p, r)

)
, B = BC

O (min(ln p, r)) , B = BM S

(25)

He also proposed an estimator θ
β̂

that achieves these optimal
aggregation rates even with C = 1 in (24).

Using the results of Section III we can complete the case
of subset selection aggregation in GLM, where under the
assumptions of [19, Th. 4.1], BSS(p0) is essentially B(p0)
considered in the context of GLM model selection in previous
sections. Indeed, repeating the arguments in the proof of
Theorem 2 (see Appendix) implies that for B(p0) there exists
C2 > 0 such that

inf
θ
β̂

sup
θ

�B(p0)(θ , θ
β̂

) ≥ C2
L
U min

(
p0 ln

(
pe

p0

)
, r

)

(26)

In particular, (26) also yields the lower bounds (25) for
excess-KL for linear ( p0 = r ) and model selection (p0 = 1)
aggregation. Furthermore, similar to model selection in GLM
within B(p0) considered in Section III-B, from Theorem 1
it follows that for weakly collinear design, the penalized
maximum likelihood estimator θ

β̂ M̂
with the complexity

penalty (10) achieves the optimal rate (26) for subset selection
aggregation over B(p0) for all 1 ≤ p0 ≤ r (and, therefore, for
linear and model selection aggregation in particular) though
with some C > 4/3 in (24). Similar to the results of [20] for
Gaussian regression, we may conjecture that to get C = 1
one should average estimators from all models with properly
chosen weights rather than select a single one as in model
selection.

APPENDIX A

We first prove the following lemma establishing the
equivalence of the Kullback-Leibler divergence K L(θ1, θ2)
and the squared quadratic norm ||θ1 − θ2||2 under
Assumption (A) that will be used further in the proofs:

Lemma 1: Let Assumption (A) hold. Then, for any θ1,
θ2 ∈ R

n such that θ1i , θ2i ∈ �, i = 1, . . . , n,

L
2a

||θ1 − θ2||2 ≤ K L(θ1, θ2) ≤ U
2a

||θ1 − θ2||2
Proof: Recall that for a GLM

K L(θ1, θ2) = 1

a

n∑
i=1

{
b′(θ1i)(θ1i − θ2i ) − b(θ1i) + b(θ2i)

}

(27)

A Taylor expansion of b(θ2i) around θ1i yields b(θ2i) =
b(θ1i) + b′(θ1i)(θ2i − θ1i ) + b′′(ci )

2 (θ2i − θ1i)
2, where ci lies

between θ1i and θ2i , and substituting into (27) we have

K L(θ1, θ 2) = 1

2a

n∑
i=1

b′′(ci )(θ2i − θ1i)
2
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Due to Assumption (A), � is an interval and, therefore,
ci ∈ �. Hence, L ≤ b′′(ci ) ≤ U that completes the
proof. �

APPENDIX B
PROOF OF THEOREM 1

We introduce first some notation. For a given model M ,
define

βM = arg inf
β̃∈BM

K L(θ , X β̃),

where BM is given in (3), and let θ M = XβM . As we have
mentioned in Section III-A, θ M can be interpreted as the
closest vector to θ within the span generated by a subset of
columns of X corresponding to M w.r.t. a Kullback-Leibler
divergence. Recall also that θ̂ M = X β̂M is the MLE of θ for
the model M and, in particular, θ̂ M̂ = X β̂ M̂ . Finally, for any
random variable η let ϕη(·) be its moment generating function.

For the clarity of exposition, we split the proof into several
steps.

Step 1: Since M̂ is the minimizer defined in (4), for any
given model M

−�(β̂ M̂ ) + Pen(|M̂ |) ≤ −�(βM ) + Pen(|M|) (28)

By a straightforward calculus, one can easily verify that

K L(θ , θ̂ M̂ ) − K L(θ , θ M ) = �(βM ) − �(β̂ M̂ )

+ 1

a
(Y − b′(θ))t (̂θ M̂ − θ M )

(29)

and, hence, (28) yields

K L(θ , θ̂ M̂ ) + Pen(|M̂ |) ≤ K L(θ , θ M ) + Pen(|M|)
+ 1

a
(Y − b′(θ))t (̂θ M̂ − θ M ) (30)

Note that EY = b′(θ), E
{
(Y − b′(θ))tζ

} = 0 for any
deterministic vector ζ ∈ R

n and, therefore,

E
(
(Y − b′(θ))t (̂θ M̂ − θ M )

) = E
(
(Y − b′(θ))t (̂θ M̂ − θ)

)
Furthermore, by the definition of θ M̂ , K L(θ , θ̂ M̂ ) ≥
K L(θ , θ M̂ ), and since (30) holds for any model M in the
RHS, we have

3

4
EK L(θ , θ̂ M̂ ) ≤ inf

M
{K L(θ , θ M ) + Pen(|M|)}

+ E

(
1

a
(Y − b′(θ))t (̂θ M̂ − θ)− Pen(|M̂|)

1

4
K L(θ , θ M̂ )

)
(31)

Step 2: Consider now the term 1
a (Y−b′(θ))t (̂θ M̂ −θ) in the

RHS of (31). The selected model M̂ in (4) can, in principle, be
any model M and we want, therefore, to control it uniformly
over M . For any M we have

1

a
(Y − b′(θ))t (̂θ M − θ) = 1

a
(Y − b′(θ))t (̂θ M − θ M )

+ 1

a
(Y − b′(θ))t (θ M − θ) (32)

Let �M be any orthonormal basis of the span of columns
of X corresponding to the model M and ξ M = �M�t

M (Y −
b′(θ)) be the projection of Y − b′(θ) on this span.

Then, by the Cauchy-Schwarz inequality

(Y − b′(θ))t (̂θ M − θ M ) = ξ t
M (̂θ M − θ M )

≤ ||ξ M || · ||̂θ M − θ M || (33)

Since θ̂ M is the MLE for a given M , �(̂θ M ) ≥ �(θ M ) and,
therefore, (29) implies

K L(θ, θ̂ M ) ≤ K L(θ, θ M ) + 1

a
(Y − b′(θ))t (̂θ M − θ M ) (34)

Similar to the proof of [19, Lemma 6.3], using a Taylor
expansion it follows that under Assumption (A), K L(θ , θ̂ M )−
K L(θ , θ M ) ≥ L

2a ||̂θ M −θ M ||2 that together with (33) and (34)
yields

1

a
(Y − b′(θ))t (̂θ M − θ M ) ≤ 2

aL ||ξ M ||2 (35)

Define

R(M) = 2

aL ||ξ M ||2 + 1

a
(Y − b′(θ))t (θ M − θ)

− Pen(|M|) − 1

4
K L(θ , θ M )

Then, from (31),

EK L(θ , θ̂ M̂ ) ≤ 4

3
inf
M

{K L(θ , θ M ) + Pen(|M|)}+ 4

3
ER(M̂)

(36)

and to complete the proof we need to find an upper bound for
ER(M̂).

Step 3: Consider ϕ||ξ M ||2(·). By [19, eq. (6.3)],

Eewt (Y−b′(θ )) ≤ e
Ua||w||2

2

for any w ∈ R
n . The projection matrix �M�t

M is idempotent
and tr(�M�t

M ) = |M|. We can apply then [13, Remark 2.3]
to have

ϕ||ξ M ||2(s) ≤ exp

{
aUs|M| + a2U2s2|M|

1 − 2aUs

}
(37)

for all 0 < s < 1
2aU .

Consider now the random variable ηM = (Y − b′(θ))t

(θ M − θ). Applying [19, eq. (6.3)] yields

ϕηM (s) ≤ exp

{
1

2
s2Ua||θM − θ ||2

}
(38)

Define Z = 2
aL (||ξ M ||2 − aU |M|) + 1

a ηM = R(M) +
Pen(|M|) + 1

4 K L(θ , θ M ) − 2U
L |M|. Unlike Gaussian

regression, ||ξ ||2M and ηM are not independent. However, by
the Cauchy-Schwarz inequality

ϕZ (s) ≤ e−2 U
L |M |s ·

√
ϕ 2

aL ||ξ M ||2(2s) ·
√

ϕ 1
a ηM

(2s)

and from (37) and (38),

ϕZ (s) ≤ exp

⎧⎨
⎩

8 U2

L2 |M|s2

1 − 8 U
L s

+ Us2

a
||θ M − θ ||2

⎫⎬
⎭ (39)

for all 0 < s < L
8U .
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Let x = 8U
L s (0 < x < 1) and ρ = L2||θ M −θ ||2

64aU . Then,
using the obvious inequality ρx2 < ρx for 0 < x < 1, after a
straightforward calculus (39) yields

ln ϕ L
8U Z−ρ(x) ≤ |M|

8

x2

1 − x

for all 0 < x < 1.
We can now apply [7, Lemma 2] to get P( L

8U Z − ρ ≥√
|M |

2 t + t) ≤ e−t for all t > 0, that is,

P

{ L
8U
(

R(M)+ Pen(|M|)+ 1

4
K L(θ , θ M ) − L||θ M −θ ||2

8a

)

≥ |M|
4

+
√ |M|

2
t + t

}
≤ e−t

Lemma 1 implies that 1
4 K L(θ , θ M ) − L||θ M −θ ||2

8a ≥ 0 and,
therefore,

P

{
L

8U (R(M) + Pen(|M|)) ≥ |M|
4

+
√ |M|

2
t + t

}
≤ e−t

(40)

Step 4: Based on (40) we can now find an upper bound
for ER(M̂).

Let k = |M| and take t = kLk + ω for any ω > 0, where
Lk > 0 are the weights from Theorem 1. Using inequalities√

c1 + c2 ≤ √
c1 + √

c2 and
√

c1c2 ≤ 1
2 (c1ε + c2

ε ) for any
positive c1, c2 and ε, we have

√
kt ≤ k

√
Lk + √

kω ≤ k
√

Lk + 1

2

(
kε + ω

ε

)

and, therefore,

P

{ L
8U (R(M) + Pen(k)) ≥ k

4

(
1 + √

2 ε + 2
√

2Lk + 4Lk

)

+ ω

(
1 + 1

2
√

2 ε

)}
≤ e−(kLk+ω)

For the penalty Pen(k) satisfying (6) with some A > 1 and
ε = (A − 1)/

√
2, we then have

P

{ L
4U R(M) ≥ ω

2A − 1

A − 1

}
≤ e−(kLk+ω) (41)

for all M .
Finally, under the condition (5) on the weights Lk , (41)

implies

P

{
R(M̂) ≥ 4U

L ω
2A − 1

A − 1

}

≤
∑

M

P

{
R(M) ≥ 4U

L ω
2A − 1

A − 1

}
≤
∑

M

e−(kLk+ω)

≤ Se−ω

and, hence,

ER(M̂) ≤
∫ ∞

0
P(R(M̂) > t)dt ≤ 4U

L
2A − 1

A − 1
S

that together with (36) completes the proof. �

APPENDIX C
PROOF OF THEOREM 2

Due to Lemma 1, the minimax lower bound for the
Kullback-Leibler risk can be reduced to the lower bound for
the corresponding quadratic risk:

inf
θ̃

sup
β∈B(p0)

EK L(Xβ, θ̃ ) ≥ L
2a

inf
θ̃

sup
β∈B(p0)

E||Xβ − θ̃ ||2

(42)

Following a general reduction scheme for establishing the
minimax risk lower bounds, the quadratic risk in (42) is first
reduced to the probability of misclassification error among a
properly chosen finite subset �∗(p0) ⊂ {θ ∈ R

n : θ = Xβ,
β ∈ B(p0)} such that for any θ1, θ2 ∈ �∗(p0), ||θ1 − θ2||2 ≥
4s2(p0):

inf
θ̃

sup
β∈B(p0)

E||Xβ−θ̃ ||2 ≥ inf
θ̃

max
θ j ∈�∗(p0)

E||θ j − θ̃ ||2

≥ 4s2(p0) inf
θ̃

max
θ j ∈�∗(p0)

Pθ j
(̃θ 
= θ j )

and then bounding the latter from below (e.g., applying
various versions of Fano’ lemma). See [24, Sec. 2] for more
details.

In particular, the idea of our proof is to find a finite subset
B∗(p0) ⊆ B(p0) of vectors β and the corresponding subset
�∗(p0) = {θ ∈ R

n : θ = Xβ, β ∈ B∗(p0)} such that for any
θ1, θ2 ∈ �∗(p0), ||θ1 − θ2||2 ≥ 4s2(p0) and K L(θ1, θ 2) ≤
(1/16) ln card(�∗(p0)). It will follow then from
[8, Lemma A.1] that s2(p0) is the minimax lower bound for
the quadratic risk over B(p0).

To construct such subsets we can exploit the techniques
similar to that used in the corresponding proofs for the
quadratic risk in linear regression (e.g., [1], [20]). Consider
three cases.

Case 1: p0 ≤ r/2.
Define the subset B̃(p0) of all vectors β ∈ R

p that
have p0 entries equal to Cp0 , where Cp0 will be defined below
and others are zeros: B̃(p0) = {β ∈ R

p : β ∈ {0, Cp0}p,
||β||0 = p0}. From [20, Lemma A.3], there exists a subset
B∗(p0) ⊂ B̃(p0) such that ln card(B∗(p0)) ≥ c̃ p0 ln

(
pe
p0

)
for some constant 0 < c̃ < 1, and for any pair β1, β2 ∈
B∗(p0), the Hamming distance ρ(β1,β2) = ∑p

j=1 I{β1 j 
=
β2 j } ≥ c̃ p0.

Take C2
p0

= 1
16 c̃ a

U φ−1
max[2 p0] ln

(
pe
p0

)
. By the assumptions

of the theorem, B∗(p0) ⊂ B̃(p0) ⊆ B(p0). Consider the
corresponding subset �∗(p0). Evidently, card(�∗(p0)) =
card(B∗(p0)), and for any θ1, θ2 ∈ �∗(p0) associated with
β1,β2 ∈ B∗(p0) we then have

||θ1 − θ2||2 = ||X (β1 − β2)||2 ≥ φmin [2 p0] ||β1 − β2||2
≥ c̃φmin [2 p0] C2

p0
p0 = 4s2(p0), (43)

where s2(p0) = 1
64

a
U c̃2τ [2 p0]p0 ln

(
pe
p0

)
.
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On the other hand,

K (θ1, θ2) ≤ U
2a

||θ1 − θ2||2 ≤ U
2a

φmax [2 p0]C2
p0

ρ(β1,β2)

≤ U
a

φmax[2 p0]C2
p0

p0 ≤ 1

16
ln card(�∗(p0)),

(44)

where the first inequality follows from Lemma 1.
[8, Lemma A.1] and (42) complete then the proof for
this case.

Case 2: r/2 ≤ p0 ≤ r, p0 ≥ 8.
In this case consider the subset B̃(p0) = {β ∈ R

p :
β ∈ {{0, Cp0}p0, 0, . . . , 0}, where C2

p0
= ln 2

64
a
U φ−1

max[p0].
From the assumptions of the theorem B̃(p0) ⊆ B(p0).
Varshamov-Gilbert bound (see, e.g., [24, Lemma 2.9])
guarantees the existence of a subset B∗(p0) ⊂ B̃(p0) such that
ln card(B∗

p0
) ≥ p0

8 ln 2 and the Hamming distance ρ(β1,β2) ≥
p0
8 for any pair β1, β2 ∈ B∗

p0
.

Note that for any β1, β2 ∈ B∗
p0

, β1 − β2 has at most
p0 nonzero components and repeating the arguments for the
Case 1, one obtains the minimax lower bound s2(p0) =
C a

U τ [p0]p0 ≥ C
2

a
U τ [p0]r for the quadratic risk. Applying

(42) completes the proof.
Case 3: r/2 ≤ p0 ≤ r, 2 ≤ p0 < 8.
For this case, obviously, 2 ≤ r < 16. Consider a trivial

subset B∗
p0

containing just two vectors β1 ≡ 0 and β2 that
has first p0 nonzero entries equal to Cp0 , where C2

p0
=

ln 2
64

a
U φ−1

max [p0]. Under the assumptions of the theorem
B∗

p0
⊂ B(p0). For the corresponding θ1 = Xβ1 and

θ2 = Xβ2, (43) and (44) yield

K L(θ1, θ 2) ≤ U
2a

φmax [p0]8C2
p0

= 1

16
ln card(�∗

p0
)

and

||θ1 − θ2||2 ≥ φmin [p0]p0C2
p0

= C
a

U τ [p0]p0 ≥ C

2

a

U τ [p0]r
and the proof follows from [8, Lemma A.1]. �
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