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Abstract 

Smoothing splines are one of the most popular approaches to nonparametric regression. 
Wahba (J. Roy. Statist. Soc. Set. B 40 (1978) 364-372; 45 (1983) 133-150) showed that 
smoothing splines are also Bayes estimates and used the corresponding prior model to derive 
interval estimates for the regression function. Although the interval estimates work well on 
a global basis, they can have poor local properties. The source of this problem is the use of 
a global smoothing parameter. We introduce the notion of L k- smoothing splines. These splines 
allow for a variable smoothing parameter and can substantially improve local inference. 

A M S  Subject Classification: 62G05, 62G15 

Keywords: Bayesian linear model; Confidence interval; L-spline; Variable smoothing 
parameter 

1. Introduction 

Consider  the s tandard nonparametr ic  regression setting 

y(ti) = g(ti) + el, i = 1, . . . ,  n, (1.1) 

where 0 ~< tl < - . .  < t. ~< 1, {ei} are i.i.d, normal  variables with zero mean and 
variance a 2 and we wish to estimate the response function g(. ) from the data  without 

assuming any particular parametric  form for g. 

When  g(. ) is assumed to be ' reasonably smooth ' ,  an effective estimation method is 
spline smoothing,  formulated by Schoenberg (1964) and Reinsch (1967) and developed 
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by many authors (see Eubank, 1988; Wahba, 1990 for a detailed survey). The basic 
idea of spline smoothing is to find an estimate which fits the data but at the same time 
is a 'smooth' function. A standard measure of an estimate's goodness-of-fit to the data 
is the residual sum of squares, RSS = ~ =  l(Yi - ~ (ti)) z, while a natural measure of its 
smoothness is J'0 ~")(t)Edt. 

A smoothing spline estimate ~ is defined formally as a minimizer of a weighted sum 
of these two usually contradictory criteria 

;o } min (y i - f ( t i ) )  2 + k 2 (f(m)(t))2dt (1.2) 
i=1 

over all functions from W~ -- {f :  f e  Cm-~[0, 1], f~")e L2[0, 1]}. The smoothing 
parameter k 2 controls the trade-off between fidelity to the data and the smoothness of 
the estimate. It is well known that the solution of (1.2) is unique and is a natural 
polynomial spline of degree (2m - 1) with knots {t~}. 

The idea of using a smoothing spline as an estimate of the unknown response 
function g(.) originated from research in the theory of function approximation. 
Wahba (1978, 1983) demonstrated an attractive statistical interpretation for g. She 
proved that 0 may be viewed as a Bayes estimate of g with respect to a certain prior on 
the class of possible response functions. The Bayesian approach allows one not only to 
estimate the unknown function, but also to provide error bounds by constructing the 
corresponding Bayesian point-wise probability intervals (Wahba, 1983; Wecker and 
Ansley, 1983; Silverman, 1985; Ansley et al., 1993). 

Wahba (1983) studied several examples by Monte Carlo simulation and found that 
the Bayesian intervals for smoothing splines had valid coverage properties as confi- 
dence intervals for the unknown function. However, in her discussion of Silverman 
(1985), Wahba noted that the coverage probabilities do not hold at each individual 
point, but rather are valid when averaged across the entire curve. She found that the 
true coverage could fall far short of the nominal level at points where 'there is an 
unusual large local curvature, or worse, a kink in the curve'. Nychka (1988) reanalyzed 
Wahba's examples and showed that bias, although generally the modest part of the 
mean squared error, increases significantly in these regions. The increase in bias 
occurs because of the global value of the smoothing parameter k 2, which is appropri- 
ate on the average across all the points, but does not adapt to the local behavior of the 
function in regions of high curvature, where the polynomial spline with global 
k 2 tends to oversmooth. This feature is especially problematic in interval estimation. 
Use of a global smoothing parameter leads to intervals whose widths do not depend 
on the degree of local curvature and thus fail to correctly reflect such bias. The 
coverage probabilities are correct on average because they are too low at points of 
high curvature and too high at points of low curvature. 

Our major goal in this paper is to modify the smoothing spline approach so that we 
can find interval estimates that do not suffer from the problems noted above. We 
consider the use of Lk-splines, which employ a variable smoothing parameter. The 
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Lk-spline estimates can reduce the bias in regions of high curvature by reducing the 
penalty for lack of smoothness; where curvature is low, the estimate emphasizes 
smoothness and reduces the variance. Moreover, the differing emphases on smooth- 
ness are reflected in the Bayesian interval estimates, which are now wider in regions of 
high curvature and greatly improve pointwise coverage properties. From a Bayesian 
standpoint, the Lk-spline can be seen as a vehicle for a more accurate expression of 
prior belief about g. 

In Section 2 we generalize the definition (1.2) to the case of a variable smoothing 
parameter and discuss basic properties of the proposed estimator, which turns 
out to be a natural L-spline for a certain differential operator Lk. Section 3 is 
devoted to a Bayesian model that leads to the Lk-Smoothing spline as the posterior 
mean of the true function. This section helps clarify the motivation for using a 
variable smoothing parameter, extends Wahba's (1978, 1983) model for polynomial 
smoothing splines, and provides intuition for the subsequent smoothing algorithm. In 
Section 4 we describe our Lk-Smoothing spline procedure and consider two examples 
that illustrate the effectiveness of the proposed approach for inference in nonparamet- 
ric regression. 

2. Derivation of the estimator and its basic properties 

Consider the model (1.1). We propose to estimate g(t) as in the smoothing spline 
approach (see (1.2)) but with a variable smoothing parameter. Thus we define our 
estimator 9( ' )  as the minimizer of 

fo 1 (Yi - f(t,)) 2 + k2(t)(ftm)(t))2 dt, (2.1) 
n i = l  

over all functions f from O " ~ = { f : f ~ C m - l [ O , l ] ,  kf(m)~L2[O, 1]}, where the 
smoothing parameter k2(.) ~ L2[O, 1] and is strictly positive. 

This definition is a practically interesting particular case of a more general problem 
where the integral term in (2.2) is replaced by j(Lf) z, where L is some rnth order 
differential operator (Kimeldorf and Wahba, 1971; Wahba, 1985; Kohn and Ansley, 
1983, 1988). 

We derive the estimator in Theorem 1 below. First, though, we need to introduce 
some notation. Define the function Q(s, t) by 

Q(S, t)= f min(s'O(t ~- u)m~-l(S-~u)m-1 1]/2(u)du, 
~o ( m -  1)! ( m -  1)! 

where the roughness function ~kE(t)= likE(t). Let T denote the n x m matrix with 
T u = t ~ - l / ( j  -- 1)!, Q, the n x n  matrix with Qu = Q(t~, t)) and let M = Q, + hi. 

The following theorem gives the explicit derivation of O(t) from (2.1): 
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Theorem 1. The unique element  o f  t2'~ which minimizes (2.1) is 

tr-  1 n 
O(t) = c ~ , - -  + ~ ajQ(ts ,  t), (2.2) 

,=1 ( r -  1)! S=l 

where 

= ( T ' M - 1 T ) - I T ' M  ly, d =  M - l ( I -  T ( T ' M - 1 T )  1 T ' M - ~ ) y .  

The proof follows directly from the general result established in Kimeldorf and 
Wahba (1971, Theorem 5.1) for generalized splines. 

In particular, the vector of fitted values at the data points {ti} is 

= (O(ta) . . . . .  O(tn))'= Ay,  

where A = T ( T ' M - 1 T ) - I T ' M  -1 + QnM 1(1 - T ( T ' M - 1 T ) - I T ' M - 1 ) .  

Repeating Wahba's (1978, 1983) calculations one gets a more convenient repres- 
entation of the matrix A: 

A = I n  - nB'(BQnB' + n l n ) - l B ,  

where B is any (n - m) x n matrix whose n - m rows are orthonormal and orthogonal 
to the columns of T, that is BB'  = I~n-,.) and B T =  0(, m~×.,. 

Kimeldorf and Wahba (1970) showed that the solution of (2.1) with the general 
integral term ~(Lf)Zdt  is a natural L-spline with knots {ti}. Thus, O(t) is a natural 
L-spline for the differential operator Lk = k( t )D m with the set of knots {h}, that is 

L*Lk[O] = ( -- 1)m(k2(t)o¢m)(t)) " )  = 0 (2.3) 

everywhere except, maybe, the data-points {h} and O(t) satisfies the following natural 
boundary conditions: 

(kZ(t) O~m)(t))(V)lt=o = (k2(t)o(m)(t))~v)lt= l = O, p = 0 . . . .  , m - 1. 

From the definition of an L-spline, it follows that an Lk-spline consists of piecewise 
solutions of the 2ruth order linear differential equation (kZ(t)o"n)(t)) tin) = 0joined at the 
knots to provide 0 e C m- 1 and k20 t") • C" 2. Thus, in particular, if k 2 • C q, then 

0 • C p, where p = min(m + q; 2m - 2), which implies a smoother solution than the 
original requirement of being just in C"-1  (see the definition (2.1) of 0). 

For  constant k 2, L*Lk coincides with D TM, the differentiation operator of order 2m, 
and (2.3) yields a piecewise-polynomial solution of order 2m - 1, which together with 
the conditions on knots leads to a 'standard' polynomial spline. 

We end this section by mentioning briefly what happens when we relax the 
requirement that k2(t) in (2.1) is strictly positive and consider the case when k2(t) - 0 
on some interval [21, 22]. Let 0 , ( ' )  be the minimizer of (2.1) for this case. Obviously, 
each function from f2~' that coincides with 0 , ( ' )  outside [zl, z2] and interpolates the 
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data within it cannot increase the value of the functional which is minimized by O,(t) 
and, hence, it is also a solution of (2.1). Thus, there will be an infinite set of solutions of 
(2.1), which consists of functions that differ only within the interval It1, r2] for 
nondesign points. One of the curves in that set is the partially interpolant (in [rl, r2]) 
Lk-spline. 

3. Bayesian interpretation 

Wahba (1978, 1983), Wecker and Ansley (1983), and Kohn and Ansley (1988) 
showed that smoothing splines have a natural interpretation as Bayes estimators of 
the unknown response function. In this section, we show that our Lk-spline is also 
a Bayes estimate. The difference between the Bayesian models is that the polynomial 
smoothing spline corresponds to a prior distribution that treats the ruth derivative of 
the response function as homoscedastic white noise while the prior for the Lk-spline 
allows the possibility of heteroscedasticity. Thus, for example, if we knew in advance 
that g(.) was nearly linear in some region, but might have high curvature in another 
region, we could reflect this by adopting m = 2 and a prior with lower variance in the 
former region. Not surprisingly, posterior interval estimates will tend to be wider in 
those regions where prior uncertainty was high. Thus improved inference should be 
possible if one can assign a prior that more closely reflects belief about the local 
non-linearity of the response function. 

The basic idea behind the Bayesian models is to assign a prior distribution to the 
space of possible response functions. The prior defines a stochastic process on [0, 1] 
and the response function can be treated as a sample function from that process. 
Typically the stochastic process will be the sum of a parametric regression function, 
whose coefficients are unknown, and a random error function that expresses the 
deviation (bias) of the true function from the parametric one. This idea was first 
suggested by Blight and Ott (1975). Related models are considered in O'Hagan (1978) 
and Steinberg (1990). The analogous Bayesian interpretation for spline estimators was 
proposed by Wahba (1978, 1983) and has been further discussed by Silverman (1985) 
and Kohn and Ansley (1988). Some roots of the idea can be found in Kimeldorf and 
Wahba (1970, 1971). Steinberg (1983, Section 2.4) shows that all of these models have 
the common structure described above, differing only in the choice of prior distribu- 
tion for the bias component. 

The following theorems define the Bayesian model that corresponds to an Lk-spline 
and naturally extend Wahba's (1978, 1983) results for the polynomial splines arising in 
the constant smoothing parameter case: 

Theorem 2. Consider the model (1.1) 

Yi = g(ti) q- 8i. 
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Now assume that g(t) has a prior distribution given by the stochastic process 

X~(t) = Z Ojcbj(t) + yl/2Z(t), tE [0, 1], (3.1) 
j = l  

where c~j(t) = t j -  ~/(j - 1)!, 0 = (01 . . . . .  0,,)' ~ JV(O, ~Im), ~ is a positive constant and 
Z( . )  is a Gaussian stochastic process with zero mean and covariance function Q(s, t) 
defined in Section 2. We assign a diffuse prior to 0 by allowin 9 ~ to tend to infinity. 

Then, for 7 = ~ 2 / n ,  the posterior mean of g(t) is precisely the Lk-spline 0('), which is 
the minimizer of (2.1): 

~(t) : lim E¢{g(t)ly}. 

Here E l is the posterior mean of g(" )for a fixed, finite value of ~ and the posterior mean 
for the diffuse prior is obtained in the limit as ~ ~ oo. 

The proof follows directly from Theorem 2 of Wahba (1978) for generalized splines. 
The model yields 

y(t) = ~ 0i?pj(t) + 71/2Z(t) + e. (3.2) 
j = l  

The first term in (3.2) is a polynomial of degree m - 1, the last one is the 'standard' 
random error, while the second term represents prior belief regarding the deviation of 
the true model from the polynomial one in the sense of Blight and Ott. 

Our prior distribution for g(t) and its relation to the prior assumed by Wahba 
(1978, 1983) can be more easily understood by considering the local magnitude of the 
( m -  1)st derivative of g(t). Let A~g(t)= g~m-1)(t + h)--g~m-1)(t) for some fixed, 

small increment h. By (3.1), the prior distribution for A~g(t) is that of 
A~X(t) = X tin- 1~ (t + h) - X t" -  ~)(t) = ?~/2 [Z¢,, - ~)(t + h) - Z c"- ~)(t)]. Calculating 

the corresponding partial derivatives of Q(s, t), it is easy to verify that A~X(t) is 
a normal variable with zero mean and variance V~+h~,2(u)du = ?~2(t)h + o(h). Thus 
the roughness function ~b2(t) in the Bayesian model should reflect prior belief about 
the magnitude of A~g(t). In Wahba's model, O2(t) is assumed to be constant, which 
corresponds to prior belief that A~g(t) has about the same magnitude for all t. The 
heteroscedasticity of the modified prior proposed here allows us to take advantage of 
presumed or evident differences in the local behavior of the (m - 1)st derivative of the 
unknown response function. 

The mth derivative of the prior, Xt"~(.), can be defined formally as a process that 
satisfies the stochastic differential equation dr"X(t)/dt~"= ~l/20(t)dW(t)/dt, where 
W(t) is a Wiener process with Var{ W(1)} = 1. When qj2(t) is assumed to be constant, 
as in Wahba's model, this defines a 'white noise' process. When qJz(t) is not constant, 
we may, by analogy, refer to Xt")( • ) as generalized 'white noise'. 
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Theorem 3. The posterior variance of o(t) for the prior of Theorem 2 is 

Var{o(t)ly} = ?(Q(t, t) + c~'tWl~p, - 2qY, Wzqt - q;W3q,), 

where 4), = (dpl(t) . . . . .  q~,,(t))', q, = (Q(t, tl) . . . . .  Q(t, tm))', 

W I = ( T ' M  IT) a, W z = ( T ' M - a T ) - I T ' M  -1 

and 

W3 = M - 1 ( I  - T ( T ' M - I T ) - I T ' M - I ) .  

The proof is analogous to that of Theorem 2 of Wahba (1983) for constant smoothing 
parameter. 

Theorem 3 allows us to derive Bayesian posterior intervals for 0('). A (1 - ~) -level 
Bayesian interval for the unknown function O(') at a particular point t is given by 

O(t) +_ z, ,/2 ~/Var(o(tly)).  (3.3a) 

If we focus just on the observed values of t and denote O = (9(tl) . . . . .  9(t,))', then 

gIY ~ .A/'(Ay, 0-2A). 

The interval estimate for 9(ti) will then be 

O(tl) _+ z l - , / 2 a ~ .  (3.3b) 

Generally 0-z is unknown and must be estimated from the data. By analogy with 
linear regression the commonly used estimates for 0-2 are based on RSS and are of the 
form: 

RSS 
if2 - , (3.4) 

n - - p  

where n - p is often called 'the equivalent degrees of freedom' (Wahba, 1983; Green 
and Silverman, 1994). The most popular extension for the equivalent degrees of 
freedom for nonparametric regression, which is based on the fact that aZA is the 
posterior covariance matrix of g, is p = tr A (Wahba, 1983; Silverman, 1985; Green 
and Silverman, 1994). Some related definitions are discussed in Buja et al. (1989). 
Carter and Eagleson (1992) have investigated whether (3.4) can be improved (in the 
constant smoothing parameter case) by a different choice of denominator. They show 
that an improvement in terms of MSE is possible by using #2 = RSS/tr{(I - A)2}. 
The relative difference in MSE between the two estimates can be rather significant for 
small samples but 'decreases rapidly with increasing sample size' (see Fig. 4. of Carter 
and Eagleson, 1992). 

One can also assign a prior distribution to 0-2. Assuming the standard improper 
prior density f ( t r  2) o¢ 1/tr 2, the posterior distribution of 0 -2 is, for fixed k 2, a scaled 
inverse 2 Z.-, ,  with scale factor 

s 2 = y ' [ M  - 1 - M  I T ( T ' M - 1 T ) - 1 T ' M - 1 ] y / ( n - m ) .  
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The proof is analogous to that of Steinberg (1990). Thus a Bayesian estimate of az is 
~.2= E(crZ[y, k Z ) =  s z, which is the mean of a weighted residual sum of squares. 
A complete Bayesian approach would involve declaring a prior distribution for k 2 and 
then averaging the conditional estimate above with respect to the psoterior distribu- 
tion for k 3. 

If a is unknown, 6 is used in interval estimates (3.3) instead of a. 

Remark. Practically all necessary computations can be carried out effectively using 
the procedure of Hutchinson and de Hoog (1986) and also by the Kalman filter 
approach of Wecker and Ansley (1983) in O(n) operations. 

4. Lk-smoothing spline procedure and examples 

To apply Lk-spline smoothing it is necessary to specify, or to estimate, the smooth- 
ing parameter k2(t). Our approach will be based on the Bayesian model described in 
Section 3. That model implies that the roughness function I//2(t) should reflect the local 
variability of 9~" l~(t). Since the mth derivative of 9(t) is the natural analytic descrip- 
tion of this local variability, it seems reasonable to choose ~2(t) proportional to 
(gtm)(t))2. In some problems, prior knowledge about gt")(t) might serve as a guide to 
choosing ~2(t). Typically, though, we think that it will be necessary to estimate ~2(t) 
from the data. 

Our approach is as follows. First, we fit a polynomial smoothing spline 90('), with 
a constant  smoothing parameter k 2 chosen by generalized cross-validation (GCV). 
Then we estimate g~m)(. ) by the mth derivative of 0o, which is a piecewise polynomial 
of degree m - 1 and may be easily obtained from (2.2): 

(t~ t ) '~  1 

j=l ( m -  1)! 

At the second step we fit an L~-smoothing spline according to (2.2) with 
~,2(t) = p0~om~(t) 2 where the coefficient p is also derived by GCV. An analogous 
two-step scheme was proposed by Mfiller and Stadtmfiller (1987) for kernel estima- 
tion with bandwidth dependent on the ruth derivative of the unknown function. 

Since ot0m~( • ) may behave poorly and exibit large random fluctuations for small and 
medium samples, we use a truncated variant of the above estimate of ~,2(.): 

~ 2 ( t )  = max (v@ 2, pO tOm)(t)2 ) . (4.1) 

The similar truncated estimate was used by Mfiller and Stadtmtiller (1987) for the 
variable smoothing parameter in kernel estimation. 

Running several examples, we studied different values for z by visual analysis of 
the resulting plot of I//2(t): we decreased the value of z untill the basic features of the 
plot began to become distorted due to the random noise, which strengthens with 
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decreasing z. We found that values 0.5-0.8 perform quite satisfactorily for most cases and 
may be recommended as appropriate values for z. For 'smoother' functions even smaller 
values of r may be successfully used (see Example 1, where the original function was linear 
almost everywhere). An 'optimal' choise of z depends, of course, also on the number of 
observations. Theoretically, r may enter the GCV-criterion as a second parameter 
(together with p); however that complicates the procedure and in our opinion is superfluous. 

Ideally, we would like to modify the error intervals to account for the extra 
uncertainty that arises from the need to estimate ~O(t). However, even in the simple 
case, where if(t) is assumed constant, no procedures have been suggested for solving 
this problem and the error intervals in the literature have all treated the estimated 
smoothing parameter as if it had been known in advance, rather in the spirit of 
empirical Bayes procedures (see Wahba, 1983; Silverman, 1985; Ansley et al., 1993). 
The effects of the additional uncertainty in estimating ~b(t) are likely to be more 
serious for our approach due to the extra flexibility that we allow in the form of the 
smoothing parameter. However, the examples considered below show that even in this 
case the corresponding plug-in intervals are quite reasonable. 

We carried out several Monte Carlo experiments to verify the effectiveness of 
Lk-spline smoothing for inference in nonparametric regression. We considered the 
case m = 2 which is used most often in practice. 

Example 1. We reanalyse here Case 4 of Wahba (1983): 

0, o~<t~< s', 
3 6 ( t -  ½), ~< t~<½,  

g( t )  = 
3 6 ( ~ -  t), ½< t~<~ ,  

0, ~-< t~< 1. 

In this example, the cubic spline is a good global estimator of g, but does not give 
acceptable results at the three points where O'(t) is discontinuous. 

Formally, since g( t )  is a triangular function and has a discontinuity in its first 
derivative, the spline estimate with m = 2 may not be applicable. But the correspond- 
ing results turned out to be quite good (see also Wahba's paper), so this example may 
serve as a good illustration for Lk-spline smoothing. 

We drew 50 random samples of size n = 128 by adding to g ( O  a normal random 
error with zero mean and a = 0.1. Data points {ti} were equally spaced with 
ti = (i - 1) /n,  and ¢r z was estimated by 6 "z from (3.4) with p = tr A. 

The results for cubic spline smoothing were very similar to those of Wahba. Among 
the 95% pointwise Bayesian probability intervals (3.3b), 95.09% covered the true 
points, but for the most 'interesting' points near t = 0.33, 0.5, 0.66, where the original 
function has sharp peaks, the corresponding proportions were 0.62, 0.08 (!) and 0.70 
respectively (see Fig. 1). It is obvious that the prior belief of homogeneity of the second 
derivative of the true function, on which the cubic spline estimator is based, is not 
reasonable at all for these points. The bias for them is extremely large (see Fig. 2). 
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Fig. 1. Pointwise coverage probabilities of Bayesian intervals estimated from 50 trials: cubic spline (solid 
line) and L-spline (dashed line). 

o 

I I I I I [ 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 2. Squared bias of spline estimates: cubic spline (solid line) and L-spline (asterisks) (based on one trial). 

The corresponding results for Lk-spline smoothing  are also shown in Figs. 1 and 2. 
The pointwise coverage probabilities for the problematic  points are significantly 
improved and became 0.92, 0.86 and 0.88, respectively. The bias of the estimates at 

these points is drastically decreased. 
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It turned out that the variance estimate (3.4) for Lk-smoothing splines generally 
underestimates the real value of a z. This is not so surprising, since now we have to 
estimate more parameters from the same data-set, which leads to underestimating the 
variance. To avoid this we used the variance estimate obtained from the initial 
constant smoothing parameter spline, which was quite satisfactory. The use of Carter 
and Eagleson's (1992) variance estimate (see Section 3) might be helpful here but needs 
further study. 

An example of the estimated roughness function ~b 2(t) is given in Fig. 3. z in (4.1) was 
taken as 0.1. One sees that this estimate is quite close to what might be used by 
someone who knew the true function 9(0. 

Figure 4 shows the diagonal elements of the hat matrix A which are proportional to 
the posterior variance at the data points and, therefore, to the squared length of the 
corresponding Bayesian intervals (3.3b). Neglecting the boundary effects, the variation 
in aii for the cubic spline is very small, so all the posterior probability intervals are 
approximately of the same length. For the Lk-smoothing spline, however, the diagonal 
elements of A vary significantly, increasing when the real function has rapid local 
changes and decreasing in smooth regions. This yields the broader error intervals at 
problematic points and narrower intervals where the function is smooth. In the linear 
regions of 9(0 the Lk-spline intervals were generally about 30% narrower than the 
corresponding cubic spline intervals with no significant drop in coverage probabilit- 
ies. This ratio also depends on the chosen value of r in (4.1). Thus the Lk-spline 

t O  

0 

tO 

t~  

d 

° 
I I I I 1 I 

0.0 0.2 0,4 0.6 0.8 1.0 

Fig. 3. Truncated estimate of roughness function x le-9 (based on one trial). 
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Fig. 4. Diagonal elements of hat-matrix A vs. t(i) = (i 1)In for cubic spline (points) and L-spline (asterisks) 
(based on one trial). 

Eppright, et. al. (1972) Boys' weight/height ratio vs. age 

O 

o~ 
o 

13o 

to 
c5 

t~ 
ci 

I I I I I I I I 

0 10 20  30 40  50 60 70 

Fig. 5. Data, quadratic-quadratic-l inear (dashed line) and spline estimates: cubic (dotted line) and L (solid 
line). 
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Fig. 6. Truncated roughness function. 

provides much better coverage properties at the points of nonlinearity, and narrower 
intervals in the regions of linearity. 

Sometimes spline smoothing is a catalyst for better understanding of a model's 
structure and even may hint at an appropriate parametric model. The following 
example may serve as a useful illustration. 

Example 2. The data show weight/height ratio (y) against age (x) for pre-school boys 
sampled from families in north central states of the USA (see Fig. 5) and are given in 
Eppright et al. (1972). Different approaches for fitting these data were proposed in 
Gallant and Fuller (1973), who studied piecewise-polynomial parametric models, and in 
Eubank (1988), who used the data to illustrate the cubic spline smoothing technique. 

We applied the Lk-spline smoothing procedure described in this paper (with z = 0.6) 
to estimate the response function (see Fig. 5). Analysis of the estimated roughness 
function (see Fig. 6) hints at a three-segmented structure of the data, where the third 
segment (x greater than 13-15) seems to be linear (~2(.) is close to zero), while for 
small x a two-segmented polynomial model of some low degree with the knot about 
7 8 (the peak of if2(.)) seems to be reasonable for the data. Such a parametric 

segmented polynomial regression model with unknown knots and a requirement of 
continuity for the estimate's derivative was originally proposed for these data by 
Gallant and Fuller (1973). 

They studied a quadratic-quadratic-linear model with two unknown knots ctl and 
O~ 2 that can be written as 

g(x) = 01  q- 0 2 X  + 03(0~ 1 - -  X)2+ -F 04(0~ 2 - -  X) 2 . 
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Fig. 7. Bayesian intervals for cubic spline (dotted lines) and L-sp]ine (dashed lines). 

Their estimated quadratic-quadratic-linear model fits the data quite satisfactorily 
(see Fig. 5) and is very close to the Lk-spline estimate. The estimated knots were 
~1 ~ 8.3, a2 ~ 14.8, which nicely matches our preliminary considerations. 

Eubank (1988) used polynomial (cubic) spline smoothing to estimate the response 
function for the weight/height ratio data. Comparison of the cubic spline estimate 
with the Lk-spline shows that both estimates are very similar and are close to the 
quadratic-quadratic-linear estimate (see Fig. 5); however in the 'linear' regions the 
Lk-spline's probability intervals are about 30% narrower (see Fig. 7). 
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