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Summary. In recent years there has been a considerable development in the use of wavelet methods
in statistics. As a result, we are now at the stage where it is reasonable to consider such methods to
be another standard tool of the applied statistician rather than a research novelty. With that in mind,
this paper gives a relatively accessible introduction to standard wavelet analysis and provides a
review of some common uses of wavelet methods in statistical applications. It is primarily orientated
towards the general statistical audience who may be involved in analysing data where the use of
wavelets might be effective, rather than to researchers who are already familiar with the ®eld. Given
that objective, we do not emphasize mathematical generality or rigour in our exposition of wavelets
and we restrict our discussion to the more frequently employed wavelet methods in statistics. We
provide extensive references where the ideas and concepts discussed can be followed up in greater
detail and generality if required. The paper ®rst establishes some necessary basic mathematical
background and terminology relating to wavelets. It then reviews the more well-established applica-
tions of wavelets in statistics including their use in nonparametric regression, density estimation,
inverse problems, changepoint problems and in some specialized aspects of time series analysis.
Possible extensions to the uses of wavelets in statistics are then considered. The paper concludes
with a brief reference to readily available software packages for wavelet analysis.
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1. Introduction

In contrast with papers that are directed at researchers who are already working in a specialized

®eld, our intended audience here is not those who are conversant with wavelet analysis and its

applications. We wish rather to address those statisticians who, although they have undoubtedly

heard of wavelet methods, may be unsure exactly what they involve, in what practical areas they

can usefully be employed and where best to ®nd out more about the subject. Our aim is therefore

to give a relatively straightforward and succinct account of standard wavelet analysis and the

current use of such methods in statistics.

We should immediately emphasize that wavelet analysis, in common with many other
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mathematical and algorithmic techniques used in statistics, did not originate from statisticians, nor

with statistical applications in mind. The wavelet transform is a synthesis of ideas emerging over

many years from different ®elds, notably mathematics, physics and engineering. Like Fourier

analysis, with which analogies are often drawn, wavelet methods are general mathematical tools.

Broadly speaking, the wavelet transform can provide economical and informative mathematical

representations of many different objects of interest (e.g. functions, signals or images). Such

representations can be obtained relatively quickly and easily through fast algorithms which are

now readily available in a variety of computer packages. As a result, wavelets are used widely, not

only by mathematicians in areas such as functional and numerical analysis, but also by researchers

in the natural sciences such as physics, chemistry and biology, and in applied disciplines such as

computer science, engineering and econometrics. Signal processing in general, including image

analysis and data compression, is the obvious example of an applied ®eld of multidisciplinary

interest where the use of wavelets has proved of signi®cant value. Good general surveys of wavelet

applications in that and other ®elds are given, for example, in Meyer (1993), Young (1993),

Aldroubi and Unser (1996) or Mallat (1998). Within that framework of multidisciplinary interest,

statisticians are among the more recent users of the technique. They bring their own particular

perspective to wavelet applications in areas such as signal processing and image analysis. In

addition they have explored a range of wavelet applications which are more exclusively statistical,

including nonparametric regression and density estimation.

Given that background, the ®rst point for the reader to appreciate in relation to this paper is that

we make no attempt to review the subject of wavelets in its broad context but focus on wavelets

from the statistician's perspective and on their use to address statistical problems. Accordingly, the

majority of the references that we provide are drawn from the statistical literature and to some

extent our choice of mathematical exposition is also coloured to suit a statistical audience. This

applies to the degree of depth and generality adopted in our basic mathematical description of the

wavelet transform, as well as the level of mathematical or algorithmic detail provided in our

discussion of applications.

A second point to appreciate is that, in line with our objective of addressing a general rather

than specialized statistical audience, we restrict most of our discussion to relatively well-estab-

lished statistical applications of wavelets. A variety of wavelet, and wavelet-related, methods have

been developed in recent years with potential applications to an increasing range of statistical

problems. The full breadth of the statistical applications of wavelets is still to emerge and relative

bene®ts over alternative methods have yet to be realistically evaluated in some cases. Given that

situation, this paper restricts itself to that subset of wavelet methods and applications in statistics

which we believe to be both relatively accessible and which have been established to be of real

practical value.

Overall then, we acknowledge from the outset that this is not intended to be an exhaustive

review of every possible statistical application of wavelets and is even less complete with respect

to covering wavelets methods in a broader context. However, there is no shortage of additional

material on wavelets for the interested reader to turn to, both in relation to mathematical detail

and with respect to more specialized wavelet techniques and applications in statistics. Throughout

this paper we provide extensive references to choose from and we should perhaps immediately

mention some useful basic texts. Examples of books that represent the underlying ideas of

wavelets and develop necessary formalism include Chui (1992), Daubechies (1992) and Mallat

(1998); for the rigorous mathematical theory of wavelets we refer interested readers to Meyer

(1992) and Wojtaszczyk (1997), while comprehensive surveys of wavelet applications in statistics

are given by Ogden (1997) or Vidakovic (1999), and that subject is covered in more mathematical

depth in HaÈrdle et al. (1998) or Antoniadis (1999).
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The remainder of the paper is organized as follows. In Section 2 we ®rst provide some

necessary mathematical background and terminology in relation to wavelets. In Section 3 we

review the use of wavelets in a variety of statistical areas, including nonparametric regression,

density estimation, inverse problems, changepoint problems and some specialized aspects of time

series analysis. Possible extensions to these relatively well-established wavelet procedures are then

discussed in Section 4. Finally, in Section 5, we conclude and brie¯y refer to some software

packages that are available for wavelet analysis.

2. Some background on wavelets

Here we develop some mathematical background and terminology which is required to understand

the wavelet applications discussed in subsequent sections. In doing so we do not emphasize

mathematical generality or rigour and provide few algorithmic details. Daubechies (1992), Meyer

(1992) or Wojtaszczyk (1997) may be consulted for a more rigorous and general coverage.

2.1. The wavelet series expansion
The series expansion of a function in terms of a set of orthogonal basis functions is familiar in

statistics, an obvious example being the commonly used Fourier expansion, where the basis

consists of sines and cosines of differing frequencies. The term wavelets is used to refer to a set of

basis functions with a very special structure. The special structure that is shared by all wavelet

bases (see below) is the key to the main fundamental properties of wavelets and to their usefulness

in statistics and in other ®elds. A variety of different wavelet families now exist (see Section 2.2)

which enable `good', orthonormal wavelet bases to be generated for a wide class of function

spaces. In other words, many types of functions that are encountered in practice can be sparsely

(i.e. parsimoniously) and uniquely represented in terms of a wavelet series. Wavelet bases are

therefore not only useful by virtue of their special structure, but they may also be applied in a wide

variety of contexts.

The special structure of wavelet bases may be appreciated by considering the generation of an

orthonormal wavelet basis for functions g 2 L2(R) (the space of square integrable real functions).

Following the approach of Daubechies (1992), which is that most often adopted in applications

of wavelets in statistics, we start with two related and specially chosen, mutually orthonormal,

functions or parent wavelets: the scaling function ö (sometimes referred to as the father wavelet)

and the mother wavelet ø. Other wavelets in the basis are then generated by translations of the

scaling function ö and dilations and translations of the mother wavelet ø by using the relation-

ships

ö j0 k(t) � 2 j0=2 ö(2 j0 t ÿ k), ø jk(t) � 2 j=2 ø(2 j t ÿ k), j � j0, j0 � 1, . . ., k 2 Z,

(1)

for some ®xed j0 2 Z, where Z is the set of integers.

Possible choices for parent wavelets which give rise to a suitable basis for L2(R), and for

various alternative function spaces, are discussed in Section 2.2, but typically the scaling function

ö resembles a kernel function and the mother wavelet ø is a well-localized oscillation (hence the

name wavelet). A unit increase in j in expression (1) (i.e. dilation) has no effect on the scaling

function (ö j0 k has a ®xed width) but packs the oscillations of ø jk into half the width (doubles its

`frequency' or, in strict wavelet terminology, its scale or resolution). A unit increase in k in
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expression (1) (i.e. translation) shifts the location of both ö j0 k and ø jk, the former by a ®xed

amount (2ÿ j0 ) and the latter by an amount proportional to its width (2ÿ j) .

We give an example comparing Fourier and wavelet analysis in Section 2.4, but the essential

point is that the sines and cosines of the standard Fourier basis have speci®city only in frequency,

whereas the special structure of a wavelet basis provides speci®city in location (via translation)

and also speci®city in `frequency' (via dilation).

Given the above wavelet basis, a function g 2 L2(R) is then represented in a corresponding

wavelet series as

g(t) � P
k2Z

c j0 k ö j0 k(t)� P1
j� j0

P
k2Z

w jk ø j k(t), (2)

with c j0 k � hg, ö j0 ki and w jk � hg, ø j ki, where h:, :i is the standard L2 inner product of two func-

tions:

hg1, g2i �
�

R

g1(t)g2(t) dt:

The wavelet expansion (2) represents the function g as a series of successive approximations.

The ®rst approximation is achieved by the sequence of scaling terms c j0 kö j0 k (each intuitively

being a smoothed `average' in the vicinity of 2ÿ j0 k). The oscillating features which cannot be

represented with suf®cient accuracy in this way are approximated in `frequency' and in cor-

respondingly ®ne detail by sequences of wavelet terms w jkø jk (each intuitively representing

`smooth wiggly structure' of `frequency' 2 j in the vicinity of 2ÿ j k). We may view the representa-

tion of any selected ®nite section of the function in the wavelet expansion by analogy with taking

pictures of this section with a camera equipped with a zoom lens and two ®lters or masks: one

designed to highlight features that are encapsulated in the shape of the scaling function and the

other designed similarly in relation to the mother wavelet. We ®rst use the scaling ®lter, with the

lowest magni®cation (i.e. the greatest ®eld of vision) of the lens which corresponds to resolution

level j0, and take a panoramic sequence of pictures covering the particular section of the function

(translations of ö). We then change to the mother wavelet ®lter, leave the magni®cation unchanged

and repeat a similar sequence of pictures (translations of ø at resolution j0). We then zoom in,

leaving the mother wavelet ®lter on the lens, but doubling the magni®cation (i.e. restricting the

®eld of vision), so requiring to take a sequence of twice as many pictures to cover the particular

section of the function (translations of ø at resolution j0 � 1). We repeat this zooming process

with the mother wavelet ®lter ad in®nitum, doubling the numbers of pictures taken to cover the

section of the function on each occasion. The complete set of pictures obtained then allows us to

view the selected section of the function in terms of average value or any speci®c frequency

component, knowing that for any one of these purposes we shall automatically have available a

suf®cient number of correctly ®ltered pictures at the appropriate magni®cation.

In many practical situations, the function to be represented as a wavelet series may be de®ned

to be zero outside a ®nite interval, such as the unit interval [0, 1]. Adapting wavelets to a ®nite

interval requires some modi®cations. The obvious approach of simply vanishing the underlying

function outside the interval will introduce arti®cial discontinuities at the end points. Several

papers have studied the necessary boundary corrections to retain orthonormality on an interval

(see, for example, Anderson et al. (1993) and Cohen et al. (1993a, b)). However, in practice the

most commonly used approaches to adapting wavelet analysis to the interval are based on

periodic, symmetric or antisymmetric boundary handling (see, for example, Daubechies (1992),

Jawerth and Sweldens (1994) and Ogden (1997)). The use of periodic boundary conditions

effectively implies periodic wavelets and we assume periodic boundary conditions on the unit
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interval as the default in later sections of this paper. In that case for g 2 L2[0, 1] the wavelet series

representation is then

g(t) � P2 j0ÿ1

k�0

c j0 k ö j0 k(t)� P1
j� j0

P2 jÿ1

k�0

w j k ø j k(t): (3)

2.2. Different wavelet bases
The selection of any arbitrary pair of mutually orthonormal parent wavelets, followed by the

reproducing process (1) discussed in the previous section, will not automatically result in a basis

for L2(R), let alone a `good' basis in the sense of providing a parsimonious representation of

functions in terms of their corresponding wavelet series. Clearly, the parent wavelets need to be

specially chosen if that is to be the case.

The simplest wavelet basis for L2(R) is the Haar basis (Haar, 1910) which uses a parent couple

given by

ö(t) � 1, 0 < t < 1,

0, otherwise,

�

ø(t) �
1, 0 < t , 1

2
,

ÿ1, 1

2
< t < 1,

0, otherwise

8<:
(see Figs 1(a) and 1(b)).

The Haar basis was known long before wavelets developed to take their present form. However,

the Haar parent couple, even though it has compact support, does not have a good time±frequency

localization. Moreover, the resulting wavelet basis functions have the signi®cant additional

disadvantage of being discontinuous, which renders them unsuitable as a basis for classes of

smoother functions. For almost 70 years it was thought impossible to construct alternative wavelet

bases with better properties than the Haar basis, such as good time±frequency localization,

various degrees of smoothness (i.e. high regularity or numbers of continuous derivatives) and large

numbers of vanishing moments (which is important in enabling the sparse representation of broad

classes of functions). The concepts of multiresolutional analysis (see, for example, Jawerth and

Sweldens (1994) and HaÈrdle et al. (1998)) eventually provided the mathematical framework to

develop new wavelet bases.

One of the earlier developments (which was almost unnoticed at the time) was a wavelet family

proposed by Stromberg (1981), whose orthonormal wavelets have in®nite support, an arbitrarily

large number of continuous derivatives and exponential decay. Meyer (1985), unaware of this

earlier work, also developed orthonormal wavelet bases with in®nite support and exponential

decay. A key development was the work of Daubechies (1988, 1992) who derived two families of

orthonormal wavelet bases (the so-called extremal phase and least asymmetric families) which

combine compact support with various degrees of smoothness and numbers of vanishing mo-

ments. These are now the most intensively used wavelet families in practical applications in

statistics. The price paid for compact support is that the corresponding wavelets have only a ®nite

number of continuous derivatives and vanishing moments. The mother wavelets in either family

are essentially indexed in terms of increasing smoothness (regularity) and numbers of vanishing

moments. As the smoothness increases the support correspondingly increases. Figs 1(c) and 1(d)

illustrate the parent couple from the extremal phase family with six vanishing moments.

Coi¯ets (Daubechies, 1993) and spline wavelets (Chui, 1992) are other examples of wavelet
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bases that are used in practice and several additional wavelet families (orthogonal, biorthogonal

and semiorthogonal) have also been developed during the last decade. Overviews of the con-

struction of wavelet bases are, for example, given by Ogden (1997), HaÈrdle et al. (1998) or

Vidakovic (1999).

In general the choice of the wavelet family, and more particularly the regularity properties of

the mother wavelet selected from it, will be motivated by the speci®c problem at hand. But the key

point here is that wavelet families now exist, such as the extremal phase and least asymmetric

families, which are suf®ciently ¯exible to generate, via the choice of a suitably smooth mother

wavelet, `good' wavelet bases for a broad range of function spaces that are encountered in

practical applications. These include function spaces like the HoÈlder and Sobolev spaces of regular

functions, as well as spaces of irregular functions such as those of `bounded variation'. These

considerations are not simply esoteric but are of statistical importance, since these classes of

functions typically arise in practical applications such as the processing of speech, electrocardio-

gram or seismic signals. Mathematically, all these function spaces can be formalized in terms of

the so-called Besov spaces. For rigorous de®nitions and a detailed study of Besov spaces and their

connection to wavelets the reader is referred to Meyer (1992), Wojtaszczyk (1997) or HaÈrdle et al.

(1998). Wavelet-based stochastic models which can be used to simulate a range of functions just

on the boundary of membership of any particular Besov space can be found in Abramovich et al.

(1998, 2000) and Leporini and Pesquet (1998).

In concluding this brief discussion of different wavelet bases, it is also important to appreciate

that multivariate counterparts to unidimensional wavelet bases can be developed. Multivariate

Fig. 1. (a), (b) Haar parent couple and (c), (d) extremal phase parent couple with six vanishing moments
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wavelet bases in Rd (d > 1) are discussed in, for example, Wojtaszczyk (1997) and the construc-

tion of the two-dimensional wavelet bases that are often used in image analysis is described in, for

example, Nason and Silverman (1994), Ogden (1997) or Mallat (1998).

2.3. The discrete wavelet transform
In statistical settings we are more usually concerned with discretely sampled, rather than contin-

uous, functions. It is then the wavelet analogue to the discrete Fourier transform which is of

primary interest and this is referred to as the discrete wavelet transform (DWT).

Given a vector of function values g � (g(t1), . . ., g(t n))9 at equally spaced points ti, the DWT

of g is

d � Wg,

where d is an n 3 1 vector comprising both discrete scaling coef®cients u j0 k and discrete wavelet

coef®cients d jk , and W is an orthogonal n 3 n matrix associated with the orthonormal wavelet

basis chosen. The u j0 k and d jk are related to their continuous counterparts c j0 k and w jk (with an

approximation error of order 1=n) via the relationships c j0 k � u j0 k=
p

n and w jk � d jk=
p

n. The

factor
p

n arises because of the difference between the continuous and discrete orthonormality

conditions. This root factor is unfortunate but both the de®nition of the DWT and the wavelet

coef®cients are now ®xed by convention: hence the different notation used to distinguish between

the discrete wavelet coef®cients and their continuous counterpart. Because of orthogonality of W ,

the inverse DWT (IDWT) is simply given by

g � W 9d,

where W 9 denotes the transpose of W .

If n � 2J for some positive integer J , the DWT and IDWT may be performed through an

ef®cient algorithm developed by Mallat (1989) that requires only order n operations, so both are

computationally fast. In this case, for a given j0, under periodic boundary conditions, the DWT

of g results in an n-dimensional vector d comprising both discrete scaling coef®cients u j0 k ,

k � 0, . . ., 2 j0 ÿ 1, and discrete wavelet coef®cients d jk , j � j0, . . ., J ÿ 1, k � 0, . . ., 2 j ÿ 1.

Often for simplicity j0 is set to 0 as the default in many software implementations and in that case

there is only one discrete scaling coef®cient (the coarsest, simply labelled u0) which is an overall

weighted average of the data. However, we mention here that the choice of j0 can play an impor-

tant role in statistical applications, and that setting it to 0 is not necessarily optimal. We return

to this point in subsequent sections.

We do not provide technical details here of the order n DWT algorithm mentioned above.

Essentially the algorithm is a fast hierarchical scheme for deriving the required inner products

which at each step involves the action of low and high pass ®lters, followed by decimation (the

selection of every even member of a sequence). The IDWT may be similarly obtained in terms of

related ®ltering operations. For excellent accounts of the DWT and IDWT in terms of ®lter

operators we refer to Nason and Silverman (1995), Strang and Nguyen (1996) or Burrus et al.

(1998). It is interesting to note that the fast DWT algorithm also appears in electrical engineering

as subband ®ltering, with the ®lters involved being referred to as quadrature mirror ®lters. Such

methods were constructed during the 1980s independently of, and before, the formal DWT

framework.
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2.4. Wavelet analysis versus Fourier analysis
Analogies are often made between wavelet analysis and Fourier methods and we have already

brie¯y referred to some similarities and differences in previous sections. In one sense wavelet

analysis can be seen as a `re®nement' of Fourier analysis. The key point is that the basic Fourier

transform highlights the spectrum of a function, signal, image etc., but this frequency decomposi-

tion is global rather than localized, whereas the wavelet transform offers a localized frequency

decomposition. It provides information not only on what frequency components are present in a

signal but also when, or where, they are occurring. Wavelets therefore have signi®cant advantages

over basic Fourier analysis when the object under study is non-stationary or inhomogeneous.

There are of course alternative methods to wavelets which provide a localized frequency

decomposition, the most widely used being the windowed or short-term Fourier transform. Here

the signal is ®rst restricted to an interval (with smoothed edges) by multiplying it by a ®xed

window function; then a Fourier analysis of the product is carried out. This process is repeated

with shifted versions of the window function, thus obtaining localized frequency information

throughout the signal. However, since the window width is the same for all frequencies, the

amount of localization remains constant for different frequencies. Wavelet analysis provides an

alternative and preferable solution, since it allows the degree of localization to be automatically

and appropriately adjustedÐlarge window widths are used for analysing low frequency compo-

nents, whereas small window widths are used for investigating high frequency components. The

ability to achieve very good localization in time±frequency, or scale or resolution is one of the

most fundamental reasons why the use of wavelets has become so popular in the last 10 years or

so, especially in signal processing and image analysis.

A formal mathematical comparison of wavelet versus Fourier transforms is provided by Strang

(1993). Here, we illustrate the local nature of wavelets as opposed to the global nature of the basic

Fourier decomposition by using an idealized musical example. The illustration also demonstrates

the kind of results which arise in practice from a wavelet analysis and their interpretation, so

bringing together several of the concepts discussed throughout Section 2.

Consider the `trio for violin, cello and bass' whose `sound score' is given in Fig. 2. Here, for

simplicity, we assume that each instrument is only capable of playing a single note and alter-

nates that with pauses, and also that the sound of a note does not weaken over time and stops

immediately when a note ceases to be played. The sound of a note is a sine wave of a certain

frequency. The note of the violin has the highest frequency, that of the bass the lowest whereas the

cello's spectrum is between the other two. Because notes are alternated with pauses the sound

signal for any instrument is inhomogeneous and so is the combined sound signal produced by the

trio, which is shown in Fig. 3(a).

The spectrum of the trio's sound signal obtained from a Fourier analysis is shown in Fig. 3(b).

We can clearly extract three dominant frequencies corresponding to the violin, cello and bass.

However, the corresponding frequency peaks are quite ¯at since the whole spectrum is essentially

present in the Fourier representation. This is a typical situation when a Fourier analysis is applied

to inhomogeneous signals. Furthermore, although we can recognize the presence of each of the

three instruments, it is not possible to tell whether they are playing together all the time or separ-

ately for some of it, and, if separately, exactly when the cello was playing, etc. This is due to the

global nature of the Fourier basis.

Consider now the DWT of the trio's sound signal (see Fig. 3(c)). Here, as is conventional, the

discrete wavelet coef®cients d jk (as described in Section 2.3) are displayed in the form of a

`pyramid'. The coef®cients at the highest resolution level (the highest value of j) correspond to

the lowest level of the pyramid, the next level up displays the coef®cients at the second highest

resolution and so on upwards through the pyramid. The position of a coef®cient along a line is

8 F. Abramovich, T. C. Bailey and T. Sapatinas



Fig. 2. Sound scores of the trio for (a) violin, (b) cello and (c) bass
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Fig. 3. (a) Combined sound of the trio, (b) spectrum of the trio's sound and (c) DWT of the trio's sound by using
the extremal phase wavelet with six vanishing moments
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indicative of the corresponding wavelet basis function's translate number (indexed by k). As the

resolution decreases the corresponding number of coef®cients is halved at each level. Coef®cients

are plotted as bars, up or down depending on their signs, from a reference line for each level. The

sizes of the bars are relative to the magnitudes of the coef®cients.

The wavelet analysis in Fig. 3(c) `recognizes' the different instruments and separates them on

different resolution levels. In this arti®cial example the frequency of the violin, cello and bass are

respectively 320, 80 and 10, so the violin primarily appears on level 9, the cello on level 7 and

the bass on level 4. In addition to separating the instruments, the magnitudes of the wavelet

coef®cients at different locations on the appropriate resolution level also clearly distinguish when

each instrument enters and when it pauses (compare the individual sound scores in Fig. 2 and the

wavelet decomposition in Fig. 3(c)). If presented solely with the wavelet analysis we might at least

understand what the musical fragment might sound like, whereas that would not be so if we are

presented only with the Fourier analysis of Fig. 3(b).

3. Statistical applications

Here we review some relatively well-established wavelet methods in statistical applications. These

include nonparametric regression, density estimation, inverse problems, changepoint problems

and some specialized aspects of time series analysis. We consider nonparametric regression in the

most detail, since the basic scheme used in that case recurs with appropriate modi®cations in the

other applications.

3.1. Nonparametric regression
Consider the standard univariate nonparametric regression setting

yi � g(ti)� Ei, i � 1, . . ., n, (4)

where Ei are independent N (0, ó 2) random variables. The goal is to recover the underlying

function g from the noisy data yi without assuming any particular parametric structure for g.

One of the basic approaches to nonparametric regression is to consider the unknown function g

expanded as a generalized Fourier series and then to estimate the generalized Fourier coef®cients

from the data. The original nonparametric problem is thus transformed to a parametric problem,

although the potential number of parameters is in®nite. An appropriate choice of basis for the

expansion is therefore a key point in relation to the ef®ciency of such an approach. A `good' basis

should be parsimonious in the sense that a large set of possible response functions can be

approximated well with only a few terms of the generalized Fourier expansion employed. As

already discussed, wavelet series allow a parsimonious expansion for a wide variety of functions,

including inhomogeneous cases. It is therefore natural to consider applying the generalized Fourier

series approach by using a wavelet series.

In what follows, suppose, without loss of generality, that ti are within the unit interval [0, 1].

For simplicity, also assume that the sample points are equally spaced, i.e. ti � i=n, and that the

sample size n is a power of 2: n � 2J for some positive integer J. These assumptions allow us to

perform both the DWT and the IDWT using Mallat's (1989) fast algorithm. For non-equispaced or

random designs, or sample sizes which are not a power of 2 or data contaminated with correlated

noise, modi®cations will be needed to the standard wavelet-based estimation procedures discussed

here (see, for example, Deylon and Juditsky (1995), Neumann and Spokoiny (1995), Wang

(1996), Hall and Turlach (1997), Johnstone and Silverman (1997), Antoniadis and Pham (1998),
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Cai and Brown (1998, 1999), Kovac and Silverman (2000) and von Sachs and MacGibbon

(2000)).

3.1.1. Linear estimation

We consider ®rst linear wavelet estimators of g. Suppose that g is expanded as a wavelet series on

the interval [0, 1] as described in equation (3) with j0 � 0:

g(t) � c0 ö(t)�P1
j�0

P2 jÿ1

k�0

w jk ø jk(t), (5)

where c0 � hg, öi and w jk � hg, ø jki. We use equation (5) instead of equation (3) to simplify the

notation in the following discussion, and because j0 � 0 is the assumption in many software

implementations. The modi®cations that are needed for the more general mathematical framework

are straightforward.

Obviously we cannot estimate an in®nite set of w jk from the ®nite sample, so it is usually

assumed that g belongs to a class of functions with a certain regularity. The corresponding norm

of the sequence of w jk is therefore ®nite and w jk must decay to zero. Then, following the standard

generalized Fourier methodology, it is assumed that

g(t) � c0 ö(t)�PM
j�0

P2 jÿ1

k�0

w jk ø jk(t) (6)

for some M , J , and a corresponding truncated wavelet estimator ĝ M (t) is of the form

ĝ M (t) � ĉ0 ö(t)�PM
j�0

P2 jÿ1

k�0

ŵ jk ø jk(t): (7)

In such a setting, the original nonparametric problem essentially transforms to linear regression

and the sample estimates of the scaling coef®cient and the wavelet coef®cients are given by

ĉ0 � 1

n

Pn

i�1

ö(ti)yi,

ŵ jk � 1

n

Pn

i�1

ø jk(ti)yi:

(8)

In practice of course these estimates may be equivalently obtained via the discrete scaling and

wavelet coef®cients arising from the DWT of y corrected by the factor 1=
p

n as discussed in

Section 2.3.

The performance of the truncated wavelet estimator clearly depends on an appropriate choice

of M . Intuitively it is clear that the `optimal' choice of M should depend on the regularity of the

unknown response function. Too small a value of M will result in an oversmoothed estimator,

whereas setting M � J ÿ 1 simply reproduces the data. In a way, the problem of choosing M has

much in common with model selection, and associated methods such as Akaike's information

criterion or cross-validation may be applied. The problem is also similar to the selection of a

bandwidth in kernel estimation or the smoothing parameter in spline ®tting.

However, it is also clear that truncated estimators will face dif®culties in estimating inhomo-

geneous functions with local singularities. An accurate approximation of these singularities will

require high level terms and, as a result, a large value of M , whereas the corresponding high
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frequency oscillating terms will damage the estimate in smooth regions. In essence, truncation

does not use the local nature of wavelet series and as a result suffers from problems similar to

those of the use of a Fourier sine and cosine basis.

As an alternative, Antoniadis et al. (1994) and Antoniadis (1996) have suggested linear wavelet

estimators, where instead of truncation the ŵ jk are linearly shrunk by appropriately chosen level-

dependent factors. However, even these estimators will not be optimal for inhomogeneous

functions. In fact, Donoho and Johnstone (1998) have shown that no linear estimator will be

optimal (in a minimax sense) for estimating such functions. For further discussion on linear

wavelet estimators we refer, for example, to HaÈrdle et al. (1998) and Antoniadis (1999).

3.1.2. Non-linear estimation

In contrast with the linear wavelet estimators introduced above, Donoho and Johnstone (1994,

1995, 1998) and Donoho et al. (1995) proposed a non-linear wavelet estimator of g based on a

reconstruction from a more judicious selection of the empirical wavelet coef®cients. This

approach is now widely used in statistics, particularly in signal processing and image analysis.

Owing to the orthogonality of the matrix W , the DWT of white noise is also an array of

independent N (0, ó 2) random variables, so from equation (4) it follows that

ŵ jk � w jk � E jk , j � 0, . . ., J ÿ 1, k � 0, . . ., 2 j ÿ 1, (9)

where E jk are independent N (0, ó 2=n) random variables. The sparseness of the wavelet expansion

makes it reasonable to assume that essentially only a few `large' ŵ jk contain information about the

underlying function g, whereas `small' ŵ jk can be attributed to the noise which uniformly

contaminates all wavelet coef®cients. If we can decide which are the `signi®cant' large wavelet

coef®cients, then we can retain them and set all others equal to 0, so obtaining an approximate

wavelet representation of the underlying function g.

The wavelet series truncation considered previously assumes a priori the signi®cance of all

wavelet coef®cients in the ®rst M coarsest levels and that all wavelet coef®cients at higher

resolution levels are negligible. As we have mentioned, such a strong prior assumption depends

heavily on a suitable choice of M and essentially denies the possibility of local singularities in the

underlying function. As an alternative to the assumptions implied by truncation, Donoho and

Johnstone (1994, 1995) suggested the extraction of the signi®cant wavelet coef®cients by thresh-

olding in which wavelet coef®cients are set to 0 if their absolute value is below a certain threshold

level, ë > 0, whose choice we discuss in more detail in Section 3.1.3. Under this scheme we

obtain thresholded wavelet coef®cients

ŵ�jk � äë(ŵ jk),

where

äë(ŵ jk) � ŵ jk I(jŵ jk j. ë) (hard thresholding), (10)

äë(ŵ jk) � sgn(ŵ jk) max(0, jŵ jk j ÿ ë) (soft thresholding): (11)

Thresholding allows the data themselves to decide which wavelet coef®cients are signi®cant.

Hard thresholding is a `keep' or `kill' rule, whereas soft thresholding is a `shrink' or `kill' rule

(Fig. 4). It has been shown that hard thresholding results in a larger variance in the function

estimate, whereas soft thresholding has larger bias. To compromise the trade-off between variance

and bias, Bruce and Gao (1997) suggested a ®rm thresholding that offers some advantages over

both the hard and the soft variants. However, this has a drawback in that it requires two threshold
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values (one for `keep' or `shrink' and another for `shrink' or `kill'), thus making the estimation

procedure for the threshold values more computationally expensive.

Once obtained the thresholded wavelet coef®cients ŵ�
jk

are then used to obtain a selective

reconstruction of the response function. The resulting estimate can be written as

ĝë(t) � ĉ0 ö(t)�PJÿ1

j�0

P2 jÿ1

k�0

ŵ�
jk
ø jk(t):

Often, we are interested in estimating the unknown response function at the observed data points.

In this case the vector ĝë of the corresponding estimates can be derived by simply performing the

IDWT of fĉ0, ŵ�
jk
g and the resulting three-step selective reconstruction estimation procedure can

be summarized by

y !DWTfĉ0, ŵ jkg !thresholding fĉ0, ŵ�
jk
g !IDWT

ĝë: (12)

As mentioned in Section 2.3, for the equally spaced design and sample size n � 2J assumed

throughout this section, both the DWT and the IDWT in procedure (12) can be performed by a fast

algorithm of order n, and so the whole process is computationally very ef®cient.

3.1.3. The choice of threshold

Clearly, an appropriate choice of the threshold value ë is fundamental to the effectiveness of the

procedure described in the previous section. Too large a threshold might cut off important parts of

the true function underlying the data, whereas too small a threshold retains noise in the selective

reconstruction.

Donoho and Johnstone (1994) proposed the universal threshold

ëun � ó
pf2 log(n)g=pn (13)

with ó replaced by a suitable estimate ó̂ derived from the data (see later) when ó is unknown.

Despite the simplicity of such a threshold, Donoho and Johnstone (1994) showed that for both

hard and soft thresholding the resulting non-linear wavelet estimator is asymptotically nearly

minimax in terms of expected mean-square error of L2-risk. Moreover, for inhomogeneous

functions it outperforms any linear estimator, including the truncated and shrunk linear wavelet

Fig. 4. (a) Hard and (b) soft thresholding rule for ë � 1
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estimators discussed in Section 3.1.1. The interested reader can ®nd a rigorous mathematical

treatment of these issues in Donoho and Johnstone (1994, 1995, 1998) or HaÈrdle et al. (1998).

Although it has good asymptotic properties, the universal threshold depends on the data only

through ó (or its estimate). Otherwise, it essentially ignores the data and cannot be `tuned' to a

speci®c problem at hand. In fact, for large samples it may be shown that ëun will remove with high

probability all the noise in the reconstruction, but part of the real underlying function might also

be lost. As a result, the universal threshold tends to oversmooth in practice.

To improve the ®nite sample properties of the universal threshold, Donoho and Johnstone

(1994) suggested that we should always retain coef®cients on the ®rst j0 `coarse' levels even if

they do not pass the threshold. Simulation results of Abramovich and Benjamini (1995) and

Marron et al. (1998) show that the choice of j0 may affect the mean-squared error performance

for ®nite samples, and small or large j0 are respectively suitable for smooth or inhomogeneous

functions. In a sense j0 plays the role of the bandwidth in kernel estimation, so theoretically its

choice should be based on the smoothness of the underlying function. Hall and Patil (1996a) and

Efromovich (1999) proposed to start thresholding from the resolution level j0 � log2(n)=(2r � 1),

where r is the regularity of the mother wavelet. Hall and Nason (1997) suggested that a non-

integer resolution level j0 should be considered, using a generalization of the wavelet series

estimator due to Hall and Patil (1996b).

Various alternative data-adaptive thresholding rules have also been developed. For example,

Donoho and Johnstone (1995) proposed a SureShrink thresholding rule based on minimizing

Stein's unbiased risk estimate, whereas Weyrich and Warhola (1995), Nason (1996) and Jansen

et al. (1997) have considered cross-validation approaches to the choice of ë. From a statistical

viewpoint, thresholding is closely related to multiple-hypotheses testing, since all the coef®cients

are being simultaneously tested for a signi®cant departure from 0. This view of thresholding is

developed in Abramovich and Benjamini (1995, 1996) and Ogden and Parzen (1996a, b).

Further modi®cations of the basic thresholding scheme include level-dependent and block

thresholding. In the ®rst case, different thresholds are used on different levels, whereas in the

second the coef®cients are thresholded in blocks rather than individually. Both modi®cations

imply better asymptotic properties of the resulting wavelet estimators (see, for example, Donoho

and Johnstone (1995, 1998), Hall et al. (1998), Cai and Silverman (1998) and Cai (1999)).

Various Bayesian approaches for thresholding and non-linear shrinkage in general have also

recently been proposed. These have been shown to be effective and it is argued that they are less ad

hoc than the proposals discussed above. In the Bayesian approach a prior distribution is imposed

on the wavelet coef®cients. The prior model is designed to capture the sparseness of wavelet

expansions that is common to most applications. Then the function is estimated by applying a

suitable Bayesian rule to the resulting posterior distribution of the wavelet coef®cients. Different

choices of loss function lead to different Bayesian rules and hence to different non-linear shrink-

ages. For more details, we refer the reader to Chipman et al. (1997), Abramovich et al. (1998),

Clyde and George (1998), Clyde et al. (1998), Crouse et al. (1998), Johnstone and Silverman

(1998), Vidakovic (1998a) and Vannucci and Corradi (1999). Comprehensive reviews on Bayesian

wavelet regression are given by Vidakovic (1998b) and Abramovich and Sapatinas (1999).

As commented earlier, in practice the noise level ó, which is needed in all these thresholding

procedures, is rarely known and must therefore be estimated from the data. The most commonly

employed estimate follows that used by Donoho and Johnstone (1994), where ó is robustly

estimated by the median absolute deviation of the estimated wavelet coef®cients at the ®nest level

ŵJÿ1,k , k � 0, . . ., 2Jÿ1 ÿ 1, divided by 0.6745. In the Bayesian context, a prior can be placed on

ó and a hierarchical Bayesian model considered (see, for example, Clyde et al. (1998) and

Vidakovic (1998a)).
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3.1.4. An illustration of nonparametric regression

Here we use an often-quoted simulation example to illustrate the use of non-linear wavelet

estimation in nonparametric regression (see Section 3.1.2) in conjunction with the standard

universal threshold (see Section 3.1.3).

The `Heavisine' function is one of four functions introduced by Donoho and Johnstone (1994,

1995) which together characterize different important features of the inhomogeneous signals

arising in electrocardiogram, speech recognition, spectroscopy, seismography and other scienti®c

®elds and which are therefore useful for testing various wavelet-based estimation procedures. Fig.

5(a) shows the Heavisine function sampled at 1024 data points uniformly spaced on [0, 1],

whereas Fig. 5(b) shows its wavelet decomposition using the Daubechies extremal phase wavelet

with six vanishing moments. Figs 5(c) and 5(d) respectively show the Heavisine function of Fig.

5(a) corrupted with independent random noise N (0, ó 2) (with a root signal-to-noise ratio of 7),

and its corresponding wavelet decomposition based on the same wavelet. The results of using the

universal threshold with ó estimated as discussed in Section 3.1.3 and the associated reconstruc-

tion of the Heavisine function are shown in Figs 5(f) and 5(e) respectively.

Because the size of wavelet coef®cients can vary considerably between resolution levels, it is

common to display them visually on a scale which is relative to the level rather than absolute over

all levels, and this practice has been followed in Figs 5(b), 5(d) and 5(e).

3.2. Density estimation
The ideas discussed in relation to nonparametric regression can also be applied to other related

statistical problems, and an obvious example is density estimation.

Let x1, . . ., xn be observations of an unknown density f supported on the unit interval [0, 1].

Consider the wavelet series expansion of f :

f (x) � c0 ö(x)�P1
j�0

P2 jÿ1

k�0

w jk ø jk(x), (14)

where c0 � h f , öi and w jk � h f , ø jki. Again, we choose j0 � 0 for convenience here; in prac-

tice it may not necessarily be the best choice, but modi®cations for the more general case are

straightforward.

For an unknown density f , sample estimates of the scaling and wavelet coef®cients are

obtained from the method-of-moments estimates:

ĉ0 � 1

n

Pn

i�1

ö(xi),

ŵ jk � 1

n

Pn

i�1

ø jk(xi):

(15)

Note that these estimates are not the same as those derived via the usual DWT in Section 3.1.1.

By analogy with the method discussed in relation to nonparametric regression in Section 3.1.1,

a linear wavelet estimator for the density f is obtained by truncating the in®nite series in equation

(14) for some positive M :

f̂ M (x) � ĉ0 ö(x)�PM
j�0

P2 jÿ1

k�0

ŵ jk ø jk(x): (16)

Again the choice of M is a key point and may be arrived at by the use of one of several model

selection procedures (for further details see, for example, Walter (1994), Tribouley (1995),

Antoniadis (1999) and Vannucci and Vidakovic (1999)).
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Fig. 5. (a) Heavisine function sampled at 1024 data points uniformly spaced on [0, 1]; (b) wavelet decomposition
of (a) by using the extremal phase wavelet with six vanishing moments; (c) Heavisine function corrupted with
independent random noise N(0, ó 2) (root signal-to-noise ratio 7); (d) wavelet decomposition of (c) by using the
extremal phase wavelet with six vanishing moments; (e) reconstruction of the Heavisine function based on (f) the
universal threshold applied to (d)
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As in nonparametric regression, any linear wavelet estimator (a truncated one in particular)

faces dif®culties when dealing with inhomogeneous densities. Donoho et al. (1996) and HaÈrdle

(1998) therefore proposed a non-linear thresholded estimator which is analogous to that consid-

ered for nonparametric regression in Section 3.1.2. The basic thresholding idea is the same as

discussed there and the corresponding estimator takes the form

f̂ ë(x) � ĉ0 ö(x)�PJÿ1

j�0

P2 jÿ1

k�0

ŵ�
jk
ø jk(x): (17)

However, it is important to note that the thresholds for density estimation need to be different from

those used in nonparametric regression because the statistical model (9) for empirical wavelet

coef®cients does not hold in the case of density estimation. Donoho et al. (1995) suggested a

simple threshold ë � 2C log(n)=
p

n, with C � sup j, kf2ÿ j=2jø jk(x)jg. As an alternative, Donoho

et al. (1996) have considered a truncated thresholded estimator with M � J ÿ log(J ) and level-

dependent thresholds ë j � A
p

( j=n), j < M , where A is an appropriately chosen constant. Both

rules give rise to similar optimal properties for the corresponding wavelet estimators of the

unknown density f (for rigorous de®nitions and statements, see Donoho et al. (1995, 1996) and

HaÈrdle et al. (1998)).

Another possible approach suggested by Donoho et al. (1996) is to modify the density

estimation problem so that it is closer to that of nonparametric regression and then to use the

thresholding techniques described in the Section 3.1.3. This is achieved by partitioning the unit

interval [0, 1] into n=4 equally spaced intervals. Let ni be the number of xi falling in the ith

interval and de®ne

yi � 2
p

(ni � 3=8):

Then, for large n, yi are observations on approximately independent normal random variables with

means 2
p

f (i=n) and unit variances. Thus, we can apply the wavelet-based thresholding procedure

from the previous subsection to estimate
p

f from yi and then square the result to obtain an

estimate of f .

This last method also suggests the general idea that, instead of estimating the unknown density

directly, we could estimate appropriate transformations of it. For example, Pinheiro and Vidakovic

(1997) have proposed an alternative method to estimate its square root. A Bayesian approach to

density estimation has also been proposed by MuÈller and Vidakovic (1998). They parameterized

the unknown density by a wavelet series on its logarithm and proposed a prior model which

explicitly de®nes geometrically decreasing prior probabilities for non-zero wavelet coef®cients at

higher resolution levels.

3.3. Inverse problems
Some interesting scienti®c applications involve indirect noisy measurements. For example, the

primary interest might be in a function g, but the data are only accessible from some linear

transformation Kg and, in addition, are corrupted by noise. In this case, the estimation of g from

indirect noisy observations y � (y1, . . ., yn)9 is often referred to in statistics as a linear inverse

problem. Such linear inverse problems arise in a wide variety of scienti®c settings with different

types of transformation K. Examples include applications in estimating ®nancial derivatives, in

medical imaging (the Radon transform), in magnetic resonance imaging (the Fourier transform)

and in spectroscopy (convolutional transformations). Typically such problems are referred to as ill

posed when the naõÈve estimate of g obtained from the inverse transform Kÿ1 applied to an

estimate of Kg fails to produce reasonable results because Kÿ1 is an unbounded linear operator
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and the presence of even small amounts of noise in the data `blow up' when the straightforward

inversion estimate is used.

3.3.1. Singular value decomposition approach

Ill-posed problems may be treated by applying regularization procedures based on a singular value

decomposition (SVD); see Tikhonov and Arsenin (1977) for the general theory and O'Sullivan

(1986) for a more speci®cally statistical discussion.

Suppose that we observe Kg at equally spaced points ti � i=n, where the sample size is a

power of 2. We assume that K is a linear operator and, in addition, the data are corrupted by noise,

so the observed data yi are

yi � (Kg)(ti)� Ei, i � 1, . . ., n, (18)

where Ei are independent N (0, ó 2) random variables.

The basic idea of the SVD approach is the use of a pseudoinverse operator (K�K)ÿ1 K�, where

K� is the adjoint operator to the operator K. The unknown g is expanded in a series of

eigenfunctions e j of the operator K�K as say

g(t) �P1
j�1

ãÿ1
j
hKg, h ji e j(t) �P1

j�1

a j e j(t), (19)

where ã2
j

are the eigenvalues of K�K and h j � Ke j=kKe jk. Ill-posed problems are characterized

by the fact that the eigenvalues ã2
j
! 0. Given discrete noisy data, we ®nd sample estimates

â j � ãÿ1
j

1

n

Pn

i�1

h j(ti)yi

and consider the truncated SVD estimator

ĝSVD
M

(t) �PM
j�1

â j e j(t)

for some positive M . Johnstone and Silverman (1990, 1991) showed that a properly chosen

truncated SVD estimator is asymptotically the best estimator (in a minimax sense) for classes of

functions that display homogeneous variation.

Note, however, that in SVD the corresponding basis is de®ned entirely by the operator K and

essentially ignores the speci®c physical nature of the problem under study. For example, various

stationary operators K result in the Fourier sine and cosine series which will not be appropriate if

the underlying function g is inhomogeneous. For such functions, even for the optimally chosen

M , dif®culties will be experienced with the SVD estimator.

3.3.2. Wavelet-based decomposition approaches

In response to these limitations of the SVD, both Donoho (1995) and Abramovich and Silverman

(1998) have suggested using a wavelet basis instead of the eigenfunction basis. Both of these

wavelet approaches are based on similar ideas.

In the Abramovich and Silverman (1998) approach Kg is expanded in a wavelet series:

(Kg)(t) � c0 ö(t)�P1
j�0

P2 jÿ1

k�0

w jk ø jk(t), (20)

where the scaling function ö and wavelets ø jk are constructed so that they belong to the range of
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K for all j and k, and where c0 � hKg, öi and w jk � hKg, ø jki. As in nonparametric regression,

empirical estimates ĉ0 and ŵ jk can be obtained via the DWT of the data vector y and, as in

equation (9), we have ŵ jk � w jk � E jk , where E jk are independent N (0, ó 2=n) random variables.

Following the general scheme discussed in Section 3.1.2, ŵ jk are thresholded via some suitable

rule ŵ�
jk
� äë(ŵ jk) providing an estimate for Kg as

cKg(t) � ĉ0 ö(t)�PJÿ1

j�0

P2 jÿ1

k�0

ŵ�
jk
ø jk(t): (21)

To obtain an estimate of g itself, equation (21) is now mapped back by Kÿ1, obtaining

ĝ(t) � ĉ0 Ö(t)�PJÿ1

j�0

P2 jÿ1

k�0

ŵ�
jk
Ø jk(t), (22)

where Ö � Kÿ1ö and Ø jk � Kÿ1ø jk . As can be seen, the estimator (22) is essentially a `plug-in'

estimator.

In most cases of practical interest the operator K is homogeneous, i.e. for all t0 it satis®es

K[gfa(t ÿ t0)g] � aÿá(Kg)fa(t ÿ t0)g
for some constants a and á, where á is referred to as the index of the operator. Examples of

homogeneous operators include integration, fractional integration, differentiation and (in the two-

dimensional case with an appropriate co-ordinate system) the Radon transform. Ill-posed problems

are characterized by a positive index for K. For homogeneous operators K we have

Ø jk(t) � Kÿ1fø jk(t)g � 2á j2 j=2 Ø(2 j t ÿ k),

so Ø jk are also translations and dilations of a single mother function Ø � Kÿ1ø. Unlike wavelets,

Ø jk are not mutually orthogonal and such `wavelet-like' sets of functions have been referred to as

vaguelettes. Because of this, the approach of Abramovich and Silverman (1998) is sometimes

referred as vaguelette±wavelet decomposition (VWD).

A practically important example of an inverse problem is the estimation of the derivative of a

function g. This ®ts into the above framework if we think of Kg as being Kg9 in equation (18)

where K is the integration operator (á � 1). The resulting VWD estimator of g9 will then be of

the form

ĝ9(t) � ĉ0 ö9(t)�PJÿ1

j�0

P2 jÿ1

k�0

ŵ�
jk
ø9jk(t),

i.e.

ĝ9(t) � ĉ0 ö9(t)�PJÿ1

j�0

2(3=2) j
P2 jÿ1

k�0

ŵ�
jk
ø9(2 j t ÿ k), (23)

where ĉ0 and ŵ jk are derived via the DWT of a data vector y of observed values of g.

It is intuitively clear that for ill-posed problems the estimator (21) of Kg to be `plugged into'

equation (22) should be smoother than that chosen if the purpose was simply to estimate Kg itself.

Thus, a larger threshold should be used in deriving the thresholded wavelet coef®cients ŵ�
jk

in

inverse problems than that used in nonparametric regression. Indeed, for a homogeneous operator

of index á, Abramovich and Silverman (1998) have shown that a universal threshold which is

asymptotically optimal (in the minimax sense) is given by

ëáun � ó
pf2(1� 2á) log(n)g=pn, (24)
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which is somewhat larger than that used in standard nonparametric regression, given in equation

(13) (for rigorous formulations and details, see Abramovich and Silverman (1998)). In particular,

for estimation of a function's derivative in equation (23) the corresponding universal threshold

would be ó
pf6 log(n)g=pn.

In contrast with the approach of Abramovich and Silverman (1998), that of Donoho (1995) is

often referred to as wavelet±vaguelette decomposition (WVD), since it is the unknown function g

itself, rather than Kg, which is expanded in a wavelet series. One then constructs a vaguelette

series of Ø jk � Kø jk for Kg, ®nds corresponding empirical vaguelette coef®cients and then

applies suitable thresholding rules to them to derive a vaguelette estimator of Kg. Mapping this

back by Kÿ1 yields the resulting estimator of g. A good example of a practical application is given

by Kolaczyk (1996) who considered in detail the WVD for the Radon transform that arises in

positron emission tomography. It is important to note that, unlike wavelets, vaguelettes are not

mutually orthogonal or normalized: hence vaguelette coef®cients in the WVD are not in general

independent; nor do they have equal variances and the thresholding procedure therefore needs to

be correspondingly modi®ed. For a homogeneous operator of index á, Donoho (1995) has shown

that the variances of the vaguelette coef®cients on the jth level increase like 22á j as a direct

consequence of the ill-posedness of the inverse problem and therefore that level-dependent

thresholds proportional to 2á j should be used. It follows from the results in Abramovich and

Silverman (1998) that level-dependent thresholds ë j � 2á jëáun, where ëáun is de®ned as in equation

(24), result in an optimal WVD estimator. Johnstone (1999) has also considered the WVD with

the SureShrink thresholding rule mentioned in Section 3.1.3.

3.4. Changepoint problems
The good time±frequency localization of wavelets provides a natural motivation for their use in

changepoint problems. Here the main goal is the estimation of the number, locations and sizes of a

function's abrupt changes, such as sharp spikes or jumps. Changepoint models are used in a wide

set of practical problems in quality control, medicine, economics and physical sciences. The

detection of edges and the location of sharp contrast in digital pictures in signal processing and

image analysis also fall within the general changepoint problem framework (see, for example,

Mallat and Hwang (1992) and Ogden (1997)).

The general idea used to detect a function's abrupt changes through a wavelet approach is based

on the connection between the function's local regularity properties at a certain point and the rate

of decay of the wavelet coef®cients near this point across increasing resolution levels (see, for

example, Daubechies (1992), section 2.9, and Mallat and Hwang (1992)). Local singularities are

identi®ed by `unusual' behaviour in the wavelet coef®cients at high resolution levels at the

corresponding location. Such ideas are discussed in more detail in, for example, Wang (1995) and

Raimondo (1998). Bailey et al. (1998) have provided an example of related work in detecting

transient underwater sound signals.

Antoniadis and Gijbels (2000) have also proposed an `indirect' wavelet-based method for

detecting and locating changepoints before curve ®tting. Conventional function estimation tech-

niques are then used on each identi®ed segment to recover the overall curve. They have shown

that, provided that discontinuities can be detected and located with suf®cient accuracy, detection

followed by wavelet smoothing enjoys optimal rates of convergence.

Bayesian approaches using wavelets have also been suggested for estimating the locations and

magnitudes of a function's changepoints and are discussed by Richwine (1996) and Ogden and

Lynch (1999). These place a prior distribution on a changepoint and then examine the posterior

distribution of the changepoint given the estimated wavelet coef®cients.
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3.5. Time series analysis
Some of the wavelet techniques discussed in previous sections are clearly of potential use in

various aspects of the analysis of time series and excellent overviews of wavelet methods in time

series analysis generally can be found in, for example, Morettin (1996, 1997), Priestley (1996) or

Percival and Walden (1999). In this section we focus on the use of wavelet methods to address

some more specialized aspects of time series analysis, in particular the exploration of spectral

characteristics.

3.5.1. Spectral density estimation for stationary processes

Consider a real-valued, stationary, Gaussian random process Y1, Y2, . . . with zero mean and

covariance function R( j) � cov(Yk , Yk� j). An important tool in the analysis of such a process is

its spectral density (or power spectrum function) f (ù), which is the Fourier transform of the

covariance function R( j):

f (ù) � R(0)� 2
P1
j�0

R( j) cos(2ð jù): (25)

Given n observations y1, . . ., yn, the sample estimator of the spectral density is the sample

spectrum or periodogram I(ù). This is essentially the square of the discrete Fourier transform of

the data and it is typically computed at the `fundamental' frequencies ù j � j=n, j � 0, . . ., n=2,

in which case

I(ù j) � 1

n

���� Pn

k�1

yk expfÿ2ið(k ÿ 1)ù jg
����2, ù j � j=n, j � 0, . . ., n=2:

I(ù) is an asymptotically unbiased estimate of f (ù), but it is not a consistent estimate and it is

usually suggested that the periodogram should be smoothed to estimate the spectral density.

Wahba (1980) proposed as an alternative that logfI(ù)g should be smoothed to estimate

logf f (ù)g, since the log-transformation stabilizes the variance, and this modi®cation is now

commonly adopted in practice.

The conventional smoothing is based on kernel estimation, but wavelet-based techniques can

also be used for estimating logf f (ù)g from logfI(ù)g. Moulin (1993) and Gao (1997) proposed

wavelet shrinkage procedures for estimating logf f (ù)g, and then exponentiating to obtain an

estimate of f (ù). Using ideas similar to those discussed in previous sections, one expands

logfI(ù)g as a wavelet series, thresholds the resulting empirical wavelet coef®cients ŵ jk and then

performs the inverse transform to estimate logf f (ù)g. Wahba (1980) showed that at coarse levels

ŵ jk are approximately N (w jk , ð2=6n), where w jk are the `true' wavelet coef®cients of logf f (ù)g,
so thresholds for model (9) in nonparametric regression can be applied. For high resolution levels,

the above approximation does not hold and so some caution is needed when choosing appropriate

thresholds for those levels. Gao (1997) suggested level-dependent thresholds:

ë j � max
ð
pf2 log(n)gp

(6n)
,

log(2n)

2(Jÿ jÿ3)=4

� �
, j � 0, 1, . . ., J ÿ 2, (26)

where n � 2J . The ®rst element of the left-hand side of equation (26) is just the universal

threshold (13) which is essentially used for coarse levels where Gaussian approximation applies;

the second term is used for ®ne resolutions. The highest resolution level speci®ed in equation (26)

is J ÿ 2, since the sample spectral density is computed at only n=2 points.
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Moulin (1993) has suggested alternative level-dependent thresholds based on a saddlepoint

approximation to the distribution of the sample wavelet coef®cients of logfI(ù)g. In addition,

Walden et al. (1998) have suggested a wavelet thresholding procedure for spectral density estim-

ation which is based on an alternative approach to the use of the log-periodogram.

3.5.2. Wavelet analysis of non-stationary processes

The conventional theory of spectral analysis discussed in Section 3.5.1 applies only to stationary

processes. The spectral characteristics of non-stationary processes change over time, so these

processes do not have a spectral density as de®ned through equation (25). Instead, it is natural to

consider the evolution of their spectral properties in time. Owing to their localization in both the

time and the frequency, or scale or resolution domains, wavelets are a natural choice for this

purpose. Recently, there has been growing interest in wavelet analysis of non-stationary processes,

particularly in so-called `locally stationary' processes (see, for example, Neumann (1996), von

Sachs and Schneider (1996), Neumann and von Sachs (1997) and Nason et al. (2000)).

By analogy with the periodogram which is the square of the discrete Fourier transform of the

data, we can de®ne a wavelet periodogram as the square of the DWT of the data (in fact, it is

preferable to de®ne the wavelet periodogram via the non-decimated wavelet transform (NWT) of

the data mentioned subsequently in Section 4). The wavelet periodogram may then be used as a

tool for analysing how the spectral characteristics of a process change in time. As in the case of

stationary time series, the wavelet periodogram needs to be denoised to obtain a consistent

estimate, and that is achieved through appropriate thresholding procedures. For a discussion and

more details we refer to Nason and von Sachs (1999). More general coverage of wavelet methods

in the analysis of non-stationary time series may be found in Priestley (1996), Morettin (1997) or

Percival and Walden (1999).

4. Extensions

Section 3 has reviewed some of the more commonly used wavelet methods in statistics. Here we

very brie¯y discuss various extensions and developments to those techniques.

Perhaps the ®rst point to emphasize is that in Section 3 we have focused only on unidimen-

sional wavelet methods. As commented earlier, in Section 2, multivariate wavelet bases may be

constructed (see, for example, Wojtaszczyk (1997)) and multidimensional counterparts to some of

the methods discussed in Section 3 may therefore be developed. A primary use of such techniques

has been in image analysis (see, for example, Nason and Silverman (1994), Ogden (1997) and

Mallat (1998)).

Previous sections of this paper have also focused on the application of the DWT in various

statistical problems. One particular problem with the DWT is that, unlike the discrete Fourier

transform, it is not translation invariant. This can lead to Gibbs-type phenomena and other

artefacts in the reconstruction of a function. Very recently, alternatives to the DWT have been

developed and used in statistical applications with the objective of obtaining a better representa-

tion of the object under study (function, image, spectral density etc.). The NWT (also called the

undecimated, or translation invariant or stationary wavelet transform) is one example.

The NWT of the data vector y � (y1, . . ., yn)9 at equally spaced points ti � i=n is de®ned as

the set of all DWTs formed from the n possible shifts of the data by amounts i=n, i � 1, . . ., n.

Thus, unlike the DWT, where there are 2 j coef®cients on the jth resolution level, in the NWT

there are n equally spaced wavelet coef®cients

Wavelet Analysis 23



~w jk � nÿ1
Pn

i�1

2 j=2 øf2 j(i=nÿ k=n)gyi, k � 0, . . ., nÿ 1,

on each resolution level j. This results in log2(n) coef®cients at each location. As an immediate

consequence, the NWT enjoys translation invariance. Owing to its structure, the NWT implies a

®ner sampling rate at all levels (especially for low and medium resolution levels) and, as a result,

provides a better exploratory tool for analysing changes in the scale or frequency behaviour of the

underlying signal in time. For comparison, Figs 6(a) and 6(b) respectively show the DWT and

NWT of the trio for violin, cello and bass considered in Section 2.4.

However, one should appreciate that the set of wavelet coef®cients arising from the NWT is

overcomplete (n log2(n)) and therefore does not imply a unique inverse transform. There are two

possible approaches to the construction of an inverse transform to the NWT: one is based on

choosing the `best' shifted DWT basis among all present in the NWT, whereas the second averages

all reconstructions obtained by all shifted DWTs. Fast algorithms of the order n log2(n) for

performing NWT and `inverse' NWT exist (see, for example, Percival and Guttorp (1994),

Coifman and Donoho (1995) and Nason and Silverman (1995)). The advantages of the NWT over

the DWT in nonparametric regression and time series analysis are demonstrated, for example, in

Coifman and Donoho (1995), Nason and Silverman (1995), Lang et al. (1996), Johnstone and

Fig. 6. (a) DWT and (b) NWT of the trio's sound in Fig. 3(a) by using the extremal phase wavelet with six
vanishing moments

24 F. Abramovich, T. C. Bailey and T. Sapatinas



Silverman (1997, 1998), Percival and Mofjeld (1997), Berkner and Wells (1998) and Nason et al.

(2000).

Further and less-well-developed extensions to standard wavelet analyses in statistical applica-

tions also exist which we do not follow up here. The reader is referred, for example, to Donoho

(1993), McCoy and Walden (1996), Serroukh et al. (1998), Antoniadis et al. (1999), Percival and

Walden (1999) and Silverman (1999) for discussions of some of these possibilities. We should

particularly mention that, although wavelets are the best-known alternative to a traditional Fourier

representation, they are not only one. Multiple wavelets, wavelet packets, cosine packets, chirplets

and warplets are examples from the ever growing list of available waveforms of different types

that may be used to decompose a function in interesting and informative ways. As Mallat (1998)

pointed out, there is a danger that creating new basis families may become just `a popular new

sport' if it is not motivated by applications. However, some of these techniques have already found

use in statistical problems (see, for example, Downie and Silverman (1998), Walden and Contreras

Cristan (1998) and Nason and Sapatinas (1999)) and that trend will undoubtedly continue.

5. Conclusions

The objective of this paper was to increase familiarity with basic wavelet methods in statistical

analysis, and to provide a source of references to those involved in the kinds of data analysis

where wavelet techniques may be usefully employed. We hope that we have demonstrated that

wavelets can be, and are being, used to good effect to address substantial problems in a variety of

areas, and also that such methods have reached the stage where they may be considered another

standard tool of the applied statistician, rather than a research novelty.

We also emphasize that wavelet methods are now easily accessible. We have deliberately not

referred much in this paper to speci®c wavelet software, for the simple reason that, like most other

software, once described it tends to be superseded by more versatile and powerful alternatives.

Nevertheless we should make it clear that there are many readily available wavelet-based software

packages which are being continuously developed. Among those commonly used by statisticians

the most versatile include WaveThresh (see Nason and Silverman (1994)), S�Wavelets (see

Bruce and Gao (1996)) and Wavelab (see Buckheit and Donoho (1995)). The ®rst two are

designed to run in conjunction with S-PLUS, the latter within MatLab.

Finally, in summary to what has been a fairly lengthy and wide ranging paper, we note that the

numerous references included clearly demonstrate a wide and growing interest in the use of

wavelets in statistics. There have already been three major international conferences on wavelet

methods in statistics (at Grenoble, in November 1994, Canberra, in June 1995, and Durham, North

Carolina, in October 1997) and two edited volumes (Antoniadis and Oppenheim, 1995; MuÈller

and Vidakovic, 1999). Wavelets have also been the subject of several important sessions in other

major international conferences or specialized discussion meetings (e.g. `Wavelets: the key to

intermittent information', organized by the Royal Society, London, in February 1999). Such high

pro®le exposure demonstrates the scienti®c importance that is attached to the subject and a

signi®cant part of that interest is concerned with statistical applications. Although there is scope

for the development and re®nement of wavelet-based methodologies in statistics, there is no doubt

that the `smooth wiggly function' is here to stay.
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