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Abstract

We consider the testing problem in the mixed-effects functional analysis of variance models. We
develop asymptotically optimal (minimax) testing procedures for testing the significance of functional
global trend and the functional fixed effects based on the empirical wavelet coefficients of the data.
Wavelet decompositions allow one to characterize various types of assumed smoothness conditions
on the response function under the nonparametric alternatives. The distribution of the functional
random-effects component is defined in the wavelet domain and captures the sparseness of wavelet
representation for a wide variety of functions. The simulation study presented in the paper demon-
strates the finite sample properties of the proposed testing procedures. We also applied them to the
real data from the physiological experiments.
© 2005 Published by Elsevier B.V.
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1. Introduction

Modern recording equipment enables researchers to gather a large number of observations
on individuals over time that can be modelled essentially as continuous curves (functions).
Such situation is typical today, for example, in the analysis of seismic, meteorological,
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medical or financial data. A series of high-resolution images is an example of functional
data in the two-dimensional domain. Last years much progress have been made in developing
statistical techniques to deal with functional data (see Ramsay and Silverman, 1997, 2002
for review).

One of the new statistical challenges arising in functional data analysis is comparison
between curves or sets of curves. For example, analysing electro-encephalogram (EEG) data
of men and women in treatment and control groups one is naturally interested in the effects
of treatment and gender on the shape of EEG measurements. Such problems are considered
within functional analysis of variance (FANOVA) framework. Much efforts have been
applied to extending the traditional ANOVA methods for FANOVA. There is a wide list
of publications on fitting various FANOVA models and estimating their components (e.g.,
Wahba et al., 1995; Stone et al., 1997; Huang, 1998; Lin, 2000; Gu, 2002; Angelini et al.,
2003). However, much less attention has been paid to the functional inference or hypothesis
testing.

A somewhat naive approach to testing in FANOVA models by performing a series of
standard univariate ANOVA tests to compare a set of curves at each specific time causes
a serious multiplicity problem due to an enormous number of simultaneous tests. Ignoring
multiplicity leads to an uncontrolled overall Type I error while, for example, Bonferroni-
type procedures are known to yield an extremely low power. Another approach to FANOVA
testing treats functional data as multivariate vectors and applies traditional multivariate
ANOVA techniques combined sometimes with various initial dimensionality-reduction pro-
cedures (e.g., Raz, 1990; Eubank and La Riccia, 1993; Chen, 1994). However, the “curse of
dimensionality” makes these attempts also problematic (see Faraway, 1997). Fan and Lin
(1998) proposed a powerful overall test for functional hypothesis testing based on the adap-
tive Neyman and wavelet thresholding procedures of Fan (1996) applied to the empirical
Fourier and wavelet coefficients of the data, respectively. It is well known that a large vari-
ety of different functions have a sparse representation in the Fourier and especially wavelet
domain that allows significant reduction in dimensionality of the original functional data.
Somewhat related approaches were considered in Eubank (2000) and Dette and Derbort
(2001). However, the above works did not investigate the optimality of the proposed proce-
dures. Abramovich et al. (2004) applied the asymptotically minimax functional hypothesis
testing framework originated by Ingster (1982) for testing in the fixed-effects FANOVA. In
particular, they adapted the corresponding wavelet-based testing procedures of Spokoiny
(1996) for testing a zero signal in a “signal + white noise” model and showed their asymp-
totic optimality (in the minimax sense) for testing in the fixed-effects FANOVA models for
the wide class of alternatives.

In various applications the data on individuals is usually grouped according to some
factors where one is interested in the differences between groups rather than between
particular individuals. Individuals are then treated as a random effect associated with a
sample randomly drawn from a population. This also allows to model correlations be-
tween observations over the same individual which is typical, for example, for longitudinal
and repeated measurements data. Recently, Guo (2002) proposed a maximum likelihood
ratio based test in the mixed-effects smoothing spline FANOVA models. Spitzner et al.
(2003) applied the procedures of Fan and Lin (1998) mentioned above to the mixed-effects
FANOVA. In this paper, we extend the results of Abramovich et al. (2004) for the optimal
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testing in the mixed-effects FANOVA model and derive the corresponding rate-optimal
tests.

The paper is organized as follows. Section 2 presents the mixed-effects FANOVA model
and the hypotheses to be tested. In the main Section 3, we give first some necessary back-
ground on functional hypotheses testing and then derive the corresponding asymptotically
minimax non-adaptive and adaptive tests. In Section 4, we discuss the applications of the
tests for finite samples and illustrate their performance on a small simulation study and on
a real-life data from physiology. The concluding remarks and some possible extensions are
given in Section 5. The proof of the main Theorem 1 is given in the appendix.

2. Testing in mixed-effects FANOVA models

2.1. Mixed-effects FANOVA model and hypotheses to be tested

Consider the following functional mixed-effects FANOVA model

dYi,l(t) = mi(t) dt + Vl(t) dt + � dWi,l(t),

i = 1, . . . , r; l = 1, . . . , m; t ∈ [0, 1], (1)

where mi(t) are fixed effect functions, Vl(t) are random effect functions modelled as in-
dependent realizations of a zero mean stochastic process V (t) and Wi,l(t) are independent
realizations of a standard Wiener process. In addition, Vl(t) and Wi,l(t) are mutually inde-
pendent.

Following Antoniadis (1984), each mi(t), i =1, . . . , r in (1) admits the following unique
decomposition

mi(t) = m0 + �(t) + ai + �i (t), i = 1, . . . , r; t ∈ [0, 1], (2)

where m0 is a constant (the overall mean), �(t) is either zero or a non-constant function of t
(the main fixed effect of t), ai is either zero or a non-constant function of i (the main effect of
i) and �i (t) is either zero or a non-constant function which cannot be decomposed as a sum
of a function of i and a function of t (the fixed interaction component). The components of
the decomposition (2) satisfy the following identifiability conditions:∫ 1

0
�(t) dt = 0;

r∑
i=1

ai = 0;
r∑

i=1

�i (t) ≡ 0;
∫ 1

0
�i (t) dt = 0,

∀i = 1, . . . , r; t ∈ [0, 1]. (3)

As in traditional mixed-effects ANOVA models, one is naturally interested in testing the
significance of the fixed-effects components of (1)–(3). In this paper, we study the corre-
sponding asymptotically (as � → 0) optimal (in the minimax sense) functional hypotheses
testing procedures for mixed-effects FANOVA models.

Testing the significance of the main effects and the interactions is equivalent to testing
the following hypotheses:

H0 : �(t) ≡ 0, t ∈ [0, 1] (no global trend), (4)
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H0 : ai = 0 ∀i = 1, . . . , r (no differences in level), (5)

H0 : �i (t) ≡ 0, ∀i = 1, . . . , r, t ∈ [0, 1] (no differences in shape). (6)

Integrating (1) with respect to t and using the identifiability conditions (3), we have

Y ∗
i,l = m0 + ai + Ṽl + ��i,l , l = 1, . . . , m, i = 1, . . . , r,

r∑
i=1

ai = 0,

where Y ∗
i,l = ∫ 1

0 dYi,l(t), Ṽl = ∫ 1
0 Vl(t) dt and �i,l are

independent N(0, 1) random variables. This is the classical mixed-effects ANOVA model
and testing (5) can be performed by standard techniques.

Consider now testing the functional hypotheses (4) and (6). Averaging (1)–(2) with respect
to i and l and exploiting again the identifiability conditions (3) yield the following random-
effects FANOVA model:

dȲ (t) = (m0 + �(t)) dt + V̄ (t) dt + � dW̄ (t), (7)

where V̄ (t) is the average process of V1(t), . . . , Vm(t) and W̄ (t) is the average of r ×
m independent standard Wiener processes. Averaging the data is naturally justified by
sufficiency arguments. Let Ȳi·(t) = (1/m)

∑m
l=1 Yi,l(t) and W̄i·(t) = (1/m)

∑m
l=1 Wi,l(t),

respectively. Then, from (7) we have

d(Ȳi·(t) − Ȳ (t)) = (ai + �i (t)) dt + �d(W̄i·(t) − W̄ (t)). (8)

The last Eq. (8) does not involve random effects components and to test (6) one can use
the corresponding procedures developed in Abramovich et al. (2004) for the fixed-effects
FANOVA models. As in the traditional mixed-effects ANOVA, the random effect component
in (1) essentially affects only testing the presence of the global trend (4) which will be the
main focus of the paper.

2.2. The alternative set

Rewrite the random-effects FANOVA model (7) in the equivalent form:

dȲ (t) = (m0 + �(t)) dt + V̄ (t) dt + � dW(t), t ∈ [0, 1], (9)

where � = �/
√

rm and W(t) is the standard Wiener process.
We want to test the null hypothesis (4) against a class of alternatives as large as pos-

sible and, hence, do not specify any parametric structure for the alternative set. Instead
we only assume that �(·) possesses some smoothness properties. In particular, we assume
that �(·) belongs to some Besov ball Bs

p,q(M) of radius M > 0 on the unit interval, where
1�p, q �∞, sp > 1. Roughly speaking, the (not necessarily integer) parameter s indicates
the number of function’s derivatives, where their existence is required in an Lp-sense, while
the additional parameter q provides a further finer gradation. Besov classes have exceptional
expressive power: for particular choices of the parameters s, p and q, they include, for ex-
ample, the Hölder (p = q = ∞) and Sobolev (p = q = 2) classes of smooth functions, and
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the class of functions of bounded variation sandwiched between B1
1,1 and B1

1,∞. We refer
to Meyer (1992) for rigorous definitions and a detailed study of Besov spaces.

On the other hand, to be able to distinguish between the two hypotheses, �(·) should
be also separated away from zero in the L2-norm, ‖�‖2 ��(�). This is a typical form of
restrictions on the alternative set in the nonparametric testing (see Ingster and Suslina, 2003
for a comprehensive review). The smoothness assumptions bound the set of alternatives
while the L2-norm constraint cuts out the alternatives “too close” to the null.

Hence, given the data in (9) we wish to test

H0 : �(t) ≡ 0 versus H1 : � ∈ F(�(�)), (10)

where F(�(�)) = {� : � ∈ Bs
p,q(M),

∫
�(t) dt = 0, ‖�‖2 ��(�)}.

2.3. Model for the random effects

To complete (9) we need to specify the distribution of the stochastic process V̄ (t) in (9)
which is completely defined by the distribution of V (t) in the original model (1). Instead
of defining the distribution of V (t) directly, we set the distribution on the coefficients of its
wavelet expansion.

For simplicity of exposition we consider the orthonormal periodic wavelet bases in
L2[0, 1] (see Daubechies, 1992, Section 9.3 for details) although in practice they might
behave poorly near the boundaries for non-periodic functions. Choose a mother wavelet �
of regularity � > s and perform the periodic wavelet transform on (9):

Ȳjk = �jk + V̄jk + ��jk, j � − 1; k = 0, . . . , 2j − 1, (11)

where Ȳjk = ∫ 1
0 �jk(t) dȲ (t), �jk = ∫ 1

0 �(t)�jk(t) dt, V̄jk = ∫ 1
0 V̄ (t)�jk(t) dt and �jk are

independent N(0, 1) random variables. To simplify the notations we also denoted the cor-
responding scaling function 	(t) by �−10(t).

On the other hand, the process V̄ (t) is an average of m independent realizations of V (t)

and in the wavelet domain V̄jk = (1/m)
∑m

l=1 Vjk,l , where Vjk,l = ∫ 1
0 Vl(t)�jk(t) dt, l =

1, . . . , m.
It is natural to assume that unlike completely irregular white noise, the realizations of

V (t) posses some smoothness properties—for example, that they fall almost surely within
some Besov ball (not necessarily the same as �(t)). As we have already mentioned, various
functions from Besov spaces have a sparse representation in wavelet series and to capture
this characteristic feature of wavelets, assume the following distribution on Vjk,l :

Vjk,l ∼ 
j N(0, �2
j ) + (1 − 
j )�(0) j �0; k = 0, . . . , 2j − 1 (12)

and independent, where 0�
j �1, �(0) is a point mass at zero. To complete the model place
vague distributions on the scaling coefficients V−10,l , l =1, . . . , m. In addition, assume that
Vjk,l and �jk are independent.

According to (12), each Vjk,l is either zero with probability 1 − 
j or with probability

j is normally distributed with zero mean and variance �2

j . The probability 
j gives the

proportion of non-zero wavelet coefficients at resolution level j while the variance �2
j is a
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measure of their magnitudes. The parameters 
j and �2
j are the same for all coefficients

at a given resolution level j. Such type of distributions for the wavelet coefficients of a
stochastic process has been proposed, for example, in Abramovich et al. (1998) and Clyde
et al. (1998).

Let 
2
j = r�2

j /�
2 = �2

j /(m�2) and also assume that lim supj

2
j �C < ∞ to assure that

the variances of both random components in (1) are of the same order.
The following proposition gives an insight on the corresponding distribution of the

random effect component Vl(t) =∑j �0
∑2j −1

k=0 Vjk,l�jk(t) in the time domain:

Proposition 1. Let the coefficients of wavelet expansions of Vl(t), l=1, . . . , m have distri-
bution (12). Then, Vl(t), l = 1, . . . , m are realizations of a (non-Gaussian) non-stationary
zero mean stochastic process V (t) with the covariance function:

R(s, t) =
∑
j �0


j �
2
j

2j −1∑
k=0

�jk(s)�jk(t). (13)

The proof follows directly from (12). In fact, (13) shows that wavelet series �jk(t) are
the eigenfunctions of the covariance function R(s, t) with the corresponding eigenvalues

1/2

j �j .

In particular, let �2
j and 
j decrease exponentially, that is

�2
j = c12−aj and 
j = min(1, c22−bj ), j �0, (14)

where a, b�0 and c1, c2 > 0. The expected number of non-zero wavelet coefficients on the
jth level then is c22j (1−b). Applying the first Borel–Cantelli lemma, for b > 1, the number
of non-zero coefficients in the wavelet expansion is finite almost surely and, hence, with
probability one, f will necessarily belong to the same Besov space as the mother wavelet
�. A more interesting case is 0�b�1. For b = 1 the expected number of non-zero wavelet
coefficients is the same on each level which is typical for piecewise polynomial functions.
The case b = 0 assumes the same probability of being non-zero for all coefficients on all
levels that characterizes self-similar processes such as white noise or Brownian motion.
Abramovich et al. (1998, Theorem 1) showed that for 0�b�1 realizations Vl(t) from (14)
will fall (with probability one) within a Besov space Bs̃

p̃,q̃
if and only if either

s̃ + 1/2 − b/p̃ − a/2 < 0

or

s̃ + 1/2 − b/p̃ − a/2 = 0 and 0�b < 1, 1� p̃ < ∞, q̃ = ∞.

Fig. 1 shows an example of 15 realizations of length n = 1024 of the random processes
Vl(t) for the specific choice a = 1, b = 0.8, c1 = 3000, c2 = 25.
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Fig. 1. An example of the m = 15 realizations of the random-effects vl(t) in (30). The realizations are generated
sampling from (12) with �2

j
= c1�22−aj and 
j = min(1, c22−bj ) where a = 1, b = 0.8, c1 = 3000, c2 = 25 and

�2 was taken in order to achieve a RSNR equal to 1.

3. Main results

3.1. Basic background in functional hypotheses testing

We remind first some basic definitions and results for the functional hypotheses testing.
A (non-randomized) test 	 is a measurable function of the data with the two values 0 and
1 that correspond to accepting and rejecting the null hypothesis, respectively. As usual, the
quality of the test 	 is measured by a Type I error (erroneous rejection of H0) and a Type
II error (erroneous acceptance of H0). The probability of a Type I error is defined as

�(	) = P�≡0(	 = 1),

while the probability of a Type II error for the composite nonparametric alternative hypoth-
esis H1 is defined as

�(	, �(�)) = sup
�∈F(�(�))

P�(	 = 0).
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For the prescribed error probabilities of both types, the rate of decay of �(�) as � → 0 is
a standard measure of asymptotical goodness of a test (e.g., Ingster, 1982, 1993; Ingster
and Suslina, 2003). It is natural then to find the fastest rate for which such testing is still
possible and to construct the rate-optimal test.

Definition 1. A sequence �(�) is called the minimax rate of testing if �(�) → 0 as � → 0
and the following two conditions hold:

(i) for any �′(�) = o�(�(�)), one has

inf
	�

[�(	�) + �(�′(	�, �))] = 1 − o�(1),

where o�(1) is a sequence tending to zero as � → 0
(ii) for any � > 0 and � > 0 there exists a constant c > 0 and a test 	∗

� such that

�(	∗
�)�� + o�(1),

�(	∗
�, c�(�))�� + o�(1).

The first condition states that testing with a rate faster than �(�) is impossible while the
second one guarantees that for the rate �(�) there exists a rate-optimal test 	∗

�.
The random-effects FANOVA model (9) differs from the standard “signal+white noise”

model by the presence of the additional random effect component. Ingster (1993) and Lepski
and Spokoiny (1999) showed that the asymptotically minimax rate for of testing for the latter
is

�(�) = �4s′′/(4s′′+1), (15)

where s′′=min(s, s− 1
2p

+ 1
4 ). Spokoiny (1996) derived the corresponding rate-optimal test

based on the empirical wavelet coefficients of the data. Sparseness of wavelet bases over
Besov spaces results in significant reduction of the dimensionality of the testing problem in
the wavelet domain. We extend now the results of Spokoiny (1996) for the random-effects
model (9).

3.2. Minimax test

Let � ∈ Bs
p,q(M), 1�p, q �∞, sp > 1 and s > 1/4 if p�2. First assume that all the

parameters � = (s, p, q, M) of the Besov ball Bs
p,q(M) are known.

From (12) a straightforward calculus yields

V̄jk ∼
m∑

l=0

(m

l

)

l

j (1 − 
j )
m−lN

(
0,

l�2
j

m2

)
(16)

and, therefore,

Ȳjk ∼
m∑

l=0

(m

l

)

l

j (1 − 
j )
m−lN

(
�jk, �

2
(

1 + l

m

2

j

))
. (17)
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In the wavelet domain the null hypothesis H0 : �(t) ≡ 0 is equivalent to H0 : �jk =
0; j �0, k = 0, . . . , 2j − 1, or H0 : ∑∞

j=0
∑2j −1

k=0 �2
jk = 0, where we drop the scaling

coefficient �−10 since due to the identifiability condition
∫

�(t) dt = 0 (see (3)) it is zero
under both hypotheses. The proposed test will be similar in spirit to those of Spokoiny
(1996) and Abramovich et al. (2004) but will involve necessary changes due to the presence
of the additional random effect component.

Let

J� = log2(�
−2) and J� = 2

4s′′ + 1
log2(M�−2). (18)

Without loss of generality we can assume that J� and J� are integers, otherwise, one can
take the corresponding integer parts. Note that since sp > 1 and s > 1/4 for p�2, J� < J�
for sufficiently small �.

Let �j be independent random variables distributed as �j ∼ ∑m
l=0

(
m
l

)

l

j (1 − 
j )
m−l

N(0, w2
lj ), where w2

lj = 1 + (l/m)
2
j . For each j = 0, . . . , J� − 1 define Sj to be

Sj =
2j −1∑
k=0

(Ȳ 2
jk − �2(1 + 
j


2
j )) (19)

while for each j = J�, . . . , J� − 1 and for a given threshold � define Sj (�) to be

Sj (�) =
2j −1∑
k=0

(Ȳ 2
jk1{|Ȳjk| > ��} − �2bj (�)), (20)

where 1(A) is the indicator function of the set A,

bj (�) = E[�2
j 1{|�j | > �}]

= 2
m∑

l=0

(m

l

)

l

j (1 − 
j )
m−lw2

lj

(
�

(
− �

wlj

)
+ �

wlj

	

(
�

wlj

))

and � and 	 are the probability and density functions, respectively, of the standard Gaussian
distribution.

With the above notation, introduce the following test statistics:

T (J�) =
J�−1∑
j=0

Sj and Q(J�) =
J�−1∑
j=J�

Sj (�j ), (21)

where

�j = 4
√

(1 + 
2
j )(j − J� + 8) ln 2. (22)
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Let �2
0(J�) and �2

0(J�) be the variances of T (J�) and Q(J�), respectively, under the null
hypothesis. A straightforward calculus implies

�2
0(J�) = 2�4

J�−1∑
j=0

2j

(
1 + 
j


4
j

(
3

2

1 − 
j

m
+ 
j

)
+ 2
j


2
j

)
and

�2
0(J�) = �4

J�−1∑
j=J�

2j dj (�j ), (23)

where dj (�) = E[�4
j 1{|�j | > �}] − b2

j (�) and

E[�4
j 1{|�j | > �}] =

m∑
l=0

(m

l

)

l

j (1 − 
j )
m−lw4

lj

×
(

6�

(
− �

wlj

)
+ 2

�

wlj

(
3 + �2

w2
lj

)
	

(
�

wlj

))
.

Finally, for any given significance level � ∈ (0, 1), let 	∗ be the test defined by

	∗ = 1

⎧⎪⎨
⎪⎩

T (J�) + Q(J�)√
�2

0(J�) + �2
0(J�)

> z1−�

⎫⎪⎬
⎪⎭ , (24)

where z1−� is the (1 − �)100%-th percentile of the standard Gaussian distribution.
The resulting test statistic is intuitively clear and is essentially the standardized sum of

squares of the thresholded Ȳjk with properly chosen level-dependent thresholds larger than
those of Spokoiny (1996) for the “signal+white noise” model due to the additional random
effects. The coefficients on the coarse levels j < J� are not thresholded. The resulting
coefficients are then centered to imply ESj =0 and ESj (�)=0 under H0. The null hypothesis
is rejected when the above sum of squares is “too large”.

To establish the asymptotic optimality of the proposed test (24), note first that the minimax
rate of testing (15) for the standard “signal+white noise” model is an obvious lower bound
for the more general model (9) that involves an additional random effects component. The
following theorem, whose proof is given in the appendix, shows that under assumption
(12), test (24) achieves this lower bound and, hence, is a level � asymptotically (as � → 0)
rate-optimal test:

Theorem 1. Let the mother wavelet �(t) be of regularity � > s, and let the parameters
� = (s, p, q, M) of the ball Bs

p,q(M) be known, where 1�p, q �∞, sp > 1 and s > 1/4
for p�2. Consider testing

H0 : � ≡ 0 versus

H1 : � ∈ F(�(�)) = {� : � ∈ Bs
p,q(M),

∫
�(t) dt = 0, ‖�‖2 ��(�)}
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in the mixed-effects model (9) and (12). Then, for a fixed significance level � ∈ (0, 1), as
� → 0, the rate �(�) of the test 	∗ defined in (24) is

�(�) = �4s′′/(4s′′+1). (25)

Remark 1. For p�2 corresponding to “spatially homogeneous” functions whose wavelet
coefficients are concentrated on coarse resolution levels, the above optimal test can be
simplified by truncating the wavelet series at level J� − 1 (see also Abramovich et al.,
2004). The resulting rate-optimal test 	∗ becomes then

	∗ = 1
{

T (J�)

�0(J�)
> z1−�

}
.

The proof of Remark 1 follows straightforwardly from the proof of Theorem 1 in the
appendix.

3.3. Adaptive test

The rate-optimal test derived in the previous section relies on the knowledge of the
parameters of the Besov ball � = (s, p, q, M). In practice, however, they are typically
unknown. In this section, we consider the adaptive local testing problem where the above
parameters are not specified a priori but are assumed to lie within a given range.

Assume now that�=(s, p, q, M) is unknown but 1/4 < s�smax, 1�p�pmax, 1�q < ∞,
sp > 1 and Mmin �M �Mmax. Denote such a range of � by T. For each given set of pa-
rameters � one may determine J� from (18). In fact, the range T derives essentially a range
of admissible levels of the form jmin �J� �jmax. The underlying idea of the adaptive test
is analogous to that of Spokoiny (1996) and Abramovich et al. (2004) for the fixed-effects
FANOVA: one performs a series of tests of type (24) for each admissible J� and rejects the
null hypothesis if it is rejected at least for one of them.

More precisely, let jmin = 2log2 �−2/(4s′′
max + 1), jmax = J� − 1, where s′′

max = smax −
1/(2pmax) + 1/4 and s′ = s + 1

2 + 1
p′ . Choose a mother wavelet of regularity � > smax.

Since card(T) = O(ln �−2), a Bonferroni type correction for multiple testing leads to the
following asymptotic adaptive test:

	a = 1

⎡
⎢⎣ max

jmin �J� � jmax

⎧⎪⎨
⎪⎩

T (J�) + Q(J�)√
�2

0(J�) + w2
0(J�)

⎫⎪⎬
⎪⎭>

√
2 ln ln �−2

⎤
⎥⎦ . (26)

The rate of 	a is given in the following theorem:

Theorem 2. As � → 0, the rate �(�) of the test 	a defined in (26) for testing (10) is

�(�) = �4s′′/(4s′′+1)(ln ln �−2)s
′/(4s′′+1). (27)

Moreover, there exists a constant c such that

�(	a) = o�(1) and sup
T

�(	a, c�(�)) = o�(1).
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The proof of Theorem 2 essentially repeats the corresponding arguments in Spokoiny
(1996) and is omitted.

Theorem 2 establishes that the adaptive test (26) is nearly rate-optimal (up to an addi-
tional (ln ln �−2) factor). The results of Spokoiny (1996) show that there is no adaptive
testing without loss of efficiency of the test and such an extra log–log factor is unavoidable
(though not essential) price for adaptivity. In addition, the above theorem demonstrates the
degenerate behavior of the error probabilities of 	a which is also typical for adaptive testing
(e.g., Ingster and Suslina, 2003).

4. Finite sample applications

In practice one always observes discrete data samples of size n at points th, h = 1, . . . , n

with the noise variance �2. The corresponding sampled versions of the proposed testing
procedures are based then on the empirical wavelet coefficients obtained by the discrete
periodic wavelet transforms with �n = �/

√
n.

4.1. Estimation of parameters

To apply the tests developed in the previous section one needs to specify the random ef-
fect parameters 
j and �2

j (or, equivalently, 
2
j ) in (12). Ideally, 
j and �2

j could be obtained
from some prior information or assumptions about, for example, the regularity of realiza-
tions of Vl(t) (see Section 2.3). In practice, however, it is usually difficult to elicit such a
prior information about the regularity properties. Instead, we suggest to estimate 
j and �2

j

from the data somewhat similar in spirit to the empirical Bayes approach of estimating the
hyperparameters of the prior on wavelet coefficients within the Bayesian framework (e.g.,
Clyde and George, 2000; Johnstone and Silverman, 2005).

Let the continuous wavelet coefficients Yjk,l = ∫ 1
0 �jkdȲ·l , where Ȳ·l (t) = (1/r)∑r

i=1Yi,l(t), and Ỹjk,l be their discrete counterparts for Ȳ·l (th), h= 1, . . . , n. Then, Ỹjk,l =√
n(Yjk,l + O(1/n)), where the

√
n factor arises due to the difference between the contin-

uous and discrete orthonormality conditions. From the corresponding sampled versions of
(1) and (12), Ỹjk,l are independent and

Ỹjk,l ∼ 
j N

(
�̃jk,

�2

r
(1 + 
2

j )

)
+ (1 − 
j )N

(
�̃jk,

�2

r

)
, (28)

where �̃jk =√
n(�jk,l +O(1/n)) are the discrete wavelet coefficients of �(th), h=1, . . . , n.

The maximum likelihood estimators of 
j and 
j cannot be obtained explicitly and
numerical procedures should be adopted. However, given �2, it is possible to get their
estimates in the closed form by the method of moments. Due to the symmetry of the
distribution in (28), all its odd central moments are zeroes. A simple calculus yields

Var[Ỹjk,l] = �2

r
(1 + 
j


2
j ) and

E[Ỹjk,l − �̃jk]4 = 3
�4

r2
(
j (1 + 
2

j )
2 + (1 − 
j )).
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Let m
(u)
jk =∑m

l=1(Ỹjk,l − ¯̃
Y jk)

u/m, u = 2, 4, be the corresponding sampled central mo-

ments of order u. Since 
j and 
j are the same for all k, k = 0, . . . , 2j − 1 on the jth
resolution level, by solving the corresponding equations, the method of moments pro-
vides 2j independent estimates of 
j and 
j for each j in the following closed form:


̂j (k) = 3(m
(2)
jk − �2/r)2/(m

(4)
jk − 6m

(2)
jk �2/r + 3�4/r2) and 
̂2

j (k) = (m
(2)
jk − �2/r)/
̂j (k).

To guarantee 0� 
̂j (k) �1 and 
̂2
j (k) �0 the above estimates should be corrected as


̂j (k) = min

⎛
⎝ 3(m

(2)
jk − �2/r)2

(m
(4)
jk − 6m

(2)
jk �2/r + 3�4/r2)+

, 1

⎞
⎠ and


̂2
j (k) = (m

(2)
jk − �2/r)+


̂j (k)

, (29)

where (x)+ = max(0, x). The estimates 
̂j and 
̂2
j of the 
j and 
2

j are then obtained by

averaging the resulting 
̂j (k) and 
̂j (k) over k = 0, . . . , 2j − 1.
In most applications, the noise variance �2 is also unknown. In wavelet function estima-

tion, the common practice is to robustly estimate � by the median of the absolute deviation
of the empirical wavelet coefficients of the data at the finest resolution level Jn= log2(n)−1
divided by 0.6745 (Donoho and Johnstone, 1994). We estimate � by averaging the m ro-
bust estimates obtained from each individual set of empirical wavelet coefficients and then
substitute its estimate in (29).

4.2. Numerical examples

In this section, we investigate first the finite sample performance of the proposed func-
tional hypotheses testing procedure on simulated data and then we apply it to a real-life
data example arising from physiology. The simulation were performed using the MATLAB
programming environment and the WaveLab toolbox (Ver. 8.0).

4.2.1. Simulation study
To investigate the finite sample properties of the proposed procedure for testing the

significance of the global trend �(t), we performed a simulation study based on the synthetic
data generated according to the random-effects model

yl(th) = �(th) + vl(th) + �zl,h, l = 1, . . . , m;

th = (h − 1)/n, h = 1, . . . , n. (30)

The random-effects model is a particular case of a mixed-effects model and may be relevant
in its own right, for example, in situations where one has measurements on the same object
obtained from different sources or locations like it often happens for meteorological or
seismic data.
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We chose �(t)=√
2 sin(2
t) to satisfy the identifiability conditions (3) and to have ‖�‖2=

1. Series of m random effects samples vl(t) (l = 1, . . . , m) were obtained by performing
a discrete inverse wavelet transform of m sets of wavelet coefficients randomly sampled
from (12). The parameters in (12) were of the form �2

j = c1�22−aj and 
j =min(1, c22−bj )

and several values for (c1, c2, a, b) were tried. In all simulations the compactly supported
Coiflet 18-tap filter mother wavelet was used.

The adaptive test (26) was based on the asymptotic properties of the maxima of card(T)

weakly dependent Gaussian random variables where card(T)=jmax −jmin +1=O(log(n))

is sufficiently large. Obviously it holds only for very large samples and in practice to
perform the adaptive test at the significance level � one can approximate the (1 − �)100%-
th percentile of the distribution of the maxima by the corresponding percentile z(1−�)1/card(T)

of the maxima of independent Gaussian variables:

	̃
a = 1

⎡
⎢⎣ max

jmin �J� � jmax

⎧⎪⎨
⎪⎩

T (J�) + Q(J�)√
�2

0(J�) + w2
0(J�)

⎫⎪⎬
⎪⎭> z(1−�)1/card(T)

⎤
⎥⎦ . (31)

In what follows we present the simulation results for n=1024, m=15, a =1, b=0.8, c1 =
3000, c2 = 25. The value of � was chosen to yield the ratio of the standard deviations of the
signal and the noise (RSNR) to be one. Fig. 1 shows an example of the 15 realizations of
the random-effect components vl(t) and Fig. 2 gives the corresponding realizations of the
resulting process yl(t) in (30). The function �(t) is superimposed to the noisy observations
as reference. The above choice of the parameters implies a strong presence of random-
effects component. Averaging (30) over l = 1, . . . , 15 reduces the variance by 15 but the
average random effect is still quite strong (see Fig. 3). In order to make our procedure fully
automatic and suited for applications with real data, �2

j , 
j and �2 were assumed unknown
during the simulations and were estimated from the data by the methods described in Section
4.1.

Since �(t) is smooth we have tried the discrete version of (24) with J� =4 and �2 =�2/15
to test the null hypothesis H0 : �(t) ≡ 0 at the significance level � = 0.05. The test statistic

(T (4) + Q(4))/

√
�2

0(4) + �2
0(4) was 3.505 (p-value = 2.28 ∗ 10−4) while z0.95 = 1.645

and the null hypothesis was therefore rejected.
We have also applied the adaptive test (31) within the range jmin =3 and jmax =Jn−1=8.

The corresponding test statistic was 3.542 to be compared with z0.951/6 = 2.386, and the
null hypothesis was again rejected.

We have performed a power analysis of both non-adaptive (for J� = 4) and adaptive
tests for �(t) = √

2 sin(2
t). Fig. 4 shows the empirical power functions based on 3000
replications for each RSNR as a function of RSNR where we used the same parameters
in (12) as before. The values of � were chosen according to the corresponding values of
the RSNR. To investigate the effect of estimating �2

j and 
j on the power we performed

an analogous study with the true values of �2
j and 
j (see also Fig. 4). In both cases for a

fixed RSNR the power of the non-adaptive test is larger than that of the adaptive although
the differences vanish as RSNR increases. For strong noise (small RSNR) the automatic
procedures tend to yield somewhat larger values of the test statistic. The differences in the
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Fig. 2. m = 15 realizations of the observed processes yl(t) in (30) corresponding to the realizations of the
random-effects components given in Fig. 1. The regression function �(t) is superimposed in dotted line.

empirical power curves for true and estimated �2
j and 
j disappear as RSNR increases due to

the improving accuracy of estimation on low levels especially. Fig. 4 shows that the power
of both non-adaptive and adaptive tests increases fast with RSNR and for RSNR = 1.5 (or,
equivalently, 1.5

√
15 = 5.8 for the averaged signal ȳ(t)) is already about 0.95.

4.2.2. Real-life data example
We have applied the proposed mixed-effects FANOVA methodology to some interesting

data on human movement. The data were acquired and computed by Dr. Amarantini and
Dr. Martin (Laboratoire Sport et Performance Motrice, Grenoble University) to study the
processes underlying movement generation under various levels of an externally applied
moment to the knee. In this experiment, stepping-in-place was a relevant task to investigate
how muscle redundancy could be appropriately used to cope with an external perturba-
tion while complying with the mechanical requirements related either to balance control
and/or minimum energy expenditure. For this purpose, 7 young male volunteers wore a
spring-loaded orthosis of adjustable stiffness under 4 experimental conditions: a control
condition (without orthosis), an orthosis condition (with the orthosis only), and two condi-
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Fig. 3. Average model ȳ(t) (continuous line) obtained from the 15 realizations in Fig. 2. Superimposed the
regression function �(t) (dotted line).

tions (spring1, spring2) in which stepping in place was perturbed by fitting a spring-loaded
orthosis onto the right knee joint. The experimental session included 10 trials of 20 s under
each experimental condition for each subject. Data sampling started 5 s after the onset of
stepping, and lasted for 10 s for each trial. Anticipatory and joint movements induced by
the initiation of the movement were, therefore, removed. For each of the 7 subjects, 10
stepping-cycles of data were analyzed under each experimental condition. The resultant
moment at the knee is derived by means of body segment kinematics recorded with a sam-
pling frequency of 200 Hz. We refer to Cahouët et al. (2002) for further details on how the
data were recorded and how the resultant moment was computed.

For each stepping-in-place replication, the resultant moment was computed at 256 time
points equally spaced and scaled so that a time interval corresponds to an individual gait
cycle. A typical moment observation is therefore a one-dimensional function of normalized
time t so that t ∈ [0, 1]. The data set consists in 280 separate runs and involves the 7 subjects
over 4 described experimental conditions, replicated 10 times for each subject (see Fig. 5).
Note that variability across subjects is much stronger than across treatments. Abramovich
et al. (2004) analyzed this data using a two-way fixed-effects FANOVA model considering
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Fig. 4. Empirical power functions for testing H0: �(t) ≡ 0 versus H1: �(t) = √
2 sin(2
t) obtained from

m = 15 synthetic signals generated according to model (30) for the non-adaptive automatic procedure (solid
line) and for the non-adaptive procedure with true values of �2

j
= c1�22−aj and 
j = min(1, c22−bj ) where

a = 1, b = 0.8, c1 = 3000, c2 = 25 (dotted line); for the adaptive full automatic procedure (circle line) and for
the adaptive procedure with the same true value of �2 and 
j (diamond line). The sample size was n = 1024, the
number of replication of each experiment was 3000.

both treatments and subjects as fixed effects. They found significant global differences
between treatments although under the control and orthosis conditions the subjects behave
similarly, the same being true under spring1 and spring2 conditions. They also found a
highly significant global trend over time. However, it is probably more reasonable to treat
subjects as random effects and to apply the corresponding mixed-effects FANOVA model.
As we have discussed in Section 2.1, testing the differences between treatments will not
be affected (see (8)) and the above results of Abramovich et al. (2004) remain valid. The
differences will be in testing the presence of a global trend H0 : �(t) = 0. Fig. 6 shows
the averaged observed process ȳ(t). It is now of natural interest to investigate whether the
fluctuations observed in ȳ(t) can be explained by the random variability between subjects
and noise only or there is also a global trend over time. We applied the adaptive test (31) with
jmin = 3 and jmax = Jn − 1 = 6. The resulting test statistic was 4.992 while z0.951/4 = 2.234
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Fig. 5. Orthosis data set: the panels in rows correspond to Treatments while the panels in columns correspond to
Subjects; there are ten repeated measurements in each panel.

and the null hypothesis is therefore rejected. It is interesting to compare this result with
that of the fixed-effects FANOVA testing procedure of Abramovich et al. (2004) where the
corresponding test statistic was 88,854.84 (although they used the non-adaptive test with
J� = 4). In both cases the results are significant but the difference in the two test statistics
is tremendous due to the high variability among subjects relatively tothe noise level.

5. Concluding remarks

In this paper we considered the testing problem in the mixed-effects FANOVA model
which arise in various applications involving longitudinal data. We extended the corre-
sponding results of Abramovich et al. (2004) for the fixed-effects FANOVA and derived
optimal (in the minimax sense) non-adaptive and adaptive testing procedures. The proposed
tests are computationally fast and can be easily implemented.

Several possible extensions of the obtained results should be mentioned. Although for
simplicity of exposition we considered the two-way mixed-effects FANOVA model, the
similar techniques can be applied for the case of several fixed and/or random effects. The
extensions from the analysis of one-dimensional curves to higher-dimensional data and
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to the two-dimensional image analysis in particular is straightforward by using the corre-
sponding higher-dimensional wavelet transforms.

Acknowledgements

Claudia Angelini would like to thank Felix Abramovich for the excellent hospitality
while visiting Tel Aviv University to carry out this project. Both authors would like to
thank Anestis Antoniadis for fruitful discussions. Constructive and helpful comments of
the anonymous referees are gratefully acknowledged.

Appendix

Proof of Theorem 1. The statistics T (J�) and Q(J�) are the sums of J� and J� − J�
independent, squared integrable random variables that under the null hypothesis have zero
means and variances �2

0(J�) and �2
0(J�), respectively. By the central limit theorem, the

resulting standardized test statistic in (24) is then asymptotically (as � → 0) standard
normal and the significance level of 	∗ is therefore asymptotically �.
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Consider now Type II error of the test. It is straightforward to see that for any specific
� ∈ F(�(�)), asymptotically one has

P�(	∗ = 0)

= �

⎛
⎝
{

�2
0(J�) + �2

0(J�)

Var�(T (J�) + Q(J�))

}1/2

z1−� − E�(T (J�) + Q(J�))

{Var�(T (J�)) + Q(J�))}1/2

⎞
⎠

+ o�(1).

Since (�2
0(J�)+�2

0(J�))/(Var�(T (J�)+Q(J�))) is bounded above by one, the asymptotic
behavior of P�(	∗ = 0) depends only on the ratio E�(T (J�) + Q(J�))/(Var�(T (J�) +
Q(J�))

1/2.
The following lemmas provide the necessary bounds for E�(T (J�) + Q(J�)) and

Var�(T (J�) + Q(J�))
1/2. Their proofs are given at the end of the section.

Define p′ = min(p, 2) and s′ = s + 1/2 − 1/p′. Then,

Lemma 1. For any � ∈ F(�(�)),

E�(T (J�) + Q(J�))� 1
2‖�‖2

2 − M2�4s′ − c1�
8s′′/(4s′′+1).

Lemma 2. For any � ∈ F(�(�)),

Var�(T (J�) + Q(J�))�c2�
2‖�‖2

2 + c3�
(16s′′+2)/(4s′′+1) + c4�

(16s′′)/(4s′′+1).

Recall that ‖�‖2 ��(�) for all � ∈ F(�(�)). Then, substituting �(�) = �4s′′/(4s′′+1),
Lemmas 1 and 2 imply that for any given � there exists a constant c� such that

inf
�∈F(c��(�))

E�(T (J�) + Q(J�))

(Var�(T (J�) + Q(J�)))
1/2

> c̃�,

where c̃� > 0 satisfies �(z1−� − c̃�) = � and, hence, c̃� = z1−� + z1−�. Thus,

�(	∗, c��(�))�� + o�(1).

This shows that the test 	∗ achieves the lower bound (15) for the minimax rate and therefore
is the rate-optimal. �

Proof of Lemma 1. Note first that

E�(T (J�)) =
J�−1∑
j=0

2j −1∑
k=0

�2
jk . (32)
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Apply Lemma 4.4 of Spokoiny (1996) that was originally stated for normally distributed
random variables but, in fact, the same proof holds for any symmetric distribution:

E�(Q(J�))�
1

2

J�−1∑
j=J�

2j −1∑
k=0

�2
jk1{|�jk|���j }

� 1

2

⎛
⎝J�−1∑

j=J�

2j −1∑
k=0

�2
jk −

J�−1∑
j=J�

2j −1∑
k=0

�2
jk1{|�jk|���j }

⎞
⎠ . (33)

For any � ∈ Bs
p,q(M),

∑2j −1
k=0 |�jk|p′ �Mp′

2−js′p′
for all j �J� (e.g., Meyer, 1992). Then,

similar to Spokoiny (1996)

J�−1∑
j=J�

2j −1∑
k=0

�2
jk1{|�jk|���j }

�
J�−1∑
j=J�

2j −1∑
k=0

(��j )
2−p′ |�jk|p

′
1{|�jk|���j }

��2−p′
J�−1∑
j=J�

�2−p′
j

2j −1∑
k=0

|�jk|p
′ �Mp′

�2−p′
J�−1∑
j=J�

�2−p′
j 2−js′p′

�C�2−p′
2−s′p′J�

∑
l �0

2−ls′p′
(√

(1 + 
2
l+J�

)(l + 8) ln 2

)2−p′

�C�2−p′
2−s′p′J� . (34)

On the other hand,

∞∑
j=J�

2j −1∑
k=0

�2
jk �

∞∑
j=J�

⎛
⎝2j −1∑

k=0

�p′
jk

⎞
⎠

2/p′

�M2
∞∑

j=J�

2−2js′ �2M2�4s′
. (35)

Combining (32)–(35) one finally has

E�(T (J�) + Q(J�))�
1

2

⎛
⎝J�−1∑

j=0

2j −1∑
k=0

�2
jk −

J�−1∑
j=J�

2j −1∑
k=0

�2
jk1
{|�jk|���j

}⎞⎠

� 1

2

⎛
⎝‖�‖2

2 −
∞∑

j=J�

2j −1∑
k=0

�2
jk −

J�−1∑
j=J�

2j −1∑
k=0

�2
jk1
{|�jk|���j

}⎞⎠
� 1

2
‖�‖2

2 − M2�4s′ − c1�
2−p′

2−J�s
′p′

. (36)

Substituting J� from (18) into (36) completes the proof of Lemma 1. �
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Proof of Lemma 2. Clearly,

Var�(T (J�)) = 2�4
J�−1∑
j=0

2j

(
1 + 
j


4
j

(
3

2

1 − 
j

m
+ 
j

)
+ 2
j


2
j

)

+ 4�2
J�−1∑
j=0

(1 + 
j

2
j )

2j −1∑
k=0

�2
jk . (37)

Consider now Var�(Q(J�)). Repeating the proof of Lemma 4.5 of Spokoiny (1996) for our
model with corresponding obvious changes we have

Var�(Y 2
jk1
{|Yjk| > ��j

}
)

�4�2(1 + 
j

2
j )�

2
jk + �4�4

j e
−�2

j /(8(1+
2
j ))

+ 2�4
(

1 + 
j

4
j

(
3

2

1 − 
j

m
+ 
j

)
+ 2
j


2
j

)
1
{
|�jk| >

1

2
��j

}
. (38)

A straightforward calculus yields

J�−1∑
j=J�

2j −1∑
k=0

1
{
|�jk| >

1

2
��j

}

�
J�−1∑
j=J�

2j −1∑
k=0

(
1

2
�j�

)−p′

|�jk|p
′ �C

J�−1∑
j=J�

(�j�)−p′
2−js′p′

�C�−p′
2−J�s

′p′ ∑
l �0

(√
(1 + 
2

l+J�
)(l + 8)

)−p′

2−ls′p′

�C�−p′
2−J�s

′p′
(39)

and for the thresholds �j defined in (22)

J�−1∑
j=J�

2j −1∑
k=0

�4
j e−�2

j /(8(1+
2
l )) �C2J� . (40)

Since lim supj

2
j is finite, (38)–(40) imply the following upper bound on Var�(Q(J�)):

Var�(Q(J�))�c2�
2‖�‖2

2 + c3�
4−p′

2−J�s
′p′ + c4�

42J� . (41)

Combining (41) with (37) and substituting J� from (18) complete the proof of Lemma 2.
�
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