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Summary. We consider estimation in a sparse additive regression model with the design points
on a regular lattice. We establish the minimax convergence rates over Sobolev classes and
propose a Fourier-based rate optimal estimator which is adaptive to the unknown sparsity and
smoothness of the response function. The estimator is derived within a Bayesian formalism
but can be naturally viewed as a penalized maximum likelihood estimator with the complexity
penalties on the number of non-zero univariate additive components of the response and on
the numbers of the non-zero coefficients of their Fourer expansions.We compare it with several
existing counterparts and perform a short simulation study to demonstrate its performance.
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1. Introduction

Consider a general non-parametric d-dimensional regression model, where the design points
are on a regular lattice of size n1 ×: : :×nd on [0, 1]d :

y.i1=n1, : : : , id=nd/=f.i1=n1, : : : , id=nd/+ ε.i1=n1, : : : , id=nd/,

ij =0, : : : , nj −1, j =1, : : : , d, .1/

ε.i1=n1, : : : , id=nd/ ∼ N .0, σ2/ and are independent, and the unknown response function f :
Rd →R is assumed to belong to a class of functions of certain smoothness. Let N =Πd

j=1 nj be
the overall number of observations in model (1).

In particular, a regular grid can be useful for design of experiments when we have some prior
belief on the relative relevance of predictors. Thus, we can use a finer grid (larger nj) for more
important variables and a coarse grid (smaller nj) otherwise.

When d is large, estimation of f in model (1) suffers severely from the ‘curse of dimensionality’
problem. A typical remedy is to impose some additional structural constraints on f . One of the
common approaches is to consider the class of additive models (Hastie and Tibshirani, 1990),
where the unknown f can be decomposed into a sum of d univariate functions: f.x1, : : : , xd/=
Σd

j=1 fj.xj/. The original model (1) becomes then

y.i1=n1, : : : , id=nd/=a0 +
d∑

j=1
fj.ij=nj/+ ε.i1=n1, : : : , id=nd/,

ij =0, : : : , nj −1, j =1, : : : , d: .2/

To make model (2) identifiable, we impose Σnj−1
i=0 fj.i=nj/=0 for all j =1, : : : , d. The goal is to

estimate the unknown global mean a0 and the functions fj.
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Additive models have become a standard tool in multivariate non-parametric regression and
can be efficiently fitted by the backfitting algorithm of Friedman and Stuetzle (1981). However,
in a variety of modern high dimensional statistical set-ups the number of predictors d may still
be large relatively to the amount of observed data. A key extra assumption then is sparsity,
where it is assumed that only a small fraction of fj in model (2) has a truly relevant influence
on the response whereas the other fj = 0. Let J0 and J c

0 be the (unknown) subsets of indices
corresponding respectively to the zero and non-zero fj. The sparse additive model (SPAM) is

y.i1=n1, : : : , id=nd/=a0 + ∑
j∈J c

0

fj.ij=nj/+ ε.i1=n1, : : : , id=nd/,

ij =0, : : : , nj −1, j =1, : : : , d, .3/

and Σnj−1
i=0 fj.i=nj/=0, j ∈J c

0 .
Expand each fj, j ∈J c

0 , in the orthogonal discrete Fourier series assuming for simplicity of
exposition that all nj are odd:

fj.i=nj/=
.nj−1/=2∑

k=−.nj−1/=2
ckj exp.−2πIki=nj/,

with I =√−1 and discrete Fourier coefficients

ckj = 1
nj

nj−1∑
i=0

fj

(
i

nj

)
exp
(

2πIki

nj

)
: .4/

The identifiability condition Σnj−1
i=0 fj.i=nj/=0 implies c0j =0.

One should make some assumptions on regularity properties of fj. We assume that the vector
of discrete Fourier coefficients cj of fj in equation (4) belongs to a Sobolev ellipsoid

Θnj .sj, Rj/=
{

cj :
.nj−1/=2∑

k=−.nj−1/=2
|ckj|2|k|2sj �R2

j ; c0j =0

}
,

where sj > 1
2 and Rj < CR for some constant CR > 0, and denote the corresponding class of

functions fj by Fnj .sj, Rj/. The class Fnj .sj, Rj/ is a discrete analogue of a Sobolev ball of
functions of smoothness sj with a radius Rj (see, for example, Korostelev and Korosteleva
(2011), section 10.5).

We establish the minimax rates of estimating f in model (3), where fj ∈ Fnj .sj, Rj/. The
corresponding rates for the case of N distinct points for each predictor xj were derived in
Raskutti et al. (2012). However, we consider a design on the regular lattice, where there are
N=nj repeated observations at each of nj grid points for every xj. It turns out that this difference
affects the resulting minimax rates.

In particular, we show that the average mean-squared error

AMSE.f̂ j, fj/= 1
nj

E‖f̂ j −fj‖2
nj

for estimating a single univariate function fj ∈ Fnj .sj, Rj/ in model (3) at the design points,
where a general notation ‖·‖n is used for the Euclidean norm in Rn, is of the order

min.N−2sj=.2sj+1/, nj=N/: .5/

For sufficiently smooth fj with 2sj + 1� ln.N/=ln.nj/, the rate in expression (5) is the stan-
dard minimax rate N−2sj=.2sj+1/ for non-parametric estimation of a univariate function from
Fnj .sj, Rj/ (see, for example, Korostelev and Korosteleva (2011), section 10.5), but for 2sj +1<
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ln.N/=ln.nj/ it corresponds to the parametric rate of estimating fj at each grid point i=nj by sim-
ple averaging over the corresponding N=nj replications. To understand this phenomenon recall
that in a standard non-parametric regression set-up smoothing (local averaging over neighbour
points) is necessary to reduce the variance. Although it introduces bias, the effect of the bias
is negligible under smoothness assumptions on an unknown response function, whereas the
benefits of variance reduction are essential. As we have mentioned above, in the case considered
there are N=nj repeated observations at each grid point i=nj and the variance can already be
reduced by their averaging without causing any bias. At the same time, the grid might be too
coarse to use neighbour points in smoothing since the resulting bias becomes dominating in the
bias–variance trade-off for non-smooth fj, where 2sj +1 < ln.N/=ln.nj/.

In particular, when all nj =N1=d are equal, the minimax AMSE.f̂ j, fj/ in expression (5) is
of the order N−rj , where rj =max{2sj=.2sj +1/, 1−1=d} and the parametric rate of averaging
occurs when 2sj +1 <d.

Furthermore, we prove that the overall minimax AMSE.f̂ , f/ = .1=N/E‖f̂ − f‖2
N for the

SPAMs with d0 =|J c
0 | non-zero fj is of the order

max
{ ∑

j∈J c
0

min
(

N−2sj=.2sj+1/,
nj

N

)
,
d0 ln.d=d0/

N

}
: .6/

The term Σj∈J c
0

min.N−2sj=.2sj+1/, nj=N/ in expression (6) is associated with the minimax rates
of estimating d0 non-zero univariate functions in Fnj .sj, Rj/, j ∈ J c

0 , whereas d0 ln.d=d0/=N

corresponds to the error of selecting a subset of d0 non-zero elements out of d and appears in
various related model selection set-ups (e.g. Abramovich and Grinshtein (2010, 2013), Raskutti
et al. (2011, 2012) and Rigollet and Tsybakov (2011)). For the design with N distinct points for
each xj, the similar rate max{Σj∈J c

0
N−rj , d0 ln.d=d0/=N}, where rj =2sj=.2sj +1/, was derived

in Raskutti et al. (2012).
We also propose a rate optimal estimator for estimating SPAMs (3) which is adaptive to the

unknown parameters .sj, Rj/, j ∈J c
0 , of Sobolev ellipsoids and to the unknown sparsity d0. The

estimation is performed in the Fourier domain and is based on identifying non-zero vectors of
(univariate) discrete Fourier coefficients cj by imposing a penalty on the number of non-zero cjs
and estimating their components by truncating the corresponding series of empirical Fourier
coefficients of the data, and can be efficiently computed. The resulting estimator is developed
within a Bayesian framework and can be viewed as a maximum a posteriori (MAP) sparse
additive estimator. From a frequentist view, it corresponds to penalized maximum likelihood
estimation of cj with the complexity type of penalties on the number of non-zero cj and numbers
of their non-zero entries.

We compare the sparse additive MAP estimator with several existing counterparts proposed
recently in the literature, e.g. the component selection and smoothing algorithm COSSO of Lin
and Zhang (2006), the SPAM estimator of Ravikumar et al. (2009), the sparse additive estimator
of Meier et al. (2009) and the M-estimator of Raskutti et al. (2012) (see also Koltchinskii and
Yuan (2010) and Suzuki and Sugiyama (2013)). In the Fourier domain, these estimators also
correspond to penalized maximum likelihood estimation of cj but with penalties on the magni-
tudes of ckj rather than on their cardinality. However, only the M-estimator has been proved to
be rate optimal (in the minimax sense) for the case when there are N distinct observations for
each predictor xj. Moreover, all those procedures (except the SPAM estimator) are not adaptive
to the smoothness sj of fj.

The paper is organized as follows. In Section 2 we derive the sparse additive MAP estima-
tor. Its asymptotic adaptive minimaxity is established in Section 3, where we compare it also
with its existing counterparts. The results of a simulation study are given in Section 4. Some
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concluding remarks and possible extensions are discussed in Section 5. All the proofs are placed
in Appendix A.

2. Maximum a posteriori estimator

2. 1. Main idea
For any fixed j =1, : : : , d, averaging a general additive model (2) over all N=nj observations at
points ij=nj and using the identifiability conditions yields

ȳj.ij=nj/= .nj=N/
n1−1∑
i1=0

: : :
nj−1−1∑
ij−1=0

nj+1−1∑
ij+1=0

: : :
nd−1∑
id=0

y.i1=n1, : : : , ij=nj, : : : , id=nd/

=a0 +fj.ij=nj/+ ε′.ij=nj/, ij =0, : : : , nj, .7/

where ε′.i=nj/∼N{0, .nj=N/σ2} and are independent.
Equivalently, in the Fourier domain we have

ξkj = ckj + σ2

N
zkj, k =−.nj −1/=2, : : : , .nj −1/=2, j =1, : : : , d, .8/

where

ξkj = 1
nj

nj−1∑
i=0

ȳj

(
i

nj

)
exp
(

2πIki

nj

)

are discrete (one-dimensional) Fourier coefficients of the vector ȳj, the ckj are given in equation
(4) and the zkj are independent standard complex normal variates.

The goal now is to estimate the unknown discrete Fourier coefficients ckj in expression (8) by
some ĉkj. The resulting estimator f̂ in the original domain will then be

f̂ .i1=n1, : : : , id=nd/= â0 +
d∑

j=1
f̂j.ij=nj/= â0 +

d∑
j=1

.nj−1/=2∑
k=−.nj−1/=2

ĉkj exp.−2πIkij=nj/:

Additivity of f and Parseval’s equality imply that

AMSE.f̂ , f/=E|â0 −a0|2 +
d∑

j=1
E‖ĉj − cj‖2

nj

and the original dimensionality of the problem N is thus reduced to Σd
j=1 .nj − 1/ + 1 in the

Fourier domain (recall that c0j =0 for all j).
Estimate the overall mean a0 by the overall sample mean ȳ. Because of the identifiability

conditions Σn−1
i=0 fj.i=n/=0, we have

ȳ =a0 + εÅ,

where εÅ ∼N .0, σ2=N/, yielding E|ȳ − a0|2 =σ2=N. Furthermore, we naturally set ĉ0j = 0 for
all j with no error and, therefore, Σnj−1

i=0 f̂j.i=nj/=0.
Recall now that we consider a SPAM (3), where most fj and, therefore, cj are 0s. Under the

assumption fj ∈ Fnj .sj, Rj/, j ∈ J c
0 , the corresponding ckj decrease polynomially in k and cj

can be well approximated by several first ckj. The algorithm proposed tries first to identify the
set J c

0 of non-zero vectors cj and then estimates their entries by truncating the corresponding
vectors ξj of empirical discrete Fourier coefficients in expression (8) at the properly adaptively
chosen cut points.



Sparse Additive Regression 447

2.2. Derivation
For non-zero vectors cj in expression (8) we consider truncated estimators of the form ĉkj =
ξkj, |k|=1, : : : , kj, and ĉkj =0 otherwise. Thus, if we knew the set of indices J c

0 of non-zero cj and
the cut points kj, j ∈J c

0 , we would estimate ckj, |k|=1, : : : , kj, j ∈J c
0 , by the corresponding ξkj

and set the others to 0. Since in reality they are unknown we should estimate them from the data.
We use a Bayesian framework. Consider the following hierarchical prior model on vectors cj.

Let d0 =|J c
0 |=#{j : cj �=0, j =1, : : : , d} be the number of non-zero cj, and assume some prior

distribution π.d0/ > 0, d0 = 0, : : : , d, on d0. For a given d0, assume that all possible sets J c
0 of

non-zero cj with |J c
0 |=d0 are equally likely, i.e.

P.J c
0 ||J c

0 |=d0/=
(

d

d0

)−1

:

Obviously, kj|.j ∈ J0/ ∼ δ.0/ and, thus, cj|.j ∈ J0/ ∼ δ.0/. For non-zero cj we assume some
independent priors πj.kj/|.j ∈J c

0 / > 0, kj = 1, : : : , .nj − 1/=2. To complete the prior we place
independent normal priors for non-zero ckj ∼N .0, γσ2=N/, j ∈J c

0 , |k|=1, : : : , kj, where γ >0.
One can also consider different γj.

By a straightforward Bayesian calculus, the posterior probability of a given set J c
0 and the

corresponding kjs is

P.J c
0 ; k1, : : : , kd0 |ξ/∝π0.d0/

(
d

d0

)−1 ∏
j∈J c

0

{
πj.kj/.1+γ/−kj exp

(
γ

1+γ

kj∑
|k|=1

|ξkj|2

2σ2=N

)}
:

Given the posterior distribution P.J c
0 ; k1, : : : , kd0 |ξ/ we apply the MAP rule to find the most

likely set of non-zero vectors J c
0 and the corresponding cut points kj, j ∈J c

0 :

max
J c

0 ;k1,:::,kd0

( ∑
j∈J c

0

[
kj∑

|k|=1
|ξkj|2 +2

σ2

N

(
1+ 1

γ

)
log{πj.kj/.1+γ/−kj}

]

+2
σ2

N

(
1+ 1

γ

)
log

{
π0.d0/

(
d

d0

)−1
})

: .9/

To solve problem (9), define k̂j by

k̂j =arg min
1�kj�.nj−1/=2

[ ∑
k:|k|>kj

|ξkj|2 +2
σ2

N

(
1+ 1

γ

)
log{π−1

j .kj/.1+γ/kj}
]

=arg min
1�kj�.nj−1/=2

[
−

kj∑
|k|=1

|ξkj|2 +2
σ2

N

(
1+ 1

γ

)
log{π−1

j .kj/.1+γ/kj}
]

.10/

for each j =1, : : : , d. The MAP rule in problem (9) is then equivalent to minimizing

∑
j∈J c

0

[
−

k̂j∑
|k|=1

|ξkj|2 +2
σ2

N

(
1+ 1

γ

)
log{π−1

j .k̂j/.1+γ/k̂j}

+2
σ2

N

(
1+ 1

γ

)
log
{

π−1
0 .d0/

(
d

d0

)}]
.11/

over all subsets of indices J c
0 ⊆ {1, : : : , d}, where d0 = |J c

0 |, and the resulting algorithm for
solving problem (9) is then as follows.



448 F. Abramovich and T. Lahav

Step 1: for each j =1, : : : , d, find k̂j in equation (10) and calculate

Wj =−
k̂j∑

|k|=1
|ξkj|2 +2

σ2

N

(
1+ 1

γ

)
log{π−1

j .k̂j/.1+γ/k̂j}:

Step 2: order Wj in ascending order W.1/ �: : :�W.d/ and find d̂0:

d̂0 =arg min
0�d0�d

d0∑
j=1

[
W.j/ +2

σ2

N

(
1+ 1

γ

)
log
{

π−1 .d0/

(
d

d0

)}]
:

Step 3: let Ĵ c
0 be the set of indices corresponding to the d̂0 smallest Wj. Set ĉj = 0 for all

j ∈ Ĵ0 and ĉkj =ξkj I.1� |k|� k̂j/, k=0, : : : , nj, j ∈ Ĵ c
0 (recall that, because of the identifiability

conditions, ĉ0j =0 for all j).

One can easily verify that the resulting MAP estimators ĉj can be equivalently viewed as
penalized likelihood estimators of cj in expression (8) of the form

min
c̃1,:::, c̃d

[
d∑

j=1
{‖ξj − c̃j‖2

nj
+Penj.kj/}+Pen0.d0/

]
.12/

with the complexity penalty

Pen0.d0/=2
σ2

N

(
1+ 1

γ

)
log
{

π−1
0 .d0/

(
d

d0

)}
.13/

on the number of non-zero c̃j and the complexity penalties

Penj.kj/=2
σ2

N

(
1+ 1

γ

)
log{π−1

j .kj/.1+γ/kj}, kj =1, : : : , .nj −1/=2, .14/

on the number of non-zero entries 2kj of c̃j.

3. Theoretical properties

3.1. Upper bound
In this section we establish theoretical properties of the proposed sparse additive MAP estimator
and establish its adaptive minimaxity with respect to AMSE.f̂ , f/=Σd

j=1AMSE.f̂ j, fj/. As we
have mentioned, owing to Parseval’s equality,

AMSE.f̂ , f/= σ2

N
+

d∑
j=1

E‖ĉj − cj‖2
nj

,

where ĉj and cj are discrete Fourier coefficients of f̂j and fj respectively (see expression (8)).
We start from a general upper bound on AMSE.f̂ , f/. Recall that N =Πd

j=1 nj.

Proposition 1 (general upper bound). Consider the SPAM (3). Let ĉ1, : : : , ĉd be the sparse
additive MAP estimators (12) of the Fourier coefficients vectors c1, : : : , cd in equation (4) with
the complexity penalties (13) and (14). Assume that πj.k/� exp{−c.γ/k}, k =1, : : : , .nj −1/=2,
for all j =1, : : : , d, where c.γ/=8.γ +3=4/2 > 9=2. Then,

AMSE.f̂ , f/�C1.γ/ min
J0⊆{1,:::,d}

[ ∑
j∈J c

0

min
1�kj�.nj−1/=2

{ .nj−1/=2∑
|k|=kj+1

|ckj|2 +Penj.kj/

}
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+ ∑
j∈J0

.nj−1/=2∑
k=−.nj−1/=2

|ckj|2 +Pen0.|J c
0 |/
]

+C2.γ/
σ2

N
{1−π0.0/},

where C1.γ/ and C2.γ/ depend only on γ.

Proposition 1 holds without any regularity conditions on non-zero fj. Now we consider
fj ∈Fnj .sj, Rj/, j ∈J c

0 .

Theorem 1 (upper bound over Fnj .sj, Rj/). Consider model (3), where J c
0 �=∅. Assume that

fj ∈Fnj .sj, Rj/ for all j ∈J c
0 .

Let ĉ1, : : : , ĉd be the sparse additive MAP estimators (12) of the Fourier coefficients vectors
c1, : : : , cd in equation (4) with the complexity penalties (14)–(13). Assume that there are
constants C0, C1 > 0 such that

(a) π0.h/� .h=d/C0h, h=1, : : : , �d=e and π0.d/� exp.−C0d/ and
(b) exp.−C1k/�πj.k/� exp{−c.γ/k}, k =1, : : : , .nj −1/=2, j =1, : : : , d.

Then, for any J c
0 ⊆{1, : : : , d} with |J c

0 |=d0 and all Fnj .sj, Rj/, j ∈J c
0 ,

sup
fj∈Fnj

.sj ,Rj/,j∈J c
0

AMSE.f̂ , f/�C1.γ/ max
{ ∑

j∈J c
0

min
(

N−2sj=.2sj+1/,
nj

N

)
,
d0 ln.d=d0/

N

}
,

.15/

where C1.γ/ is some constant depending on γ only.

One can easily verify that the conditions on priors π.·/ and πj.·/ required in theorem 1
are satisfied for the (truncated) geometric priors π0.h/ ∝ qh, h = 1, : : : , d, and πj.k/ ∝ qk

j , k =
1, : : : , .nj −1/=2, for some 0 <q, qj < 1 corresponding respectively to the complexity penalties

Pen0.h/∼2C.γ/
σ2

N
h

{
ln
(

d

h

)
+1
}

of the 2h ln.d=h/ type and the Akaike information criterion type

Penj.k/∼2C.γ/
σ2

N
k

for some C.γ/> 1.

3.2. Asymptotic minimaxity
To assess the goodness of the upper bound for the AMSE of the MAP estimator that was
established in theorem 1 we derive the corresponding minimax lower bounds.

We start from the following proposition establishing the minimax lower bound for estimating
a single fj ∈Fnj .sj, Rj/ in model (7).

Proposition 2 (minimax lower bound for a single fj ∈Fnj .sj, Rj/). Consider model (7), where
fj ∈Fnj .sj, Rj/. There is a constant C2 > 0 such that

inf sup
f̃ j fj∈Fnj

.sj ,Rj/

AMSE.f̃ j, fj/�C2 min
(

N−2sj=.2sj+1/,
nj

N

)
,

where the infimum is taken over all estimators f̃ j of fj.

We now use this result to obtain the minimax lower bound for the AMSE in estimating f in
the SPAM (3).
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Theorem 2 (minimax lower bound). Consider model (3), where fj ∈Fnj .sj, Rj/, j ∈J c
0 . There

is a constant C2 > 0 such that

inf
f̃

sup
fj∈Fnj

.sj , Rj/, j∈J c
0

AMSE.f̂ , f/�C2 max
{ ∑

j∈J c
0

min
(

N−2sj=.2sj+1/,
nj

N

)
,
d0 ln.d=d0/

N

}
,

.16/

where the infimum is taken over all estimators f̃ of f .

Theorems 1 and 2 show that, as both the sample sizes nj and the dimensionality d increase,
the asymptotic minimax convergence rate is either of order Σj∈J c

0
min.N−2sj=.2sj+1/, nj=N/

or N−1d0 ln.d=d0/. The former corresponds to the optimal rates of estimating d0 single fj ∈
Fnj .sj, Rj/, whereas the latter is due to error in selecting a subset of d0 non-zero fj out of d and
commonly appears in various related model selection set-ups (see, for example, Abramovich
and Grinshtein (2010, 2013), Raskutti et al. (2011, 2012) and Rigollet and Tsybakov (2011)).
The dominating term depends on the smoothness of the fjs (relatively to the sample sizes njs)
and the sparsity of the problem.

Furthermore, the proposed sparse additive MAP estimator with the priors π0.·/ and πj.·/ cor-
responding to 2d0 ln.d=d0/ type and Akaike information criterion type of penalties respectively
is simultaneously minimax rate optimal over the entire range of sparse and dense amalgams of
Sobolev balls Fnj .sj, Rj/.

3.3. Comparison with other existing estimators
As we have already mentioned, various estimators for the SPAM (3) have been recently proposed
in the literature. It can be shown that, as they are adapted to the set-up considered, they can be
also equivalently formulated in the Fourier domain as penalized maximum likelihood estimators
of cj but with penalties on the magnitudes of ckj rather than complexity-type penalties as for
the proposed sparse additive MAP estimator.

Thus, the additive COSSO method of Lin and Zhang (2006), section 4, in this case can be
written as

arg min
c̃1,:::, c̃d ;θ1>0,:::, θd>0

(
d∑

j=1
‖ξj − c̃j‖2

nj
+

d∑
j=1

θ−1
j

.nj−1/=2∑
k=−.nj−1/=2

|k|2sj |c̃kj|2 +λ
d∑

j=1
θj

)
: .17/

The form of estimator (17) is very similar to common spline smoothing which is equivalent to
linear shrinkage in the Fourier domain (e.g. Wahba (1990)) with smoothing parameters θj but
with the additional penalty on their sum. The latter makes the set of optimal θj sparse and,
therefore, yields zero components ĉj in the resulting COSSO estimators. To the best of our
knowledge, there are no results on the convergence rates for the COSSO estimator.

Similarly, the sparse additive estimator of Meier et al. (2009) can be presented as

arg min
c̃1,:::, c̃d

{
d∑

j=1
‖ξj − c̃j‖2

nj
+λ1

d∑
j=1

√(
‖c̃j‖2

nj
+λ2

.nj−1/=2∑
k=−.nj−1/=2

|k|2sj |c̃kj|2
)}

, .18/

where penalizing ‖c̃j‖nj encourages sparsity, whereas the additional penalty term controls
the smoothness of the estimators. For N distinct observations for each xj, from the results
of Meier et al. (2009), remark 2, it follows that their estimator has a suboptimal rate
O[Σj∈J c

0
{ln.d/=N}2sj=.2sj+1/].

Applied to fj ∈Fnj .sj, Rj/, a regularized M-estimator of Raskutti et al. (2012) is
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arg min
c̃1,:::,c̃d

{
d∑

j=1
‖ξj − c̃j‖2

nj
+λ1

d∑
j=1

‖c̃j‖nj +λ2

d∑
j=1

√( .nj−1/=2∑
k=−.nj−1/=2

|k|2sj |c̃kj|2
)}

.19/

which is similar to estimator (18) but separates the penalties on sparsity and smoothness into two
additive terms. For the design with N distinct observations for each xj, estimator (19) achieves
the minimax rate

O

{
min
( ∑

j∈J c
0

N−2sj=.2sj+1/

)
,
d0 ln.d=d0/

N

}
:

Similar results for the M-estimator (19) were obtained in Koltchinskii and Yuan (2010) and
Suzuki and Sugiyama (2013) under some additional conditions.

The serious disadvantage of all the above estimators is that they are defined for penalties
involving sj and, hence, are inherently not adaptive to the smoothness of fj which can rarely
be assumed known.

The SPAM estimator of Ravikumar et al. (2009) for the set-up considered becomes

arg min
c̃1,:::,c̃d

{
d∑

j=1
‖ξj − c̃j‖2

nj
+λ

d∑
j=1

√
.2kj/‖c̃j‖kj

}
.20/

for the fixed truncation cut points kj. In this form, the SPAM is closely related to the group
lasso estimator of Yuan and Lin (2006) and can be obtained explicitly:

ĉj =
(

1− .λ=2/
√

.2kj/

‖ξ̃j‖kj

)
+
ξ̃j, .21/

where ξ̃j is ξj truncated at kj. Ravikumar et al. (2009) showed persistency of their estimator but
did not provide results on convergence rates of its AMSE.

Finally, we mention Guedj and Alquier (2013) who considered a Bayesian model which was
similar to that proposed in this paper with geometric priors π0.·/ and πj.·/. They estimated
cj by the corresponding posterior means and, for the case of N distinct observations for each
xj, showed that the resulting estimator is asymptotically nearly minimax (up to an additional
log-factor) over Sobolev classes. A similar Bayesian estimator of Suzuki (2012) achieves the
optimal rate but for smaller functional classes. The practical implementation of these procedures
involves, however, high dimensional Markov chain Monte Carlo algorithms.

4. Simulation study

To illustrate the performance of the sparse additive MAP estimator proposed we conducted a
simulation study. Similarly to example 1 of Lin and Zhang (2006), example 3 of Meier et al.
(2009) and example 3 of Guedj and Alquier (2013), we considered the SPAM (3) with d = 50
and four non-zero components fj (d0 =4):

f1.x/=x,

f2.x/= .2x−1/2,

f3.x/= sin.2πx/

2− sin.2πx/
,

f4.x/=0:1 sin.2πx/+0:2 cos.2πx/+0:3 sin2.2πx/+0:4 cos3.2πx/+0:5 sin3.2πx/

but on the regular lattice [0, 1]50. We used n=101 and, therefore, N =10150. Each non-zero fj

was standardized to have
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Table 1. AMSE averaged over 1000 replications for various SNRs

SNR Method AMSE AMSE1 AMSE2 AMSE3 AMSE4 AMSE0 d̂0

1 MAP 0.6242 0.3083 0.1023 0.0926 0.1209 0.0000 4.0
SPAM(λ=0:26) 0.8007 0.3371 0.1283 0.1178 0.1467 0.0015 19.3

5 MAP 0.1937 0.1334 0.0285 0.0157 0.0161 0.0000 4.0
SPAM(λ=0:10) 0.2632 0.1492 0.0373 0.0238 0.0282 0.0005 25.7

10 MAP 0.1285 0.0936 0.0182 0.0099 0.0067 0.0000 4.0
SPAM(λ=0:06) 0.1686 0.1021 0.0220 0.0131 0.0114 0.0004 32.3
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Fig. 1. Boxplots for (global) AMSE for various SNRs: (a) SNR D 1; (b) SNR D 5; (c) SNR D 10

.1=n/
n−1∑
i=0

fj.i=n/=0,

.1=n/
n−1∑
i=0

f 2
j .i=n/=1:

The noisy data were generated according to model (7) by adding independent random Gaus-
sian variates N{0, .n=N/σ2} to fj.i=n/, i = 0, : : : , n − 1, j = 1, : : : , d. The values of the noise
variance σ2 were chosen to correspond to values 1, 5 and 10 for the signal-to-noise ratio SNR
defined as

SNR=var.fj/
/( n

N
σ2
)

= N

σ2n
:

Performing the discrete Fourier transform of the noisy data yielded the equivalent model (8)
in the Fourier domain. We then applied the proposed MAP algorithm to corresponding noisy
Fourier coefficients ξkj by using truncated geometric priors for π0.·/ and πj.·/ with q=qj =0:5
and γ =5. The noise level σ was assumed unknown and estimated from the data. Since the vector
of the true Fourier coefficients cj in expression (8) lies in a Sobolev ellipsoid, the sequence |ckj|
decays to 0 polynomially with k. Thus, for large k, the empirical Fourier coefficients ξkj in
expression (8) are mostly pure noise. To correct for the bias due to the possible presence of
several large coefficients, we robustly estimated σ=

√
N as

σ̂√
N

=
√

2MAD[{Re.ξkj/, Im.ξkj/}, k =0:8.nj −1/=2, : : : , .nj −1/=2; j =1, : : : , 50]
0:6745

:
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This is similar to a standard practice for estimating σ from wavelet coefficients at the finest
resolution level in wavelet-based methods (see, for example, Donoho and Johnstone (1994)).
The resulting estimates for σ were very precise for all SNRs.

We compared also the resulting sparse additive MAP estimator with the SPAM estimator
(20) of Ravikumar et al. (2009) which for the model considered is essentially the group lasso
estimator of Yuan and Lin (2006) and is available in closed form in the Fourier domain—see
expression (21). For the SPAM estimator we used the same cut points k̂j from expression (10)
as for the MAP estimator and the oracle-chosen threshold λ that minimizes

AMSE.f , f̂ SPAM/=
d∑

j=1
‖ĉSPAM

j .λ/− cj‖2
n

estimated by averaging over a series of 1000 replications for each value of λ by using a grid
search. The resulting choices were λ=0:26 for SNR=1, λ=0:10 for SNR=5 and λ=0:06 for
SNR=10. Thus, the oracle λ decreased with increasing SNR.

For each SNR-level we calculated the (global) AMSE for both methods and analysed also
their performance for each individual fj. Thus, AMSE1, AMSE2, AMSE3 and AMSE4 are the
AMSEs for the corresponding four non-zero fj, j = 1, : : : , 4, whereas AMSE0 is the average
AMSE over all 46 zero fj. In addition, we compared the two methods for identifying non-zero
fj though it is a somewhat different problem from our original goal of estimating functions in
quadratic norm and we calculated d̂0 =#{j : f̂ j �=0, j =1, : : : , 50}. The results are summarized
in Table 1. Fig. 1 gives the corresponding boxplots. Fig. 2 gives typical examples of estimators
obtained by both methods for non-zero and zero fj.

The results in Table 1 show that the MAP consistently outperforms the SPAM estimator
both globally and for each individual component fj. For both methods the main contribution
to the global AMSE came from estimating non-zero fj. The MAP estimator almost perfectly
identified the set of non-zero fj whereas the oracle choices for λ in the SPAM estimator were
quite small and, as a result, too many f̂ j were non-zero (see, for example, Fig. 2(f)). In fact, it
is a known common phenomenon for lasso-type estimators.

5. Concluding remarks

We considered sparse additive regression on a regular lattice, where the univariate components
fj of the unknown response function f belong to Sobolev balls. We established the minimax
convergence rates for estimating f and proposed an adaptive Fourier-based estimator which
is rate optimal over the entire range of Sobolev classes of different sparsity and smoothness.
The resulting estimator was developed within a Bayesian formalism but can also be viewed, in
fact, as a penalized maximum likelihood estimator of the Fourier coefficients of f with certain
complexity penalties on the number of non-zero fj and on the numbers of non-zero entries of
their Fourier coefficients cj. It can be efficiently computed and the simulation study presented
demonstrates its good performance.

The results of the paper can be extended to more general Besov classes of functions by using
the wavelet series expansions of fj. The corresponding vectors of wavelet coefficients will lie
then within weak lp-balls (e.g. Johnstone (2013), section 9.7) and one can apply the results
of Abramovich and Grinshtein (2013) for estimating a sparse group of sparse vectors from
weak lp-balls. The extension is quite straightforward though the details should be worked out.
In particular, the resulting MAP estimator should mimic (hard) thresholding within each non-
zero vector of wavelet coefficients instead of truncation as in the case of Fourier series considered
(see Abramovich and Grinshtein (2013)).
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Appendix A

Throughout the proofs we use C to denote a generic positive constant, which is not necessarily the same
each time that it is used, even within a single equation. Similarly, C.γ/ is a generic positive constant
depending on γ.

A.1. Proof of proposition 1
As we have mentioned before, the sparse additive MAP estimator (12) proposed can be equivalently viewed
as a penalized maximum likelihood estimator with complexity penalties (13) and (14). We can apply then
the general results of Birgé and Massart (2001) for complexity-penalized estimators.

Rewrite first model (8) in a different form. Set ξ = .ξ−.n1−1/=2,1, : : : , ξ.n1−1/=2,1, : : : , ξ−.nd−1/=2, d , : : : ,
ξ.nd−1/=2,d/T to be an amalgamated vector of length N0 = Σd

j=1 nj of d vectors ξ1,. . . , ξd . Similarly, de-
fine N0-dimensional amalgamated vectors c = .c−.n1−1/=2,1, : : : , c.n1−1/=2,1, : : : , c−.nd−1/=2,d , : : : , c.nd−1/=2,d/T

and z= .z−.n1−1/=2,1, : : : , z.n1−1/=2,1, : : : , z−.nd−1/=2,d , : : : , z.nd−1/=2,d/T. The original model (8) can be rewritten
then as

ξi = ci + σ2

N
zi, i=1, : : : , N0, .22/

where zi are independent standard complex normal variates. Define an indicator vector v by vi = I.ci �=0/,
i = 1, : : : , N0. Thus, in terms of model (22), kj = 1

2 ΣSj

i=Sj−1+1 vi, where Sj =Σj−1
l=1 nl, and d0 = #{j : kj > 0}.

For a given v, let Dv =2Σd
j=1 kj =#{i : vi =1, i=1, : : : , N0} be the overall number of non-zero entries of c,

and define

Lv =
⎧⎨
⎩

1
Dv

[
d∑

j=1
log

{
π−1

j .kj/
}+ log

{
π−1

0 .d0/
(

d
d0

)}]
if v �=0,

log{π−1
0 .0/} if v=0:

.23/

In the above notation the sparse additive MAP estimator ĉ= .ĉ−.n1−1/=2,1, : : : , ĉ.n1−1/=2,1, : : : , ĉ−.nd−1/=2,d , : : : ,
ĉ.nd−1/=2,d/T is the penalized maximum likelihood estimator of c with complexity penalty

Pen.v/=2
σ2

N

(
1+ 1

γ

)[
d∑

j=1
log

{
π−1

j .kj/.1+γ/kj
}+ log

{
π−1

0 .d0/
(

d
d0

)}]

=2
σ2

N

(
1+ 1

γ

)
Dv

{
Lv + 1

2
log.1+γ/

}
.24/

for v �=0, and

Pen.0/=2
σ2

N

(
1+ 1

γ

)
L0:

One can easily verify that

∑
v�=0

exp.−DvLv/=
d∑

k=1
π0.k/=1−π0.0/:

Furthermore, straightforward calculus similar to that in the proof of theorem 1 of Abramovich et al.
(2007) implies that, under the conditions on the priors πj.·/ of proposition 1, the complexity penalty Pen.v/
in equation (24) satisfies

Pen.v/�C.γ/
σ2

N
Dv {1+√

.2Lv/}2 ,
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for some C.γ/> 1. One can then apply theorem 2 of Birgé and Massart (2001) to have

d∑
j=1

E.‖ĉj − cj‖2
2/� c1.γ/ min

J0⊆{1,:::,d}

[ ∑
j∈J c

0

min
1�kj�.nj−1/=2

{ ∑
k:|k|>kj

|ckj|2 +Penj.kj/

}

+ ∑
j∈J0

.nj−1/=2∑
|k|=1

|ckj|2 +Pen0.d0/

]
+ c2.γ/

σ2

N
{1−π0.0/}:

Parseval’s equality

AMSE.f̂ , f/=
d∑

j=1
E.‖ĉj − cj‖2

nj
/+ σ2

N

completes the proof.

A.2. Proof of theorem 1
Let J cÅ

0 be the true (unknown) subset of non-zero cj and dÅ
0 =|J cÅ

0 |. Consider separately two cases.
Case 1: dÅ

0 ��d=e. Applying the general upper bound that was established in proposition 1 for J0 =J Å
0

yields

AMSE.f̂ , f/�C1.γ/

[ ∑
j∈J cÆ

0

min
1�kj�.nj−1/=2

{
.nj−1/=2∑
|k|=kj+1

|ckj|2 +Penj.kj/

}
+Pen0.d

Å
0 /

]

+C2.γ/
σ2

N
{1−π0.0/}: .25/

Choose the cut points kj =⌊
1
2 min.N1=.2sj+1/, nj −1/

⌋
for j ∈J cÅ

0 . If kj <.nj −1/=2, for cj ∈Θnj
.Sj , Rj/ we

have Σ.nj−1/=2
|k|=kj+1 |ckj|2 =O.k

−2sj

j /=O.N−2sj=.2sj+1//, whereas for k = .nj −1/=2 this term obviously disappears.
Furthermore, under the conditions on the priors πj.·/, the corresponding penalties Penj.·/ in equation
(14) are of the Akaike information criterion type, where

Penj.kj/∼2C.γ/
σ2

N
kj =O

{
min

(
N−2sj=.2sj+1/,

nj

N

)}
:

Hence, the first term Σj∈J cÆ
0

on the right-hand side of equation (25) is of the order Σj∈J cÆ
0

min.N−2sj=.2sj+1/,
nj=N/.

Finally, (
d
dÅ

0

)
�

(
d

dÅ
0

)2dÆ
0

for dÅ
0 ��d=e (see, for example, lemma A1 of Abramovich et al. (2010)) and, therefore, the conditions on

π0.·/ imply that

Pen0.d
Å
0 /�C.γ/

σ2

N
dÅ

0 log
(

d

dÅ
0

)
:

Case 2: �d=e < dÅ
0 � d. In this case we apply proposition 1 for J0 =∅. Evidently, |J c

0 | = d and J c
0 =

J Å
0 ∪J cÅ

0 . Choose the cut points kj =⌊
1
2 min.N1=.2sj+1/, nj −1/

⌋
for j ∈J cÅ

0 as before and kj =1 for j ∈J Å
0 .

Then,

AMSE.f̂ , f/�C1.γ/

[ ∑
j∈J cÆ

0

{
.nj−1/=2∑
|k|=kj+1

|ckj|2 +Penj.kj/

}
+ ∑

j∈J Æ
0

Penj.1/+Pen0.d/

]
+C2.γ/

σ2

N
{1−π0.0/}:

We have already shown that the first term Σj∈J cÆ
0

on the right-hand side of equation (26) is

O

{ ∑
j∈J cÆ

0

min.N−2sj=.2sj+1/, nj=N/

}
:
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The conditions of πj.1/ and π0.d/ imply that both Σj∈JÆ
0

Penj.1/ and Pen0.d/ are O.d=N/, and, therefore,
the first term in equation (26) is dominating when dÅ

0 ∼d.

A.3. Proof of proposition 2
Consider model (7) and the equivalent Gaussian sequence model (8) in the Fourier domain. Evi-
dently, inff̃ j

supfj∈Fnj
.sj , Rj/ AMSE.f̃ j , fj/= infc̃j

supcj∈Θnj
.sj , Rj/E‖c̃j −cj‖2

nj
, where c̃j are discrete Fourier

coefficients of f̃ j .
Most of the proof is a direct consequence of the standard techniques for establishing minimax lower

bounds in the Gaussian sequence model over Sobolev ellipsoids (see, for example, Tsybakov (2009), section
3.2) but, unlike the standard set-up, the variance in the considered model (8) depends on the sample size
N that may affect the minimax rates.

Consider the class of diagonal linear estimators c̃j.λ/ of the form c̃kj = λkξkj , k = −.n − 1/j=2, : : : ,
−1, 1, : : : , .nj − 1/=2 and c̃0j = 0 (see Section 2.1). It is well known (see, for example, Tsybakov (2009),
section 3.2) that, as nj →∞, the minimax linear diagonal estimator is asymptotically minimax over all
estimators of fj :

inf
c̃j

sup
cj∈Θnj

.sj ,Rj/

E‖c̃j − cj‖2
nj

∼ inf
λ

sup
cj∈Θnj

.sj , Rj/

E‖c̃j.λ/− cj‖2
nj

= sup
cj∈Θnj

.sj ,Rj/

inf
λ

E‖c̃j.λ/− cj‖2
nj

:

By standard calculus (see, for example, Tsybakov (2009), section 3.2),

inf
λ

E‖c̃j.λ/− cj‖2
nj

= σ2

N

.nj−1/=2∑
k=−.nj−1/=2

|ckj|2
|ckj|2 +σ2=N

.26/

and the minimax linear estimator ĉL
j is then of the form

ĉL
kj = .1−ksj κj/+ξkj ,

where κj is the solution of the equation

σ2

N

.nj−1/=2∑
k=1

.2k/sj .1− .2k/sj κj/+ =κjR
2
j :

Consider two cases.

(a) 2sj +1� ln.N/=ln.nj/. In this case we can follow Tsybakov (2009), section 3.2, to obtain

σ2

N

.nj−1/=2∑
k=1

.2k/sj .1− .2k/sj κj/+ = σ2

N

kj∑
k=1

.2k/sj {1− .2k/sj κj}, .27/

where kj = � 1
2 κ

−1=sj

j , and, neglecting the constants, κ2
j = N−2sj=.2sj+1/ and E‖ĉL

j − cj‖2
nj

=
O.N−2sj=.2sj+1//.

The condition 2sj + 1 � ln.N/=ln.nj/ is necessary to ensure that the resulting kj = 1
2 N1=.2sj+1/ �

.nj −1/=2 in equation (27).
(b) 2sj +1 < ln.N/=ln.nj/. In this case one can easily see that

σ2

N

.nj−1/=2∑
k=1

.2k/sj .1− .2k/sj κj/+ = σ2

N

.nj−1/=2∑
k=1

.2k/sj {1− .2k/sj κj},

κ2
j =nj=N and E‖ĉL

j − cj‖2
nj

=O.nj=N/.
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A.4. Proof of theorem 2
No estimator f̃ of f in model (3) can obviously perform better than that of an oracle that knows the true
subsets J0 and J c

0 of zero and non-zero components fj of f . In this ideal case, one would certainly set
f̂ j = 0 for all j ∈J0 with no error and, therefore, because of the additivity of the AMSE, proposition 2
yields

inf
f̃

sup
fj∈Fnj

, .SjRj/j∈J c
0

AMSE.f̃ , f/= ∑
j∈J c

0

inf
f̃ j

sup
fj∈Fnj

.sj , Rj/

AMSE.f̃ j , fj/

�C2
∑

j∈J c
0

min
(

N−2sj=.2sj+1/,
nj

N

)

(see proposition 4.16 of Johnstone (2013)).
Furthermore, since min.N−2sj=.2sj+1/, nj=N/>N−1, j ∈J c

0 , for d0 >d=2 we have

d0 ln.d=d0/

N
� ln.2/

d0

N
� ln.2/

∑
j∈J c

0

min
(

N−2sj=.2sj+1/,
nj

N

)

and the first term on the right-hand side of equation (16) is dominating. Thus, to complete the proof we
need to show that, for d0 �d=2,

inf
f̃

sup
fj∈Fnj

.sj , Rj/, j∈J c
0

AMSE.f̃ , f/= inf
c̃

sup
cj∈Θnj

.sj , Rj/j∈J c
0

‖c̃− c‖2
N0

�C2
d0 ln.d=d0/

N
, .28/

where N0 =Σd
j=1 nj and c is an N0-dimensional amalgam of d nj-dimensional vectors of discrete Fourier

coefficients cj of fj .
The proof is based on finding a subset Cd0 of N0-dimensional amalgamated vectors c with d0 non-zero

components cj ∈Θnj
.sj , Rj/ such that, for any pair c1, c2 ∈Cd0 and some constant C> 0,

‖c1 − c2‖2
N0

�C
σ2

N
d0 ln

(
d

d0

)

and the Kullback–Leibler divergence

K.Pc1 , Pc2 /= ‖c1 − c2‖2
N0

2σ2=N
� 1

16
ln{card.Cd0 /}:

The required result in expression (28) then follows immediately from lemma A.1 of Bunea et al. (2007).
Define the subset Ṽd0 of all d-dimensional indicator vectors with d0 entries of 1s: D̃d0 ={v : v∈{0, 1}d ,

‖v‖0 = d0}. Lemma A.3 of Rigollet and Tsybakov (2011) implies that, for d0 � d=2, there is a subset
Vd0 ⊂ Ṽd0 such that, for some constant C0 > 0, ln{card.Vd0 /}�C0d0 ln.d=d0/ and, for any pair v1, v2 ∈Vd0 ,
the Hamming distance ρ.v1, v2/=Σd

j=1 I.v1j �=v2j/�C0d0.
To any indicator vector v∈Vd0 assign the corresponding vector c∈Cd0 as follows. Let

C̃
2 = 1

16
C0

σ2

N
ln

(
d

d0

)
:

Define cj to be a zero vector if vj = 0 and to have two non-zero entries c−1j = c1j = C̃=
√

2 otherwise.
Evidently, cj ∈F.sj , C̃/⊂Fnj

.sj , Rj/ for vj =1 and card.Cd0 /= card.Vd0 /.
For any pair c1, c2 ∈Cd0 and the corresponding v1, v2 ∈Vd0 , we then have

‖c1 − c2‖2
N0

= C̃
2 d∑

j=1
I.v1j �=v2j/� C̃

2
C0 d0 = 1

16
σ2

N
C2

0d0 ln
(

d

d0

)
,

K.Pc1 , Pc2 /= C̃
2

2σ2=N

d∑
j=1

I.v1j �=v2j/� C̃
2
d0

σ2=N
� 1

16
ln{card.Cd0 /},

which completes the proof.
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