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Abstract

We consider random functions defined in terms of members of an overcomplete
wavelet dictionary. The function is modelled as a sum of wavelet components at
arbitrary positions and scales where the locations of the wavelet components and
the magnitudes of their coefficients are chosen with respect to a marked Poisson
process model. Therelationships between the parameters of the model and the pa-
rameters of those Besov spaceswithin which realizations will fall areinvestigated.
The models alow functions with specified regularity properties to be generated.
They can potentialy be used as priorsin aBayesian approach to curve estimation,
extending current standard wavelet methods to be free from the dyadic positions
and scales of the basis functions.

Keywords: BESOV SPACES; CONTINUOUS WAVELET TRANSFORM; OVERCOM-
PLETE WAVELET DICTIONARIES;, POISSON PROCESSES.

1 Introduction

1.1 Background

Wavelets have recently been of great interest in various statistical areas such as non-
parametric regression, density estimation, inverse problems, change point problems,
and time seriesanalysis. Surveys of wavelet applicationsin these and other related sta-
tistical areas can be found, for example, in Ogden (1997), Hardle, Kerkyacharian, Pi-
card & Tsybakov (1998), Abramovich, Bailey & Sapatinas (1999), Antoniadis (1999),
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Silverman (1999) and Vidakovic (1999). An interesting development, motivated by
Bayesian approachesto curve estimation, isthe modelling of afunction as an orthonor-
mal wavel et expansion with random coefficients. Abramovich, Sapatinas & Silverman
(1998) considered such modelsin detail, and studied the Besov regularity properties of
the functions produced by the models. They consider the application of the modelsin a
Bayesian context, and also give references to related work by other authors; the results
obtained have generally been very encouraging.

1.2 Abandoning dyadic constraints

Orthonormal wavelet bases have the disadvantage that the positions and the scales of
the basisfunctions are subject to dyadic constraints. In order to avoid these constraints,
this paper considers random functions defined by expansions in a continuous wavel et
dictionary, where functions are built up from wavelet components that may have ar-
bitrary positions and scales. The models provide a constructive method of simulating
functions with varying degrees of regularity and spatial homogeneity, and our results
givetheexplicit regul arity properties of the functions thus produced, in terms of Besov
spaces.

Some users might wish to be able to simulate or construct functions with specific
Besov parametersin mind. Others might wish to use the modelsto gain intuition about
the meaning of the Besov parameters, by generating functions that lie just inside and
just outside particular Besov spaces. The models lay open the possibility of building
a Bayesian curve estimation approach with the advantages of standard wavelet meth-
ods, in that inhomogeneous functions can be modelled under the prior, but without the
artificial dyadic constraints on the positions and scales of the basis functions. The im-
provement to standard wavel et thresholding methods obtained by moving from thedis-
crete (decimated) wavel et transform to the non-decimated wavel et transform (see, for
example, Coifman & Donoho, 1995; Nason & Silverman, 1995; Johnstone & Silver-
man, 1997) suggests that a Bayesian approach freed from dyadic positions and scales
may result in yet better wavelet shrinkage estimators. The algorithmic details, proba-
bly involving modern Bayesian computational methods, have yet to be worked out in
detail, and thisis an interesting topic for further research.

1.3 Modésin continuous wavelet dictionaries

For simplicity of exposition we work with functions periodic on [0, 1]. Suppose that ¢
and ¢ are the compact-support scaling function and mother wavelet respectively that
correspond to an r-regular multiresolution analysis, for some integer » > 0 (see, for
example, Daubechies, 1992). Take a, = 2’°, for some integer j,, such that a, is at
least twice the length of the support of . For indices A\ = (a,b) witha > ay and
0 < b < 1wedefine v, (t) = a'/?y(a(t — b)) wrapping ¢, periodicaly if necessary.
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We mode! our function as the sum of a‘coarse-scale’ function f, and a‘fine-scale
function f. Thefunction f, isgiven by

folt) = Z: nidx; (1) 1

for some finite set of indices (a;,b;), i = 1,2,..., M, witha; < a,, and some real
numbers ;. Here ¢, has an analogous definitionto ¢,. Thefunction f is generated by
a stochastic mechanism and is given by

()= waha(t). (2
AES

The locations of the wavelet components and the magnitudes of their coefficients are
chosen with respect to a marked Poisson process model. Specificaly, the set A of in-
dices A = (a, b) issampled from a Poisson process S on [ag, o0) x [0, 1] with intensity
©(A). Conditional on S, thewavel et coefficientsw,, are assumed to be independent nor-

mal random variables
wy | S~ N(0,7%())). (3)

It is assumed that the variance 7%(\) and theintensity () depend on the scale a only,
and are of the form

?oxca®  and  p,oxat, a>1, 4

whered, ¢ > 0, withd + ¢ > 0.

The stochastic wavelet expansions we consider allow intuitive notions about the
functionsgenuinely to bemodelled. The parameter ¢ controlstherelativerarity of fine-
scale wavelet componentsin the function, whilethe parameter ¢ controlsthe size of the
contribution of these components when they appear. For example, if ¢ issmall and §
is large, there will be a considerable number of fine-scale components but these will
each have fairly low contribution, so one might expect the functions to be reasonably
smooth and homogeneous. On the other hand, if ¢ islarge and ¢ issmall, there will be
occasional large fine-scale effects in the functions.

In the remainder of the paper, we investigate the regularity properties of the ran-
dom functions generated by the proposed model. We reveal relations between the pa-
rameters ¢ and ¢ of the model and the parameters of those Besov spaces within which
realizations from the model will fall.

2 Regularity propertiesof therandom functions

An important tool in our argument will be the equivalence between the Besov norm of
thefunction f on [0, 1] and the corresponding sequence norm of itsorthonormal wavel et
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coefficients. For details of Besov spaces see, for example, Meyer (1992, Chapter 6),
Hardle, Kerkyacharian, Picard & Tsybakov (1998, Chapter 9).

For j > j,, define w; to be the vector of orthonormal wavelet coefficients w;, =
(f,j), 0 < k < 27 — 1. Define aso the vector u;, to have elements u,,;, =
(f,diok), 0 < k < 20 — 1. Lets' = s+ 1/2 — 1/p and define the norm of the
array w by

. 1/q
= {Z 2-7S'q11)_7-||g} , 1< q< oo,

J=Jjo

b = sup{27||wll,}.
me >jo

[|w

Then, for0 < s < 7,1 < p,q < oc, the Besov norm Hf||Be on [0, 1] is equivalent

to the sequence space norm || u;, ||, s . (see for example Donoho & Johnstone,
1998, Theorem 2)

Because f, given by (1) isafinite linear combination of functions ¢,, it will belong
to the same Besov spaces as the scaling functions, including all those for which 0 <
s < r. For these parameter values, we consider in detail the necessary and sufficient
conditionsfor f givenby (2) tofall (with probability one) inany particular Besov space.

Theorem 1 Let ¢ and +) be the compact-support scaling function and mother wavel et
respectively that correspond to an r-regular multiresolution analysis. Consider a func-
tion f as defined in (2), with the conditional variances 7> o« a~ and the intensity of
the Poisson process ji, < a~¢. Assumethatd > 0,0 < ¢ < 1,andthat § + ¢ > 0.
Assume also that ¢ (and hence v) are sufficiently regular that 6 < 2r + 2p — 1, where
p € (0,1) isthe exponent of Holder continuity of the r-th derivative of ¢ and ¢». Then

feB,, amostsurely 0 <s<r, 1<p, ¢g<o0

if and only if
s+1/2—(/p—6/2<0 ifl<p<oo
s+1/2—-6/2<0 if p=o0

Proof. Definey = s +1/2 = (/p—0/2ifl <p<ocandy = s+ 1/2—4§/2if
p =
We first prove the sufficient part. Consider thecase 1 < p < oo. Consider the or-
thonormal wavelet coefficients w;, = (f, ¢;x) and set A, = (27, 277k). For resolution
and spatial indices j and k with j > joand k = 0,1,...,27 — 1 respectively, we then
have
wir = Y KA Ajr)wa, (5)
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where K()\, )\') = <w)\, 1/))\I>.

We now explore some properties of the reproducing kernel K that we use in sub-
sequent calculations. Firstly, since [ 3 = 1 for al A\, we dways have K%(\, \') < 1.
Now define Ky (u,v) = (¢, 1y,). L&t A = (a,b) and \' = (a’,b'"). Simple calculus
shows that

K\ XN) = Ky(a/d',d'(b—1")). (6)

In the particular case where \' = )., we have K'(\, \jx) = Ko(277a,27b — k). Let
[Ly, Uy be the support of the mother wavelet . Then Ko (u,v) = (1, ¢,,) # 0 only
if

LQ/J*UU)/US'USU(/)*LU)/“‘- (7)
Inwhat followswe use C to denote ageneric positive constant, not necessarily the same
each timeit isused. We have, from Daubechies (1992, p. 48),

|Ko(u,v)| < Cu” P2 uniformly inu > 1. (8)
For u < 1, apply the symmetry of K to show that K(u,v) = Ky(1/u, —uv) and hence

| Ko(u,v)| < Cul" /2 uniformly inwu < 1. (9)

Supposethat v < 0. It followsfrom (5) that, conditionally on S, the distribution of
w;x, 1ISnormal with mean zero and variance

o5 (S) = D0 K2\ Ajp)a”’, (10)
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where, asusua, A = (a, b). The unconditional distribution of w;; will have finite vari-
ance if the expectation of 07, (S) over S isfinite. If the sum in (10) is infinite for a
particular S, then, conditi onally on S, the sum defining w,;, cannot converge, because
it will not convergein distribution. Moregeneraly, for p > 0, the pth absolute moment
of w;, will be given by

p/2
E|wjk|” = VpEg {Z KQ()\, )\jk)a's} s (11)

A€ES

where v, is the pth absolute moment of the standard normal distribution.

Let 7, betheset [a, 00) x (277k —1/2,277k + 1/2). By the definition of a, and
Jo, We may restrict attention in the sum (10) to S N 7}% since the support of any v, with
a > ao will beof length at most 3, and so theterms excluded by restricting the sum will
al be zero. Now let S’ beaP0|sson process on the half-plane {(u, v) : u > 0, —c0 <
v < 00} oflntenSItyQ iu~¢. Definetheset T, = [277, 00) x [—2771, 271]. Consider
the transformation of A = (a,b) given by (u,v) = (2 7a, 2/b — k) Applied to the



process S N 7, this gives a process with the same distribution as S} N 7;. In addition,
for each A, we have from (6) that K (), A;z) = Ko(u,v). It followsthat

p/2
Elw;, [P = Vp2j5”/2E{ > Kg(u,v)u5}

(u,0)€5:NT;

p/2
< p27REL N K2 (u,v)u? : (12
(u,v)€S;
To obtain a bound on the expectation in (12), define the random sum
Zi= Y Kj(u,v)u ' (13)
(u,v)€S;

The bounds (8) and (9) imply that K2(u,v)u is bounded by Cu?+2+1-9 for ( <
u < 1,and by Cu=?"=2=1=9 for 4 > 1; henceit is uniformly bounded for all « and v.

We now apply Corollary 1 in the Appendix to investigate the behaviour of £Z7 /2,
To verify thefiniteness of the first integral in the corollary, it will be sufficient to have
finiteness of the integral

/OC /oo K (u,v)u" Sdv du. (14)
0 —00

The bounds (7) on the support of the integrand, and those stated above on its order of
magnitude, allow (14) to be dominated by

1 o0
C / w0 4 1 fu)du + C / w220 1 u)du.
JO J1

The assumptions of the theorem guarantees the finiteness of thefirst integral, while the
second integral is clearly finite. Now verify the finiteness of the second integral in the
corollary. By similar arguments to those just used,

oo o0
/ / {K2(u, v)u Y ?u= dv du
J0O J—00
1 fo'e)
< 0/ u(2r+2p+17(5)p/27471du+C«/ o~ 2r+20H1+0p/2C g,
o 0 1

The assumptions of the theorem about the regularity of the waveletsimply easily that
these integrals are both finite. 1t now follows from Corollary 1 in the Appendix that,
for each fixed p,

EZY? = C27¢ 4 0(277¢) asj — oo. (15)

Now define w; to be the vector with elements w;, for £ = 0, ...,27 — 1. Substituting
(15) into (11) gives .
Eljwy|[p < €270+ for all 5. (16)
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By Jensen’sinequality and (16), we have

o

i, = 2 2V E|lwjll, < 30 27 (Bllwy|)' 7 < C Y 27,

J=Jjo J=Jjo J=Jo

El|lw

whichisfiniteif v < 0. Thus, if v < 0, [|w

b, isfinite amost surely.

To complete the proof we use similar methodsto show that thenorm ||« ||, isfinite
almost surely. For fixed k, let 7' be the range of indices A = (a, b) witha > ay = 2%
for which the support of 1, overlapsthat of ¢, , for somefixed k. Then

Uik = > WA, Ajgr)w, a7

AesnT!

where W (X, Njor) = (Un, @jor) = Wo(2770a, 270 (b—2770k)) and Wy (u, v) = (¢, thus).
Notethat for A € SN 7', u > 1. One can easily verify that Wy (u, v) = (¢, ) # 0
only if

L¢—U¢/U§U§U¢—L¢/U, (18)

where [Ly, Uy| and [Ly, U] are the supports of the scaling function ¢ and the mother
wavelet v respectively. From Daubechies (1992, p. 48) we have again

Wo(u,v)| < Cu~ T2 yniformly inu > 1. (19)

Exploiting (18), (19) and the fact that « > 1, the same techniques used for wavelet
coefficients w;, will imply E||u;,||F < ¢;, < oc for any fixed j, and, hence, ||u;, ||, is
always finite almost surely.

By the equivalence of the Besov space and sequence norms, we concludethat if v <
0,]|f] p; , isfinitealmost surely, and therefore, by the embedding properties of Besov
spaces (see, for example, Hardle, K erkyacharian, Picard & Tsybakov, 1998, Corollary
9.2,p. 124), f € B, ,dAmost surely for al 1 < ¢ < oc, completing the proof for this
case.

Consider now the case p = oo. For any positive § and ¢, Markov’s inequality im-
pliesthat
P(lwji] > ¢) < 2e B (). (20)

To evaluate the expectation, we use the standard expression for the moment generating
function of anormal distribution and Campbell’ stheorem (see, for example, Kingman,
1993, p. 28) applied to the random sum (10) to obtain

log B(e?i*) = log E{E(e"*|8)} = log E exp{6#?c*(S)/2}
_ / lexp{02K2(X\, Aj)a/2} — 1]a CdA

0
Tik

= 274‘7/ lexp{#? K2 (u, )27 "0} — 1)u dudv

J
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by the usua change of variable. Now let M = sup{K2(u,v)u~°}, which was shown
earlier to be finite. Extending the integral to the whole of the half-plane v > 0, we
have, by the convexity of the exponential function,

log B(efit) < 2 “exp(2- %> M) / / K2 (u, v)u" Sdvdu
J0O J—o0
< 02 Yexp(MO?27 1),

Suppose2/%/2¢ > 1. Toobtainaboundfor P(|w;x| > c¢),choosef? = M~12'*97 log(27%/2¢),
and substitute into (20) to obtain, for positive constants C; and C,

log P(lwji| > ¢) <log2+ €202 Ve — C42%7¢y [log{299/%c}.

Both s’ = s 4+ 1/2 and -y are positive by the hypotheses of the theorem. Choose e such
that 0 < € < v and set ¢ = 2~ '+, Then 279/2¢ = 2097 > 1. We now have

log2 4+ €120 97 — 020093 [log 20v=€)i

_9ly=€)j

log P(2' % | > 1) <
<

3

for sufficiently large j. Since w; isof length 27, it follows that, for sufficiently large j,
P2 |wj| oo > 279) < 27 exp(—2099).

Thisvery rapidly decreasing bound on thetail probabilitiesimpliesthat, with probabil-
ity one, the sequence 277 ||w, ]| is bounded by amultiple of 2~ and henceits sumis
convergent almost surely. The same arguments used in the case of finite p for scaling
coefficients show that ||u;, ||~ iSfinite almost surely.

By the equivaence of norms, we concludethat f € B;, ; dmost surely and, there-
fore, by the embedding properties of Besov spaces (see, for example, Hardle, Kerky-
acharian, Picard & Tsybakov, 1998, Corollary 9.2, p. 124), f € B;, , dmost surely for
al 1 < ¢ < oo, completing the proof for this case, and hence we have the sufficiency.

We now prove the necessary part. Noting that the function K (u, v) is continuous
and that K,(1,0) = 1, choose ¢y with0 < ¢y < 1 such that Ky(u,v) > 1/2 for all
(u,v)Withl <u < 1+c¢gand0 <o < ¢y Forj > joandk =0,1,...,27 —1, define
the nonoverlapping rectangles Z,,. in therange of indices A asZ;;, = [27,27(1 + ¢,)] X
277k, 277 (k + cp)].

Using (4), the expected number of wavelet components A falling within Z;,, isthen
Jz a ‘dbda = ¢,2% for some ¢, > 0, and hence the probability that there is one or
more wavelet componentsin Z;, is at least ¢,2¢/ for some ¢, > 0. Now define

71);k = Z K()\,)\jk)w,\

AESNT;),



and observe that the w’,, are independent because the Z;,, are digoint. It follows from
(6) that K (A, \ji) > 1/2 for A inZj. Notealsothatfrom (3) and (4), Var(w, | A €
SN Zj) > 4cz277° for some e, sothat Var(K (A Ajp)ws | A € SNTj) > 3277,

Forj > joandk =0,1,...,2 — 1, now define independent random variablesw]“-k
to have the mixture distribution
w)y, ~mN(0,77) + (1 —7;)d(0),
where 7; = ¢,2"% and 77 = ¢;277°. For the orthonormal wavelet coefficients w;, =
(f, ik, |t|sobV|ousthat\w]k||sstochast|callylargerthan|w | whichinturnisstochas-
ticaly larger than |w?, o, > Hw by, > |[w’|]s  forany
0<S<r,1§p,q§oo.

Theresultsof Abramovich, Sapatinas& Silverman (1998) for independent orthonor-
mal wavel et coefficients wj, show that almost surely finiteness of ||w°|[,, impliesy <
0, completing the proof of the necessity, and hence we have the theorem.

3 Concludingremarks

Theorem 1 places an upper bound restriction on the value of (. Inthecase ( > 1, the
intensity i, o< a~¢ isintegrable over therange of \ for which v, has support intersect-
ing [0, 1]. Therefore, the number of relevant terms in the stochastic expansion of f is
finite amost surely. With probability one, f will belong to the same Besov spaces as
the mother wavelet ), namely thosefor which0 < s <r, 1 <p <o0,1 < g < oc.

Thekey conclusion of Theorem 1 we have proved isthat, under suitable conditions,
the function f falsin B;  if 6 + (2/p)( exceeds 2s + 1. Since the fine-scale content
of model functions depends both on the intensity of fine-scale componentsand on their
size, itisnot surprising that the smoothness as measured by the parameter s should de-
pend on both parameters. The parameter p can be seen as discouraging inhomogeneity,
in that the larger the value of p the more emphasisis placed on the parameter §. For
large 9, no matter how many fine-scale components there are, they each make arela-
tively low contribution. On the other hand, if p issmall, then there is atrade-off where
large weights on fine-scale components (small §) can be tolerated if the corresponding
components are relatively rare (large ().

The constraints placed on s inthe statistical literature, for examplein the optimality
results of Donoho & Johnstone (1998), are often stronger than those we have assumed.
Typical conditionsaremax (0,1/p —1/2) < s <rorl/p < s < r. These constraints
ensure that the Besov spaces are function spaces rather than spaces of more general
distributions (see, for example, Meyer, 1992, Chapter 6).
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Appendix: Moments of sums of thinned Poisson processes

In this appendix we prove alemmaand corollary used in the proof of Theorem 1. They are of
interest in their own right.

Lemmal Lety beameasureonR andlet S. beaPoisson Processon R withintensity measure
e, Wheree > 0. Assume that

/ min (1, |z)) p(de) < 0o and ¢ :/ 2! p(de) < oo for somel > 0. (21)
Define Y, = " ycq. X. Then
EY.'!=cc +o(e) as €—0. (22)

Proof. Applying Campbell’s Theorem (Kingman, 1993, p. 28), condition (21) shows that
the sum defining Y- is absolutely convergent with probability one. For any ¢ > 0, define By =
R\[-4, d]. It follows from (21) that 11(Bs) < oo; define F(§) = u(Bs). Now choose § < 1
to depend on ¢ in such away that 6 — 0 and eF'(§) — 0 ase — 0. The dependence of j on ¢
will not be expressed explicitly. Now define

vW= 3 X ad Y?P= Y X
X€eS-(Bs XeS: N[-9,9]

Consider, firgt, the asymptotic behaviour of Y'E(l). Thenumber of X inS. (N By isaPoisson
(eF(6)) random variable and so

el F(6) J
Ty X (23)
' =1

BV =3 exp(—£F())
j=1

where X1, X, ... areindependent and identically distributed random variables on Bs with dis-
tribution 1/ F'(J). Let 61(1) = [, 2| p(dz). For j > 2, we consider abound for the expecta-
tionin (23). For < 1, weimmediately see that

1)

J J - (
. Jjc
E(D X|'<E ) X' =jE|X;| = —F(l5)- (24)
=1 i=1
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For [ > 1, using Jensen’s inequality, we have

(1)
E\ZXV < 4= 1EZ|X ! = ]C(l). (25)

Hence, in either (24) or (25), we have from (23), separating thetermsfor j = 1and j > 1,

EY = ¢ ¢V exp(—eF(8)) + RD, (26)
where
7F(($) (l/\l) (1)
Ré” < exp(—eF(d 6 “
< Z b It
B eFF(6)F (k+2)t- 1)+
= ¢ cl Z exp(—eF(d I Gt 1) (27)

Ase — 0, thesumin (27) isa Poisson expectation that convergesto 20—+, sincee F/(§) — 0.
It follows that R'") = o(e) and hence, from (26), that, ase — 0:

e 'BYV|) = ¢, (28)
using the facts that ¢{') — ¢, and e F(5) — 0.

Now consider the asymptotic behaviour of v Fori <1, by Campbell’s theorem applied
to the Poisson process S. () [—4, ¢], we have

l

1)
Ey?l<e| Y x| <E Y x| :g/ o p(dn).  (29)
XeS. ([-0.0] Xes. ([-6.6] a
Therefore, we have from (29), as 6 — 0, that E|Y.? |! = o(e). Since |Y.|! < [V + v DL,

it follows from (28) that E|Y.|' = ¢ ¢; + o(c) ase — 0.
Finally, consider the case > 1. Define Z. = Y xcq, (54 |X|. FOr -6 <z <4, we

have 0 < el*l —1 < 671 (e? —1)||, and s0, using (22), I5 = [°5(el*! = 1) p(dx) < oo. It then
follows (using eguation (3.17) of Kingman, 1993), that Eexp(Z ) = exp(els). Sincel > 1,
there exists a constant k; such that z! < k;(e* — 1) for al z > 0. Wethen have

EZ! < kj(Eexp(Z.) — 1) = kj(exp(els) — 1) = o(e) ase — 0, (30)

since I; — 0 aséd — 0. Therefore, from (30), it follows at once that E|YE(2>\1 = o(e) ase — 0.
Using Minkowski’s inequality applied to the norm || X ||; = (E|X|")'/! we have:
(EYOHY —(ByPHY < (B W < (BY MO+ (B HY

and hence, since s E[Y{?|! — 0, the limiting values of e~ E|Y\"|! and e~ E|Y.|' are the
same. It follows from (28) that ' E|Y.|' — ¢;, which gives (22), completing the proof of the
lemma.
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Corollary 1 Let 1 be a measure on a set €2, and let g be a real-valued function on Q2. Let S,
be a Poisson Process on 2 with intensity measure e, where e > 0. Assume that the induced
measure (g~ ' (A)) is non-atomic for every measurable set A C R, and assume that

/min(1,|g(m)\)u(dr1:) <o and o= / g(x)|' u(dz) < oo for somel > 0,
JQ JQ

Define Y, = " vcs. 9(X). Then
ElY.'!=cu+o(e) as ¢ — 0.
Proof. Defineameasureon R by 11,(A) = u(g~'(A)) andlet Z = g(X). Then, appealing
to the Mapping theorem for Poisson processes (see, for example, Kingman, 1993, p. 18), Z

is a Poisson process on R with intensity measure iy and Y, = Y . Z. The proof of the
corollary is completed by applying Lemmalto Z and fi,.
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