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Abstract

We consider random functions defined in terms of members of an overcomplete
wavelet dictionary. The function is modelled as a sum of wavelet components at
arbitrary positions and scales where the locations of the wavelet components and
the magnitudes of their coefficients are chosen with respect to a marked Poisson
process model. The relationships between the parameters of the model and the pa-
rameters of those Besov spaces within which realizations will fall are investigated.
The models allow functions with specified regularity properties to be generated.
They can potentially be used as priors in a Bayesian approach to curve estimation,
extending current standard wavelet methods to be free from the dyadic positions
and scales of the basis functions.
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PLETE WAVELET DICTIONARIES; POISSON PROCESSES.

1 Introduction

1.1 Background

Wavelets have recently been of great interest in various statistical areas such as non-
parametric regression, density estimation, inverse problems, change point problems,
and time series analysis. Surveys of wavelet applications in these and other related sta-
tistical areas can be found, for example, in Ogden (1997), Härdle, Kerkyacharian, Pi-
card & Tsybakov (1998), Abramovich, Bailey & Sapatinas (1999), Antoniadis (1999),�Address for correspondence: Institute of Mathematics and Statistics, University of Kent at Canter-
bury, Canterbury, Kent CT2 7NF, United Kingdom. Email: T.Sapatinas@ukc.ac.uk
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Silverman (1999) and Vidakovic (1999). An interesting development, motivated by
Bayesian approaches to curve estimation, is the modelling of a function as an orthonor-
mal wavelet expansion with random coefficients. Abramovich, Sapatinas & Silverman
(1998) considered such models in detail, and studied the Besov regularity properties of
the functions produced by the models. They consider the application of the models in a
Bayesian context, and also give references to related work by other authors; the results
obtained have generally been very encouraging.

1.2 Abandoning dyadic constraints

Orthonormal wavelet bases have the disadvantage that the positions and the scales of
the basis functions are subject to dyadic constraints. In order to avoid these constraints,
this paper considers random functions defined by expansions in a continuous wavelet
dictionary, where functions are built up from wavelet components that may have ar-
bitrary positions and scales. The models provide a constructive method of simulating
functions with varying degrees of regularity and spatial homogeneity, and our results
give the explicit regularity properties of the functions thus produced, in terms of Besov
spaces.

Some users might wish to be able to simulate or construct functions with specific
Besov parameters in mind. Others might wish to use the models to gain intuition about
the meaning of the Besov parameters, by generating functions that lie just inside and
just outside particular Besov spaces. The models lay open the possibility of building
a Bayesian curve estimation approach with the advantages of standard wavelet meth-
ods, in that inhomogeneous functions can be modelled under the prior, but without the
artificial dyadic constraints on the positions and scales of the basis functions. The im-
provement to standard wavelet thresholding methods obtained by moving from the dis-
crete (decimated) wavelet transform to the non-decimated wavelet transform (see, for
example, Coifman & Donoho, 1995; Nason & Silverman, 1995; Johnstone & Silver-
man, 1997) suggests that a Bayesian approach freed from dyadic positions and scales
may result in yet better wavelet shrinkage estimators. The algorithmic details, proba-
bly involving modern Bayesian computational methods, have yet to be worked out in
detail, and this is an interesting topic for further research.

1.3 Models in continuous wavelet dictionaries

For simplicity of exposition we work with functions periodic on [0; 1]. Suppose that �
and  are the compact-support scaling function and mother wavelet respectively that
correspond to an r-regular multiresolution analysis, for some integer r > 0 (see, for
example, Daubechies, 1992). Take a0 = 2j0 , for some integer j0, such that a0 is at
least twice the length of the support of  . For indices � = (a; b) with a > a0 and0 < b < 1 we define  �(t) = a1=2 (a(t� b)) wrapping  � periodically if necessary.
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We model our function as the sum of a ‘coarse-scale’ function f0 and a ‘fine-scale’
function f . The function f0 is given byf0(t) = MXi=1 �i��i(t) (1)

for some finite set of indices (ai; bi); i = 1; 2; : : : ;M , with ai � a0, and some real
numbers �i. Here �� has an analogous definition to  �. The function f is generated by
a stochastic mechanism and is given byf(t) = X�2S !� �(t): (2)

The locations of the wavelet components and the magnitudes of their coefficients are
chosen with respect to a marked Poisson process model. Specifically, the set � of in-
dices � = (a; b) is sampled from a Poisson process S on [a0;1)� [0; 1] with intensity�(�). Conditional on S, the wavelet coefficients !� are assumed to be independent nor-
mal random variables !� j S � N(0; � 2(�)): (3)

It is assumed that the variance � 2(�) and the intensity �(�) depend on the scale a only,
and are of the form � 2a / a�� and �a / a�� ; a � 1; (4)

where �, � � 0, with � + � > 0.

The stochastic wavelet expansions we consider allow intuitive notions about the
functions genuinely to be modelled. The parameter � controls the relative rarity of fine-
scale wavelet components in the function, while the parameter � controls the size of the
contribution of these components when they appear. For example, if � is small and �
is large, there will be a considerable number of fine-scale components but these will
each have fairly low contribution, so one might expect the functions to be reasonably
smooth and homogeneous. On the other hand, if � is large and � is small, there will be
occasional large fine-scale effects in the functions.

In the remainder of the paper, we investigate the regularity properties of the ran-
dom functions generated by the proposed model. We reveal relations between the pa-
rameters � and � of the model and the parameters of those Besov spaces within which
realizations from the model will fall.

2 Regularity properties of the random functions

An important tool in our argument will be the equivalence between the Besov norm of
the function f on [0; 1] and the corresponding sequence norm of its orthonormal wavelet
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coefficients. For details of Besov spaces see, for example, Meyer (1992, Chapter 6),
Härdle, Kerkyacharian, Picard & Tsybakov (1998, Chapter 9).

For j � j0, define wj to be the vector of orthonormal wavelet coefficients wjk =hf;  jki; 0 � k � 2j � 1. Define also the vector uj0 to have elements uj0k =hf; �j0ki; 0 � k � 2j0 � 1. Let s0 = s + 1=2 � 1=p and define the norm of the
array w by jjwjjbsp;q = 8<: 1Xj=j0 2js0qjjwjjjqp9=;1=q ; 1 � q <1;jjwjjbsp;1 = supj�j0 n2js0jjwjjjpo :
Then, for 0 < s < r, 1 � p; q � 1, the Besov norm jjf jjBsp;q on [0; 1] is equivalent

to the sequence space norm jjuj0jjp+ jjwjjbsp;q (see, for example, Donoho & Johnstone,
1998, Theorem 2)

Because f0 given by (1) is a finite linear combination of functions ��, it will belong
to the same Besov spaces as the scaling functions, including all those for which 0 <s < r. For these parameter values, we consider in detail the necessary and sufficient
conditions for f given by (2) to fall (with probability one) in any particular Besov space.

Theorem 1 Let � and  be the compact-support scaling function and mother wavelet
respectively that correspond to an r-regular multiresolution analysis. Consider a func-
tion f as defined in (2), with the conditional variances � 2a / a�� and the intensity of
the Poisson process �a / a�� . Assume that � � 0, 0 � � � 1, and that � + � > 0:
Assume also that � (and hence  ) are sufficiently regular that � < 2r + 2�� 1, where� 2 (0; 1) is the exponent of Hölder continuity of the r-th derivative of � and  . Thenf 2 Bsp;q almost surely 0 < s < r; 1 � p; q � 1
if and only if ( s+ 1=2� �=p� �=2 < 0 if 1 � p <1s+ 1=2� �=2 < 0 if p =1:
Proof. Define  = s + 1=2 � �=p � �=2 if 1 � p < 1 and  = s + 1=2 � �=2 ifp =1.

We first prove the sufficient part. Consider the case 1 � p < 1. Consider the or-
thonormal wavelet coefficients wjk = hf;  jki and set �jk = (2j; 2�jk). For resolution
and spatial indices j and k with j � j0 and k = 0; 1; : : : ; 2j � 1 respectively, we then
have wjk = X�2SK(�; �jk)!�; (5)
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where K(�; �0) = h �;  �0i:
We now explore some properties of the reproducing kernel K that we use in sub-

sequent calculations. Firstly, since
R  2� = 1 for all �, we always have K2(�; �0) � 1:

Now define K0(u; v) = h ;  uvi: Let � = (a; b) and �0 = (a0; b0). Simple calculus
shows that K(�; �0) = K0(a=a0; a0(b� b0)): (6)

In the particular case where �0 = �jk, we have K(�; �jk) = K0(2�ja; 2jb � k). Let[L ; U ] be the support of the mother wavelet  . Then K0(u; v) = h ;  uvi 6= 0 only
if L � U =u � v � U � L =u: (7)

In what follows we useC to denote a generic positive constant, not necessarily the same
each time it is used. We have, from Daubechies (1992, p. 48),jK0(u; v)j � Cu�(r+�+1=2); uniformly in u � 1: (8)

For u < 1, apply the symmetry ofK to show thatK0(u; v) = K0(1=u;�uv) and hencejK0(u; v)j � Cu(r+�+1=2); uniformly in u � 1: (9)

Suppose that  < 0. It follows from (5) that, conditionally on S, the distribution ofwjk is normal with mean zero and variance�2jk(S) = X�2SK2(�; �jk)a��; (10)

where, as usual, � = (a; b): The unconditional distribution of wjk will have finite vari-
ance if the expectation of �2jk(S) over S is finite. If the sum in (10) is infinite for a
particular S, then, conditionally on S, the sum defining wjk cannot converge, because
it will not converge in distribution. More generally, for p > 0, the pth absolute moment
of wjk will be given byEjwjkjp = �pES 8<:X�2SK2(�; �jk)a��9=;p=2 ; (11)

where �p is the pth absolute moment of the standard normal distribution.

Let T 0jk be the set [a0;1)� (2�jk� 1=2; 2�jk + 1=2): By the definition of a0 andj0, we may restrict attention in the sum (10) to S\T 0jk since the support of any  � witha > a0 will be of length at most 12 , and so the terms excluded by restricting the sum will
all be zero. Now let S 0j be a Poisson process on the half-plane f(u; v) : u > 0;�1 <v <1g of intensity 2�j�u�� . Define the set Tj = [2�j;1)� [�2j�1; 2j�1]: Consider
the transformation of � = (a; b) given by (u; v) = (2�ja; 2jb � k). Applied to the
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process S \ T 0jk this gives a process with the same distribution as S 0j \ Tj: In addition,
for each �, we have from (6) that K(�; �jk) = K0(u; v): It follows thatEjwjkjp = �p2�j�p=2E 8><>: X(u;v)2S0j\Tj K20(u; v)u��9>=>;p=2� �p2�j�p=2E 8><>: X(u;v)2S0j K20 (u; v)u��9>=>;p=2 : (12)

To obtain a bound on the expectation in (12), define the random sumZj = X(u;v)2S0j K20 (u; v)u��: (13)

The bounds (8) and (9) imply that K20 (u; v)u�� is bounded by Cu2r+2�+1�� for 0 <u � 1, and by Cu�2r�2��1�� for u � 1; hence it is uniformly bounded for all u and v.

We now apply Corollary 1 in the Appendix to investigate the behaviour of EZp=2j .
To verify the finiteness of the first integral in the corollary, it will be sufficient to have
finiteness of the integral Z 10 Z 1�1K20(u; v)u����dv du: (14)

The bounds (7) on the support of the integrand, and those stated above on its order of
magnitude, allow (14) to be dominated byC Z 10 u2r+2�+1����(1 + 1=u)du+ C Z 11 u�2r�2��1����(1 + 1=u)du:
The assumptions of the theorem guarantees the finiteness of the first integral, while the
second integral is clearly finite. Now verify the finiteness of the second integral in the
corollary. By similar arguments to those just used,Z 10 Z 1�1fK20 (u; v)u��gp=2u��dv du� C Z 10 u(2r+2�+1��)p=2���1du+ C Z 11 u�(2r+2�+1+�)p=2��du:
The assumptions of the theorem about the regularity of the wavelets imply easily that
these integrals are both finite. It now follows from Corollary 1 in the Appendix that,
for each fixed p, EZp=2j = C2�j� + o(2�j�) as j !1: (15)

Now define wj to be the vector with elements wjk for k = 0; :::; 2j � 1. Substituting
(15) into (11) gives Ekwjkpp � C2�j(�p=2+��1) for all j. (16)
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By Jensen’s inequality and (16), we haveEjjwjjbsp;1 = 1Xj=j0 2js0Ejjwjjjp � 1Xj=j0 2js0(Ejjwjjjpp)1=p � C 1Xj=j0 2j;
which is finite if  < 0. Thus, if  < 0, jjwjjbsp;1 is finite almost surely.

To complete the proof we use similar methods to show that the norm jjuj0jjp is finite
almost surely. For fixed k, let T 0 be the range of indices � = (a; b) with a > a0 = 2j0
for which the support of  � overlaps that of �j0k for some fixed k. Thenuj0k = X�2S\T 0W (�; �j0k)!�; (17)

whereW (�; �j0k) = h �; �j0ki = W0(2�j0a; 2j0(b�2�j0k)) andW0(u; v) = h�;  uvi.
Note that for � 2 S \ T 0, u � 1. One can easily verify that W0(u; v) = h ;  uvi 6= 0
only if L� � U =u � v � U� � L =u; (18)

where [L�; U�] and [L ; U ] are the supports of the scaling function � and the mother
wavelet  respectively. From Daubechies (1992, p. 48) we have againjW0(u; v)j � Cu�(r+�+1=2); uniformly in u � 1: (19)

Exploiting (18), (19) and the fact that u � 1, the same techniques used for wavelet
coefficients !jk will imply Ejjuj0jjpp � cj0 <1 for any fixed j0 and, hence, jjuj0jjp is
always finite almost surely.

By the equivalence of the Besov space and sequence norms, we conclude that if  <0, jjf jjBsp;1 is finite almost surely, and therefore, by the embedding properties of Besov
spaces (see, for example, Härdle, Kerkyacharian, Picard & Tsybakov, 1998, Corollary
9.2, p. 124), f 2 Bsp;q almost surely for all 1 � q � 1, completing the proof for this
case.

Consider now the case p = 1. For any positive � and c, Markov’s inequality im-
plies that P (jwjkj � c) � 2e��cE(e�wjk): (20)

To evaluate the expectation, we use the standard expression for the moment generating
function of a normal distribution and Campbell’s theorem (see, for example, Kingman,
1993, p. 28) applied to the random sum (10) to obtainlogE(e�wjk) = logEfE(e�wjk jS)g = logE expf�2�2(S)=2g= ZT 0jk [expf�2K2(�; �jk)a��=2g � 1]a��d�= 2��j ZTj [expf�2K20 (u; v)2�1��ju��g � 1]u��du dv
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by the usual change of variable. Now let M = supfK20 (u; v)u��g, which was shown
earlier to be finite. Extending the integral to the whole of the half-plane u > 0, we
have, by the convexity of the exponential function,logE(e�wjk) � C2��j exp(2�1��j�2M) Z 10 Z 1�1K20 (u; v)u����dv du� C2��j exp(M�22�1��j):
Suppose 2j�=2c > 1. To obtain a bound forP (jwjkj > c), choose �2 = M�121+�j log(2j�=2c),
and substitute into (20) to obtain, for positive constants C1 and C2,logP (jwjkj > c) � log 2 + C12(�=2��)jc� C22�j=2cqlogf2j�=2cg:
Both s0 = s+ 1=2 and  are positive by the hypotheses of the theorem. Choose � such
that 0 < � <  and set c = 2�(s0+�)j. Then 2j�=2c = 2(��)j > 1: We now havelogP (2(s0+�)jjwjkj > 1) � log 2 + C12(����)j � C22(��)jqlog 2(��)j� �2(��)j;
for sufficiently large j. Since wj is of length 2j, it follows that, for sufficiently large j,P (2s0jjjwjjj1 > 2��j) < 2j exp(�2(��)j):
This very rapidly decreasing bound on the tail probabilities implies that, with probabil-
ity one, the sequence 2s0jjjwjjj1 is bounded by a multiple of 2��j and hence its sum is
convergent almost surely. The same arguments used in the case of finite p for scaling
coefficients show that jjuj0jj1 is finite almost surely.

By the equivalence of norms, we conclude that f 2 Bs1;1 almost surely and, there-
fore, by the embedding properties of Besov spaces (see, for example, Härdle, Kerky-
acharian, Picard & Tsybakov, 1998, Corollary 9.2, p. 124), f 2 Bs1;q almost surely for
all 1 � q � 1, completing the proof for this case, and hence we have the sufficiency.

We now prove the necessary part. Noting that the function K0(u; v) is continuous
and that K0(1; 0) = 1, choose c0 with 0 < c0 < 1 such that K0(u; v) > 1=2 for all(u; v) with 1 � u � 1+ c0 and 0 � v � c0. For j � j0 and k = 0; 1; : : : ; 2j�1, define
the nonoverlapping rectangles Ijk in the range of indices � as Ijk = [2j; 2j(1 + c0)]�[2�jk; 2�j(k + c0)].

Using (4), the expected number of wavelet components � falling within Ijk is thenRIjk a��db da = c12��j for some c1 > 0, and hence the probability that there is one or
more wavelet components in Ijk is at least c22��j for some c2 > 0. Now definew0jk = X�2S\IjkK(�; �jk)!�
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and observe that the w0jk are independent because the Ijk are disjoint. It follows from
(6) that K(�; �jk) > 1=2 for � in Ijk. Note also that from (3) and (4), Var(!� j � 2S \ Ijk) � 4c32�j� for some c3, so that Var(K(�; �jk)!� j � 2 S \ Ijk) � c32�j�.

For j � j0 and k = 0; 1; : : : ; 2j � 1, now define independent random variables w0jk
to have the mixture distributionw0jk � �jN(0; � 2j ) + (1� �j)�(0);
where �j = c22��j and � 2j = c32�j�. For the orthonormal wavelet coefficients wjk =hf;  jki, it is obvious that jwjkj is stochastically larger than jw0jkjwhich in turn is stochas-
tically larger than jw0jkj. Hence, stochastically jjwjjbsp;q � jjw0jjbsp;q � jjw0jjbsp;q for any0 < s < r, 1 � p; q � 1.

The results of Abramovich, Sapatinas & Silverman (1998) for independent orthonor-
mal wavelet coefficients w0jk show that almost surely finiteness of jjw0jjbsp;q implies  <0, completing the proof of the necessity, and hence we have the theorem.

3 Concluding remarks

Theorem 1 places an upper bound restriction on the value of � . In the case � > 1, the
intensity �a / a�� is integrable over the range of � for which  � has support intersect-
ing [0; 1]. Therefore, the number of relevant terms in the stochastic expansion of f is
finite almost surely. With probability one, f will belong to the same Besov spaces as
the mother wavelet  , namely those for which 0 < s < r, 1 � p � 1, 1 � q � 1.

The key conclusion of Theorem 1 we have proved is that, under suitable conditions,
the function f falls in Bsp;q if � + (2=p)� exceeds 2s + 1. Since the fine-scale content
of model functions depends both on the intensity of fine-scale components and on their
size, it is not surprising that the smoothness as measured by the parameter s should de-
pend on both parameters. The parameter p can be seen as discouraging inhomogeneity,
in that the larger the value of p the more emphasis is placed on the parameter �. For
large �, no matter how many fine-scale components there are, they each make a rela-
tively low contribution. On the other hand, if p is small, then there is a trade-off where
large weights on fine-scale components (small �) can be tolerated if the corresponding
components are relatively rare (large �).

The constraints placed on s in the statistical literature, for example in the optimality
results of Donoho & Johnstone (1998), are often stronger than those we have assumed.
Typical conditions are max (0; 1=p� 1=2) < s < r or 1=p < s < r. These constraints
ensure that the Besov spaces are function spaces rather than spaces of more general
distributions (see, for example, Meyer, 1992, Chapter 6).
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Appendix: Moments of sums of thinned Poisson processes

In this appendix we prove a lemma and corollary used in the proof of Theorem 1. They are of
interest in their own right.

Lemma 1 Let� be a measure onR and letS" be a Poisson Process onR with intensity measure"�, where " > 0. Assume thatZ 1�1min (1; jxj) �(dx) <1 and cl = Z 1�1 jxjl �(dx) <1 for some l > 0: (21)

Define Y" =PX2S" X: ThenEjY"jl = " cl + o(") as "! 0: (22)

Proof. Applying Campbell’s Theorem (Kingman, 1993, p. 28), condition (21) shows that
the sum defining Y" is absolutely convergent with probability one. For any � > 0, define B� =Rn[��; �]. It follows from (21) that �(B�) < 1; define F (�) = �(B�). Now choose � < 1
to depend on " in such a way that � ! 0 and "F (�) ! 0 as " ! 0. The dependence of � on "
will not be expressed explicitly. Now defineY (1)" = XX2S"TB� X and Y (2)" = XX2S"T[��;�]X:

Consider, first, the asymptotic behaviour of Y (1)" . The number of X in S"TB� is a Poisson("F (�)) random variable and soEjY (1)" jl = 1Xj=1 exp(�"F (�))"jF (�)jj! Ej jXi=1Xijl; (23)

where X1;X2; : : : are independent and identically distributed random variables on B� with dis-
tribution �=F (�). Let c(1)l = RB� jxjl �(dx). For j � 2, we consider a bound for the expecta-
tion in (23). For l � 1, we immediately see thatE(j jXi=1Xijl � E jXi=1 jXijl = jEjXijl = jc(1)lF (�) : (24)
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For l > 1, using Jensen’s inequality, we haveEj jXi=1Xijl � jl�1E jXi=1 jXijl = jlc(1)lF (�) : (25)

Hence, in either (24) or (25), we have from (23), separating the terms for j = 1 and j > 1,EjY (1)" jl = " c(1)l exp(�"F (�)) +R(1)" ; (26)

where R(1)" � 1Xj=1 exp(�"F (�))"jF (�)jj! j(l^1)c(1)lF (�)= "2c(1)l F (�) 1Xk=0 exp(�"F (�))"kF (�)kk! (k + 2)(l�1)+(k + 1) : (27)

As "! 0, the sum in (27) is a Poisson expectation that converges to 2(l�1)+ , since "F (�) ! 0.

It follows that R(1)" = o(") and hence, from (26), that, as "! 0:"�1EjY (1)" jl ! cl; (28)

using the facts that c(1)l ! cl and "F (�)! 0.

Now consider the asymptotic behaviour of Y (2)" . For l � 1, by Campbell’s theorem applied
to the Poisson process S"T [��; �], we haveEjY (2)" jl � E0B@ XX2S"T [��;�] jXj1CAl � E XX2S"T [��;�] jXjl = " Z ��� jxjl �(dx): (29)

Therefore, we have from (29), as � ! 0, that EjY (2)" jl = o("). Since jY"jl � jY (1)" jl + jY (2)" jl;
it follows from (28) that EjY"jl = " cl + o(") as "! 0:

Finally, consider the case l > 1. Define Z" = PX2S"T [��;�] jXj. For �� � x � �, we

have 0 � ejxj�1 � ��1(e��1)jxj, and so, using (21), I� = R ���(ejxj�1) �(dx) <1: It then
follows (using equation (3.17) of Kingman, 1993), that E exp(Z") = exp("I�): Since l > 1,
there exists a constant kl such that zl � kl(ez � 1) for all z � 0. We then haveEZ l" � kl(E exp(Z")� 1) = kl(exp("I�)� 1) = o(") as "! 0; (30)

since I� ! 0 as � ! 0. Therefore, from (30), it follows at once that EjY (2)" jl = o(") as "! 0:
Using Minkowski’s inequality applied to the norm jjXjjl = (EjXjl)1=l we have:(EjY (1)" jl)1=l � (EjY (2)" jl)1=l � (EjY"jl)1=l � (EjY (1)" jl)1=l + (EjY (2)" jl)1=l

and hence, since "�1EjY (2)" jl ! 0, the limiting values of "�1EjY (1)" jl and "�1EjY"jl are the
same. It follows from (28) that "�1EjY"jl ! cl, which gives (22), completing the proof of the
lemma.
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Corollary 1 Let � be a measure on a set 
, and let g be a real-valued function on 
. Let S"
be a Poisson Process on 
 with intensity measure "�, where " > 0. Assume that the induced
measure �(g�1(A)) is non-atomic for every measurable set A � R, and assume thatZ
min (1; jg(x)j) �(dx) <1 and cl = Z
 jg(x)jl �(dx) <1 for some l > 0:
Define Y" =PX2S" g(X). ThenEjY"jl = " ul + o(") as "! 0:

Proof. Define a measure on R by �g(A) = �(g�1(A)) and let Z = g(X). Then, appealing
to the Mapping theorem for Poisson processes (see, for example, Kingman, 1993, p. 18), Z
is a Poisson process on R with intensity measure "�g and Y" = PX2S" Z . The proof of the
corollary is completed by applying Lemma 1 to Z and �g.
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