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We test the null hypotheses that the functional main effects and the functional inter-
actions are zeros against the composite nonparametric alternative hypotheses that they
are separated away from zero in L2-norm and also possess some smoothness properties.
We adapt the optimal (minimax) hypothesis testing procedures for testing a zero signal
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adaptive hypothesis testing procedures for the functional main effects and the functional
interactions. The corresponding tests are based on the empirical wavelet coefficients of
the data. Wavelet decompositions allow one to characterize different types of smoothness
conditions assumed on the response function by means of its wavelet coefficients for a
wide range of function classes. In order to shed some light on the theoretical results
obtained, we carry out a simulation study to examine the finite sample performance of
the proposed functional hypothesis testing procedures. As an illustration, we also apply
these tests to a real-life data example arising from physiology. Concluding remarks and
hints for possible extensions of the proposed methodology are also given.
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1. Introduction

Analysis of variance (ANOVA) is one of the most widely used tools in applied
statistics. While very useful for handling low dimensional data, it has its limitations
in analyzing functional responses. Such responses are encountered, for example,
when units are observed over time or when, although a whole function itself is not
observed, a sufficiently large number of evaluations over individual is available – a
common feature of modern recording equipments. Sophisticated on-line sensing and
monitoring equipments are now routinely used in research in medicine, seismology,
meteorology, physiology, and many other fields. For instance, in the traditional
analysis of electro-encephalogram (EEG) data, experts record EEG measurements
of healthy men and women of different ages starting from young adults through
middle ages to get a refined understanding of the variation in EEG due to age and
gender. The general question to be answered is then the influence of age and gender
on the shape of the EEG measurements.

In such cases, functional analysis of variance (FANOVA) methods provide al-
ternatives to classical ANOVA methods while still allowing a simple interpretation.
Due to a large set of applications involving functional data, FANOVA models have
recently gained popularity and related literature has been steadily growing. Al-
though there is an impressive literature on fitting FANOVA models and estimating
their components,48,43,46,32,40,27 there is no much work on developing hypothesis
testing procedures in these or more complex models. This article considers the
testing problem in a fixed-effects FANOVA model and derives optimal (minimax)
non-adaptive and adaptive hypothesis testing procedures for the functional main
effects and the functional interactions.

First we describe the following white noise (or diffusion) version of the fixed-
effects FANOVA model we are going to consider hereafter. Suppose that one ob-
serves a series of sample paths of a stochastic process driven by

dYi(t) = mi(t) dt + ε dWi(t), i = 1, . . . , r; t ∈ [0, 1]τ , (1.1)

where ε > 0 is the diffusion coefficient, r and τ are finite integers, mi(t) are (un-
known) τ -dimensional response functions and Wi(t) are independent realizations of
a τ -dimensional standard Wiener process. In most applications, we are interested in
the cases τ = 1 (a set of signals) and τ = 2 (a set of images). In practice, obviously,
one always observes discrete sampled paths of size n with a noise variance σ2, but
under some general conditions,8 the corresponding discrete model is asymptotically
equivalent to the white noise model (1.1) with ε = σ/

√
n.

Following Antoniadis,4 each of the r response functions in model (1.1) admits
the following unique decomposition

mi(t) = m0 + µ(t) + ai + γi(t) i = 1, . . . , r; t ∈ [0, 1]τ , (1.2)
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where m0 is a constant function (the grand mean), µ(t) is either zero or a non-
constant function of t (the main effect of t), ai is either zero or a non-constant
function of i (the main effect of i) and γi(t) is either zero or a non-zero function
which cannot be decomposed as a sum of a function of i and a function of t (the
interaction component). The components of the decomposition (1.2) satisfy the
following identifiability conditions∫

[0,1]τ
µ(t) dt = 0,

r∑
i=1

ai = 0, (1.3)

r∑
i=1

γi(t) = 0,

∫
[0,1]τ

γi(t) dt = 0, ∀ i = 1, . . . , r; t ∈ [0, 1]τ . (1.4)

As in the traditional fixed-effects ANOVA models, one is naturally interested
in testing the significance of the main effects and the interaction components in
the fixed-effects FANOVA model (1.1)-(1.4). As we shall see in Section 2.1 test-
ing the significance of the main effect of i can be performed by standard one-way
fixed-effects ANOVA techniques. Testing the significance of the main effect of t and
of the interaction component, however, involves functional data and we call these
problems functional hypothesis testing problems. A first, somewhat naive, approach
to the functional hypothesis testing is to consider the FANOVA problem as a stan-
dard univariate ANOVA problem for each specific t (e.g., Ref. 43, Chapter 9) and
perform a series of, say, corresponding pointwise F -tests. A crucial drawback of this
approach is that an enormous number of hypotheses (the number of data points per
curve can be hundreds or thousands) has to be tested simultaneously that causes a
serious multiplicity problem. Ignoring multiplicity leads to an uncontrolled overall
Type I error while, for example, Bonferroni type procedures are known to yield an
extremely low power of the test. Another approach to FANOVA testing considered
in the literature is to treat functional data as multivariate vectors and to apply tra-
ditional multivariate ANOVA techniques combined sometimes with various initial
dimensionality-reduction techniques.44,22,12 However, the “curse of dimensionality”
makes these attempts also problematic. Faraway25 discussed the difficulties of gener-
alizing the ideas of multivariate testing procedures to the functional data analysis
context. Fan & Lin24 proposed a powerful overall test for functional hypothesis
testing based on the decomposition of the original functional data into Fourier and
wavelet series expansions, and applied the adaptive Neyman and wavelet threshold-
ing procedures of Fan23 to the resulting empirical Fourier and wavelet coefficients
respectively. The underlying idea is based on the sparsity of the underlying signal’s
representation in the Fourier or wavelet domains that allows significant reduction
in dimensionality. Somewhat similar approaches were considered in Eubank21 and
Dette & Derbort15. Recently, Guo28 suggested a maximum likelihood ratio based
test for functional variance components in mixed-effects FANOVA models. How-
ever, none of the above works investigates the optimality of the proposed functional
hypothesis testing procedures.
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In this article we derive asymptotically (as ε → 0 or, equivalently, as n → ∞
in the discrete version) optimal (minimax) non-adaptive and adaptive functional
hypothesis testing procedures for testing the significance of the functional main ef-
fects and the functional interactions in the fixed-effects FANOVA model (1.1)-(1.4)
against the composite nonparametric alternatives that they are separated away
from zero in L2([0, 1]τ )-norm and also posses some smoothness properties. To de-
rive these tests, we adapt the asymptotically minimax functional hypothesis testing
procedures for testing a zero signal in a Gaussian “signal plus noise” model orig-
inated by Ingster33 and further developed in, for example, Ingster34, Spokoiny45,
Lepski & Spokoiny39 and Horowitz & Spokoiny31 for various separation distances
between the two hypotheses and different function classes under the alternative;
for a comprehensive account on minimax testing of nonparametric hypotheses in
Gaussian models we refer to Ingster & Suslina.35 The proposed functional hypoth-
esis testing procedures are based on the empirical wavelet coefficients of the data.
Wavelet decompositions allow one to characterize different types of smoothness
conditions assumed on the response function by means of its wavelet coefficients
for a wider range of function classes than the ones obtained by, for example, their
Fourier counterparts.42

The article is organized as follows. In Section 2 we formulate the hypotheses
to be tested and provide definitions and background on functional hypothesis test-
ing and wavelet analysis necessary for the proposed methodology. In Section 3 we
derive asymptotically minimax non-adaptive and adaptive functional hypothesis
testing procedures for testing the significance of the functional main effects and
the functional interactions in the fixed-effects FANOVA model (1.1)-(1.4) against
the composite nonparametric alternatives that they are separated away from zero
in L2([0, 1]d)-norm and also possess some smoothness properties. In Section 4 we
carry out a small simulation study to examine the finite sample performance of the
proposed functional hypothesis testing procedures. As an illustration, we also apply
these tests to a real-life data example arising from physiology. Finally, in Section 5,
we provide concluding remarks and provide some hints for possible extensions of
the proposed methodology.

2. Formulations and definitions

2.1. Formulation of the hypotheses to be tested

In Section 1 we defined unique decompositions (1.2) of the response functions mi(t)
in model (1.1). Due to (1.2), testing the significance of the main effects and the
interactions is equivalent to testing the following hypotheses

H0 : µ(t) ≡ 0, t ∈ [0, 1]τ , (no global trend) (2.5)

H0 : ai = 0, ∀ i = 1, . . . , r, (no differences in level) (2.6)

H0 : γi(t) ≡ 0, ∀ i = 1, . . . , r, t ∈ [0, 1]τ (no differences in shape). (2.7)
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Integrating (1.1) with respect to t and using the identifiability conditions (1.3)-
(1.4), we have

Y ∗
i = m0 + ai + ε ξi, i = 1, . . . , r,

r∑
i=1

ai = 0,

where Y ∗
i =

∫
[0,1]τ dYi(t) and ξi are independent N(0, 1) random variables. This is

the classical one-way fixed-effects ANOVA model, so testing (2.6) (no differences in
level) can be performed by standard techniques.

We focus then on functional hypothesis testing for the null hypotheses (2.5)
and (2.7). We do not specify any parametric forms on µ(t) and γi(t) under the
alternative hypotheses and wish to test the corresponding null hypotheses against
as large class of alternatives as possible. In particular, we assume that mi(t) (and,
hence, µ(t) and γi(t) as well) belong to some Besov ball of radius C > 0 on
[0, 1]τ , Bs

p,q(C), where s > 0 and 1 ≤ p, q ≤ ∞. The parameter p can be viewed
as a degree of function’s inhomogeneity while s is a measure of its smoothness.
Roughly speaking, the (not necessarily integer) parameter s indicates the number
of function’s derivatives, where their existence is required in an Lp-sense, while
the additional parameter q provides a further finer gradation. Besov classes have
exceptional expressive power. In particular, they include the traditional Hölder and
Sobolev classes of smooth functions (p = q = ∞ and p = q = 2 respectively) but
also various classes of spatially inhomogeneous functions like the class of functions
of bounded variation sandwiched between B1

1,∞ and B1
1,1. We refer to Meyer42 for

rigorous definitions and a detailed study of Besov spaces.
In addition, since our concern will be the rate at which the distance between

the null and alternative hypotheses can decrease to zero while still permitting con-
sistent testing, the set of alternatives should be also separated away from the null
hypotheses (2.5) and (2.7) in the L2([0, 1]τ )-distance by ρ. Hence, denoting here-
after the L2([0, 1]τ)-norm by || · ||2, we consider the alternative hypotheses to be,
respectively, of the form

H1 : µ ∈ F(ρ), (2.8)

H1 : γi ∈ F(ρ), at least for one i = 1, . . . , r, (2.9)

where F(ρ) = {f ∈ Bs
p,q(C) : ||f ||2 ≥ ρ}.

In Section 3 we derive non-adaptive and adaptive functional hypothesis testing
procedures for the null hypotheses (2.5) and (2.7) that are asymptotically optimal
(minimax) uniformly over the whole range of Besov balls under the alternatives
(2.8) and (2.9) respectively.

2.2. Basic definitions

We start from basic definitions of the functional hypothesis testing. Consider the
standard “signal + white noise” model

dZ(t) = f(t) dt + ε dW (t), t ∈ [0, 1]τ , (2.10)
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where W (t) is a τ -dimensional standard Wiener process. We wish to test

H0 : f ≡ 0 versus H1 : f ∈ F(ρ), (2.11)

where F(ρ) = {f ∈ Bs
p,q(C) : ||f ||2 ≥ ρ}.

A (non-randomized) test φ is a measurable function of the observations with
two values {0, 1}, where φ = 0 and φ = 1 correspond to accepting and rejecting the
null hypothesis H0 respectively. As usual, the quality of the test φ is measured by
Type I (erroneous rejection of H0) and Type II (erroneous acceptance of H0) errors.
The probability of a Type I error is defined as

α(φ) = Pf≡0(φ = 1),

while the probability of a Type II error for the composite nonparametric alternative
hypothesis H1 is defined as

β(φ, ρ) = sup
f∈F(ρ)

Pf (φ = 0).

In this article we focus on the asymptotic behavior of functional hypothesis
testing procedures as ε → 0 (that will correspond to n → ∞ in the discrete version
of (2.10) – see Section 1). It is clear that as ε decreases, alternatives closer and
closer to zero can be detected without loosing accuracy. For prescribed α and β,
the rate of decay to zero of the “indifference threshold” ρ = ρ(ε), as ε → 0, is a
standard measure of asymptotical goodness of a test.33,34,35 It is natural then to
seek the test with the optimal (fastest) rate. The minimax rate of testing ρ(ε) is
defined as follows

Definition 2.1. A sequence ρ(ε) is the minimax rate of testing if ρ(ε) → 0 as ε → 0
and the following two conditions hold

(i) for any ρ′(ε) satisfying

ρ′(ε)/ρ(ε) = oε(1),

one has

inf
φε

[α(φε) + β(φε, ρ
′(ε))] = 1 − oε(1),

where oε(1) is a sequence tending to zero as ε → 0.
(ii) for any α > 0 and β > 0 there exists a constant c > 0 and a test φ∗

ε such that

α(φ∗
ε ) ≤ α + oε(1)

β(φ∗
ε , cρ(ε)) ≤ β + oε(1).

Remark 2.1. The first condition in Definition 2.1 simply means that testing with
a faster rate than ρ(ε) is impossible, while the second condition roughly means
that, on the contrary, if the distance is of order ρ(ε) then testing can be done with
prescribed error probabilities.
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The corresponding test φ∗
ε is called an asymptotically minimax test. Ingster34

and Lepski & Spokoiny39 showed that for s > τ/p the asymptotically minimax rate
for such a testing problem is

ρ(ε) = ε4s′′/(4s′′+τ), (2.12)

where s′′ = min(s, s− τ
2p+ τ

4 ). They also derived tests that achieve this minimax rate.
However, although the proposed asymptotically minimax tests are consistent, they
are non-adaptive in the sense that they involve the parameters of the corresponding
Besov ball which are usually unknown in practice. Spokoiny45 and Horowitz &
Spokoiny31 considered the problem of adaptive minimax testing where the above
parameters are unknown a priori but assumed to lie within a given range. They
showed that no adaptive test can achieve the exact minimax rate (2.12) uniformly
within this range –“lack of adaptivity” property of the functional hypothesis testing
problem, and there is always a price to pay for adaptivity. However, it turned out
that the price is remarkably low. In particular, Horowitz & Spokoiny31 showed that
the asymptotically minimax rate of adaptive testing is

ρ(εtε) = (εtε)4s′′/(4s′′+τ), (2.13)

where tε = (ln ln ε−2)1/4, which is only within a log-log factor of (2.12). Moreover,
they proposed an asymptotically minimax adaptive test which is uniformly consis-
tent. The adaptive factor tε is unavoidable and cannot be reduced. For more details
we refer to Horowitz & Spokoiny31.

2.3. Wavelet background

Since the test statistics we shall develop for the functional main effects and the
functional interactions in the fixed-effects FANOVA model (1.1)-(1.4) will be based
on appropriate wavelet decompositions, we briefly recall some relevant facts about
wavelets. For detailed expositions of the mathematical aspects of wavelets we refer,
for example, to Meyer42 and Daubechies13, while comprehensive expositions and
reviews on wavelets applications in statistical settings are given, for example, in
Antoniadis5, Vidakovic47, Abramovich et al.1 and Antoniadis et al.7.

To simplify the notation, we consider the case τ = 1 and work with orthonormal
periodic wavelet bases in L2([0, 1]) generated by dilations of a compactly supported
scaling function φ(t) and dilations and translations of a corresponding compactly
supported mother wavelet ψ(t), i.e.,

φo(t) =
∑
l∈Z

φ(t − l) and ψo
jk(t) =

∑
l∈Z

ψjk(t − l), j ≥ 0, k = 0, . . . , 2j − 1

where

ψjk(t) = 2j/2ψ(2jt − k).

The collection

{φo(t), ψo
jk(t) : j ≥ 0, k = 0, 1, . . . , 2j − 1}
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generates an orthonormal periodic wavelet basis in L2([0, 1]). Despite the poor be-
havior of periodic wavelets near the boundaries, where they yield large coefficients
for non-periodic functions, they are commonly used because their numerical imple-
mentation is particular simple. To unify the notations, the scaling function φo(t) will
be denoted by ψo

−1,0(t) and the superscript “o” will be suppressed for convenience.
For any f ∈ L2([0, 1]) we denote by θ−10 = 〈f(t), ψ−10(t)〉 the scaling coefficient
and by θjk = 〈f(t), ψjk(t)〉, j ≥ 0, k = 0, 1, . . . , 2j − 1 the wavelet coefficients of
f(t) for the orthonormal periodic wavelet basis defined above.

We end this section by noting that if the scaling function φ(t) (and, thus, the
mother wavelet ψ(t)) is of regularity ν > 0, the corresponding wavelet basis is an
unconditional basis for the Besov spaces Bs

p,q([0, 1]) for 0 < s < ν, 1 ≤ p, q ≤ ∞.
This allows one to characterize Besov balls in terms of wavelet coefficients.42

3. Main results

In this section we adapt the results of Spokoiny45 and Horowitz & Spokoiny31 to
derive asymptotically minimax non-adaptive and adaptive functional hypothesis
testing procedures for the functional main effects and the functional interactions
in the fixed-effects FANOVA model (1.1)-(1.4). To simplify the exposition and to
emphasize the main idea we consider in detail the case τ = 1. This restriction will be
relaxed in Remark 3.4 below wherein we briefly explain straightforward extensions
to the case τ > 1.

3.1. Optimal testing in fixed-effects functional analysis of

variance models

Averaging over the r observed paths in the fixed-effects FANOVA model (1.1)-(1.2)
yields

dY (t) =
1
r

r∑
i=1

dYi(t) =

(
1
r

r∑
i=1

mi(t)

)
dt + ε dW (t), t ∈ [0, 1],

where W (t) is the average of r independent standard Wiener processes on [0, 1].
Given the identifiability conditions (1.3)-(1.4) for the components of mi(t), the
latter equation can be rewritten as

dY (t) = (m0 + µ(t)) dt + ε dW (t), t ∈ [0, 1] (3.14)

which, in view of (1.1)-(1.2), implies

d(Yi − Y )(t) = (ai + γi(t))dt + ε d(Wi − W )(t), i = 1, . . . , r; t ∈ [0, 1]. (3.15)

By the basic properties of the increments of a standard Wiener process on [0, 1],
{(Wi−W )(t); i = 1, . . . , r} are realizations of a Wiener process with the covariance
kernel C(s, t) = r−1

r min (s, t), though they are no longer independent. Hence, model



November 3, 2004 6:6 WSPC/WS-IJWMIP 00063

Optimal Testing in FANOVA Models 331

(3.14) and each of the r models stated in the equation (3.15) can be written in the
following general form

dZ(t) = f(t) dt + η dW (t), t ∈ [0, 1], (3.16)

where Z(t) = Y (t), f(t) = m0 + µ(t), η = ε/
√

r (for model (3.14)) and Z(t) =
(Yi − Y )(t), f(t) = ai + γi(t), η = ε

√
(r − 1)/r (for the i-th model in (3.15)); here

W (t) denotes a standard Wiener process.
In both cases, under the null hypotheses (2.5) and (2.7), f(t) is a constant func-

tion though for the latter case, the composite null hypothesis contains r constraints
of this type. Thus, our goal is to derive an optimal test for testing

H0 : f ≡ constant versus H1 :
(

f −
∫ 1

0

f(t)dt

)
∈ F(ρ),

in the general model (3.16), where F(ρ) = {f ∈ Bs
p,q(C) : ||f ||2 ≥ ρ} and, obviously,

constant =
∫ 1

0
f(t)dt.

Choose a mother wavelet ψ of regularity ν > s. Performing the periodic wavelet
transform (see Section 2.3) on (3.16), one has

Yjk = θjk + η ξjk, j ≥ −1; k = 0, 1, . . . , 2j − 1, (3.17)

where Yjk =
∫ 1

0 ψjk(t)dZ(t), θjk =
∫ 1

0 ψjk(t)f(t)dt and ξjk are independent
N(0, 1) random variables. Note that since

∫
ψjk(t)dt = 0 for all j ≥ 0 and all

k = 0, 1, . . . , 2j − 1, under the null hypothesis H0 : f ≡ constant, the only possi-
bly nonzero coefficient of the wavelet decomposition of f is the scaling coefficient
θ−10 =

∫ 1

0
f(t)dt. Therefore, testing

H0 : f ≡ constant

is equivalent to testing

H0 : θjk = 0 ∀ j ≥ 0; k = 0, 1, . . . , 2j − 1.

In fact, the above testing problem differs from H0 : f ≡ 0 in (2.11) studied
by Spokoiny45 in a Gaussian “signal plus noise” model by removing the require-
ment θ−10 = 0 under the null hypothesis. Obviously this only difference should
not affect the asymptotic properties of the resulting functional hypothesis testing
procedures and we can therefore adapt the results obtained by Spokoiny to develop
asymptotically minimax tests in the fixed-effects FANOVA model (1.1)-(1.2).

Assume that the parameters of the corresponding Besov ball Bs
p,q(C) of radius

C > 0 satisfy 1 ≤ p, q ≤ ∞ and s > 1/p. Such assumptions are common in wavelet
function estimation.17,18 Hence, summarizing, we consider the general white noise
model (3.16) and want to test

H0 : f ≡ constant
(

=
∫ 1

0

f(t)dt

)
versus H1 :

(
f −

∫ 1

0

f(t)dt

)
∈ F(ρ),(3.18)

where F(ρ) = {f ∈ Bs
p,q(C) : ||f ||2 ≥ ρ}, 1 ≤ p, q ≤ ∞ and s > 1/p.
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3.2. Minimax tests

3.2.1. Non-adaptive minimax test

Consider first the case when all the parameters s, p, q and the radius C of the
corresponding Besov ball Bs

p,q(C) are known. Let s′′ = min{s, s − 1
2p + 1

4}. Note
that, when p ≥ 2, the condition s > 1/p leads to s′′ > 1/p while, for 1 ≤ p < 2,
the condition s > 1/p implies s′′ > 3

4p . Under such conditions the asymptotically
minimax rate for testing (3.18) (see Ref. 45, Theorem 2.1) is given by

ρ(η) = η4s′′/(4s′′+1).

Now we construct a test that achieves this minimax rate. The resulting test
statistic has a clear intuitive meaning. Note that in terms of the wavelet coefficients
θjk the null hypothesis

H0 : f ≡ constant

can be re-formulated as

H0 :
∞∑

j=0

2j−1∑
k=0

θ2
jk = 0,

and the test statistic will be essentially based on the sum of squares of the
thresholded empirical wavelet coefficients Yjk with properly chosen level-dependent
thresholds. The null hypothesis will then be rejected when this sum of squares is
greater than some critical value.

Let jη be the largest possible integer such that jη ≤ log2 η−2. In fact, asymptot-
ically we can assume that jη = log2 η−2. Let also j(s) be the resolution level given
by

j(s) =
2

4s′′ + 1
log2

(
Cη−2

)
.

Here we assume that the right-hand sides of the above expressions are integers;
otherwise we take the integer parts of these quantities. Note that, for any admissible
value of s, j(s) < jη and that j(s), jη → ∞ as η → 0. Let J = J− ∪ J+ where
J− is the set of resolution levels below j(s) and J+ is the set of resolution levels
between j(s) and jη − 1, i.e.

J− = {0, . . . , j(s) − 1}, J+ = {j(s), . . . , jη − 1}.

For each j ∈ J−, define Sj as

Sj =
2j−1∑
k=0

(Y 2
jk − η2) (3.19)

while, for each j ∈ J+ and for given threshold λ > 0, define Sj(λ) as

Sj(λ) =
2j−1∑
k=0

[(Y 2
jk1(|Yjk| > ηλ) − η2b(λ)], (3.20)
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where 1(A) is the indicator function of the set A, b(λ) = E
[
ξ21(|ξ| > λ)

]
and ξ is

a standard Gaussian random variable. Note that the terms in Sj(λ) for j ∈ J+ are
defined by applying hard thresholding on the empirical wavelet coefficients, which is
a standard procedure for minimax wavelet estimation in nonparametric regression
settings.19 No thresholding is needed on the coarse levels j ∈ J−. The resulting
coefficients are then centered to imply ESj = 0 and ESj(λ) = 0 under H0.

With the above notation, introduce the following test statistics

T (j(s)) =
j(s)−1∑

j=0

Sj and Q(j(s)) =
jη−1∑

j=j(s)

Sj(λj), (3.21)

where λj = 4
√

(j − j(s) + 8) ln 2. Let also v2
0(j(s)) and w2

0(j(s)) be the variances
of T (j(s)) and Q(j(s)), respectively, under H0. It is easy to see that

v2
0(j(s)) = 2η42j(s) and w2

0(j(s)) = η4

jη−1∑
j=j(s)

2jd(λj),

where d(λj) = E
[
ξ41(|ξ| > λj)

]
− b2(λj). The following expressions are easily de-

rived and can be used for the numerical calculation of d(λj) in finite sample situa-
tions

E[ξ21(|ξ| > λj)] = 2{λjφ(λj) + (1 − Φ(λj))}
and

E[ξ41(|ξ| > λj)] = 2{λj(λ2
j + 3)φ(λj) + 3(1 − Φ(λj))},

where φ and Φ denote the probability density and cumulative distribution functions
respectively of a standard Gaussian random variable.

Finally, for a given significance level α ∈ (0, 1), let φ∗ be the test defined by

φ∗ =

{
1 {T (j(s)) > v0(j(s))z1−α} if p ≥ 2

1
{
T (j(s)) + Q(j(s)) >

√
v2
0(j(s)) + w2

0(j(s))z1−α

}
if 1 ≤ p < 2,

(3.24)

where z1−α is (1 − α)100%-th percentile of the standard Gaussian distribution.
The following proposition, whose proof is given in the Appendix, establishes the

asymptotic optimality of φ∗.

Proposition 3.1. Let the mother wavelet ψ(t) be of regularity ν > s, and let the
parameters s, p, q and the radius C of the Besov ball Bs

p,q(C) be known, where
1 ≤ p, q ≤ ∞, s > 1/p and C > 0. Then, for a fixed significance level α ∈ (0, 1),
the test φ∗, defined in (3.24), for testing

H0 : f ≡ constant
(

=
∫ 1

0

f(t)dt

)
versus H1 :

(
f −

∫ 1

0

f(t)dt

)
∈ F(ρ),

where F(ρ) = {f ∈ Bs
p,q(C) : ||f ||2 ≥ ρ}, is level-α asymptotically minimax test, as

η → 0. That is, for any β ∈ (0, 1), it attains the minimax rate of testing

ρ(η) = η4s′′/(4s′′+1), (3.25)
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where s′′ = min{s, s − 1
2p + 1

4}.

Remark 3.1. For p ≥ 2, the test defined in (3.24) differs from that developed by
Spokoiny,45 who proposed to perform nonlinear thresholding for all j ≥ j(s) regard-
less the value of p. Instead, since p ≥ 2 corresponds to “spatially homogeneous”
functions whose wavelet coefficients are concentrated on coarse resolution levels, we
suggest simply to truncate wavelet series at level j(s)−1 in this case. These results
are similar to those known in nonparametric quadratic functional estimation where
linear estimators are still optimal for p ≥ 2 and s > 1/p.20

3.2.2. Adaptive minimax test

The structure of the rate-optimal tests developed above essentially relies on the
knowledge of the parameters of the corresponding Besov ball while such kind of prior
information is typically lacking in practical applications. Our aim now is to develop
an adaptive functional hypothesis testing procedure where the above parameters are
not specified a priori, still achieving a minimax rate up to an unavoidable log-log
factor (see Section 2.2).

We consider now the case when the parameters s, p, q and the radius C of the
corresponding Besov ball Bs

p,q(C) are unknown but assume that 0 < s ≤ smax, 1 ≤
p, q ≤ ∞, s > 1/p and 0 < C ≤ Cmax. The corresponding range of these parameters
will be denoted by T . Let tη = (ln ln η−2)1/4 and jmin = 2

4smax+1 log2 η−2. Suppose
now that the mother wavelet ψ(t) is of regularity ν > smax.

The idea of adaptive test is to consider the whole possible range of j(s) =
jmin, . . . , jη − 1 and reject H0 if it is rejected at least for one level j(s). Since
card({jmin, . . . , jη − 1}) = O(ln η−2), performing a Bonferroni type testing leads to
the following asymptotic adaptive test

φ∗
η = 1

[
max

jmin≤j(s)≤jη−1

{
T (j(s)) + Q(j(s))√
v2
0(j(s)) + w2

0(j(s))

}
>
√

2 ln ln η−2

]
. (3.26)

Repeating the corresponding arguments of Spokoiny45, one can verify that the
rate of the adaptive test φ∗

η defined in (3.26) is (ηtη)4s′′/(4s′′+1) which is only within
an unavoidable log-log factor of the optimal rate (3.25) . Moreover, typically for
adaptive testing,35 the error probabilities of φ∗

η behave degenerately, that is

α(φ∗
η) = oη(1)

and there exists a positive constant c such that

sup
T

β(φ∗
η , cρ(ηtη)) = oη(1).

If, in addition, it is known that p ≥ 2 then, similar to (3.24), the above adaptive
test defined in (3.26) can be simplified as

φ∗
η = 1

[
max

jmin≤j(s)≤jη−1

{
T (j(s))√
v2
0(j(s))

}
>
√

2 ln ln η−2

]
. (3.27)
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The proof of this assertion is given in the Appendix. We finish this section by the
following remarks.

Remark 3.2. The test statistic of φ∗
η in (3.26) is similar in spirit to that used in

Fan23 and Fan & Lin24 though they apply a certain global threshold and do not
discuss the optimality of their testing procedure.

Remark 3.3. The optimality results obtained in this section remain true if dif-
ferent (sufficiently regular) mother wavelets are used for µ(t) and for each γi(t)
(i = 1, . . . , r).

Remark 3.4. The extension of the above non-adaptive and adaptive tests to the
case τ > 1 is straightforward using the τ -dimensional periodic wavelet transform.
Note that, in this case, the minimax rate of testing in the non-adaptive case is ρ(η) =
η4s′′/(4s′′+τ), while the minimax rate of testing in the adaptive case is ρ(ηtη) =
(ηtη)4s′′/(4s′′+τ), where tη = (ln ln η−2)1/4.31 It is easy to show that in order to
achieve these minimax rates, one should perform essentially the same procedures
as for τ = 1, but based on the empirical wavelet coefficients of a τ -dimensional peri-
odic wavelet transform with similar test statistics within an appropriate resolution
range for j(s). More specifically, in the non-adaptive case one should consider the
resolution level j(s) = 2(4s′′+τ)−1 log2(Cη−2) while in the adaptive case one should
consider the resolution range j(s) = 2(4smax+τ)−1 log2(η−2), . . . , τ−1 log2(η−2)−1,
where s′′ = min{s, s− τ

2p + τ
4} and s > τ/p.

3.2.3. Applications to functional analysis of variance models

Here we apply the derived functional hypothesis testing procedures (3.24), (3.26)
and (3.27) to the fixed-effects FANOVA model (1.1)-(1.4).

To test the functional main effect H0 : µ(t) = 0 (no global trend), we apply
(3.24), (3.26) and (3.27) directly, using the average process Y (t) defined in (3.14)
as Z(t) in (3.16), and setting η = ε/

√
r.

To test the functional interactions (no differences in shape), note first that we
have a composite null hypothesis

H0 : γi(t) = 0, ∀ i = 1, . . . , r,

or, equivalently,

H0 : θ
(i)
jk = 0, ∀ i = 1, . . . , r, j ≥ 0; k = 0, . . . , 2j − 1,

where θ
(i)
jk are the wavelet coefficients of γi. The corresponding test statistics T (j(s))

and Q(j(s)) in (3.24), (3.26) and (3.27) should be based, therefore, on the sum of
the corresponding test statistics T (i)(j(s)) and Q(i)(j(s)) for each i. More precisely,
define

S
(i)
j =

2j−1∑
k=0

[(Y (i)
jk )2 − η2]
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for each j ∈ J−, and, for each j ∈ J+,

S
(i)
j (λj) =

2j−1∑
k=0

[({Y (i)
jk }21(|Y (i)

jk | > ηλj) − η2b(λj)],

where Y
(i)
jk are the empirical wavelet coefficients of d(Yi − Y )(t) in (3.15), η =

ε
√

(r − 1)/r and λj = 4
√

(j − j(s) + 8) ln 2.
Define now

T (j(s)) =
r∑

i=1

T (i)(j(s)) =
r∑

i=1

j(s)−1∑
j=0

S
(i)
j

and

Q(j(s)) =
r∑

i=1

Q(i)(j(s)) =
r∑

i=1

j(s)−1∑
j=0

S
(i)
j (λj).

Although both T (i)(j(s)) and Q(i)(j(s)) are correlated for different i (see comments
after (3.15)), we have

Var(T (j(s)) ≤ r2 Var(T (i)(j(s))) = 2r2η42j(s)

and

Var(Q(j(s)) ≤ r2 Var(Q(i)(j(s))) = r2η4

jη−1∑
j=j(s)

2jd(λj).

We can therefore apply (3.24), (3.26) and (3.27) with

v2
0(j(s)) = 2r2η42j(s) and w2

0(j(s)) = r2η4

jη−1∑
j=j(s)

2jd(λj).

The additional r2 factor does not depend on η and does not affect the asymptotic
properties of the proposed tests (see Appendix).

Remark 3.5. In practice one always deals with discrete data and, in most applica-
tions, the standard deviation σ of the discrete version of the fixed-effects FANOVA
model (1.1) is unknown; its estimation is therefore crucial for the success of the
functional hypothesis testing procedures described above. In wavelet function esti-
mation, the common practice17 is to robustly estimate σ by the median of absolute
deviation of the empirical wavelet coefficients of the data at the highest resolu-
tion level divided by 0.6745. In the discrete version of the fixed-effects FANOVA
model (1.1), unless there are replications, we estimate σ by averaging its r robust
estimates obtained from each individual data curve. Note that in this case the es-
timate of σ is independent from the test statistics (3.24)-(3.27) that do not involve
empirical wavelet coefficients from the finest level. In the one-dimensional case, and
for smooth alternatives, one could also use the nonparametric estimators described
in Hall et al.29.30 and Dette et al.16, but their methods are not easy to extend to
higher-dimensional settings.
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4. Numerical Examples

The purpose of this section is to shed some light on the theoretical results discussed
in Section 3. First, we carry out a small simulation study to investigate the finite
sample performance of the proposed functional hypothesis testing procedures. Then,
as an illustration, we apply these tests to a real-life data example arising from
physiology.

The computational algorithms related to wavelet analysis were performed using
Version 8 of the WaveLab toolbox for MATLAB. The entire study was carried out
using the MATLAB programming environment.

4.1. Simulation Study

The simulation study is based on synthetic data constructed by using the battery
of standard test functions17 frequently used in wavelet benchmarking, namely the
blocks, bumps, doppler and heavisine functions. We added the additional test
function mishmash, defined as

mishmash = −( blocks + bumps + doppler + heavisine),

to satisfy the first part of the identifiability condition (1.4), i.e., to ensure that the
sum of all functions is zero at each point.

The observations are simulated as discretized versions of equations (1.1)-(1.2),
satisfying discretized identifiability conditions (1.3)-(1.4). At n equispaced time
points tj = j/n, j = 1, . . . , n, the data are generated as multivariate vectors
yi(tj), i = 1, . . . , 5 defined as the sum of a constant m0 = 1, the mean func-
tion µ(t) = 2 sin(2πt) (the main effect of t), a corresponding test function specified
by the treatment i, and a Gaussian noise of a given size. The test functions actually
represent the group effects and can be decomposed as ai + γi(t), where the main
group effects ai are the integrals of the original test functions and the interaction
components γi(t) are their centered versions so that

∫ 1

0
γi(t)dt = 0. The functional

main effect µ(t) and the (centered) functional treatment effects γi(t) are depicted
in Figure 4.1.

The size of noise is selected in accordance with the energy (or variance) of the
test functions, i.e. their squared L2-norm. The 5 test functions are in addition
rescaled so that for all of them a noise of size 1 gives the prescribed signal-to-noise
ratio (SNR), defined as the ratio of standard deviations of the signal and of the
noise. Five simulated observations (one for each test function shown in Figure 4.1)
of a specific length (n = 1024), with two different SNRs (SNR = 3 and 7), are
shown superimposed and separately in Figure 4.2.

We applied the non-adaptive functional hypothesis testing procedure discussed
in Section 3.2.1 to the functional main effect µ(t) and the functional treatment
effects γi(t) (i = 1, . . . , 5) separately at the significance level α = 5% for both
SNRs. The standard deviation of the error terms is assumed unknown and it was
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Fig. 4.1. The functional main effect µ(t) = 2 sin(2πt) and the (centered) functional treatment
effects γi(t), i = 1, . . . , 5 (i.e., centered blocks, bumps, doppler, heavisine, and mishmash),
sampled at n = 1024 data points.
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Fig. 4.2. Five simulated observations (one for each test function shown in Figure 4.1) sampled at
n = 1024 data points are shown superimposed (first plot) and separately (remaining five plots)
for (a) SNR = 3 and (b) SNR = 7.

estimated by averaging its 5 robust estimates obtained from each individual curve,
as discussed in Remark 3.5.

To test the hypothesis H0 : µ(t) = 0, we applied the truncation version (p ≥ 2)
of the nonadaptive functional hypothesis testing procedure defined in (3.24). Since
µ(t) is smooth, the compactly supported Symmlet 8-tap filter mother wavelet was
used with j(s) = 3. For the case SNR=3, the value of the test statistic T (3) was
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equal to 15.28 to be compared with the critical value v0(3)z0.95 = 1.59, while for the
case SNR=7, the corresponding values of the test statistic T (3) and of the critical
value v0(3)z0.95 were 97.52 and 1.63 respectively.

To test the hypothesis H0 : γi(t) = 0 (i = 1, . . . , 5), we applied the thresholding
version (1 ≤ p < 2) of the non-adaptive functional hypothesis testing procedure
defined in (3.24). The compactly supported Daubechies 6-tap filter mother wavelet
was used with j(s) = 3. Although more resolution levels are needed for less smooth
functions γi(t), the wavelet coefficients on the seventh and higher levels could be
hardly distinguished from noise, which lead us to set jη = 7. For SNR=3, the value
of the test statistic T (3)+Q(3) was equal to 275.33 to be compared with the critical
value (v2

0(3)+w2
0(3))1/2z0.95 = 154.63 while, for the case SNR=7, the corresponding

values of the test statistic T (3)+Q(3) and of the critical value (v2
0(3)+w2

0(3))1/2z0.95

were 5941.10 and 156.49 respectively.
We have also performed an extensive power analysis for the above tests against

the composite alternatives

H1 : µ ∈ F(ρ) and H1 :
1
5

5∑
i=1

γi ∈ F(ρ). (4.28)

We provide a brief summary and figure that illustrates the simulation. The signif-
icance levels have been fixed at α = 5%. For fixed ρ (set to 1), the magnitudes of
the signals have been modified to achieve the prescribed SNR. The graphs of em-
pirical power functions (computed on 500 replications for each test and each SNR)
against the SNR are given in Figure 4.3 and demonstrate how fast the power of the
proposed procedure increases with increasing of SNR or, equivalently, of the L2-
distance ρ between the null hypothesis and the composite alternative. The sample
size of n = 512 was taken.

When the null hypotheses are true, the power was around the significance level
α = 5%. We see that the tests perform quite well. The difference in power for each
type of the tested hypotheses relates to smoothness of the underlying functions.
Thus, the simulation results illustrate that the proposed functional hypothesis test-
ing procedures possess satisfactory power in the presence of specified, relatively
extreme, alternatives.

4.2. Orthosis Data Analysis

We have applied the proposed fixed-effects FANOVA methodology to some interest-
ing data on human movement. The data were acquired and computed by Dr. Ama-
rantini and Dr. Luc from the Laboratoire Sport et Performance Motrice, Grenoble
University. The purpose of recording such data was the interest to better under-
stand the processes underlying movement generation under various levels of an
externally applied moment to the knee. In this experiment, stepping-in-place was a
relevant task to investigate how muscle redundancy could be appropriately used to
cope with an external perturbation while complying with the mechanical require-
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Fig. 4.3. Empirical power functions for testing (a) H0 : µ(t) = 0 versus H1 : ||µ||2 = ρ and (b)
H0 : γi(t) = 0 (i = 1, . . . , 5) versus H1 : ||P

i γi/5||2 = ρ. In both panels, the sample size was
n = 512, the number of trials at a fixed discretized SNR was 500, and the L2-distance ρ was fixed
at 1.

ments related either to balance control and/or minimum energy expenditure. For
this purpose, 7 young male volunteers wore a spring-loaded orthosis of adjustable
stiffness under 4 experimental conditions: a control condition (without orthosis), an
orthosis condition (with the orthosis only), and two conditions (spring1, spring2)
in which stepping in place was perturbed by fitting a spring-loaded orthosis onto
the right knee joint. The experimental session included 10 trials of 20 seconds un-
der each experimental condition for each subject. Data sampling started 5 seconds
after the onset of stepping, and lasted for 10 seconds for each trial. So, anticipatory
and joint movements induced by the initiation of the movement were not sampled.
For each of the 7 subjects, 10 stepping-cycles of data were analyzed under each
experimental condition. The resultant moment at the knee is derived by means of
body segment kinematics recorded with a sampling frequency of 200 Hz. We refer
to Cahouët et al. 10 for further details on how the data were recorded and how the
resultant moment was computed.

For each stepping-in-place replication, the resultant moment was computed at
256 time points equally spaced and scaled so that a time interval corresponds to an
individual gait cycle. A typical moment observation is therefore a one-dimensional
function of normalized time t so that t ∈ [0, 1]. The data set consists of 280 sep-
arate runs and involves the 7 subjects over 4 described experimental conditions,
replicated 10 times for each subject. Figure 4.4 shows the available data set; typical
moment plots over gait cycles. Since the purpose of the experiment was to under-
stand how a subject can cope with the external perturbation, we need to quantify
the ways in which the individual mean cross-sectional functions differ over the var-
ious conditions. We model the data as arising from a fixed-effects FANOVA model
with 2 qualitative factors (Subjects and Treatments), 1 quantitative factor (Time)
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Fig. 4.4. Orthosis data set: The panels in rows correspond to Treatments while the panels in
columns correspond to Subjects; there are ten repeated measurements in each panel.

and 10 replications for each level combination, and the purpose is now to show
that substantial insight can be gained by applying directly the proposed functional
hypothesis testing procedures. The appropriate model for the available data set is
a block design, written as

dYijk(t) = mij(t) dt+ε dWijk(t), i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K; t ∈ [0, 1],

with

mij(t) = m0 + µ(t) + αi + γi(t) + βj + δj(t), i = 1, . . . , I; j = 1, . . . , J ; t ∈ [0, 1],

where i is the condition index, j is the subject index, k is the replication index
and t is the time variable. Subjects in the above model are naturally considered
as block effects; subjects obviously differ but the researchers were not interested
in their differences. Treating subjects as blocks allows us to make inference about
the treatments of interest more precise since variability due to block effects is ex-
cluded (in this example, we have I = 4 treatments). Therefore, given the standard
identifiability conditions, equivalent to those in (1.3)-(1.4), we can now apply the
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proposed fixed-effects FANOVA methodology on the averaged model

dY i··(t) = (m0 + µ(t) + αi + γi(t)) dt + η dWi··(t), i = 1, . . . , I; t ∈ [0, 1],

where η = ε/
√

JK.
Since the number of available detail levels in the wavelet decomposition is 7

(log2(256)− 1), we adopted j(s) = 4 and jη = 6. That is, we expect that a smooth
function can be well described within the first 4 coarsest levels, the functional
treatment effects require up to 6 levels and the 7th level contains the noise. For
each functional treatment effect, we used the median of absolute deviation of the
empirical wavelet coefficients of its empirical estimator at the highest resolution
level divided by 0.6745 as an estimate of the noise level. The final estimate of the
noise level is the average over all functional treatment effects (see Remark 3.5)
and found to be 3.87. This is a sensible procedure since one can assume that the
functional main effect µ(t) and the functional treatment effects γi(t) of the aver-
aged model are sufficiently smooth and that their presence at the finest levels of
detail in wavelet decompositions is minimal. In this analysis we have used the com-
pactly supported Coiflet 18-tap filter mother wavelet, motivated by their excellent
compromise in smoothness, compactness, almost-symmetry, and good approxima-
tion characteristics. However, the results of the tests given below are very robust
to the selection of j(s) as well as to the choice of wavelet family and wavelet
filter.

We first test the hypothesis H0 : µ(t) = 0. An empirical estimator of the overall
mean function, m0 +µ(t), is shown in Figure 4.5a. It is therefore reasonable to test
this hypothesis with the version of the proposed test given in (3.24) for p ≥ 2. The
null hypothesis is rejected, the value of the test statistic T (4) being 12431.33 with
p-value essentially equal to 0 (the 5%-level critical value v0(4)z0.95 is 34.78). The
test statistic T (4) + Q(4) for testing the hypothesis H0 : γi(t) = 0 (i = 1, . . . , 4)
takes the value 12801.46 leading to the rejection of the null hypothesis with a p-
value essentially equal to 0 (the 5%-level critical value (v2

0(4) + w2
0(4))1/2z0.95 is

417.34).
The researchers were also interested in testing the contrasts: (i) Control and

Orthosis functional treatment effects are equal (H0 : γ1(t) = γ2(t)), and (ii)
Spring 1 and Spring 2 functional treatment effects are equal (H0 : γ3(t) = γ4(t)).
By inspecting the empirical estimators of the corresponding functional treatment
effects, shown in Figure 4.5b, it is again reasonable to test these hypotheses
using p ≥ 2. Both null hypotheses are not rejected, with the value of the test
statistic T (4) being 260.89 and 20.21 respectively; the p-values are 0.06 and
0.45 respectively (the 5%-level critical value v0(4)z0.95 is 278.23 in both cases).
One can therefore say that under Spring 1 and Spring 2 conditions the sub-
jects behave similarly, the same being less than true under Control and Orthosis
conditions.
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Fig. 4.5. Panel (a) depicts the (time-domain) empirical estimator of the overall mean function,
m0 + µ(t). The noise is suppressed by averaging, but still of size ε/

√
IJK; Panel (b) depicts

(time-domain) empirical estimators of the functional treatment effects of interest. Constant and
functional components, αi and γi(t) (i = 1, . . . , 4), are not separated.

5. Concluding remarks and possible extensions

We considered the testing problem in a fixed-effects functional analysis of vari-
ance model and derived optimal (minimax) non-adaptive and adaptive functional
hypothesis testing procedures for the functional main effects and the functional
interactions. The decomposition of Gaussian “signal plus noise” model allowed one
to present a wide variety of models in the same format, which facilitates the ap-
plication of general nonparametric testing procedures to assess the nature of the
underlying mean function. An important characteristic of the developed functional
hypothesis testing methodology is that it allows one to perform a similar analy-
sis for various types of hypotheses in a fixed-effects functional analysis of variance
model. Moreover, the resulting procedures are computationally inexpensive and can
be easily implemented.

The proposed approach differs from other recent functional hypothesis test-
ing procedures that treat functional data as multivariate vectors and adapt
the traditional analysis of variance with various initial dimensionality-reduction
techniques.25,15 It also differs from the spline smoothing functional analysis of vari-
ance testing in mixed-effects models developed in Guo28. In fact, it is much closer
in spirit to the overall tests of Fan23 and Fan & Lin24. Unlike these approaches, we
established the asymptotic optimality of the proposed functional hypothesis testing
procedures.

We would like to finish the paper by pointing at several possible extensions. An
interesting and practically important extension of model (1.1) for τ = 1 is a model
of the form

dY (s, t) = (m0 + a(s) + µ(t) + γ(s, t)) dt ds + ε dW (s, t), (s, t) ∈ [0, 1]2,
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where W (s, t) is a two-dimensional standard Wiener process, i.e., when both pre-
dictors are continuous. We are interested in testing the functional hypotheses of the
form: H0 : a ≡ 0, H0 : µ ≡ 0, H0 : γ ≡ 0. Applying the two-dimensional periodic
wavelet transform to the data, a specific structure of the matrix V of the resulting
empirical wavelet coefficients implies that testing H0 : a ≡ 0 or H0 : µ ≡ 0 will
be based only on the first row or the first column of the matrix V respectively,
while the remaining (major) part of the matrix of coefficients should be used to
test H0 : γ ≡ 0 (which essentially corresponds to testing the additivity of the
underlying bivariate response function) – see Amato & Antoniadis3 and De Can-
ditiis & Sapatinas.14 The extension of the proposed functional hypothesis testing
procedures to this case is quite straightforward.

Thresholding in (3.20) can be possibly performed by other methods than that
of Spokoiny45, which was adopted in this article. In particular, in view of recent
results in quadratic functional estimation26,37,36, we believe it can be performed by
grouping empirical wavelet coefficients within each resolution level in a block and
using thresholding blockwise rather than individually. It will be also interesting to
investigate how data-driven thresholding procedures like SURE17 or FDR2, devel-
oped in the context of function estimation can be adapted within the functional
hypothesis testing framework. This could improve the finite sample properties of
the proposed functional hypothesis testing procedures.

Finally, it is important to point out again that in practice one always deals with
discrete data and, therefore, applies the sampled versions of the proposed functional
hypothesis testing procedures based on the empirical wavelet coefficients obtained
by discrete periodic wavelet transforms (e.g., Ref. 47, Chapter 5.6). To justify the
optimality of the derived tests we can exploit the general asymptotic equivalence
results between the white noise model and the corresponding nonparametric regres-
sion setting with equispaced design, variance σ2 = nε2 and s > 1/p.8 Although the
proposed methodology is simple and powerful, the practical use of discrete wavelet
transforms requires the sample size to be a power of two and an equispaced design.
The first limitation is usually avoided in practice by appending the data by periodic
extension or symmetric reflection. Another possible approach is to use alternatives
to the fast discrete wavelet transform for vectors of arbitrary length.6 The require-
ment of the equispaced design is more difficult to handle though, fortunately, in
a wide set of signal processing (e.g., EEG, seismic or acoustic signals) or image
processing (pixels) applications involving functional data, one usually has an equi-
spaced design. Nevertheless, this requirement can also be relaxed by mapping first
the original data to equispaced points by either binning or interpolation methods.
Such a preprocessing yields optimal wavelet estimators for the nonparametric re-
gression setting,11 while the asymptotic equivalence with the corresponding white
noise model is established in Brown et al.9.

A detailed analysis of all the above is beyond the scope of this article but present
avenues for further research that hope will be addressed in the future.
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Appendix A. Proofs

Here we prove Proposition 3.1 and the assertion (3.27).

Proof of Proposition 3.1

For 1 ≤ p < 2 the proof essentially repeats the corresponding proof of Spokoiny45.
Thus, we only consider here the case p ≥ 2. Obviously, in this case, we have s′′ = s.
Regardless of the true hypothesis, one always has

e(j(s)) = E (T (j(s))) = ‖PVj(s)(f −
∫ 1

0

f(t)dt)‖2
2,

where PVj(s) denotes the orthogonal projector onto the approximation space Vj(s)

of the multiresolution analysis.41 Using standard results for non-central chi-squared
distributions36 we have

v2(j(s)) = Var(T (j(s)) = 2η42j(s) + 4η2e(j(s)). (A.1)

The test statistic T (j(s)) is a sum of j(s) independent, squared-integrable random
variables and, since j(s) → ∞ as η → 0, by the central limit theorem, T (j(s))
is asymptotically normal. Moreover, note that when the null hypothesis is true,
e(j(s)) = 0 and v2(j(s)) = v2

0(j(s)), and therefore, the test φ∗ given in (3.24) is
asymptotically of significance level α.

Let β > 0, denote by β(φ∗, f) = Pf (φ∗ = 0) the probability of a Type II error,
and let

β(φ∗, ρ) = sup
(f−

R 1
0 f(t)dt)∈F(ρ)

β(φ∗, f)

be the probability of a Type II error for the composite alternative H1 : (f −∫ 1

0
f(t)dt) ∈ F(ρ). It is straightforward to see that, for any specific f within the

alternative, one has

β(φ∗, f) = Φ
(

v0(j(s))
v(j(s))

z1−α − e(j(s))
v(j(s))

)
+ oη(1),

where Φ is the cumulative distribution function of a standard Gaussian random
variable. Set κ(j(s)) = v0(j(s))

v(j(s)) . Since v(j(s)) ≥ v0(j(s)), κ(j(s)) is bounded above
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by 1. Hence, as η → 0, the asymptotic behavior of β(φ∗, f) depends only on the
ratio of squared bias to standard deviation, e(j(s))

v(j(s)) . Since F(ρ) belongs to the Besov
ball Bs

p,q(C) with p ≥ 2 and s > 1/p,

∞∑
j=j(s)

2j−1∑
k=0

θ2
jk ≤ c02−2sj(s),

for some constant c0 and, therefore, for any f within the alternative set

e(j(s)) ≥ (‖f‖2
2 − c02−2sj(s)) ≥ (ρ2 − c02−2sj(s)).

¿From (A.1) one has

v2(j(s)) ≥ 2j(s)+1η4 + 4η2(ρ2 − c02−2sj(s)).

Thus, for j(s) = 2
4s+1 log2

(
Cη−2

)
and the minimax rate of testing ρ(η) =

η4s/(4s+1), one can verify that there exists a constant cβ such that

lim
η→0

inf
(f−

R 1
0 f(t)dt)∈F(cβρ(η))

e(j(s))
v(j(s))

> c̃β,

where c̃β > 0 satisfies Φ(z1−α − c̃β) = β and, hence, c̃β = z1−α + z1−β . This shows
that the test φ∗ is indeed asymptotically minimax.

Proof of the assertion (3.27)

To prove that the test (3.27) is asymptotically adaptive minimax and uniformly
consistent, we need to show that

α(φ∗
η) = oη(1),

and

sup
T

β(φ∗
η , cρ(ηtη)) = oη(1),

for some constant c > 0. Obviously, since p ≥ 2, we have s′′ = s. As we have
mentioned in the proof of Proposition 3.1, under the null hypothesis, for every
j(s) = jmin, . . . , jη −1, T (j(s))/v0(j(s)) are asymptotically standard Gaussian ran-
dom variables (though dependent) and applying the well known extreme value
results for Gaussian random variables38 we have

α(φ∗
η) = PH0

{
max

jmin≤j(s)≤jη−1

{
T (j(s))√
v2
0(j(s))

}
>
√

2 ln ln η−2

}
→ 0, as η → 0.

Choose now any set of parameters (s, p, q, C) ∈ T . Note that 1
p < s < smax. For

the chosen set define j∗(s) by

2−j∗(s) = (ηtη)4/(4s+1)
.
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Then for any f within the alternative set we have

Pf

{
max

jmin≤j(s)≤jη−1

{
T (j(s))√
v2
0(j(s))

}
≤
√

2 ln ln η−2

}

≤ Pf

{
T (j∗(s))√
v2
0(j∗(s))

≤
√

2 ln ln η−2

}
≤ Φ

(√
2 ln ln η−2 − e(j∗(s))

v(j∗(s))

)
+ oη(1).

(A.2)

Repeating the arguments of the proof of Proposition 3.1 and substituting cρ(ηtη)
and j∗(s) in (A.2), the straightforward calculus yields

e(j∗(s))
v(j∗(s))

= O
(
t2η
)

= O
(√

2 ln ln η−2
)

, (A.3)

where one can always find a constant c such that the ratio of squared bias to stan-
dard deviation in (A.3) is larger than

√
2 ln ln η−2. Thus, for this c, the probability

of Type II error in (A.2) will tend to zero for any f and any specific set of parameters
within T .

Finally, note that the above proofs still hold for v2
0(j(s)) and v2(j(s)) multiplied

by r2 that appears in testing the interaction component (see Section 3.2.3).
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