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 Summary. We discuss a Bayesian formalism which gives rise to a type of wavelet threshold
 estimation in nonparametric regression. A prior distribution is imposed on the wavelet coefficients
 of the unknown response function, designed to capture the sparseness of wavelet expansion that
 is common to most applications. For the prior specified, the posterior median yields a thresholding
 procedure. Our prior model for the underlying function can be adjusted to give functions falling in
 any specific Besov space. We establish a relationship between the hyperparameters of the prior
 model and the parameters of those Besov spaces within which realizations from the prior will fall.
 Such a relationship gives insight into the meaning of the Besov space parameters. Moreover, the
 relationship established makes it possible in principle to incorporate prior knowledge about the
 function's regularity properties into the prior model for its wavelet coefficients. However, prior
 knowledge about a function's regularity properties might be difficult to elicit; with this in mind, we
 propose a standard choice of prior hyperparameters that works well in our examples. Several
 simulated examples are used to illustrate our method, and comparisons are made with other
 thresholding methods. We also present an application to a data set that was collected in an
 anaesthesiological study.

 Keywords: Adaptive estimation; Anaesthetics; Bayes model; Besov spaces; Nonparametric
 regression; Thresholding; Wavelet transform

 1. Introduction

 Consider the standard nonparametric regression problem

 Yi = 9(ti) + i, i= 1, ... ., n,(1

 where ti = i/n and Ei are independent identically distributed normal variables with zero mean
 and variance a2, and we wish to recover the unknown function g from the noisy data without
 assuming any particular parametric form.

 There are several approaches to the nonparametric estimation of the unknown function g
 such as spline smoothing, kernel estimation and generalized Fourier series expansion. In this
 paper we consider wavelet-based estimators of g. The function g is expanded in wavelet series
 in a way that is similar to the generalized Fourier series approach. The advantage of the

 tAddress for correspondence: Institute of Mathematics and Statistics, Cornwallis Building, University of Kent at
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 726 F Abramovich, T. Sapatinas and B. W. Silverman

 wavelet basis is its 'universality'- functions from a wide set of function spaces, such as Besov

 or Triebel spaces, have a parsimonious representation in wavelet series. The usual approach

 is to expand the noisy data in wavelet series, to extract the 'significant' wavelet coefficients by

 thresholding and then to invert the wavelet transform of the denoised coefficients. Donoho

 and Johnstone (1994, 1995) and Donoho et al. (1995) showed that such wavelet estimators

 with a properly chosen threshold rule have various important optimality properties. The

 choice of thresholding rule, therefore, becomes a crucial step in the estimation procedure.

 Several approaches to thresholding have been introduced: a minimax approach (Donoho and
 Johnstone, 1994, 1995); multiple-hypothesis testing (Abramovich and Benjamini, 1995, 1996;
 Ogden and Parzen, 1996a, b); cross-validation (Nason, 1995, 1996; Weyrich and Warhola,

 1995). The idea of thresholding has also been studied in the context of correlated errors Ej;
 see, for example, Wang (1996) and Johnstone and Silverman (1997).

 In this paper we consider thresholding within a Bayesian framework. In the Bayesian

 approach a prior distribution is imposed on the wavelet coefficients of the unknown response
 function. The prior model is designed to capture the sparseness of wavelet expansion that is
 common to most applications. Then, the function is estimated by applying some Bayes rule
 on the resulting posterior distribution of the wavelet coefficients. The traditional Bayes rule
 (Chipman et al., 1997; Clyde et al., 1998; Vidakovic, 1998) corresponds to an L2-loss (the

 posterior mean) based on the wavelet coefficients. However, such a rule is not a thresholding
 rule but a shrinkage. To fix our terminology, we say that a shrinkage rule is a function that

 decreases (not necessarily strictly) the absolute values of the wavelet coefficients, without

 changing their sign. For a rule to be a thresholding rule, it must not only shrink the coef-
 ficients towards 0 but must also map actually to 0 all coefficients falling in some non-empty
 interval around 0.

 In this paper, instead of the L2-loss, we suggest the use of a weighted combination of Ll-
 losses based on the wavelet coefficients. These losses correspond to L'-losses based on the
 function and on its derivatives; such losses are natural measures for spatially inhomogeneous
 functions. The corresponding Bayes rule will be the posterior median and, for a certain prior,
 yields a thresholding procedure.

 The paper is organized as follows: in Section 2 we briefly review the discrete wavelet
 transform and the relevant aspects of Donoho and Johnstone's work on the nonparametric

 regression problem. A review of relevant aspects of Besov spaces is also given. In Section 3,
 we study the problem of wavelet thresholding within a Bayesian approach. In Section 4, we
 discuss the form for the hyperparameters of the prior model, and we demonstrate a
 relationship between Besov space parameters and hyperparameters of the prior model. The
 implications of this relationship for the choice of prior hyperparameters are discussed. In

 addition, since it may be difficult in practice to elicit prior knowledge of the regularity
 properties of the function, we also propose a 'standard' choice of hyperparameters, which in
 our experience works well on a range of examples. In Section 5, we provide several simulated
 examples to illustrate our method, and we give comparisons with other thresholding meth-
 ods. We also present an application to a data set that was collected in an anaesthesiological
 study. Some concluding remarks are made in Section 6, and the more technical details and
 proofs are given in Appendix A.

 2. Wavelet estimators

 2.1. Overview of wavelets

 Wavelet series are generated by dilations and translations of a function 4', called the mother
 wavelet:

This content downloaded from 132.66.40.16 on Tue, 31 May 2016 11:37:09 UTC
All use subject to http://about.jstor.org/terms



 Wavelet Thresholding 727

 fjk(t) = 21/2 4(2t -k), j, k E Z.

 For suitable choices of 4', the corresponding set of Ojk forms an orthonormal basis in L2(IiR).
 Examples of mother wavelets with different regularity properties, number of vanishing

 moments and compact support can be found in Daubechies (1992). The wavelet series
 representation of a function g E L2(R) is then

 g(t) = E E WjkIOjk(t),
 je7Z keZ

 where the wavelet coefficients wjk are given by

 Wjk = J g(t) 4'jk(t) dt.

 Intuitively, the 'Ojk represent 'smooth wiggly functions' localized to spatial positions near 2-ik
 and frequencies near 2'. In contrast with standard Fourier sine and cosine series, wavelets are
 local in both frequency or scale (via dilations) and time (via translations). This localization
 allows parsimonious representations for a wide set of different functions in wavelet series.

 In technical terms this corresponds to the property that, by choosing the mother wavelet
 with corresponding regularity properties, we can generate an unconditional wavelet basis in
 a wide set of function spaces, such as Besov (see Section 2.2) or Triebel spaces. For a clear
 and accessible introduction to wavelets see Strang (1993). Jawerth and Sweldens (1994) pro-
 vide an excellent overview of wavelet-based multiresolution analyses. Meyer (1992) and
 Daubechies (1992) give detailed expositions of the mathematical aspects of wavelets.

 In many practical situations, the functions involved are only defined on a compact set, such
 as the interval [0, 1], and to apply wavelets then requires some modifications. Cohen et al.
 (1993) have obtained the necessary boundary corrections to retain orthonormality. Their
 wavelets also constitute unconditional bases for the Besov and Triebel spaces on the interval.
 In later sections, however, we confine attention to periodic functions on JR with unit period

 and work in effect with periodic wavelets. In this case, the wavelet coefficients wjk of the
 function are restricted to the resolution and spatial indices j > 0 and k = 0, . . ., 2i - 1
 respectively; there is also the coarsest scaling coefficient, which is labelled as uoo (see, for
 example, Daubechies (1992), section 9.3). As Johnstone (1994) has pointed out, this
 computational simplification affects only a fixed number of wavelet coefficients at each
 resolution level and does not alter the qualitative phenomena that we wish to present.

 2.2. Besov spaces on the interval

 In this section, we briefly introduce some relevant aspects of the (inhomogeneous) Besov
 spaces on the interval that we need further. For a more detailed study we refer to DeVore and
 Popov (1988), Triebel (1990), DeVore et al. (1992) and Meyer (1992).

 Let the rth difference of a function g be

 Ah g(t) = E (k (_ 1)k g(t + kh),

 and let the rth modulus of smoothness of g in LP[O, 1] be

 vr, p(g; t) = sup(l IAh gIILP[O,1-rh])-
 h t

 Then the Besov seminorm of index (s, p, q) is defined for r > s, where 1 < p, q < co, by
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 728 F. Abramovich, T. Sapatinas and B. W. Silverman

 q = [El { h q dh if I < q < oo,

 and by

 IglIyoo = SUp {Vr,p(g; h)/hs}.
 O<h<l

 Define the Besov norm as I gI k,q = I gIlu[o,l] + Iglpq. The Besov space Bspq is then the class of
 functions g: [0, 1] -+ R satisfying g E LP[O, 1] and 1gIp,q < oo. The parameter s measures the
 number of derivatives, where the existence of derivatives is required in an LP-sense, whereas
 the parameter q provides a further finer gradation.

 The Besov spaces include, in particular, the well-known Sobolev and Holder spaces of

 smooth functions f7f and CS (B022 and Bsoo,,O respectively), but in addition less traditional
 spaces, like the space of functions of bounded variation, sandwiched between B',, and B,.
 The latter functions are of statistical interest because they allow for better models of spatial
 inhomogeneity (e.g. Meyer (1992) and Donoho and Johnstone (1995)).

 The Besov norm for the function g is related to a sequence space norm on the wavelet
 coefficients of the function. As noted in Section 2. 1, confining attention to the resolution and
 spatial indices j >0 and k = 0, . . ., 2 - I respectively, the sequence space norm is given by

 IIwIIbp, = IuooI + j q IWjk lp if I < q < 00, (2)
 110 \k=O J

 I IWIlbp,t. = IUOOI +Su {2s I Wjk }l (3)

 where s' = s + I2/p (see, for example, Donoho et al. (1995)).
 If the mother wavelet 4' is of regularity r, where max (0, I/p - 2) < s < r, then we have

 P.,glg - llwllbpq, , K21 lgl lyP,q

 where K1 and K2 are constants, not depending on g (e.g. Meyer (1992) and Donoho and
 Johnstone (1995)). Therefore the Besov norm of g is equivalent to the corresponding
 sequence space norm (2) or (3). In Section 4.3, we exploit the equivalence of the norms for
 relating prior information about the function's regularity to hyperparameters of our prior
 model for the wavelet coefficients Wjk.

 In the particular case p = q = 1 the sequence space norm in equation (2) becomes a

 weighted sum of the lwjkl and the corresponding Besov space norm is essentially an Ll-norm
 on the derivatives of g up to order s. This will provide motivation for the loss function that
 we use in Section 3.

 2.3. Discrete wavelet transform and thresholding

 In practice, given observed discrete data y = (yi, ... Y,)T from model (1), we may find the
 vector a of its sample discrete wavelet coefficients by performing the discrete wavelet trans-
 form (DWT) of y:

 d=Wy,
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 Wavelet Thresholding 729

 where W is the DWT matrix with (jk, i) entry given by Wjk iV/n ; ?pjk(i/n) = 2j/2 ?)(2ji/n - k).
 The population discrete wavelet coefficients djk are defined as the DWT of the vector of

 function values g(ti), i = 1, . . ., n. These are related to the wavelet coefficients

 Wjk = J g(t) O jk(t) dt

 by djk t WjkVn. The factor Vn essentially arises from the difference between continuous and
 discrete orthogonality conditions. Since the definitions of the DWT and of the coefficients wjk
 are by now standard, this factor cannot be avoided and therefore we use different letters djk
 and wjk to clarify the distinction.

 If n = 2J (for some positive integer J) then both the DWT and the inverse DWT are
 performed by Mallat's (1989) fast algorithm that requires only O(n) operations and is

 available in several standard implementations, e.g. in the S-PLUS package WaveThresh

 (Nason, 1993; Nason and Silverman, 1994). The WaveThresh package implements a

 periodized form of the DWT that produces n - 1 sample discrete wavelet coefficients dk,

 j = 0,..., J- 1, k = 0, ... ., 2 - 1, and one sample scaling coefficient, which is labelled cjk.
 Each dk describes the contribution around spatial location 21k and near frequency 2i,

 whereas cOO is the sample mean multiplied by ,n. Because of the orthogonality of W, the
 DWT of a white noise process is also an array Ejk of independent N(O, a2) random variables
 and, hence, equally contaminates the population discrete wavelet coefficients djk:

 djk = djk + Ek j = 0, .. ., J- 1, k = O, . . ., 2'- 1.

 The next step is to extract those coefficients that really contain information about the

 unknown function g and to discard the others. This can be done by thresholding the sample

 discrete wavelet coefficients djk. The intuitive idea is that the true function g has a parsim-
 onious wavelet expansion, i.e. only a few 'large' djk essentially contain real information about
 g. If we can decide which these are, we can estimate them and set all the others equal to 0.

 Donoho and Johnstone (1994, 1995) proposed the hard and soft thresholding rules

 Thard(diki A) = dk (I'?jyI > ) (4)

 TsoLft(djk,, A) sgn(djk) max(O, Idjk lI - A) (5)

 where A > 0 is a threshold parameter and I is the usual indicator function. The hard
 thresholding method keeps some coefficients fixed and sets others to 0; in contrast the soft

 thresholding method either 'shrinks' coefficients or sets them to 0. In applications, hard thresh-
 olding generally reproduces peak heights and discontinuities better, but at some cost in visual

 smoothness (Donoho and Johnstone, 1994, 1995). By defining dkW = Thard(djk, A) or djkW =

 Tsoft(djk, A), we can then reconstruct g by the inverse DWT:

 = Wd

 The choice of A is therefore crucial: if the threshold is too small or too large then the

 wavelet shrinkage estimator will tend to overfit or underfit the data. Donoho and Johnstone
 (1994) proposed the universal threshold ADJ = a.V{2 log(n)} called VisuShrink by them.
 Despite the simplicity of such a threshold, they showed that the resulting non-linear wavelet

 estimator is spatially adaptive and is asymptotically near minimax within the whole range of
 Besov spaces. Moreover, Donoho and Johnstone (1998) proved that it asymptotically out-

 performs any linear estimator (i.e. splines, kernel estimators, truncated Fourier series, etc.)
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 730 F. Abramovich, T. Sapatinas and B. W. Silverman

 within Besov spaces Bpq with p < 2 that contain spatially inhomogeneous functions. How-
 ever, the universal threshold depends on the data only through the estimated a and is

 otherwise the same for all kinds of functions. It tends to oversmooth in practice, since it does
 not compromise between signal and noise. In practice, for finite samples, Donoho and

 Johnstone (1994, 1995) suggested keeping coefficients on the lower 'coarse' levels, even if
 these coefficients do not pass the threshold level.

 Several data-driven thresholding rules have been developed recently. Donoho and John-

 stone (1995) proposed the SureShrink thresholding which is based on minimizing Stein's

 unbiased risk estimate (Stein, 1981) and will usually yield smaller thresholds than the Visu-

 Shrink method. They have shown that SureShrink is also asymptotically near minimax and

 the computational effort of the overall procedure is O{n log(n)3. For a practical demon-
 stration of the advantages of this approach see Johnstone and Silverman (1997). In another

 development, Nason (1995, 1996) adjusted the well-known cross-validation approach for

 choosing the threshold level. Some possible extensions to Nason's method are described in
 Weyrich and Warhola (1995) and Wang (1996). Abramovich and Benjamini (1995, 1996) and
 Ogden and Parzen (1996a, b) considered thresholding as a multiple-hypothesis testing
 procedure: for every wavelet coefficient test simultaneously whether it is 0 or not. Johnstone

 and Silverman (1997) have developed a level-dependent threshold approach for data with

 correlated noise, and some of the above approaches can be extended to this case. A Bayesian
 viewpoint to thresholding was introduced by Chipman et al. (1997), Clyde et al. (1998) and

 Vidakovic (1998) and will be discussed in detail later in this paper.

 3. Thresholding within a Bayesian framework

 Most of the existing thresholding procedures are essentially minimax and, therefore, they
 may be 'too universal'; they do not take into account some specific properties of a concrete g
 that we are interested in. A natural way of using the prior belief (knowledge or information)
 about the unknown g (say, its regularity properties) is via a Bayesian approach. Within a
 Bayesian framework we specify a prior distribution on the population wavelet coefficients.
 In this section we show that a certain choice of prior model for the population wavelet

 coefficients implies a Bayesian estimate that produces a thresholding rule, with some features

 in common with Thard and TSOft given in equations (4) and (5) respectively.
 In this section we work with the sampled white noise model (1) and apply the DWT of

 Section 2.3. As we have already mentioned, a large variety of functions allow parsimonious
 representation in wavelet series where there are only a few non-negligible coefficients in the
 expansion. We incorporate this characteristic feature of wavelet bases by placing the

 following prior on the population discrete wavelet coefficients djk:

 d rj N(05 r2) + (I1- j) 6(0), j - .=O,..., J-1, k = 0,.. ., 2 -1, (6)

 where 0 - 1rj < 1, 6(0) is a point mass at 0 and the djk are independent. The hyperparameters
 1rj and ij2 must be specified appropriately (see Section 4). Note that we are using the same
 prior parameters -rj and 'j2 for all coefficients at a given resolution levelj.

 According to the prior model (6), each djk is either 0 with probability 1 -1j or with
 probability 1rj is normally distributed with zero mean and variance ij2. The probability r1j
 gives the proportion of non-zero wavelet coefficients at resolution level j whereas the vari-
 ance Tr is a measure of their magnitudes. Clyde et al. (1998) used a formulation similar to

 expression (6) but with different forms for the hyperparameters r1j and ij2. The prior model (6)
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 is an extreme case of a model considered by Chipman et al. (1997). Their prior for each djk
 is the mixture of two normal distributions with zero means but different variances for

 'negligible' and 'non-negligible' wavelet coefficients.

 Subject to the prior (6), the posterior distribution dk djk is also a mixture of a corres-
 ponding posterior normal distribution and 6(0). Hence, the posterior cumulative distribution

 function F(djkldjk), letting t be the standard normal cumulative distribution function, is

 1 - d - d(jkj/c + 'r) W. j J

 F(dkl)= 1dj 4k- d jkj/J 1 + j I( (7)
 1j+kk1I /jk+i) 1 +Wi ik )

 where the posterior odds ratio for the component at 0 is

 1 - 1r.Vi- + 0.2) pI-T2+2

 The traditional Bayes rule corresponding to the L2-loss (the posterior mean) considered in the
 literature (Chipman et al., 1997; Clyde et al., 1998; Vidakovic, 1998) is not a thresholding rule
 but a shrinkage. Instead, we suggest the use of any weighted combination of Ll-losses on the
 individual wavelet coefficients. Whichever weighted combination is used, the corresponding
 Bayes rule will be obtained by taking the posterior median of each coefficient. As explained in

 Section 2.2, L1 -losses on the estimated function and its derivatives, corresponding to BR,1 -norms
 for the function space loss, will be, for all applicable values of s, equivalent to suitable weighted

 combinations of Ll-losses on the wavelet coefficients Wjk. As we shall show below, such Ll-rules
 (posterior medians) are of the thresholding type. Another possible way to obtain a thresholding
 rule within a Bayesian framework is via hypothesis testing ideas (Vidakovic, 1998).

 The posterior cumulative distribution function of djkldjk corresponding to equation (7) has
 a jump at 0. This fact becomes crucial since by solving the equation F(djkldjk) = 0.5 we find

 that the posterior median is 0 if wijk > 1, and also if

 Wjk < 1

 and

 0.5(1 -Wjk) < ;>{ Vk+rT)} 0.5(1 +wjk);

 it is non-zero otherwise. After straightforward calculus we then have the following closed
 form:

 Med(djk Idjk) = sgn(djk) max(O, (jk),

 where

 72 rIjkI a0 I f +min(wjk,l) (8
 jk a'r + dv k - _( rj) { 0 (8) j~T V(+i7 2

 The quantity (jk is negative for all djk in some implicitly defined interval [-Ap, Aj, and
 hence djk is 0 whenever Idjkl falls below the threshold Aj. The posterior median is therefore a
 level-dependent thresholding rule with thresholds A-. For large djk the thresholding rule is
 asymptotic to linear shrinkage by a factor of Tj2/(o +7)), since the second term in equation
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 (8) becomes negligible as Ijk I - oo. For a plot of the thresholding function for a particular
 case, see Fig. 1.

 To complete the prior specification of g, we place a vague prior on the population scaling
 coefficient, which is therefore estimated by the sample scaling coefficient 8oo obtained from
 the DWT of the data.

 4. A particular form for the hyperparameters

 The hyperparameters irj and -r3 of the prior model (6) must be defined. Different values of
 hyperparameters will lead to different wavelet estimators, so their proper choice is important.
 Assume the hyperparameters of the prior model (6) to be of the form

 ,3 = 2--2Cl and -rj = min (1,2 C2), j = O, . . ., J-1, (9)

 where C1, C2, a and 3 are non-negative constants.
 We remark that the universal threshold ADJ = coV{2 log(n)) of Donoho and Johnstone

 (1994) can be obtained as a particular limiting case of our Bayes rule setting a = 3 = 0 and

 letting C1 -? oo and C2 0 as n increases in such a way that VC I/C2on 1.

 Scot
 CL

 co

 0

 0)

 C,),

 -15 -10 -5 0 5 10 15

 empirical wavelet coefficients

 Fig. 1. Median of the posterior distribution ( ~) as a function of the empirical wavelet coefficients and the
 diagonal (..........-): the hyperparameters were chosen as or2 = 25 and ir = 0.05, while af was fixed at 1
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 Wavelet Thresholding 733

 In what follows we discuss the choice of form (9) and demonstrate a relationship between

 Besov space parameters and hyperparameters of the prior model.

 4. 1. A prior model

 Corresponding to the prior model (6) with hyperparameters specified by expression (9), we

 consider the following distribution on the infinite sequence of wavelet coefficients Wjk, as
 defined in Section 2.1:

 wjk ~~ 7 rj NO y) + (I1-7) 6(0), j ->- O, k = 0, ... ., 2i - 1, (I10)

 where 0 < -rj < 1, 6(0) is a point mass at 0 and Wjk are independent. To complete the model
 we place a vague prior on the scaling coefficient uoo.

 The hyperparameters of the prior model (10) are assumed to be of the form

 -/ = 2-iC* and -rx = min (1, 2-3C2) j > 0, (11)

 where Cl= n-l Cl.
 It follows from expression (11) that the prior expected number of non-zero wavelet

 coefficients on thejth level is 2 Appealing to the first Borel-Cantelli lemma, in the case
 / > 1, the number of non-zero coefficients in the wavelet expansion is finite. In this case the
 prior model implies that the function is exactly expressed as a finite wavelet expansion. More

 fruitful and interesting, however, is the case 0 <, 3 < 1. The case 3 = 0 corresponds to the
 prior belief that all coefficients on all levels have the same probability of being non-zero. This
 characterizes self-similar processes such as white noise or Brownian motion, the overall
 regularity depending on the value of ae. The case 3 = 1 assumes that the expected number of
 non-zero wavelet coefficients is the same on each level, which is typical, for example, for

 piecewise polynomial functions, as we shall discuss below. In Section 4.3, we derive an

 explicit connection between the regularity properties of the response function and the hyper-
 parameters (11) in a very general case.

 Bayesian simulation has become very popular in recent years. See for example section 7 of

 Silverman (1985) for an application of this idea in the curve fitting literature and many recent
 papers on Markov chain Monte Carlo methods. In an earlier paper, Stewart (1979) suggested
 simulating from prior distributions as an aid to the elicitation of prior parameters in the
 Bayesian paradigm for curve fitting, and our approach is a natural context for the application

 of this idea. Some realizations from priors for particular values of the hyperparameters ae and
 /3 will be given in Fig. 2 later.

 4.2. Some connections with a piecewise polynomial model

 To give further intuitive understanding of the model implied by expression (1 1) consider a
 piecewise polynomial function g (not generated by a wavelet prior). Suppose that there

 are N jumps in the mth derivative of g, uniformly located with independent and identically
 distributed sizes h, where N is a random variable with finite mean.

 Let the mother wavelet Ob with a compact support [a, b] be of regularity r > m and derive
 wavelet coefficients of such a piecewise polynomial. Consider a wavelet coefficient Wik. Then

 Wjk = 0 if there is no jump within supp(Ojk) = [2<(k + a), 2-i(k + b)]. For sufficiently large j,

 the probability that more than one jump occurs within supp('Ojk) is negligible, so, after simple
 calculus, the variance of wjk conditional on a jump within supp(?,Ok) is given by
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 var(wk Iwjk 7& 0) = 2-(2..+1j E(h') : [tn?+lI(U)2 du,

 where i"'11 is the (m + 1)-fold integral of the mother wavelet b. The probability of a jump

 within supp(jk) is

 P(wjk : 0) = 2-i(b -a) E(N).

 These conditions correspond to the properties of model (10) with

 a = 2m + I1 C1* -E(h) J xIJ[1+l](u)2du, = 1, C) = (b - a)E(N),
 ' b-a a

 though in the piecewise polynomial case the coefficients are not independent and the dis-

 tribution of Wjk conditioned on Wjk 4 0 is no longer normal. Nevertheless, the connection
 between piecewise polynomial functions and prior (10) helps to clarify the intuitive meaning
 of the constants in expression (11) in the general case.

 4.3. A relationship between Besov space parameters and hyperparameters of the prior
 model

 In this section, we show that, specifying the hyperparameters of the proposed prior model
 (10), we obtain functions from various Besov spaces. Because of the improper nature of the
 prior distribution of uoo, we consider the prior distribution of g conditioned on any given
 value for uoo. We explore the connections between the parameters a and / of the prior model
 (10) with parameters specified by expression (11) and the Besov space parameters s and p. In
 Appendix A, we study a three-parameter prior family that includes expression (11) as a
 special case to take into account the Besov space parameter q as well.

 Suppose that g is generated from the prior model (10) with hyperparameters specified by
 expression (1 1). The following theorem establishes necessary and sufficient conditions for g to
 fall (with probability 1) in any particular Besov space.

 Theorem 1. Let Vb be a mother wavelet of regularity r, where max (0, I/p -/ ) < s < r,
 1 ? p, q < oo, and let the wavelet coefficients Wjk of a function g obey the prior model (10)
 with -r3 = 2-iC* and irj = min (1, 2-3C2), where C*, C2, a >, 0 and 0 < /3 < 1. Then, for any
 fixed value of uoo, g E Bp,q almost surely if and only if either

 s + 1 -/3/p - a/2 < 0 (12)

 or

 s + -/3p-a/2 = 0 and 0 < 3 < 1, p < oo, q = oo. (13)

 Remark 1. As we mentioned in Section 4.1, in the case / > 1, the number of non-
 zero coefficients in the wavelet expansion is finite almost surely. Therefore, with probability
 1, g will belong to the same Besov spaces as the mother wavelet 4', i.e. those for which
 m ax (O, 1/P - 2) < S < r, I -< p, q -<- o o.

 Theorem 1 is a particular case of the more general theorem 2 formulated and proved in
 Appendix A. However, theorem 1 shows how prior knowledge about a specific Besov space
 can be incorporated into the prior model (10) for the wavelet coefficients by choosing the
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 corresponding hyperparameters of their prior distribution and gives insight into the meaning

 of the Besov space parameters.

 Certain priors are important in the derivation of minimax properties of wavelet threshold
 estimators (see, for example, Donoho and Johnstone (1994) and Johnstone and Silverman

 (1997)). These priors place a symmetric three-point distribution independently on each

 wavelet coefficient and give realizations that can be considered as being 'least favourable'
 within particular smoothness classes. Johnstone (1994) investigated various properties of

 these priors. He presented realizations from these and used them to illustrate the variety of
 forms of prior information captured by a family of Besov spaces. For this purpose, the priors
 that we construct may be preferable in producing functions that are typical of particular
 Besov spaces rather than least favourable with respect to some criterion.

 Fig. 2 shows realizations with various values of the hyperparameters. It can be seen that,

 for 3 = 1, the functions show irregularities in some places with relatively smooth behaviour
 in between. The same is true to a much lesser extent for 3= 0.5. For ae = 1 there are gross
 irregularities in the value of the function itself, and for ae = 2 these are less marked. The
 irregularities for ae = 4 are not easily visible in Fig. 2, but the first derivative of the realization
 is similar in character to the corresponding figures for ae = 2. The model ae = 4, 3 = 0, is
 equivalent to an integrated Wiener process which is the prior used to motivate spline

 smoothing by Kimeldorf and Wahba (1970).
 The priors that we construct can be used to aid our understanding of Besov spaces and

 norms (Fig. 3). Consider, for example, the case s = 1, p = 1. Fig. 3 demonstrates that real-

 izations (f), (g), (h) and (i) in Fig. 2 lie in Besov space B1,q, whereas realizations (a), (b) and
 (d) lie outside. Realizations (c) and (e) are on the boundaries of just in or out; (e) is out for
 1 < q < oo but is in for q = oo. Therefore, from the point of view of Besov norms with p = 1,
 realizations (e) and (c) are, roughly speaking, equally irregular. Realization (c) has occasional
 gross irregularities and so is more inhomogeneous, whereas in (e) the irregularity is more

 evenly spread. A more detailed consideration of Bs,q-norms in Fig. 3 shows that the ranking
 of the realizations in terms of their critical value s is, from roughest to smoothest, (a), (b) and
 (d) jointly, (c) and (e) jointly, (f) and (g) jointly, (h) and (i).

 Now consider the other extreme, p = oo. In this case, the realizations within each row of
 Fig. 2 have the same critical value of s, 0 for the top row, 0.5 for the middle row and 1.5 for

 the bottom row. Fig. 2 gives a clear demonstration of the way that the Bsoo,q-norms stress the
 maximum irregularity. They give quite a different ordering from the case p = 1. Yet other
 rankings are yielded by intermediate values of p.

 It can be seen from Fig. 3 that for ae = 0.5 there is some restriction on the range of 3 that
 will give lines that intersect the unshaded part of the figure. However, the case ae = 0.5, 3 = 1,
 will give a line with slope -1 and will intersect the horizontal axis at p = 4. In our subsequent
 investigation, we shall find that this is a good model in practice and a realization from this
 model is given in Fig. 4. It can be seen that the function is mostly regular but allows for
 occasional gross irregularities.

 In general, the priors discussed in this section can be used to generate a range of functions
 just on the boundary of membership of any particular Besov space.

 4.4. Estimation of the hyperparameters

 To apply the proposed Bayesian thresholding procedure in practice, it is necessary first to

 specify the hyperparameters ae, 3, C1 and C2 in expression (9). Our approach is as follows.
 The choice of ae and 3 could be made from prior knowledge about regularity properties of the
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 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

 Fig. 2. Realizations with various values of the hyperparameters a and ,3, with n = 2048, C, = 1 and C2 = 2: (a)
 a= 1,, =0; (b) a = 1,, = 0.5; (c) a = 1,, = 1; (d) a = 2, ,3 =0; (e) a = 2,,3 = 0.5; (f) a = 2,,3 = 1; (g) a =4,
 ,B = 0; (h) a = 4, ,3 = 0.5; (i) a = 4, 3 = 1

 unknown function making use of the results of theorem 1. However, all except the most
 fundamentalist Bayesians may find this a daunting prospect, and we investigate the choice
 further in Section 5.1. To estimate C1 and C2 we suggest the following procedure.

 As we have already mentioned, the set of sample wavelet coefficients djk contains both
 'non-negligible' coefficients of the unknown function g and 'negligible' coefficients rep-
 resenting random noise. Apply the VisuShrink threshold ADJ = V/{2 log(n)}. When the noise
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 l s_ '"''''(g)(e)

 ?LL "; '''''''''' '-_ ( c) '"''''''''' - 2-' .0 co C_ ..

 1 2 4 Infinity

 p

 Fig. 3. Critical values of the Besov space parameters s and p for certain values of a and ,B for any values of
 1 < q < oo: the values of a are indicated on the right-hand axis; the values of /3 are indicated by the style of line

 /3 v =0;.-- --,/B= 0.5; - -- -, /3 = 1); for each value (a, /3), realizations lie In all Besov spaces with
 parameter values below the line plotted; they also lie in spaces on the critical line if 0 < /3 < 1, 1 < p < oo and
 q = oo; the shaded region represents the range of (p, s) that is excluded by the conditions of theorem 1; the p-
 axis is transformed to be linear in 1 - 1 /p; (a)-(i) correspond to the realizations given In Fig. 2

 Fig. 4. Realization with hyperparameters a = 0.5, /3 = 1 with n = 2048, C1 = 1 and C2 = 2
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 level a is unknown, it is robustly estimated by the median absolute deviation of the wavelet

 coefficients at the finest level, divided by 0.6745 (Donoho and Johnstone, 1994). By the

 construction of this thresholding rule, the probability that even one negligible coefficient will
 pass the threshold tends to 0 (Donoho and Johnstone, 1994), so essentially only non-

 negligible djk will survive after thresholding. Suppose that, on level j, the number of
 coefficients that pass ADJ is Mj, and that the values of these coefficients are x;1, . . ., x1M.

 Conditioning on the value Mj, the Xim, m = 1,..., Mj, are independent realizations from the
 tails of the N(O, a2 + .j2) distribution beyond the points aoV/{2 log(n)). The log-likelihood
 function is therefore, up to a constant,

 J-1 [A
 l(T .Tl ) =- M( E Mi ( log(U2 + , ) [ log / - V D )

 J { 2(u2+ 77) >ZX J} (14)

 Substituting Tj2 = 2-'C1 and ADJ = oV{2 log(n)) we can obtain an estimate of C1 by a
 numerical maximization of equation (14), carrying out a grid search on C1.

 The parameter C2 can be chosen by a cognate procedure. We use the numbers

 MO, , MJ-1 of coefficients passing the threshold to estimate the r1j. Let qj=
 2 bN-ADJ/V/(U2 + ij2)), the probability conditional on djk $A 0 that djk passes the threshold
 ADJ. Neglecting the possibility that any djk corresponding to a zero djk passes the threshold

 ADJ, the 'imputed number' of non-zero djk at level ] is Mj/qj, and the expected value of Mj/qj
 is 2'1-?'C-(. Given the value of 3, a simple method-of-moments estimate of C2 based on the

 total imputed number of non-zero djk is

 J 2'l-- 1 M- if 0 < < 1,

 2 -l E .M if = 1.
 J j-z qj

 5. Applications and comparisons

 In this section we first consider simulated examples to illustrate the proposed Bayesian
 thresholding procedure, which we refer to as BayesThresh, and make comparisons with other
 existing thresholding methods. An application to a data set collected in an anaesthesiological
 study is then presented.

 5. 1. Simulation study

 We consider the four examples of Donoho and Johnstone (1994, 1995) that have become
 standard tests for wavelet estimators: 'Blocks', 'Bumps', 'Heavisine' and 'Doppler'. These
 functions caricature spatially variable signals arising in imaging, spectroscopy, seismography
 and other scientific fields.

 For each test function, noisy data were generated for 100 replications by corrupting a true

 function with independent random noise ci - N(0, a2) at 1024 data points uniformly spaced
 on [0, 1]. The values of af were taken to correspond to values 10, 7, 5 and 3 for the root signal-

 to-noise ratio (RSNR) {I: (g _)2)1/2/a, where g = g.

This content downloaded from 132.66.40.16 on Tue, 31 May 2016 11:37:09 UTC
All use subject to http://about.jstor.org/terms



 Wavelet Thresholding 739

 We compare BayesThresh with several wavelet-based estimators for reconstructing the
 original functions: VisuShrink (Donoho and Johnstone, 1994), GlobalSure (a modified
 version of the SureShrink of Donoho and Johnstone (1995) considered in Nason (1996)),
 cross-validation (Nason, 1995, 1996) and the false discovery rate (Abramovich and
 Benjamini, 1995, 1996). Daubechies's least asymmetric wavelet of order 8 (defined through
 a set of 16 non-zero coefficients whose numerical values may be found in Daubechies (1992),
 Table 6.3, p. 198) was used for all the methods. In all the methods, except BayesThresh, the
 soft thresholding (5) was applied, and the wavelet coefficients on the five coarsest levels were
 not thresholded.

 The goodness of fit of each estimator was measured by its average mean-square error
 (AMSE) defined as the average over simulated replications g of

 n

 n Z (i -gi)
 i=l

 The AMSEs and standard errors over 100 simulations for the various methods appear in
 Table 1. The simulations show that, in almost all cases, BayesThresh (ae = 0.5,3 A 1) has a
 smaller AMSE with cross-validation usually second, GlobalSure third, the false discovery
 rate fourth and VisuShrink fifth in the rankings. In fact, similar results held when we used the
 hard thresholding (4) instead of the soft, with the exception of the false discovery rate
 procedure whose performance is improved substantially, approximately to the level obtained
 by GlobalSure. This is, perhaps, not surprising, since the original idea of the false discovery
 rate has a natural interpretation as a hard thresholding procedure (see Abramovich and
 Benjamini (1995, 1996)).

 Table 1. AMSEs for the BayesThresh, VisuShrink, GlobalSure, cross-validation and false discovery rate
 estimators, using various test functions, for various levels of the RSNRt

 Method RSNR AMSEs for the followving test functions:

 Blocks Bumps Heavisine Doppler

 BayesThresh, a = 0.5,,(= 1 10 0.22 (0.002) 0.25 (0.002) 0.06 (0.001) 0.09 (0.001)
 7 0.38 (0.003) 0.45 (0.004) 0.10 (0.001) 0.16 (0.003)
 5 0.67 (0.008) 0.74 (0.006) 0.15 (0.002) 0.30 (0.004)
 3 1.60 (0.014) 1.73 (0.019) 0.30 (0.002) 0.69 (0.009)

 Cross-validation 10 0.23 (0.002) 0.25 (0.002) 0.06 (0.001) 0.11 (0.001)
 7 0.41 (0.003) 0.46 (0.003) 0.10 (0.014) 0.21 (0.002)
 5 0.72 (0.006) 0.84 (0.005) 0.16 (0.003) 0.39 (0.004)
 3 1.68 (0.013) 2.08 (0.016) 0.32 (0.005) 0.91 (0.005)

 GlobalSure 10 0.25 (0.002) 0.29 (0.003) 0.08 (0.007) 0.11 (0.001)
 7 0.42 (0.003) 0.48 (0.004) 0.12 (0.001) 0.21 (0.002)
 5 0.82 (0.009) 0.92 (0.008) 0.18 (0.002) 0.59 (0.009)
 3 3.32 (0.047) 3.31 (0.031) 0.32 (0.004) 1.73 (0.022)

 False discovery rate 10 0.55 (0.005) 0.69 (0.006) 0.08 (0.008) 0.22 (0.003)
 7 0.96 (0.008) 1.23 (0.011) 0.12 (0.001) 0.39 (0.005)
 5 1.58 (0.015) 2.08 (0.022) 0.17 (0.003) 0.65 (0.006)
 3 3.15 (0.025) 4.68 (0.043) 0.31 (0.004) 1.35 (0.015)

 VisuShrink 10 0.77 (0.006) 1.04 (0.009) 0.08 (0.007) 0.27 (0.002)
 7 1.29 (0.012) 1.77 (0.017) 0.12 (0.001) 0.47 (0.005)
 5 2.08 (0.016) 2.99 (0.028) 0.17 (0.002) 0.77 (0.009)
 3 3.69 (0.024) 6.21 (0.057) 0.32 (0.004) 1.55 (0.015)

 tStandard errors are given in parentheses.
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 Within the BayesThresh approach, the effect of varying a and d was investigated. For all four
 functions, reducing 3 gave worse results, especially for the Blocks and Doppler functions.
 This is as might be expected given the irregularity of these functions. The value a = 1 gave
 very slightly better results for large RSNR, but noticeably worse for smaller RSNR. Larger
 values of a gave poor results, except for the Heavisine example, which is somewhat more

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 t t

 (a) (b)

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 t I

 (c) (d)

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 t I

 (e) (f)

 Fig. 5. Original test function and various reconstructions based on 1024 equally spaced values of the function
 with the addition of independent N(0, a2) noise with a = 7/3 (RSNR, 3): (a) original Blocks function; (b)
 BayesThresh (a = 0.5, 3 = 1); (c) cross-validation; (d) GlobalSure; (e) false discovery rate; (f) VisuShrink
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 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 t t

 (a) (b)

 >'LL~~~~~~~~~~~~~~L ': >
 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 (c) (d)

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 tI

 (e) (f)
 Fig. 6. Original test function and various reconstructions based on 1024 equally spaced values of the function
 with the addition of independent N(0, (2) noise with a = 7/3 (RSNR, 3): (a) original Bumps function; (b)
 BayesThresh (a = 0.5, 3 = 1); (c) cross-validation; (d) GlobalSure; (e) false discovery rate; (f) VisuShrink

 regular than the others; even in this case there was no improvement over the case a = 0.5.
 Figs 5-8 show the test functions and the reconstructions obtained, with all methods

 applied to noisy versions of the functions with an RSNR of 3. It can be seen from these plots
 that the BayesThresh (a = 0.5, , = 1) method generally gives a better reconstruction of the
 fine scale structure, relative to the amount of noise in the smooth parts of the functions. In
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 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 (a) (b)

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 (c) (d)

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 t t

 (e) (f)

 Fig. 7. Original test function and various reconstructions based on 1024 equally spaced values of the function
 with the addition of independent N(0, a2) noise with a = 7/3 (RSNR, 3): (a) original Heavisine function; (b)
 BayesThresh (a = 0.5, i = 1); (c) cross-validation; (d) GlobalSure; (e) false discovery rate; (f) VisuShrink

 particular, the BayesThresh method gives a better reconstruction of the corners in Blocks, the
 high peaks in Bumps, the jumps in Heavisine and the high frequency parts of Doppler.

 5.2. Inductance plethysmography data
 Here, we apply the thresholding methods to a data set arising from anaesthesiology collect-
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 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 (e) (f)

 Fig. 8. Original test function and various reconstructions based on 1024 equally spaced values of the function
 with the addition of independent N(0, o2) noise with T = 7/3 (RSNR, 3): (a) original Doppler function; (b)
 BayesThresh (a = 0.5, 3 = 1); (c) cross-validation; (d) GlobalSure; (e) false discovery rate; (f) VisuShrink

 ed by inductance plethysmography. The recordings were made by the Department of
 Anaesthesia at the Bristol Royal Infirmary and measure the flow of air during breathing.
 The same data set has been analysed in Nason (1996), to which the reader is refered for
 more details. These signals are intrinsically continuous, and therefore large values of a in
 the BayesThresh method may be appropriate. Therefore, we consider a = 0.5, 1, 2, and we
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 estimate C, and C2 as suggested in Section 4.4. The noise level a is robustly estimated by the
 median absolute deviation of the wavelet coefficients at the finest level, divided by 0.6745
 (Donoho and Johnstone, 1994).

 Figs 9 and 10 show a section of a plethysmograph recording lasting approximately 80 s

 (4096 data points) together with various reconstructions. The two main sets of regular
 oscillations correspond to normal breathing. The disturbed behaviour in the centre of
 the plot where the normal breathing pattern disappears corresponds to vomiting by the pa-
 tient.

 The VisuShrink and false discovery rate reconstructions remove the noise but tend to

 attenuate the peaks whereas the cross-validation and GlobalSure procedures retain the
 sharpness of peaks, but the smooth parts of the curves are still noisy. In contrast, the
 BayesThresh method has 'noise-free' quality without the attenuation. See, for example, the
 height of the first peak tabulated in Table 2.

 o o

 R)

 0(a (b))

 o 0

 0.0 0.4 0.8 0.0 0.4 0.8

 Time Time

 (a) (b)

 co co

 o

 0.0 0.4 0.8 0.0 0.4 0.8

 Time Time

 (c) (d)

 Fig. 9. (a) Section of an inductance plethysmograph recording and the curve estimates obtained by Bayes-
 Thresh: (b) a = 0.5, /3= 1; (c) a = 1, /3= 1; (c) a = 2, 3= 1 (it can be seen that the choice of a does not have
 an appreciable effect)
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 Fig. 10. (a) Curve estimates of the inductance plethysmograph recording given in Fig. 9(a), obtained by (a)
 cross-validation, (b) GlobalSure, (c) the false discovery rate and (d) VisuShrink (it can be seen that cross-
 validation and GlobalSure do not eliminate high frequency noise, whereas the false discovery rate and VisuShrink
 attenuate the peaks: see Table 2)

 6. Concluding remarks

 We have discussed a Bayesian formalism which has given rise to a type of wavelet threshold
 estimation in nonparametric regression. A prior distribution was imposed on the wavelet
 coefficients of the unknown response function, designed to capture the sparseness of wavelet
 expansion that is common to most applications. For the prior specified, the posterior median
 yielded a thresholding procedure. Several simulated examples were used to illustrate our
 method, and comparisons were made with other thresholding methods. We also presented an
 application to a data set that was collected in an anaesthesiological study.

 Our prior model for the underlying function can be adjusted to give functions falling in any
 specific Besov space. We have established a relationship between the hyperparameters of the
 prior model and the parameters of those Besov spaces within which realizations from the
 prior will fall. This makes it possible in principle to incorporate prior knowledge about the
 function's regularity properties into the prior model for its wavelet coefficients, though in the
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 Table 2. Highest peak value (first peak) in the curves shown in
 Figs 9 and 10 for the inductance plethysmography data

 Highest peak value

 Data 0.847
 BayesThresh (a = 2, ,3 = 1) 0.845
 BayesThresh (a = 1, ,3 = 1) 0.836
 BayesThresh (a = 0.5, ,3 = 1) 0.835
 Cross-validation 0.835
 GlobalSure 0.828
 False discovery rate 0.806
 VisuShrink 0.796

 present state of understanding of Bayesian smoothing methods the 'standard' choice a = 0.5
 and 3 = I seems to be the best practical approach.

 As in any applications of Bayesian methods in curve and image processing, there are aspects
 of our 'genuine' prior knowledge that are not captured in the model. For example, an interesting
 avenue for future research would be the investigation of the effects of allowing a dependence
 between the wavelet coefficients of the true function. Although the wavelet transform can act as
 a 'decorrelator' that tends to make each wavelet coefficient statistically independent of all
 others, it will not completely decorrelate most signals. A recent contribution in this direction is
 by Crouse et al. (1998) who have developed a framework to capture statistical dependences
 between wavelet coefficients based on wavelet domain hidden Markov models.

 Another interesting aspect is the estimation of the noise level a. In our formulation, it is
 assumed that either a is known or a reasonably good estimator is available. Where this is
 not the case, a prior may be put on a. Clyde et al. (1998) dealt with this situation and used
 a Bayesian hierarchical model to define a multiple-shrinkage estimator for the wavelet
 coefficients. They also discussed fast computational implementations through importance
 sampling and Markov chain Monte Carlo methods. The combination of these ideas with our
 approaches is an interesting topic for further research.
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 Appendix A: Theoretical details

 Our study so far has concentrated on the Besov space parameters s and p. To take into account the
 Besov space parameter q as well, we now introduce a three-parameter prior family that includes
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 expression (11) as a special case. Specifically, we allow a more delicate dependence of the variance
 parameter 7j2 on the level j by introducing a third parameter y, with -oo < y < oo:

 ,2 - 2-oaj(YC*

 The following theorem extends the results of theorem I to this prior and contains theorem 1 as the
 special case -y = 0.

 Theorem 2. Let b be a mother wavelet of regularity r, where max (0, I/p -2) < s < r, 1 < p, q < 00,
 and let the wavelet coefficients w1k of a function g obey the prior model (10) with 2 = 2-JafC *and
 7rj = min (1, 2- 'C2), where Cj*, C2, a >- 0, 0 3 / < 1 and y E R. Then, for any fixed value of uoo, g E
 BfP,q almost surely if and only if either

 s + -l/p - a/2 < 0

 or

 s + 2 --/3p - a/2 = 0

 and -y satisfies the appropriate one of the following conditions:

 (a) -y < -2/q for
 (i) p, q<oo andO <, 1,
 (ii) p, q < oo and p3= 1,
 (iii) p = oo, q < oo and 3 = 1;

 (b) y < -1 - 2/q for p = oo, q < oo and 0 < 3 < 1;
 (c) -y < 0 forp < oo, q = oo and 0 < 4 < 1;
 (d) 7y < -1 forp, q = oo and 0 < /3< 1;
 (e) y < 0 for

 (i) p < oo, q= oo and f= 1,
 (ii) p, q = oo and 3 = 1.

 Proof. Define zj to be the vector with elements Zjik, where z1k = W3k for k = 0 2 - 1. We con-
 sider three cases.

 In case I (O < 3 < 1; I < p < oo; I < q < oo), for any I < p < oo, let vp be the pth absolute moment
 of the standard normal distribution. We then have EllzjllP = 2('-lvPC2 and var(IIzjIIP) ?2('-O2pc2.
 We also define

 s s+ 1 -f/p - a/2 if 1 < p < oo,

 s +I-a/2 ifp= oo.
 Given c > 0, Chebyshev's inequality implies that

 00 00

 P P{12 I' I zjIIIP - C2vp > f} ? 0(1) f2 E2-('-' < 0.
 j=O j=O

 Appealing to the first Borel-Cantelli lemma, it follows that

 2-('-IjllzjllP C2+ p almost surely asj - oo. (15)

 By standard extreme value manipulations, using the fact that P(IzjkI > u) = 2irj{ 1 - cP(u)}, where ci is
 the standard normal distribution function, we also have

 "1/211z 1I -+ V{2(1 - L) log(2)} almost surely as j cc. (16)

 Hence, in view of expressions (15) and (16) and the equivalence of the norms given by equations (2) and
 (3), the required conditions that g E Bp,q almost surely will be the finiteness of
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 E 2jS 4 X 2(1-,3)i/P? j E 2jE4J54/2if 1 p < oo, 1 q< oo, (17)
 j=o j=O

 2j 4j/2 E yqf-ya+)l)42 if p =oo, 1 q < oo, (18)
 j=o j=O

 sup(21s x 2('-?ff/P j) = sup(2'6fl'2), if 1 p < oo, q = 00, (19)
 jo> j>o

 sup(21sj/2ij) = sup(2 6fb'1), if p= x, q= 0. (20)
 j>o j>o

 In each case, the above expressions will be finite if 6 < 0 and infinite for 6 > 0. For 6 = 0, the
 expressions will be finite if and only if -y < -2/q in case (17), -y < -1 - 2/q in case (18), -y 0 0 in case
 (19) or a < - 1 in case (20).

 In case II (/3= 1; 1 < p < oo; 1 < q < oo), the non-zero elements of zj consist of M independent
 standard normal random variables, where Mj - binomial(2J, 2'C2). By a standard coupling argu-
 ment, there is a sequence Nj of Poisson(C2) random variables such that Mj = Nj almost surely for
 all sufficiently large j. Let (j be a vector of Nj independent standard normal random variables,
 independently for each j. Then I Iej II I is a sum of a Poisson number of independent identical IN(O, 1)1
 random variables; by standard probability arguments all the moments of I Ij are therefore finite since
 Eexp(IjIIIj) < oo. Furthermore, for any 1 < p < oo, jjejjjp < 11ijil, (e.g. Beckenbach and Bellman
 (1961), p. 18) and hence 0 < El<II E I Ejllq < 00.

 By the equivalence of the norms given by equation (2), we now have the result that g E Bp,q almost
 surely if and only if

 00 , 00

 S2Sqjllj lq= <00qJ5q2llq < N almost surely. (21) j=o j=o0

 It can be shown from the monotone convergence theorem and the three-series theorem (see Karr
 (1993), theorems 4.10 and 7.5 respectively) that, if Zn are independent and identically distributed non-
 negative random variables with strictly positive finite mean, and a, are non-negative constants, then
 E anZ, is convergent almost surely if and only if E a, is convergent. It follows that expression (21) is
 equivalent to

 00

 E 2jqJyq/2 < 00, (22)
 j=O

 since the tj are independent and identically distributed and El Kjllq is finite. Condition (22) is satisfied if
 and only if either 6 < 0, or 6 = 0 and 7y < -2/q.

 In case III (/ = 1; 1 < p < oo; q = oo), by the equivalence of the norms given by equation (3) and the
 coupling argument presented previously, g E Bpsq almost surely if and only if

 sup(2Js rHII = I up(2 2II j Ilp) < 00 almost surely. (23)

 Appealing to the Borel-Cantelli lemmas, it follows that condition (23) holds if and only if there is a
 constant c such that

 00

 Ep(2jlj,/2 1 I1j I 1 '> C) < )oo (24)
 j=O

 After some simple arguments, using the facts that, for any 1 < p < oo,

 uledlp '< ljill,

 and

 Eexp(j1kjjj1) < 00,

 condition (24) is satisfied if and only if either 6 < 0, or 6 = 0 and y < 0. This completes the proof for this
 case, and hence we have the theorem.
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