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Dicussion on the meeting on ‘Statistical approaches
to inverse problems’

Guy Nason (University of Bristol)
I congratulate Johnstone and his colleagues and Wolfe and his colleagues on a stimulating and fascinating
pair of papers. I shall discuss each paper in turn.

Johnstone, Kerkyacharian, Picard and Raimondo
Johnstone, Kerkyacharian, Picard and Raimondo are interested in the inverse problem of estimating f
where f has been convolved with g and then contaminated with white noise. This popular problem has
been tackled by a wide variety of procedures and wavelet methods have recently generated considerable
interest. Donoho’s (1995) seminal wavelet–vaguelette paper introduced the notion that wavelets would be
a good choice for the representation of f since real life objects, such as images, are more likely to be
efficiently represented using wavelets when compared with, for example, Fourier representations.

Johnstone and his colleagues have moved the field on significantly. In particular, their procedure is more
direct than wavelet–vaguelette or Abramovich and Silverman’s (1998) vaguelette–wavelet method; it can
handle boxcar blur theoretically and practically, they have rates of convergence for p �=2 (p defines the type
of loss) and the paper innovates through use of the new maxiset approach. For me, the most appealing of
these innovations is that of enabling the treatment of boxcar blur which is one of the most common types
of inverse problem. However, is it really, really, the case that for rational a nothing can be done? Formula
(4) compels us to say no, nothing can, but naı̈vely it still feels wrong.

Formula (19) is the popular ‘signal-plus-noise’ model but here it is a little different from what normally
appears in the literature because the quantities are complex-valued random variables. More specifically,
the zl are zero-mean Gaussian variables which are complex valued and satisfy E.zlzk/= δlk. One question
is why threshold the β̂k and not the yl directly? The covariance of the β̂k is given by

cov.β̂k, β̂l/=n−1 ∑
m

Ψ̄k
mΨl

m

g2
m

, .1/

which would seem to be non-zero for k �= l. Hence, the β̂k are correlated whereas the yl in formula (19) are
(complex valued) independent.

For the Fourier case there is probably not much more that can be said about the transformed noise.
Recent work by Barber and Nason (2003) with complex Daubechies wavelets exploits correlations between
the real and imaginary parts of transformed noise. In the Fourier case that type of intracoefficient corre-
lation does not exist. It is not clear how we could use the symmetries that do exist.

However, I am not sure that I would advocate direct shrinkage on yl. This is because hl is not necessarily
a sparse sequence because neither fl nor gl is. One might think about performing complex-valued wavelet
shrinkage on yl, using, for example, Sardy (2000). The wavelet transform of hl might possibly be sparse.
Doing this would not destroy the computational advantages of the method of Johstone and his colleagues
as the wavelet denoising step is O.n/.

Some further questions: what can we do when g is unknown (blind deconvolution)?: what about using
Bayesian methods in this context? And there are the same old questions: what about non-Gaussian and
correlated errors; what about non-uniform designs?

Wolfe, Godsill and Ng
In the enjoyable paper by Wolfe, Godsill and Ng it is reassuring to revisit the ‘sparse prior’ model

p.ck|σck, γk/= .1−γk/ δ0.ck/+γk N .ck|0,σ2
ck/:

For me, what is most novel in this paper is the prior specification of γk which is capable of modelling
several kinds of behaviour: no pattern (unstructured), persistence through time (local stationarity) and
persistence through frequency and time. It seems to me, however, that the formulation seems to induce
persistence in coefficient magnitude rather than value. For example, consider a one-stage Markov-in-time
prior. If ck−1 = 0 then does this mean that, with high probability, ck is also 0? If so, then that is fine.
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However, if ck−1 is not 0, then, with high probability, ck is also not 0 but it seems that it need not have the
same sign as ck−1 and thus could easily be radically different from its neighbour. This seems to be a little
different from other models of local stationarity where local control is applied to values (see, for example,
Dahlhaus (1997) or Nason et al. (2000)).

Mostly, I have some more specific practical questions. What can be said about modelling processes that
oscillate too fast for the methodology? Can Markov chain Monte Carlo sampling keep up? How well can
it keep up? Can we impose conditions on the speed of processes that can be modelled in this method-
ology? Furthermore, Wolfe and his colleagues use their methodology on several standard test functions
corresponding to examples in Marron et al. (1998). It would have been nice to see comparisons with other
wavelet shrinkage methods both in terms of quantities such as the mean integrated squared error but also
computational performance.

It is with great pleasure that I would like to propose the vote of thanks to both sets of authors for an
extremely interesting pair of papers.

Eric Moulines (Ecole Nationale Supérieure des Télécommunications, Paris)

Johnstone, Kerkyacharian, Picard and Raimondo
The paper by Johnstone, Kerkyacharian, Picard and Raimondo addresses the noisy deconvolution prob-
lem. The problem is formulated in continuous time

Yn.dt/=f Å g.t/ dt +σn−1=2 dW.t/ .2/

where f is an unknown function and g is the blurring function assumed to be known and W is Gaussian
white noise.

The technique proposed is, compared with the previous method developed in this field, both original
and simple, relying on the wavelet shrinkage method. Because, contrary to the functional reconstruction
problem, the noisy version of the wavelet coefficients of the unknown function f are not readily available,
the subtle trick that is played in this paper consists of using a three-stage estimation technique. In the first
stage, the Fourier coefficients fl of the unknown function f are estimated from the Fourier coefficient of
the observation yl by direct inversion of a blurring function: f̂ l =yl=gl, where gl are the Fourier coefficients
of the blurring function. This step is at the heart of the Fourier domain deconvolution technique. However,
there is a main difference here: in Fourier domain deconvolution, shrinkage is applied directly on the
Fourier coefficient, and the deblurred function is directly obtained from the shrinkage estimator of the
Fourier series coefficients by inverse Fourier transform. In this implementation, there is no shrinkage at
this stage. In the second stage, estimates of the wavelet coefficients of the function f are estimated. This
amounts to estimating the scalar product of the unknown signal with the wavelet coefficients, or, thanks
to the Parseval identity, as the scalar product of f̂ l and the Fourier coefficients of the wavelet Ψk,

β̂k =∑
l

yl

gl

Ψk
l :

In the paper, the wavelet is assumed to be strictly band limited which restricts the choice of wavelets: this
should, however, be regarded as a technicality to avoid truncating sums and introducing an additional
source of bias. In the final step, the unknown function f is approximated by standard wavelet shrinkage.
Conceptually, this is equivalent to first reconstructing a noisy version of the signal by plain Fourier de-
convolution where plain means that the deconvolution is carried out without any kind of regularization
(e.g. generally implemented by means of shrinkage of the Fourier coefficients) and then to denoise the
deblurred signal by the standard wavelet shrinkage estimate with a threshold rule adapted to account
for the heteroscedasticity in the noise level affecting the wavelet coefficients introduced by the inverse of
the blurring filter. However, playing the trick of computing the wavelet coefficient by using the Parseval
identity eliminates the need for reconstructing the ‘noisy’ deblurred signal and then to compute the wavelet
of transform of these coefficients.

The algorithm proposed, which is very interesting and beautifully simple, has, however, some potential
practical pitfalls which are not fully addressed. First, the authors assume that the unknown function f is
periodic, which is a rather restrictive and most often unnatural assumption in the applications. Second, the
authors do not address the potential problems that are associated with sampling. If the sampling issue can
presumably be handled without too much trouble the correction of edge effects might raise more serious
difficulties. Edge correction is a common problem in all deconvolution methods and in particular in all
methods which use a Fourier transform in an intermediate step. If f is not periodic, the Fourier transform
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of the convolution fÅg no longer is the product of the Fourier coefficients of f and g. In image restoration,
edge effects are considered by many researchers to be one of the main sources of distortions: in certain
conditions, the artefacts that are associated with the image boundary truncations can dominate the image
reconstruction. The problem is perhaps less severe than it might seem because there are several practical
methods to address this issue, based on data tapering to smooth the effect of truncation combined with
zero padding to the length of the restoration filter (see Aghdasi and Ward (1996) among others). This type
of time–spatial domain preprocessing before the computation of the Fourier coefficients might, however,
have an effect on the accuracy of the reconstruction (in particular, near the end point) which cannot be
predicted without further analysis.

The algorithm proposed shares many similarities with the ForWaRD algorithm of Neelamani et al.
(2004), which might be thought of as a (mild) generalization of the technique proposed. Neelamani et al.
(2004) advocate the use of a two-stage shrinkage, which amounts to replacing the ‘plain’ estimate of the
Fourier coefficient f̂ l =yl=gl by

f̂ l =
yl

gl

|gl|2
|gl|2 + τ

where τ is a data-driven regularization parameter. The intuition behind this estimator is that a certain
amount of Fourier domain shrinkage may be beneficial in situations where the function f has a ‘reason-
ably’ compact representation in the Fourier domain. The improvements that are brought by this ‘two-stage’
shrinkage are sometimes quite impressive as illustrated in several experiments that were carried out by Neel-
amani et al. (2004) in image restoration. Of course, the theory to support this type of estimate (which could
also have been advocated in the direct observation case) is far less well understood than the theory that is
presented here. There is presumably a way to understand the potential advantages of the shrinkage in the
Fourier domain before wavelet shrinkage but the results that are provided here show that this might only
occur outside Besov spaces!

To conclude, I warmly second the vote of thanks for this paper which presents significant advances both
from the practical and the theoretical standpoints!

Wolfe, Godsill and Ng
The paper by Wolfe and his colleagues presents a novel denoising method for audio signals based on a
Bayesian regularization scheme applied on a time–frequency representation. The idea is to construct priors
for the coefficients of the time–frequency representation which on the one hand favour the smoothness
of the reconstructed functions and sparseness of the representation and on the other hand capture the
dependences of the coefficients (where the dependence is due in part to the lack of orthogonality of the
time–frequency atoms and to the intrinsic time–frequency structure of the signals). The design of prior
distribution to guarantee smoothness and sparseness of representation is now well understood and has
been applied in many different settings. The use of priors that can capture the dependence between the
coefficients of the representation is a more delicate problem which involves expert a priori knowledge.

The use of a dependent prior is not a novel idea in image processing, but the idea has not been fully
worked out for audio signals. Dependent priors are at the heart of many image segmentation, restoration
and retrieval techniques that have been developed (see Geman (1988) among many others). More recently,
the use of a dependent prior has also been investigated as a means to improve signal reconstruction in
multiscale (wavelet) restoration techniques. Many empirical studies have concluded that the wavelet coeffi-
cients (even if the transformation is maximally decimated) of natural images are strongly dependent. The
use of appropriately chosen dependent priors led to significant improvements over an ‘independent prior’
(see for example Wainwright et al. (2001), Choi and Baraniuk (2001) and Portilla et al. (2003)), strongly
supporting the potential advantages that can be obtained by exploiting the dependence structure—and,
thus, the redundancy—of the coefficients.

For natural images, the appropriate prior distributions have generally been obtained from the analysis
of (large) sets of images (see Wainwright et al. (2001)). It would have been of interest to carry out such an
analysis for the coefficients of time–frequency representations of audio signals. Whereas the use of a scale
mixture of Gaussian distributions to model the marginal distribution is sound and is presumably adequate
to account for the large dynamic of these coefficients, an appropriate model for the dependence between
the coefficients of the representation is more difficult to guess.

The prior models proposed are sensible but still raise some questions. The authors suggest the use of
a Markov random field based on first-order neighbourhood structure. This choice is obviously good to
restore noisy black-and-white images: in these applications, we are willing to obtain homogeneous regions
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of black and white pixels. This is perhaps not a very sensible prior to restore audio signals because it will
have the tendency, in periodic segments, to spread the harmonic energy, thus smearing out the harmonic
structure. This effect is noticeable in Fig. 3(e), where the harmonic structure which can clearly be seen even
in the time–frequency representation of the noisy signal has almost disappeared in the denoising process.
The Markov chain prior is appropriate for restoring horizontal lines and the example shown (Fig. 3(d))
in the paper proves that this prior has a great potential to restore clean speech in the situations where the
pitch (fundamental frequency) does not vary significantly compared with the spectral resolution of the
window of analysis. When the pitch varies makes less sense.

Another interesting direction of research would be to consider alternative time–frequency representa-
tions. There is of course a strong interaction between the choice of the representation and the choice of the
prior, but it is likely that the choice of a more complex representation may sometimes help the design of an
appropriate prior distribution. For example, given the strong harmonic content of most audio signals, it has
been advocated by some to use a dictionary of harmonic atoms (see for example Gribonval and Bacry (2003)):

h.t/ :=
K∑

k=1
ck gu,ξk .t/, ξk =kξ0,

where ξ0 is the pitch frequency and gu,ξ is the Gabor atom (at time u and frequency ξ). Harmonic atoms
are designed to preserve harmonicity by forcing the presence of atoms at multiples of the fundamental
frequencies. Therefore, when using harmonic atoms, it is no longer necessary to try to shape the prior to
restore harmonics, because the harmonics are, with this representation, ‘mechanically’ reproduced.

As emphasized in these comments, the paper opens many novel directions of research in statistical
speech processing. I warmly second the vote of thanks for this paper.

The vote of thanks was passed by acclamation.

Christian P. Robert (Université Dauphine and Centre de Recherche en Economie et Statistique, Paris)
Both papers by Cornford and his colleagues and Haario and his colleagues are impressive pieces of work
that are perfect representatives of the issues pertaining to inverse problems: huge amounts of (satellite)
data, intractable likelihood functions, large dimensions and speed processing requirements. They also illus-
trate the necessity for multiple levels of approximations that arises in such problems and the correlated
difficulty in assessing the effects of such approximations. In addition, they provide sophisticated additions
to the theory and practice of Markov chain Monte Carlo (MCMC) algorithms.

Ultimately, the approximations that are used by the authors in both cases are Gaussian: in the work of
Haario and his colleagues, the integral defining T abs

λ,l is discretized into Tl.Nl/ and the base level observa-
tions yl are normal N{Tl.Nl/, Cl}. In the work of Cornford and his colleagues a normal mixture is built
for the inverse model,

vi|s0
i ∼

4∑
k=1

αk.s
0
i / N2{µk.s

0
i /,σ

2
k .s0

i /I2}, .3/

with neural network estimation for the functions αk,µk and σk, but the MCMC processing of the resulting
model is found to be too slow and sequential Gaussian approximations are used instead for the dynamic
case. (As an aside, note that the issue of additional Gaussian noise N2.0, τ 2I2/ in the mixture model does
not modify the mixture structure since it simply transforms the variance in .σ2

k + τ 2/I2.) Still, it seems that
a model like

p.v|S0/∝∏
i

p.vi|s0
i /

p.vi/
p.V/,

where the p.vi|s0
i /s are the mixtures of model (3), should be manageable for simulation as they stand, given

that the parameters of the mixtures are known: the function can be computed analytically and either a
missing data structure can be introduced for Gibbs sampling simulation (Diebolt and Robert, 1994) or a
random-walk Metropolis algorithm can be implemented. The fact that the modes of p.V|S0/ need to be
known in advance is only an apparent challenge in that the bimodality is a consequence of the lack of
identifiability of the direction of the wind.

Even though the papers work within the Bayesian paradigm, I find the prior input fairly vague and
limited, as far as the description goes in both papers. For Haario and colleagues, although some further
knowledge on the ρabs{z.s/}s, other than their positivity, could be used (altitude and gas correlations
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Fig. 1. Random-walk Metropolis simulation of the t posterior distribution Π5

jD1{νC .xj �θ/2}�.νC1/=2 using
(a), (b) a normal proposal with variance σ̂2

t D .5=2/ Σt
iD1.θ.i/ � µ̂t/2 , where µ̂t is the average of the θ.i/ s,

and (c), (d) a ridge-type version σ̃2
t D .5=2/ Σt

iD1 .θ.i/ � µ̂t/2 C" where " D0:1: (a), (c) sequences of simu-
lated values and (b), (d) histograms of these values against the true posterior distribution of θ; in both cases,
the fit is satisfactory, despite the lack of theoretical guarantees for (a) and (b)

could also appear in the prior), it seems that the main prior modelling is related to the discretization or
regularization choice γ=±1, ±2:

xi = x̂i ± "reg√.∆zγ/:

For the model of Cornford and colleagues, there also seems to be very little prior input, either in terms of
spatial modelling or geophysical and historical knowledge. One reason for this limited use of the possibil-
ities that are offered by the Bayesian approach is the restriction that is imposed by the Gaussian structure
of the model, especially in the case of the scatterometer data. (The last sentence of section 4 is also fairly
intriguing in that it seems to imply that prior distributions are simply stabilizing devices, rather than
summaries of prior information.)

As stated above, an interesting feature of both papers is the devising of novel simulation methodolo-
gies to handle the complex posterior distributions that are found there. The adaptive MCMC algorithm
of Haario and his colleagues has been introduced in Haario et al. (1999, 2001, 2003) to overcome the
difficulty of scaling the random-walk Metropolis algorithm by an only adaptation

Ct = sd cov.X1, . . . , Xt/+ sd"Id

and these papers are forerunners of an emerging class of more efficient MCMC algorithms (Robert and
Casella, 2004). Although ergodicity of the resulting process is necessary to establish the validity of the
simulation method as an approximating technique, we may wonder about the practical relevance of such
constraints. Figs 1 and 2 show that not all adaptive schemes are providing correct approximations to the
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Fig. 2. Influence of the variance of the starting distribution in an adaptive MCMC algorithm with proposals
N .µ̂t, σ̂2

t /, in the same setting as Fig. 1: the starting variances are (a), (b) 0.1, (c), (d) 1 and (e), (f) 5; even the
largest variance fails to provide a convergent approximation to the stationary distribution, and (c), (d) exhibits
a case of poor mixing



Discussion on Statistical Approaches to Inverse Problems 633

distribution of interest. As noted in Andrieu and Moulines (2003), other schemes could be used while
preserving the stability of the proper distribution. For instance, the updating of the covariance matrix
of the proposal could be embedded in a grand chain .X.t/, Σ.t// by adding a performance component to
the stationary distribution in a tempering mode, exp{−αH.Σ/}. It would also be of considerable inter-
est to understand better why the single-site one-dimensional update SCAM algorithm can be so efficient
in high dimensional models since the performances of the Gibbs algorithm usually deteriorate in higher
dimensions.

In the case of Cornford and his colleagues, simulation technology is used at two levels: mode jump-
ing MCMC sampling (section 4.1) and variational approximation (section 4.2). The specific algorithm of
section 4.1 is not particularly appealing, given that it requires knowledge of the two modes of the posterior
distribution. Local, Rao–Blackwellized and population Monte Carlo algorithms could be used as well
(Cappé et al., 2004; Robert and Casella, 2004). In particular, a particle filter (Doucet et al., 2001) provides
an efficient alternative to the two-stage approach of the authors that allows for simultaneous mode detec-
tion and simulation from the posterior. (This is even truer in a dynamic setting.) The variational Gaussian
approximation in section 4.2 is presented as an alternative to the costly MCMC algorithm of section 4.1,
but we must stress that the focus is also different; this technique provides acceptable approximations to
only the first two moments of the posterior distribution and only when that distribution is unimodal.

Although the various approximations that are used by the authors are all acceptable as a result of
the reality constraint that makes a truly Bayesian resolution impossible (?) to implement, more elaborate
assessments that these approximations have limited consequences would be welcomed. Similarly, when
iterative algorithms are used, the assessment (or non-assessment) that convergence is not a problem should
somehow appear. To conclude, I want to congratulate both groups of authors for obtaining a none-the-less
satisfactory inference in such complex but comprehensive inverse problems where statistics must play a
role and I thus unreservedly propose the vote of thanks!

Christophe Andrieu (University of Bristol)
The two papers by Haario and his colleagues and Cornford and his colleagues that I have been invited
to discuss apply standard Bayesian methodology to practical problems. It is quite striking to me that a
large proportion of each of the papers is mainly dedicated to the computational, rather than the statistical,
aspects of the inversion problem itself. This is reflected in my discussion.

The SCAM algorithm that is proposed by Haario and his colleagues is a natural extension of the authors’
adaptive Metropolis algorithm. It is not clear in the current description of the algorithm whether the co-
ordinates are systematically or randomly scanned. I wonder why the authors mainly focus on an adaptive
algorithm based on the random-walk Metropolis update. I find this slightly restrictive and would suggest
the use of a mixture of transition probabilities of various types. For example one of the kernels could be
an adaptive independent sampler with a normal distribution as proposal: the mean and variance would be
estimated as they currently are in the AM algorithm. Finally I would like to point out as a complement to
theorem 1 that it is possible to prove interesting bounds on the error of adaptive Monte Carlo algorithms.
Assume that the algorithm depends on some parameter θ, which is updated along the iterations and
assumed to satisfy the two following conditions: for k � 1, k, |θk − θk−1|� "k for some deterministic series
{"k} and θk ∈K for some bounded set K. Under fairly general conditions on the transition probability of
the chain, it can be proved (Andrieu and Moulines, 2002) that there are constants A.", K/ and B.", K/
such that, for any n�1,

√
E|Sn|2 � A.", K/√

n
+B.", K/

n∑
k=1

"k

n
,

where Sn =n−1 Σn
i=1f.Xi/ and it is assumed that Eπ.f/=0. The first term corresponds to the Monte Carlo

fluctuations whereas the second term is the price to pay for adaptation. Assume that "i = i−γ for γ ∈ .0, 1/;
then

n∑
k=1

"k

n
∼ 1

1−γ
n−γ ,

i.e. the classical Monte Carlo rate is preserved for γ ∈ [ 1
2 , 1/. Note that the ratio A.", K/=B.", K/ can be

shown to depend on some form of continuity of the transition probabilities as a function of θ.
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The paper by Cornford and his colleagues is obviously the accumulation of several years of work which
were difficult to fit into fewer than 20 pages. It should be pointed out that the problem is difficult in many
respects (size and non-linearity), and that the authors should be praised for their efforts to tackle the
problem with computationally realistic algorithms. My first comment is related to the lack of estimated
parameters. In particular it seems to be assumed that the variance of the observation noise is known and
therefore never estimated. How do the authors handle the problem in practice? My second comment is
related to the prior distribution and the covariance function that are found by the authors in section 3. It
clearly suggests a continuous spatial autoregressive process. It is surprising that the authors did not point
this out, since an important body of literature on the topic exists. See among others Jones and Vecchia
(1993) and the references therein; one could suggest various adaptations of their method (which computes
a maximum likelihood estimate for normal observations and not a posterior distribution for a mixture of
normal distributions) to the present context. My third comment is related to the Monte Carlo algorithm
that is used. Given the structure of the posterior distribution, which is a mixture, I was wondering why the
authors did not consider or discuss the use of latent variables to ease the simulations. Why restrict Monte
Carlo methods to the random-walk Metropolis algorithm? Why not use, for example, an independent sam-
pler, e.g. two normal distributions, since the two modes of the posterior distribution are well identified? In
the same vein, why did the authors not use their approximation of the posterior distribution in section 4.2
to feed a Markov chain Monte Carlo sampler? This would lead to a fairer comparison of the techniques
as they would use the same a priori information as is used to design the approximation and could to a
certain extent provide them with some feed-back concerning their analytical approximation. These last
two points are very often overlooked by many researchers when comparing analytical approximations and
Monte Carlo methods.

The vote of thanks was passed by acclamation.

Ad Stoffelen (Royal Netherlands Meteorological Institute, De Bilt)
Scatterometer wind retrieval is a non-linear inverse problem and the presentation by Cornford and his
colleagues excellently explores a Baysian framework to solve this problem in an effective manner. However,
in this contribution the links to state of the art scatterometer processing algorithms are further elaborated.
Given the context of the meeting emphasis is put on statistical aspects.

Lorenc (1986) presented variational data assimilation starting from a Baysian framework. In this con-
text, the information that is contained in local observations is exploited by combining it with information
in a numerical weather prediction (NWP) model state. As such, Stoffelen and Anderson (1997) character-
ized the local information content of scatterometer measurements by an ambiguous function of the wind
components, based on the results of a local inversion of the geophysical model function. Consequently,
this allows effective ambiguity removal in a two-, three- or four-dimensional variational data assimilation
system, which is current operational practice. Moreover, and I believe that the authors also show this, not
muchprior information isneededtoperformremovalofambiguity.For this reason,ambiguity removalalgo-
rithms have a success rate over 99%, thereby making the dependence on NWP prior information minimal.

Improvements in speed in current scatterometer data assimilation may thus be mainly obtained by more
effective local inversion, although the look-up table approach in operational practice is quite effective.

These arguments provide a practical view of the methodology that is presented by Cornford and his
colleagues and it is not obvious how they can improve operational scatterometry, if one wanted to. A few
possible avenues for exploitation are given below.

(a) In NWP data assimilation formidable effort is put into statistics of observations minus NWP model
background, to estimate the observation error covariance structure. The wind vector ambiguity af-
fects such statistics, thus invalidating random-noise assessments. This effect may be quantified.

(b) Besides rain contamination and lower signal-to-noise ratios, Nasa scatterometers measure in a more
challenging configuration. The challenge lies in those parts of the swath where the wind vector is quite
undetermined, and more sophisticated processing may be useful.

(c) In a quest for higher resolution scatterometer wind products, an intelligent trade-off between resolu-
tion and noise must be made to optimize the information content.

Debashis Paul (Stanford University)
As an alternative to the thresholding method used in the paper by Johnstone and his colleagues, we propose
an estimator derived from a complexity penalized least squares approach. This applies, for example, to
linear operators having a wavelet–vaguelette decomposition.
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In keeping with the notation that is used in the paper, we denote by .U , V/= .{ujk}, {vjk}/ the biorthog-
onal vaguelette pairs associated with the convolution kernel g and the Meyer scaling and wavelet functions.
Then by applying a vaguelette transform in the system U to the noisy data, given by equation (1) of the
paper, we obtain the sequence model

α̂j0k =αj0k + "zj0k, k =0, . . . , 2j0 −1,
β̂jk =βjk + "zjk, k =0, 1, . . . , 2j −1, j � j0:

Here the quantities α̂jk and β̂jk have the same definition as in the paper and the noise vectors zj = .zjk :k =
0, . . . , 2j −1/ are Gaussian with non-singular covariance matrices (for details see Donoho (1995)). Under
the current set-up "=σn−1=2.

Let κj denote the pseudosingular values of the system defined as in section 3.3 of the paper. Assum-
ing 2−νjA1 � κj � 2−νjA2 for constants A2 � A1 > 0, we define our penalized estimator for the vectors
βj = .βjk : k =0, 1, . . . , 2j −1/ as

β̃j =arg min
µ∈R2j

{
2j−1∑
k=0

.β̂jk −µk/
2 + "2κ−2

j Pj.µ/

}
,

where Pj.µ/ is the penalty function. Let Cup be the upper frame bound of the vaguelette basis U . This
implies that Cup �1 and satisfies UÅU �CupI. Using this we set the penalty function as Pj.µ/=N.µ/λ2

j,N.µ/

where N.µ/ denotes the number of non-zero entries of µ and

λj, l = ζCup[1+√{2.2ν+1/ log.η−1l−12j/}], l=1, . . . , 2j ,

where ζ>
√

2 and 0 <η< 1
2 are constants. The final estimate of f is

f̂ n.t/=
2j0∑
k=0

α̂j0k φj0k.t/+
J∑

j=j0

2j−1∑
k=0

β̃jk ψjk.t/, where J = log2.n/:

Using a concentration inequality for Gaussian random variables it can be shown that this levelwise penal-
ized least squares scheme has the optimal risk bound over a wide range of Besov function classes, when
measured in squared error loss. The details can be found in Johnstone and Paul (2004).

The following contributions were received in writing after the meeting.

Felix Abramovich (Tel Aviv University)
I congratulate Johnstone and his colleagues on their interesting paper. As they point out, the resulting
estimator (17) essentially can be viewed as the wavelet–vaguelette decomposition (WVD) estimator for the
deconvolution problem. The implementation is indeed different since the vaguelette coefficients β̂k are not
constructed explicitly but are evaluated instead in the Fourier domain. A natural alternative to the WVD
is the vaguelette–wavelet decomposition (VWD) (Abramovich and Silverman, 1998). Whereas the WVD
is based on the wavelet expansion of the unknown f that implies the corresponding vaguelette expansion
of the observed data, in the VWD the latter is expanded explicitly in wavelet series.

TheVWDestimator for thedeconvolutionproblemcanbedescribedbrieflyas follows.Considermodel (1)
of the paper discussed:

Yn.dt/=f Å g.t/ dt +σn−1=2 W.dt/, t ∈T = [0, 1]:

Let Kg be the convolution operator with the kernel g, h=Kgf =f Å g. Following the VWD approach we
expand h (instead of f in the WVD) in the periodized Meyer wavelet series:

h= ∑
k∈I0

αkΦk + ∑
k∈I1

βkΨk,

where αk = 〈h, Φk〉 and βk = 〈h, Ψk〉. Although for convenience I keep the same notation αk and βk for
the scaling and wavelet coefficients as in the paper, the coefficients now are obviously different. The same
will be true for the vaguelettes that are introduced below. Let Vk = K−1Φk and Uk = K−1

g Ψk. Similarly to
the authors’ arguments one can show that ||Vk||2 � 22j0ν and ||Uk||2 � τ 2

j � 22jν . For smooth convolution
kernels it can be verified that the system of normalized functions vk =2−j0νVk, k∈I0, and uk =2−jνUk, k∈I1,
has vaguelette properties and generates a Riesz basis. The function f is then recovered by expanding in
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vaguelette series as

f = ∑
k∈I0

2j0ναkvk + ∑
k∈I1

2jνβkuk = ∑
k∈I0

αkVk + ∑
k∈I1

βkUk:

The functions Uk =K−1
g Φk and Vk =K−1

g Ψk can be evaluated in the Fourier domain where obviously Uk
l =

Φk
l =gl, V k

l =Ψk
l =gl and, similarly to equation (47),

Ψk
l =2−j=2 ψ̂.2−j ×2πl/ exp.−2πilk ×2−j/:

Given noisy data, the observed y is expanded in wavelet series with coefficients α̂k =αk +σn−1=2zk and
β̂k =βk +σn−1=2zk. Estimation of αk and βk from α̂k and β̂k is done by a standard wavelet thresholding
procedure (e.g. hard thresholding) with a properly chosen threshold λ and yields the VWD estimator f̂ of
the form

f̂ = ∑
k∈I0

α̂k1{|α̂k |�λ}Vk + ∑
k∈I1

β̂k1{|β̂k |�λ}Uk:

Following the arguments of Abramovich and Silverman (1998) and the paper, the optimal threshold should
be λ= σ̂

√{2.2ν+1/ log.n/=n}.
The VWD estimator is essentially a plug-in estimator, where we first find a wavelet-based estimator of

Kgf and then apply the inverse operator K−1
g to estimate f itself. In fact, using the previous remarks, f̂

can be simply derived in the Fourier domain via its Fourier coefficients f̂ l:

f̂ l = .1=gl/
∑
k∈I0

α̂k1{|α̂k |�λ}Φk
l + .1=gl/

∑
k∈I1

β̂k1{|β̂k |�λ}Ψk
l :

I believe that similarly to homogeneous operators it can be shown that both WVD and VWD estimators
achieve the minimax convergence rates over the Besov classes that are considered in the paper. Never-
theless, it would be definitely interesting to understand when the VWD or the WVD estimator would be
preferred in finite sample problems.

Robert G. Aykroyd, Robert M. West and Sha Meng (University of Leeds)
A major source of challenging inverse problems is tomography. Recently we have been working on electri-
cal tomography in collaboration with members of the Virtual Centre for Industrial Process Tomography
(http://www.vcipt.org.uk). Although the use of Bayesian modelling is now widely accepted in the
statistical community there is substantial resistance among engineers working on inverse problems. So
there is a great need for statisticians, in close collaboration with engineers, to develop simple, yet realistic
and convincing, examples to highlight the flexibility of modern statistical approaches. Below we describe the
mixing of liquids in a tank (West et al., 2003) with another example, movement of heart and lungs, appear-
ing in West et al. (2004).

In electrical tomography, electrodes are attached to the boundary of an object and, while currents are
applied, voltages are recorded. In contrast with many imaging applications the relationship between data
and parameters is non-linear. This means that the calculation of voltages from a specified conductivity
distribution, the forward problem, is numerically demanding. When coupled with Markov chain Monte
Carlo methods computational efficiency is a key issue, and this may influence parameterization and mod-
elling as well as the design of the algorithm. To deliver a practical solution of conductivity from voltages,
the inverse problem, it is necessary to make considerable use of prior information. Although a pixel-based
formulation provides a generic approach, it is not always the most useful. In particular, knowledge-based
formulations allow parameter reduction and direct estimation of key quantities without the need for
ad hoc post-processing.

A laboratory experiment was performed to investigate the mixing of liquids. At different stages prior
knowledge regarding the spatial and temporal smoothness changes. During the first few frames the tank
contained a homogeneous solution (tap-water) and the conductivity should be spatially and temporally
very smooth. In the second stage a high conductivity saline solution was injected into the tank. In the spa-
tial distribution we expect a conductivity discontinuity at the interface, with high smoothness elsewhere.
As the saline injection begins to disperse there is moderate temporal and increasing spatial smoothness.
As the process evolves the state is expected to change slowly and smoothly, which is modelled by using
temporal priors. This example well illustrates the use of relevant prior information. In circumstances where
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mixing is believed to be poor, such as the initialization of mixing, less reliance can be made on spatially
smoothing priors. As mixing progresses the balance between spatial and temporal components is shifted.

Cristina Butucea (Université Paris X )
My comment on the paper by Johnstone and his colleagues addresses some developments related to de-
convolution problems in a periodic setting. Their approach via wavelets is sparing in the case of the boxcar
blurring operator ga.x/ = k.x=a/, where k is the uniform density over [−1,1]. Indeed, a deconvolution
kernel Kh is strongly related to the boxcar blurring function ga, via their Fourier transforms KÅ

h and gÅ,
by the expression KÅ

h .u/=k.u/=gÅ.u=h/, where h>0 is a tuning bandwidth. A strong condition for kernel
deconvolution is that gÅ �=0, whereas this is obviously not the case here.

Thus, wavelet deconvolution allows an extension of other existing results to this setting. To gain some
rate order, we may ask only the question whether the underlying signal is some given function or, more
generally, whether it belongs to some parametric subfamily of smoothness classes considered. The alter-
native can be defined in this case in the L2-norm. The first step in the testing problem is to estimate the
L2-norm of a signal from noisy observations. Following the main lines of Butucea (2004), we consider for
example estimation of ||f ||22 .p=2/ via wavelet coefficients, in the dense case (condition (34)). We expect
a bias of order 2−4js and a variance of order c1=n+ 2j+4jνc2=n2, where ν= 3=2 for boxcar noise ga. Thus
we can attain parametric rates of convergence over sufficiently regular signals, i.e. s>ν+1=4 or s> 7=4.

Moreover, we can extend this easily to adaptive estimation of ||f ||22, with quadratic rate

{√
log.n/=n}8s={4.s+ν/+1}:

Turning to testing in the L2-norm we expect that it is possible to establish intermediate results as in
Butucea and Tribouley (2003) and Butucea (2004) and attain the minimax rate of testing from noisy data
of n−4s={4.s+ν/+1}. Moreover, the techniques in this paper allow generalization to a smoothness-adaptive
procedure with noisy data attaining the rate

.
√

[log{log.n/}]=n/4s={4.s+ν/+1},

where the loss
√

log{log.n/} is known to be unavoidable.
My question to the authors concerns estimation of general Lp-norms over Besov classes Bs

π,r.T/ com-
pared with the direct observation scheme.

Laurent Cavalier (Université Aix-Marseille 1, Marseille)
The paper by Johnstone and his colleagues contains many interesting results and comments, e.g. the use
of maxisets for inverse problems. However, I shall only discuss the specific case of boxcar deconvolution,
which is a difficult model.

It appears that, owing to the term sin.πla/ which appears in its Fourier series, some Fourier coefficients
of the boxcar g can be 0. In this case, clearly, the corresponding coefficients of f cannot be recovered. To
avoid this problem, ‘badly approximable’ irrational a are considered. This notion is of great mathematical
interest, but from a statistical point of view the difference between a rational and an irrational number is
perhaps less clear.

My next remark is linked to this irrational–rational phenomenon. In the paper, as very often in the
inverse problems framework, the filter g is supposed to be known. However, it is clear that the filter can
never be known, at least completely. There are references (see Efromovich and Koltchinskii (2001) and
Cavalier and Hengartner (2003)) showing how to deal with such a problem. If we can suppose that the
operator is observed with some noise, e.g. by using a training data set, then there is no real price to pay
for the incomplete knowledge of the operator. Nevertheless, in this framework, the problem is perhaps
different. Indeed, if we have a noisy boxcar, then is the difference between rational and irrational still fine
to use? Otherwise, this would be a problem, which would mean that the framework is not very robust. The
irrational–rational number set-up would then be less convenient in a statistical framework.

There is another approach to the problem without badly approximable numbers, which is to deal with
it by changing the goal. Instead of trying to recover the whole function f , another idea is to reconstruct
only the part of f which is not in the kernel of the operator, i.e. not the frequencies corresponding to
null eigenvalues. This is a usual method in inverse problems, and it is linked to the notion of the Moore–
Penrose (generalized) inverse (see Groetsh (1977)). In this case, it seems possible to obtain results, even if
the problem is written differently.
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Noel Cressie (Ohio State University, Columbus)
Haario and his colleagues start with an authoritative account of current numerical analytic methods for
solving a high dimensional inverse problem for the ‘Global ozone monitoring of occultation of stars’ instru-
ment on board the satellite Envisat. They go on to propose a statistical approach to the same problem
based on Markov chain Monte Carlo (MCMC) sampling and an adaptive algorithm for the Metrop-
olis–Hastings step in the MCMC algorithm. For their approach to work on massive data sets, certain
assumptions appear to be crucial. Everything is Gaussian, everything is independent at each wavelength
and height, and cross-sections do not depend on altitude. The first and second assumptions are probably
not true for real data; for example, if the Gaussian distribution is actually an approximation to a Poisson
distribution, should not the Gaussian variance be a function of the mean? The third assumption is a
separability assumption that allows the problem to be split up into spectral inversion and vertical inver-
sion. Without this assumption, the massiveness of the data overwhelms the MCMC algorithm. The paper
assesses the methodology from simulated data, which I assume were simulated according to these three
assumptions. How robust is the methodology when real data are involved? The answer to this question
could be determined by simulating from a model that drops one or more of the three basic assumptions
in favour of the physics underlying the instrument. The authors could then analyse these simulated data
by using their methodology and compare their results with the truth. This would be a more convincing
assessment of their inversion method.

Manuel Davy (UMR, Nantes)
I would like to congratulate Dr Wolfe, Dr Godsill and Mr Ng for their paper, which addresses a major
issue in time–frequency analysis. There are indeed many possible applications of this work. Firstly, Gabor-
style analysis is indeed especially efficient for an analysis of music, and the results that are presented in
this paper are quite encouraging. In my own work, which is mainly aimed at the estimation of pitch, the
frequency location of Gabor atoms is adjusted to the music signal that is analysed whereas in this work it is
predetermined by the lattice settings. It is possible to position Gabor atoms on a very fine frequency grid,
but, from the Heisenberg–Gabor inequality, this implies a weak time resolution. How is this issue dealt
with in the current approach? Is it adapted to the estimation of pitch? Secondly, I find this approach quite
useful when seeking time–frequency components for, for example, signal classification. Many references
address this issue; however, this approach is one of the most convincing, together with that of Crouse
et al. (1998) and that of Huang et al. (1998). There are many possible ways to define a ‘time–frequency
component’, and this approach is especially powerful in that a given prior distribution over the indicator
variables γk leads to a different characterization of time–frequency components. In particular, the Markov
random-field prior implements a convincing mix between image processing techniques and time–frequency
representations. Finally, I would like to underline the excellent adequacy of the selected Markov chain
Monte Carlo sampling scheme with the posterior to be sampled from. Block sampling is clever, and my
own results in Bayesian harmonic analysis confirm that it indeed enables rapid exploration of space.

Daniela De Canditiis (Istituto per le Applicazioni del Calcolo “M. Picone”, Rome) and Marianna Pensky
(University of Central Florida, Orlando)
First, we congratulate Johnstone, Kerkyacharian, Picard and Raimondo on the development of a truly
non-linear fully adaptive deconvolution algorithm which delivers better precision than deconvolutions
by Fourier or wavelet regularizations. The remarkable feature of the method is that it also works with
kernels whose Fourier transforms vanish on the real line, e.g. the boxcar kernels which have the degree of
ill-posedness ν= 3

2 . The method is based on the fact that Fourier coefficients of the boxcar kernel do not
vanish at frequencies πka when a is a badly approximated number.

The performance of the method can be further and significantly improved by the so-called multichannel
convolution system approach which was pioneered by Casey and Walnut (1994) and adapted for statistical
use by Pensky and Zayed (2002). We assume that the signal is convolved with functions gi.t/, i = 1, 2,
separately yielding two convolutions each of length n

Yni.dt/=f Å gi.t/ dt +σn−1=2 Wi.dt/, t ∈T = [0, 1], i=1, 2:

The problem of solving the system for f is well posed if the Fourier transforms ĝi.ω/ are entire functions
on the complex ω-plane and

√{|ĝ1.ω/|2 +|ĝ2.ω/|2}�a exp{−2πb|Im.ω/|}.1+|ω|/−N

for some a, b> 0 and N �1. Then, there are entire functions ν̂i.ω/, i=1, 2, such that
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ĝ1.ω/ ν̂1.ω/+ ĝ2.ω/ ν̂2.ω/=1:

Hence,

.g1 Åν1/.t/+ .g2 Åν2/.t/= δ.t/,

where δ.t/ is the delta function. It follows that

f = .f Å δ/=f Å{.g1 Åν1/+ .g2 Åν2/}= .f Å g1/Åν1 + .f Å g2/Åν2: .4/

Finding the deconvolvers νi explicitly is a very difficult problem, yet, as a first approximation for ν̂i, we
can take the functions

ν̂i.ω/=
¯̂gi.ω/

|ĝ1.ω/|2 +|ĝ2.ω/|2 :

To apply this technique in the set-up and notation of Johnstone and his colleagues let gli =〈gi, el〉, yli =
〈Yni, el〉 and

νli = ḡli

|gl1|2 +|gl2|2 , i=1, 2:

Using equation (4) we estimate wavelet coefficients βk by

β̂k =∑
l

.yl1νl1 +yl2νl2/Ψ̄k
l =∑

l

yl1ḡl1 +yl2ḡl2

|gl1|2 +|gl2|2 Ψ̄k
l :

This technique is especially advantageous when

gi.t/= 1
2ai

I.|t|<ai/, i=1, 2,

are two boxcar functions with a1 and a2 being relatively prime badly approximated numbers.
Figs 3 and 4 show reconstructions based on one or two convolutions with boxcar functions. Although

the number of observations is doubled in the case of one convolution, Figs 3 and 4 demonstrate a signifi-
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Fig. 3. Reconstruction of the Doppler signal based on one convolution (a D1=
p

37and nD256) and two con-
volutions .a1 D1=

p
37 and a2 D1=

p
23 and nD128/: in both cases the signal-to-noise ratio is 1; the wavelet

that is used is the periodized Meyer 3 wavelet ( , true; – – –, two channel; ı, one channel)
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Fig. 4. Reconstruction of the ‘Spikes’ function based on one convolution (a D1=
p

37 and nD256) and
two convolutions .a1 D1=

p
37, a2 D1=

p
23 and nD128/: in both cases the signal-to-noise ratio is 1; the

wavelet that is used is the periodized Meyer 3 wavelet ( , true; – – –, two channel; ı, one channel)

cant improvement over the performance of the multichannel technique. The one-channel reconstructions
differ significantly from the true functions, whereas the two-channel reconstructions almost coincide with
them.

Yu. Golubev (Université Aix-Marseille 1, Marseille)
The paper by Johnstone and his colleagues is a nice paper, which I enjoyed reading. It contains interesting
new theoretical and practical results for solving inverse problems by a wavelet method. The goal of this
short contribution is to draw attention to two statistical aspects of wavelet deconvolution that are related
to large blur. To simplify some technical details, I shall consider an equivalent model of noisy blurred data
in which we want to recover an unknown function f based on the noisy data

Zn.t/=f.t/+ ζn.t/,

where ζn.t/ is coloured stationary Gaussian noise with spectral density

λ.ω/= σ2

η G2.ω/
, G.ω/=

∫
exp.2πiωt/ g.t/ dt:

Wavelet basis
When a statistician decides to use wavelets, he has in mind that functional singularities like jumps or spikes
may exist and they provide essential information about the function of interest. Therefore a good method
of recovering a signal should preserve such singularities. In some sense this contradicts the fact that in
deconvolution problems the spectral density λ.ω/ may tend to ∞ very fast. It means that the noise at high
resolution levels may be very large, and these levels cannot be used to recover f. It seems that this desperate
situation could be slightly improved by the proper choice of a wavelet basis that meets two contradictory
requirements:
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(a) provide a reasonable representation of irregular functions by using a small number of decomposi-
tion levels;

(b) provide relatively small variances of the empirical wavelet coefficients.

The Meyer basis meets the second requirement perfectly since his scaling and wavelet functions are band
limited. Undoubtedly this basis works well in situations when we want to recover smooth functions or
when the blur is small. However, its properties in the time domain prevent good recovery of singularities.
So at a glance we need a compromise solution depending on λ.ω/. For instance, a properly chosen basis
within the family of the Daubechies (1995) wavelets could do the work better in situations when the blur
is statistically essential.

Shrinkage method
The fact that in wavelet deconvolution only a relatively small number of decomposition levels can be used
requires more sophisticated methods of thresholding. The method of conservative thresholding that is
used in the paper has evident advantages simplifying some computations. However, it leads evidently to
oversmoothing which hides functional singularities. This effect is related to recovering sparse vectors when
the number of non-negligible wavelet coefficients is not small. It seems to me that in this situation a good
adaptive algorithm for choosing the threshold (see for instance Abramovich et al. (2000)) could improve
the performance of the wavelet deconvolution.

Ross N. Hoffman (Atmospheric and Environmental Research, Lexington)
Extracting useful information from satellite scatterometer data is an important and intriguing problem.
Although the direct use of the backscatter observations (usually denoted σ0) in a global numerical weather
prediction data assimilation system has been demonstrated by Thépaut et al. (1993), most practical uses
of scatterometer data use a two-step procedure. In the first step, σ0-data are used to retrieve multiple wind
solutions (called ambiguities) at each cell. In the second step, spatial consistency and/or prior information
are used to resolve the ambiguity by using methods that range from ad hoc median filters (Schultz, 1990;
Shaffer et al., 1991) to methods based on thin plate splines (Hoffman, 1984) or Karhunen–Loève models
of the wind field (Draper and Long, 2002) to Bayesian-based variational methods in two (de Vries and
Stoffelen, 2000) to four dimensions (Leidner et al., 2003). In addition to computational efficiency, the
two-step procedure allows limiting consideration in the second step to only the two leading (most likely)
ambiguities. This limitation is important in practice since otherwise solutions corresponding to the third
or fourth ambiguity are obtained too often. This occurs when an inaccurate background (i.e. an inaccurate
prior from a previous forecast) is not close to either of the two leading ambiguities. In a recent extension of
the method of Hoffman (1984), Hoffman et al. (2003) included the information from the third and fourth
ambiguity in a second pass through the data. The results from the first pass provide an initial estimate for
the second pass (however, the background is unchanged) and either ambiguous winds or σ0-data are used.
Henderson et al. (2003) have applied this new method to the nine months of data from the Nasa scatter-
ometer mission.

Eliot Khabie-Zeitoune (Computer Contract Consultants, London)
I congratulate Haario and his colleagues for tackling high dimensionality. The simplifying assumption
of a lack of correlation at wavelength and height may be argued, for reasons including scintillation and
diffraction; see Robinson (1967) for a geophysical analogy.

Repetitive calculation of the likelihood of the line density vectors requires inversion of covariance matri-
ces, with on-line recursive update. Should a more refined analysis use correlation, the question arises ‘Why
not update directly the inverse covariance matrix on line, as indicated below for instance?’.

Further, on-line calculation of the likelihood also involves two determinants. The first, that of the covari-
ance matrix, is dealt with in Khabie-Zeitoune (1982). The second, the Jacobian of the transformation from
line densities to transmissions, is derived from formula (3) of the paper under discussion.

An n-dimensional vector observation Yt of zero expectation arises at inhomogeneous time occurrence t
owing to a change in wavelength or line density.

K recent observations enter the computation of the sample covariance matrix St :

St =K−1 ∑
k∈{0,K−1}

Yt−kY
′
t−k,

where K is either K or K−1. Assuming that S−1
t has been computed, to update it for incoming Yt+1, various

rules are postulated.
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(a) Only K observations are used at timet t: K is K or K − 1. At t + 1, Yt+1 is added to, and Yt−K is
subtracted from, the sample,

St+1 =St +K−1Yt+1Y
′
t+1 −K−1Yt−KY ′

t−K:

(b) All observations are used at time t: let t be t or t −1. At t +1, Yt+1 is added to the sample,

St+1 = .1+1=t/St + .t +1/−1Yt+1Y
′
t+1:

Other rules are possible within the framework of adding an expression UV ′ to obtain S′ from S = St ,
U and V being vectors such as

S′ =S +UV ′:

A formula attributed to Sherman-Morrison, and a related formula to Woodbury (see Householder
(1964)), provides the inverse update:

S′−1 =S−1 − .1+US−1V ′/−1.S−1U/.S−1V/′:

Define

S̄t+1 =St +K−1Yt+1Y
′
t+1,

Z̄t+1 =S−1
t Yt+1,

Zt+1 = S̄
−1
t+1Yt+1:

Then we have the rule (a) inverse update

S̄
−1
t+1 =S−1

t − .K +Xt+1Z̄
′
t+1/

−1Z̄t+1Z̄
′
t+1,

S−1
t+1 = S̄

−1
t+1 + .K −Xt+1Z̄

′
t+1/

−1Z̄t+1Z̄
′
t+1

and the rule (b) inverse update

S−1
t+1 =S−1

t − .t=.t +1/+Zt+1Z̄
′
t+1/Z̄t+1Z̄

′
t+1:

The covariance matrix update for rule (a) and rule (b) requires 2.n2 + 2/ and n2 + 4 multiplications
respectively. The inverse update for rule (a) and rule (b) requires 2.n2 +n+ 3/ and n2 +n+ 4 multiplica-
tions respectively.

A. Munk (Göttingen University) and F. H. Ruymgaart (Texas Tech University, Lubbock)
The beautiful paper by Johnstone and his colleagues appears to contain all the ingredients for exciting
mathematics: an interesting practical example, an unexpected mathematical tool, a blend of statistics and
approximation theory, and an optimal solution. In this comment we shall focus on convolution with
the boxcar, but some remarks may remain true for other convolutions as well. Boxcar convolution has
some peculiarities (Donoho, 1995) and standard spectral cut-off inversion does not seem to yield optimal
convergence rates for the mean integrated squared error.

If the convolution is considered on the entire real line (i.e. in L2.R/), rather than on the circle (in L2.T/,
say), the Fourier transform of the kernel is essentially the sinc function with infinitely many equally spaced
0s and in addition a 0 at ∞. A similar situation arises in L2.T/, the case considered by the authors, in par-
ticular for rational end points. There is a remarkable difference, however, because in the latter case the set
of 0s has infinite counting measure (which is the reason that the input cannot be fully recovered), whereas
in the former the set of 0s has Lebesgue measure 0 (so that the convolution operator is still injective).
To understand which of all these 0s is the actual source of ill-posedness we may solve the simple boxcar
equation directly in the time domain. Under certain conditions on the input, the solution turns out to be
a sum of shifted derivatives of the output, where apparently the derivative (corresponding to the 0 at ∞)
causes the ill-posedness.

In fact, for many convolutions the inverses can be computed in the time domain (Zemanian (1987), chap-
ter 8). This raises the question whether application of the Fourier transform could be avoided altogether in
L2.T/ as it was in L2.R/ (Hall et al., 2001), even though identifiability might cause problems and require
restrictions on the input. More precisely, if K is the convolution operator and e1, e2, . . . any orthonormal
basis of sufficiently smooth functions, we have f =Σk〈f , ek〉ek =Σk〈K−1g, ek〉ek =Σk〈g, .K−1/Åek〉ek, where
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the unbounded .K−1/Å can be computed in the time domain and applied to the smooth basis elements. In
Hall et al. (2001) this procedure was carried out for a wavelet basis and smooth f . For smooth f , wavelets
are not needed, but the procedure would extend, for instance, to functions with discontinuities of the first
kind as in Hall et al. (2003) for the Abel equation.

S. C. Olhede (Imperial College London)
I thank Dr Wolfe and his co-authors for their very interesting contribution to time–frequency analysis.

Note that the plotting of time–frequency concentration has inherent thresholding if contours are used,
making the choice of contours important. The time–frequency plots of the signal and its noisy version are
represented in terms of their Gabor coefficients with an inherent magnitude, whereas the time–frequency
representation based on indicator estimates has no direct magnitude attached to it. Nor can numerical
comparisons be made between the signal’s noise-free representation and the indicator estimates based on
the noisy signal. I would also like to note that a Bayesian formulation of the denoising problem for images
and the posterior probability of inclusion have been treated by Malfait and Roose (1997), for wavelet-based
frames. Another point which perhaps merits further discussion is the inherent bandwidth of the analysis.
Certainly it is known that the bandwidth will have a large effect on the analysis.

On page 578 is a nice suggestion for improving the spectrogram by using ideas of sparse representations
and unsmoothing the blurring: followed by the actual time–frequency modelling, that should contain any
pre-set notions of time–frequency behaviour. Wolfe and his colleagues suggest

(a) a Bernoulli prior,
(b) a Markov chain prior in time and
(c) a Markov random-field prior

Suggestion (a) seems to need additional continuity constraints, (b) smears the time–frequency contours in
time, chopping up the curved structure in frequency, and (c) smears the pictures in all directions, rather
than unsmooths. These comments are borne out by the reconstructions in Fig. 3 of the paper. Perhaps
consideration could be taken of the fact that time and frequency operators do not commute, rather than
treating the concentration as a more arbitrary two-dimensional density, without limiting the range of
application.

Finally, with regard to the denoising, much theory has been developed in this area, based on time–
frequency ideas and frames (‘cycle spinning’). Some comparison in the discussion with standard method
performance with more information on when the method is expected to perform better would have aided
me. Brevity permitting, plots of signal reconstructions would also be of further interest.

I would also like to reiterate my thanks to the authors.

A. Tsybakov (Université Paris 6)
The paper by Johnstone and his colleagues contains many interesting and novel ideas from both theoretical
and applied points of view. Several theoretical aspects of the paper are innovative: the approach based
on combining Fourier and wavelet bases, simultaneous analysis of the behaviour of the estimators in all
Lp-norms with 1 < p <∞, the maxiset paradigm applied to deconvolution, etc. The results are based on
elegant techniques developed in appendix B. In particular, the Temlyakov property for wavelet bases is a
beautiful tool that presents independent interest. How can this be applied to more general inverse prob-
lems than deconvolution and how crucial is the periodicity constraint and the particular choice of mixed
Fourier–wavelet bases? My intuition is that an extension to other problems might be fruitful, whereas I am
not convinced that for the periodic setting the use of a dyadic wavelet structure is the best way to obtain
optimal estimators. A disadvantage is that dyadic blocks are well tailored for Besov spaces and not so
well adapted to other spaces, e.g. to Sobolev spaces. For the L2-setting of periodic deconvolution, another
approach consists in using smaller and more flexible blocks of logarithmic size or weakly geometrical
blocks and to threshold over blocks, since this leads not only to optimal rates but also to asymptotically
optimal constants (Cavalier and Tsybakov, 2001, 2002). Small blocks work well for both Besov and
Sobolev scales. The general Lp-setting is different because there is no hope of obtaining constants, but
giving more flexibility to blocks might be good.

A problem with the Lp-results .p �=2/ is a gap between theory and applications. The theoretical thresh-
olds depend on p for p > 2: thus they can be effectively applied only in the range 1 < p� 2. But this also
seems to be bad: the simulations advocate the ad hoc threshold constant η= √

2 which is considerably
smaller than the constant that is given by theory. In fact, the simulations are done for p = 2 in which
case smaller thresholds than in proposition 1 would work, so it remains unclear how we can benefit from
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general Lp-results. Another point is near optimality of the rates. To my knowledge, there are no lower
bounds showing that the rates of proposition 1 are optimal or near optimal: although the conjecture is
folkloric, it would be useful to prove it formally.

Grace Wahba (University of Wisconsin, Madison)
We thank Johnstone and his colleagues for some very interesting modern results in deconvolution theory
with wavelets.

There was in the late 1980s an argument going on about whether a predictive mean-square error crite-
rion such as generalized cross-validation for choosing the regularization parameter was good for minimiz-
ing the solution mean-square error, in smooth deconvolution problems solved by Tihonov regularization.

Wahba and Wang (1990) answered that question as ‘sometimes yes and sometimes no, depending on
conditions on four parameters: the rate of decay of the Fourier coefficients of the solution, of the convo-
lution kernel, of the coefficients in the penalty functional, and in the loss function’. Convergence rates are
also given (available via the ‘TRLIST/golden oldies’ link at http://www.stat.wisc.edu/∼wahba).

The authors replied later, in writing, as follows.

Iain M. Johnstone, Gérard Kerkyacharian, Dominique Picard and Marc Raimondo
We thank the discussants for their very interesting comments and suggestions. Since many issues raised in
the discussion are related, we shall address them by topic.

The periodic setting and Meyer wavelets
The WaveD estimator exploits the natural representation of the convolution operator in the Fourier domain
as well as the typical characterization of Besov classes in the wavelet domain. In practice, we may have
to deal with edge effects for non-periodic signals. As suggested in the discussion by E. Moulines, there
are practical methods (time or space domain preprocessing) to do so; see for example Aghdasi and Ward
(1996). An alternative approach would be to choose a compactly supported wavelet family whose Fourier
transforms vanish rapidly (e.g. Daubechies wavelets). This, of course, would introduce a bias in the WaveD
paradigm (22) but would allow us to relax the periodicity assumption. This approach further extends to
the discussion on bias–variance trade-off suggested by Golubev. However, in a recent study on translation
invariant deconvolution, Donoho and Raimondo (2004) show that the WaveD estimator (with band-
limited wavelets) outperformed the ForWaRD method (with compactly supported wavelets) over a wide
range of test functions (larger margins were observed for smooth signals). These numerical results suggest
that the bias that is introduced in the Fourier domain by using compactly supported wavelets may com-
promise the gain in signal representation in the time domain. Of course, further analysis should be made
to assess the ‘edge effect’ fully for non-periodic signals.

Refinements and extensions of the WaveD method
In real applications the convolution kernel g may not be known completely, which renders the estimation
of f even more delicate. This is the so-called blind deconvolution problem. In many practical situations,
however, the investigator has some prior knowledge about the convolution operator which may be inte-
grated in the model following a Bayesian method; see for example Hopgood and Rayner (1999). Recent
approaches to blind deconvolution include Efroimovich and Koltchinskii (2001) and Cavalier and Hen-
gartner (2003). It would be of great interest to derive a blind deconvolution (WaveD) algorithm adapting
some of the previously cited works. This project is currently under investigation by us. Another exciting
extension of the WaveD estimator is, of course, the development of a two-dimensional WaveD algorithm.
The two-dimensional setting is particularly important for the convolution operator since there are many
applications to digital image processing. For example, the boxcar kernel plays a central role in modelling
motion blur (Bertero and Boccacci, 1998). Given the good performance of WaveD in the one-dimensional
setting we expect some interesting results in two dimensions, even while bearing in mind some fundamental
limitations to wavelet representations of images (Candès and Donoho, 2004).

Finally, the WaveD estimator is relatively simple, being based on hard thresholding, with a deterministic
(as opposed to data-adaptive) choice of thresholds at each level. Although it enjoys good numerical prop-
erties, in particular when using the more recent translation invariant algorithm of Donoho and Raimondo
(2004), more sophisticated thresholding algorithms may improve the performance of the WaveD estimator.
This point emerges nicely from several discussion contributions. De Canditiis and Pensky consider a model
in which more data are available, through several convolutions, and obtain promising results by using a
multichannel approach (Pensky and Zayed, 2002).
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Numerical comparison of the WaveD method with the vaguelette–wavelet decomposition variant sug-
gested by Abramovich would be of interest—the distinction between choosing thresholds for Abramo-
wich’s ‘image domain’ coefficents of f Å g versus for our ‘object domain’ coefficients of f is reminiscent
of the issues in regularization parameter selection for spline-like estimators that are helpfully recalled by
Wahba. Our a priori expectation is that there is advantage to exploiting sparsity of representation, which
is usually more pronounced in the object domain.

Golubev proposes the use of more adaptive or data-dependent choices of thresholds, such as would be
suggested by the FDR principle. We are enthusiastic about such a possibility—the contribution of Paul is
in this spirit (though a little easier to treat theoretically) and leads to exactly optimal rates of convergence
in cases where the method of our paper has to give up logarithmic terms.

Other proposals with interesting possible implications for WaveD include the use of block thresholding
(Cavalier and Tsybakov, 2001, 2002) and complex-valued wavelet shrinkage (Barber and Nason, 2004).
Further investigation of properties and numerical performance of all these ideas are good topics for future
work.

Near optimality and other rate issues
As noted in section 3.3’s discussion of the connection with the wavelet–vaguelette decomposition, lower
bounds can be derived over Besov classes following the method of Donoho (1995) for convolution oper-
ators which satisfy condition (27) in the paper; this includes smooth convolutions but not the boxcar
kernel. To our knowledge, the only lower bounds that are available for this kernel are those in Johnstone
and Raimondo (2004) derived for ellipsoids and hyper-rectangles.

Many contributors (Cavalier, Moulines, Munk and Ruymgaart, Tsybakov, . . .) question our choice of
a wavelet basis instead of other orthonormal bases and especially the Fourier basis with its fundamental
property of diagonalizing the convolution operator. The advantage of wavelet bases lies in their ability to
yield a sparse representation of the unknown coefficients whether the function has isolated singularities
or is smooth. In more mathematical terms, wavelet bases fit well with Lp-norms, Besov constraints as well
as Sobolev spaces (except perhaps for the theoretically very challenging problem of constructing minimax
procedures up to constants as suggested by Tsybakov).

Obviously, as observed by Nason, this leads to the first difficulty that the estimated wavelet coefficients
are correlated. But, fortunately, because of the concentration of wavelet bases, this has relatively mild con-
sequences for the thresholding procedures. Thresholding of the (independent) Fourier coefficients before
inversion was suggested by several contributors. This natural idea may, however, introduce greater bias,
as the Fourier space representation of gÅf may not be well concentrated. The idea, however, seems more
successful if applied to blocks of coefficients, as in Cavalier and Tsybakov (2001, 2002).

We are glad to note Butucea’s suggestion that the method presented here could be exploited to con-
struct optimal smoothness adaptive procedures for testing in L2-norm in the deconvolution setting. As for
Butucea’s question about estimation of Lp-norms in this setting, although there may be some hints, we
have no complete solution. It is a very challenging question. We are also optimistic that our procedure
could perform quite well in the interesting framework suggested by Cavalier, and referring to the case
where the operator is known with noise (or observed in training data).

We agree with Tsybakov that simulations comparisons using L∞- and more general Lp-norms should
be performed. In this case, there is an obvious general ‘trend’ towards L2-comparisons. Since many pro-
cedures are theoretically constructed for L2-norms, researchers generally do perform their simulation by
using this norm. Hence, if we want to present a quite fair comparison, we need to obey the same rules.
However, it is definitely an advantage of our method to behave quite well practically with L2-comparisons,
in addition to having optimal theoretical properties for a variety of other norms.

Issues for boxcar blur
Some contributors are (perhaps understandably) puzzled that practical implications of the WaveD method
should or even could be affected by the irrationality properties of the boxcar width a. Part of the difficulty
arises because simple models are inevitably idealizations and may excessively sharpen distinctions—such as
whether a number is ‘badly approximable’ (BA)—that are blurred in real data settings. If we ‘recomplicate’
the model, such distinctions can disappear. Thus, for example, as mentioned in section 2.2, in the finite
sample implementation of the boxcar blur certain kernels with rational width are permitted. Examples
include boxcars whose width α are convergents α=pk=qk of a BA number a, where k is sufficiently large
that there are no 0s in the Fourier coefficients of g up to indices equalling the sample size. In addition
whether the (known) boxcar width is under the investigator’s control or simply determined by nature need
not in certain cases be an issue as detailed in the discussion section of Johnstone and Raimondo (2004).
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For statistical applications, an important issue is whether the WaveD estimator is robust against depar-
ture from the BA assumption. Although the set of BA numbers contains quadratic irrationals like

√
5, it

has Lebesgue measure 0. Following the arguments of section 2.2 the robustness problem for WaveD may
be stated as follows: how do ‘most’ numbers behave with respect to rational or irrational approximations?
The answer may be found in a theorem of Khinchin (1997) (chapter 2): for each δ> 0, there is a set Aδ

of full Lebesgue measure such that, for all a ∈ Aδ, qn+1 � qn log.n/1+δ. In words, for almost all numbers,
the geometric growth of the convergent denominators is only a log-term faster than for BA numbers.
In fact, for ellipsoid function classes, Johnstone and Raimondo (2004) have shown that, as long as log-
terms are ignored, for almost all numbers the boxcar blur has the same degree of ill-posedness, namely
3
2 . Adaptive performance of the WaveD estimator over Besov classes outside the BA case is studied in
Kerkyacharian et al. (2004), in which the maxiset approach of Kerkyacharian and Picard (2000) is used
to show that for almost all numbers the WaveD estimator achieves near optimal rates (with a degree of
ill-posedness of 3

2 ) on slightly different Besov scales than that presented in the paper.
Cavalier and Munk and Ruymgaart observe that, if we change the observation model, it is possible

and perhaps desirable to deal with boxcar convolution without the introduction of BA numbers. For
example, if in the density model f has compact support, Hall et al. (2001) have given a reconstruction
formula in the time domain which does not impose any condition on the scale of the boxcar. The com-
pact support assumption is key: identifiability issues would emerge in extending this approach to f with
non-compact support or to the periodic setting. Further, it is not yet clear whether such an approach
extends to adaptive estimators though this would be an interesting problem to investigate. In contrast,
our number theoretical approach to the boxcar blur yields a fast adaptive algorithm and extends the
wavelet–vaguelette decomposition paradigm of Donoho (1995), at least for boxcar blur with BA-like
scale.

Patrick J. Wolfe, Simon J. Godsill and Wee-Jing Ng
We thank the discussants for raising several pertinent points regarding our contribution. Some we had
considered initially but sacrificed for brevity; all we feel point towards exciting future directions for this
line of study. Our intention was to strike a balance between introducing general methodology with the
potential for widespread application in the context of overcomplete representations and outlining a specific
example of how one might exploit prior knowledge in the time–frequency domain to formulate generative
statistical models for audio time series.

Regarding the former of these aims, we note that the choice of (frame) representation that is employed
will necessarily depend on the class of signals under study. Hence it would not be prudent to recommend
the use of Gabor frames per se for all applications, but rather only for those which are well characterized
by the idea of underspread operators as described in the paper. Our intention was to provide a principled
statistical approach to choosing from among an overcomplete ‘dictionary’ of frame elements, be it for
the task of signal enhancement, compression or modification. The design of such a dictionary is itself a
separate issue; different frames will cover the time–frequency plane in different manners and with varying
amounts of overlap.

With regard to our latter aim, we have also attempted to open novel avenues for audio signal processing,
as Gabor analysis provides appropriate methodology for investigating (relatively) slowly time-varying phe-
nomena such as speech and music. In fact, it is common engineering practice to implement an overlap–add
method of Gabor analysis (corresponding to a diagonalized frame operator) in which the phase factors
resulting from the non-commutativity of the translation and modulation operators are ‘absorbed’ into the
phase of the Gabor coefficients (Dörfler, 2001). The resultant mathematical structure enables an efficient
generation of the Gabor system and makes the implementation of Markov chain Monte Carlo methods
feasible in cases where the data rate often exceeds 10000 samples per second. Although computational
efficiency remains an issue, we believe that such work may readily lead to faster suboptimal algorithms
based on a combination of stochastic and deterministic methods.

Prior dependence in the time–frequency plane
A vital component of our modelling strategy is the prior structure on the Gabor regression coefficients
{ck}. In the models that we consider, these coefficients are modelled as conditionally mutually indepen-
dent, zero-mean, complex Gaussian random variables. Such a structure allows for heavy-tailed behaviour
of the coefficient process through the introduction of associated unknown and varying variance parame-
ters {σ2

ck
}. This type of heavy-tailed model is considered highly desirable for capturing the characteristics

of many naturally occurring processes, including the audio examples that we describe. The priors that are
evaluated here model sparseness directly by allowing non-zero probability mass at zero, expressed in a
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standard way through the use of indicator variables {γk}. Prior dependence is then introduced between
neighbouring indicator variables via Markov random-field models.

This choice of priors provides a potentially powerful approach, as it directly encapsulates the idea that
non-zero coefficients tend to cluster in certain regions of the time–frequency plane, often surrounded by
regions of ‘inactivity’ where there is little or no energy. Such a property has been observed in many naturally
occurring signals, including audio time series and images. Here we have introduced a flexible and general
means of modelling this property, using either Markov-in-time, Markov-in-frequency or Markov-in-time–
frequency models. In the case of audio and speech data, time dependence is expected during stationary
‘pitched’ sounds such as musical notes or spoken vowels, whereas dependence in frequency is expected
at note onsets (‘attacks’), consonants or fricatives. In this paper we have explored only a few possibilities
from this very general class of priors; no doubt some combination of all three types of dependence would
provide the most realistic model.

In terms of the signal extraction performance for audio noise reduction or coding purposes, these priors
have been observed to reduce the so-called ‘musical noise’ artefacts that are often associated with the
suppression of noise. Such artefacts can arise through erroneous fitting of time–frequency components to
noise; by favouring connected regions of non-zero coefficients, it becomes much less probable that an iso-
lated peak in the noise spectrum will mistakenly be modelled as a signal component. As with more heuristic
noise suppression schemes, a trade-off between oversmoothing of the extracted signal and the production
of musical noise artefacts is observed (Wolfe and Godsill, 2003). One may think of our approach as pro-
viding a very sensitive and accurate segmentation of the time–frequency space into ‘active’ and ‘inactive’
regions—a task which is itself of interest in speech and audio processing.

Evolution of time–frequency coefficients
The discussants have rightly commented that our prior structures do not directly model the dependence
of scale that is expected within ‘active’ regions of the time–frequency plane (i.e. those regions containing
non-zero coefficients); nor do they directly model the amplitude dependence of the coefficients themselves.
Such dependences undoubtedly exist; however, for general signal modelling applications it may be difficult
to specify how these priors should operate. We regard the procedures that are reported here as a ‘base-line’
prior that captures a salient feature of many data sets, without being overly specific to a particular appli-
cation. For the case of audio signals—or in other specific applications—it may be possible to construct
more effective prior structures that directly model dependences of the variance components {σ2

ck
}, or even

of the coefficient values themselves.
Indeed, in earlier work (Ng, 2000) we have experimented with a second layer of Markov random-

field modelling, this time applied to the continuous-valued variance parameters {σ2
ck

}. The results of this
approach are promising but require further development before publication. Clearly the specification of
the structure and parameters of such a prior becomes a much more complex issue than in the relatively
simple case of the indicator variable field. The potential benefits of such an approach would be further
reduction in musical noise artefacts for audio, and greater signal fidelity in reconstructions.

Structure of time–frequency atoms
Another important point that is raised by the discussants is the use of more structured time–frequency
‘building-blocks’ for the specific case of sound signal modelling. Many speech and music waveforms
are ‘quasi-periodic’ over a short timescale, having (approximately) regularly spaced harmonic compo-
nents at integer multiples of a fundamental frequency. In this case, why not construct time–frequency
atoms that model this effect directly? Such ideas could certainly be adopted to improve the model-
ling capabilities of our generic approach, with a necessary loss of generality in the modelling. This
idea has in fact been extensively explored within the field of polyphonic musical pitch modelling (see,
for example, Davy and Godsill (2003) and references therein); similar methods may also be applied to
speech.

The approach that was taken by Davy and Godsill (2003) is to model musical notes as atoms with
an unknown number of harmonics at fixed multiples of unknown fundamental frequencies, in contrast
with the less computationally intensive approach that was described here in which a fixed sampling of
the time–frequency plane is adopted. Bayesian hierarchical models and associated variable dimension
Markov chain Monte Carlo methods are developed for the estimation of the highly complex models that
arise in this setting; these approaches can be compared with the projection-based methods of Gribonval
and Bacry (2003). However, as the more restrictive models of Davy and Godsill (2003) are aimed at extract-
ing high level features such as the pitch and timbre of musical notes, their noise reduction performance
is not of quality comparable with that described in our contribution. Nevertheless, they certainly reinforce
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the discussants’ (and our own) view that harmonic time–frequency components hold further potential for
improvement in audio signal processing applications.

H. Haario, M. Laine, M. Lehtinen, E. Saksman and J. Tamminen
We thank all the discussants for their contributions and valuable remarks on the topic.

The paper discusses the inversion of satellite measurements, but the emphasis is more on the method-
ological side. The validation of the assumptions and approximations that are employed against emerging
real data is subject to on-going research. Robert found the prior input to be vague. The lack of more detailed
prior input should be seen against the background that such geophysicl information simply does not exist
at this point. Actually, the ‘Global ozone monitoring of occultation of stars’ (GOMOS) instrument is
among the first instruments to yield global measurements of the atmospheric gas profiles that strongly
depend on time and location. We do, indeed, present an altitude-dependent way for regularization (see
expression (12)).

Cressie questions the validity of the independent Gaussian approximation for the measurement noise.
This topic is at least partially dealt with in section 2.2 of our paper. The variance depends on the wavelength
and the line of sight, and indeed takes into account the Poisson-type character of the measurements. A
repetitive inversion of the noise covariance matrix would be needed if the noise structure is to be estimated
together with the model parameters. In that case formulae like those presented by Khabie-Zeitoune should
be employed. Here the noise is supposed to be known, as it can be estimated on line for each star from the
data. So no repetitive inversion of the covariance matrix is done.

Contrary to what Cressie suspects, the Markov chain Monte Carlo (MCMC) runs also can be per-
formed without the separability assumptions; they only are required by the fast parallel MCMC runs. In
fact, this is what we demonstrate with the SCAM algorithm for the ‘one-step’ version of the inversion.
It is true that the examples in the paper were done with simulated data. But the methods described have
already been successfully applied with real data to the GOMOS spectral inversion. As might be expected,
certain non-idealities have turned up, and the more general one-step inversion is a potential approach for
more detailed off-line processing. The first results for validation with real data will be described elsewhere
(Tamminen, 2004).

The use (or non-use) of convergence criteria is questioned by Robert. Here we only tested the high
dimensional SCAM runs by comparisons with the results from the parallel runs, thoroughly validated in
earlier studies. They did, indeed, virtually coincide. Naturally one could employ several other convergence
criteria.

Robert also raises the question about the practical relevance of theoretical ergodicity results. Obviously
we should use methods that are known to produce correct results. This entails two things: firstly, we
should know theoretically that the method converges. Equally important are exhaustive tests to measure
the robustness of the method and the practical implementations. What comes from the examples of Robert
is that it appears to us that his Fig. 2 tells more about the well-known sensitivity of the independence sam-
pler on the proposal distribution than about adaptivity (note that this example corresponds to an adaptive
independence sampler, not to the AM algorithm). Even a fairly reasonable non-adaptive, theoretically
correct independence sampler can yield results that are comparable with those in Fig. 2. One should keep
in mind that theoretically correct but ill-tuned algorithms may yield incorrect runs, for both adaptive and
non-adaptive MCMC sampling. As for the example in Robert’s Fig. 1, it also demonstrates the robustness
of the AM algorithm with respect to the parameter ".

Both Robert and Andrieu ask why we used just the AM algorithm or its variant, the SCAM algorithm,
and why not adapt in a more refined or complicated manner? A partial answer is simple: the algorithms
that we used were quite satisfactory for our needs here.

However, there is nothing to prevent us from using other schemes. We refer to the interesting work of
Andrieu and Robert (2001) that generalizes the non-Markovian adaptation that is introduced in Haario
et al. (2001) to a general framework which allows adaptation of various selected parameters. We also men-
tion Haario et al. (2003), where we apply mixtures of transition probabilities by combining the delayed
rejection and AM algorithms. However, intricate adaptation schemes often are less automatic in practical
implementation and may possibly slow down the convergence. Andrieu presents the important obser-
vation that it is possible to estimate the effect of adaptation on the convergence. Especially, in the AM
algorithm, the error that is caused by adaptation theoretically decays quicker than the unavoidable Monte
Carlo fluctuations (see Andrieu and Moulines (2002)).

Finally, we comment on the SCAM algorithm and, more generally, on high dimensional MCMC meth-
ods. We first note that SCAM provides no miracles as it works no better than a well-tuned single-compo-
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nent Metropolis algorithm in the corresponding situation. In many cases, the difference in the performance
between the SCAM and AM algorithms is not so large, taking into account the total number of target
function evaluations that are needed. The advantages that are provided by the SCAM algorithm seem
to stem from the simplicity of the adaptation scheme. The adaptation of the one-dimensional variances
is also computationally cheap if compared with sampling from high dimensional Gaussian proposals as
is done in the AM algorithm. Here the co-ordinates were systematically scanned. Our experience so far
indicates that the more complicated covariance update of the AM algorithm may increase the side-effects
of adaptation in high dimensions. This needs more testing, however. In general, our opinion is that the
overall knowledge of performance of MCMC sampling in high dimensions, whether adaptive or not, is
rather limited at the moment. Since many applications, various inverse problems as typical examples, lead
to high dimensional problems, we feel that real understanding of high dimensions poses an interesting
challenge to computational statistics.

Dan Cornford, Lehel Csató, David J. Evans and Manfred Opper
We start with an expression of thanks to the organizers and the proposer and seconder of the paper, who
have done an excellent job on what is rather a difficult paper to read. Before answering the individual
points we would like to reiterate the aim of our work: to provide a principled, yet operationally feasible,
probabilistic method to solve the inverse problem of scatterometer wind retrieval. We note that almost all
previous work on the scatterometer inverse problem, such as cited by Ad Stoffelen and Ross Hoffman,
are either ad hoc or seek a maximum-likelihood-like solution, the exception that we are aware of being
Royle et al. (1998) which constructs a hierarchical Bayesian model for wind fields but does not treat the
inverse problem itself. Our aim is not to compare the Markov chain Monte Carlo (MCMC) approach with
our variational approximation, but rather to contrast the applicability of the two methods and to work
towards an operational, statistically rigorous retrieval. The effect of our work on practical scatterometry
will only be apparent once data assimilation methods become truly probabilistic, and seek to estimate the
distribution of the state of the atmosphere, not just the most probable value.

Christian Robert makes the observation that, for the mixture models that we employ, the posterior can
be computed analytically—this is true, but there is an exponential growth in complexity as the number of
observations increases, making this impractical beyond around 50 observations. We were a little surprised
by the comment about the absence of prior information; our priors, both the ‘climatological’ zero-mean
prior and the numerical weather-prediction-derived ‘dynamical’ prior, use a considerable amount of histori-
cal data and meteorological expertise to define them. Their role is important in the retrieval: the imposition
of an approximately non-divergent flow, with energy at certain scales, provides extra information to the
posterior distribution. This is particularly true when applying the dynamical prior (we refer to this as
‘data assimilation’ in the paper) where the (non-zero) mean in the prior imparts a different, approximately
unimodal, structure to the posterior distribution. Referring to section 4.1 we agree that population Monte
Carlo methods (Cappé et al., 2004) look very promising for this problem and intend to follow up this
useful suggestion. Although the ‘global’ variational approximation to the posterior in section 4.2 does
indeed provide only the first two moments, we would like to stress that ‘local’ marginal posteriors can be
computed with non-trivial (e.g. multimodal) structure using our framework. We agree that the assessment
of the quality of the approximation could have been more thorough: it is on our to-do list. As for conver-
gence, although we cannot guarantee convergence we can prove the existence of a cost function with local
minima agreeing with the fixed points of the learning dynamics (Csató et al., 2002).

Christophe Andrieu starts with a very clear analysis of the issues (both with the paper and our inverse
problem). We note that the scatterometer observation is composed of several repeated measurements of
the back-scattered signal, which are averaged for the observation, and used to compute an estimate of
the variance (signal-to-noise ratio). We do indeed treat these as fixed, since we believe that we have rea-
sonable estimates from earlier work (Bullen et al., 2003). Although we could set up a hierarchical model
and jointly estimate the posterior distribution of the ‘hyperparameters’ and wind vectors, we would be
concerned about the identifiability of the hyperparameters. On the Gaussian process side we were aware
of the work of Jones and Vecchia (1993) which could provide an interesting framework but would require
substantial work to implement. We agree that the Gaussian process prior that we are using is strongly
related to the class of models they, and others before and after them, proposed. It would indeed be inter-
esting to exploit the nearest neighbour approximations that were used in Jones and Vecchia (1993) to
develop sparse approximations to the inverse covariance matrix in our equation (2). The suggestion to
explore the possibility of alternative MCMC algorithms is relevant, but we feel that the most interesting
suggestion is to combine the variational method with an MCMC sampler (e.g. as a proposal distribution
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for a population Monte Carlo method, or importance sampler). There are several issues which might need
to be addressed to implement such a scheme, such as the observation that is made by Christian Robert
that, often, variational approximations might not cover the full support of the posterior distribution and
thus might require some inflation before being used in a sampling context. We look forward to exploring
this, together with the use of other sampling methods, to provide a more rigorous comparison with the
variational approximation.

We conclude by thanking again the organizers and discussants—they have given us food for thought,
and some interesting suggestions for extensions to the work.
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