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Abstract

We consider a Bayesian approach to multiple hypothesis testing. A hierarchi-
cal prior model is based on imposing a prior distribution π(k) on the number
of hypotheses arising from alternatives (false nulls). We then apply the maxi-
mum a posteriori (MAP) rule to find the most likely configuration of null and
alternative hypotheses. The resulting MAP procedure and its closely related
step-up and step-down versions compare ordered Bayes factors of individual
hypotheses with a sequence of critical values depending on the prior. We
discuss the relations between the proposed MAP procedure and the existing
frequentist and Bayesian counterparts. A more detailed analysis is given for
the normal data, where we show, in particular, that by choosing a specific
π(k), the MAP procedure can mimic several known familywise error (FWE)
and false discovery rate (FDR) controlling procedures. The performance of
MAP procedures is illustrated on a simulated example.
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1 Introduction

Consider the standard multiple hypothesis testing set-up. Suppose that
we have n independent vectors of observations Y i, i = 1, ..., n of sizes mi,
where Y i ∼ fi(Y i|θi), and θi is a di-dimensional parameter vector in Ωi ⊂
R

di . Given this data, we want to simultaneously test n nonnested hypotheses

H0i : θi ∈ Θi vs. H1i : θi ∈ Θ̄i, (1.1)
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where Θi ∩ Θ̄i = ∅, Θi ∪ Θ̄i = Ωi, i = 1, . . . , n. Following a frequentist
approach to test H0i against H1i, one chooses some test statistic Ti(Y i),
and the inference is typically based on the corresponding p-value pi. Since
there are n such individual tests, the resulting p-values should be adjusted
for multiplicity. The multiplicity correction depends on the type of the error
one wishes to control. The traditional concern for multiplicity effect has
been about the familywise error (FWE) – the probability of even a single
Type I error in a series of n tests. The widely known Bonferroni proce-
dure is only an example, and more powerful FWE controlling procedures
are currently available for many multiple testing problems (see Hochberg
and Tamhane, 1987; Hsu, 1996 for reviews). Such a severe criterion implies
however substantially reduced power properties especially when n is large.
A less stringent alternative to the FWE is the false discovery rate (FDR)
criterion of Benjamini and Hochberg (1995). Unlike FWE, FDR controls the
expected proportion of Type I errors among hypotheses being rejected (false
discoveries) rather than the probability of even a single Type I error. The
resulting FWE or FDR controlling procedures are typically stepwise in na-
ture where the ordered p-values p(1) ≤ . . . ≤ p(n) are in effect compared with
a series of properly chosen critical values. Step-up procedures start with
testing the least significant hypothesis with the largest p-value p(n) and con-
tinue with decreasing p-values until the first rejection of the null hypothesis.
Step-down procedures start with p(1) and continue with increasing p-values
until the first acceptance.

A Bayesian approach to hypothesis testing in general and to the mul-
tiplicity problem in particular are conceptually different. Sarkar and Chen
(2004) give an overview of the current Bayesian perspective on multiple
testing. Consider first the i-th test as a single test. One assumes a prior
distribution on θi of the form

πi(θi) =

{

π0ip0i(θi), if θi ∈ Θi

π1ip1i(θi), if θi ∈ Θ̄i,

where p0i(θi) and p1i(θi) are densities on Θi and Θ̄i respectively, and π0i +
π1i = 1. The inference is then based on the posterior distribution πi(θi|Y i)
according to the chosen loss. For the standard “0-1” loss, the null hypothesis
H0i is rejected if the resulting posterior odds ratio πi(θi ∈ Θi|Y i)/πi(θi ∈
Θ̄i|Y i) is smaller than 1 or, equivalently, if the corresponding Bayes factor
Bi is smaller than π1i/π0i. This Bayesian rule can be easily extended to
a more general “0-Lk” loss under which the null hypothesis is rejected if
Bi < (L0i/L1i)(π1i/π0i). Turning back to multiple hypothesis testing, note
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that from the Bayesian perspective, placing independent priors on θi and
using additive losses (e.g., a sum of “0-1” individual losses for each test) does
not imply any multiplicity correction: the evident optimal Bayes rule in this
case simply applies the corresponding individual Bayes testing rule to each
one of n tests “ignoring”, therefore, the multiplicity effect. To account for
multiplicity adjustments within a Bayesian framework, one should consider
θi to be a priori dependent to cause the posterior distribution of θi to depend
on all Y 1, . . . ,Y n. One possible way to introduce dependency among θi is
via hierarchical prior models. In situations where all likelihoods fi(Y i|θi)
have the same parametric form, like in multiple comparisons, θ1, . . . ,θn are
usually considered as an independent sample from a population distribution
F(θ) that may be parametric with possibly unknown parameters or even
nonparametric (e.g., Waller and Duncan, 1969; Gopalan and Berry, 1998;
Berry and Hochberg, 1999; Sarkar and Chen, 2004; Scott and Berger, 2006).

Generally, however, the likelihoods fi(Y i|θi) may be of different forms,
θi may be of different dimensionalities, etc. and such type of hierarchical
priors might be inappropriate. In this paper we propose a simple hierarchi-
cal prior model for a multiple hypothesis testing set-up (1.1) by imposing a
prior distribution on the number of hypotheses arising from the alternatives
(false nulls). We then apply the maximum a posteriori (MAP) rule and find
the most plausible configuration of nulls and alternatives with the maximal
posterior probability. Such a Bayes rule essentially corresponds to the fol-
lowing (non-additive) “nothing or everything” multiple “0-1” loss : the loss
is zero if all n hypotheses are inferred upon correctly and one if there is at
least one wrong decision of any type regardless of their actual number. In
the case of independent likelihoods, the resulting MAP procedure is based on
the sequence of ordered individual Bayes factors somewhat similar in spirit
to frequentist procedures operating with ordered p-values. We also present
closely related step-up and step-down versions of the MAP multiple test-
ing procedure and establish interesting parallels between them and several
known frequentist and Bayesian multiple testing procedures.

The paper is organized as follows. The main results are presented in
Section 2 where we propose the Bayesian MAP testing procedure and its
stepwise versions. The relations between them and several existing Bayesian
and frequentist multiple testing procedures are discussed in Section 3 while
a more detailed study for the normal data is given in Section 4. In Section 5,
we illustrate the performance of MAP procedures on a simulated example.
Some concluding remarks are made in Section 6.
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2 Main Results

2.1. Hierarchical prior model. Consider again the data set of n inde-
pendent mi-dimensional vectors Y i, where Y i ∼ fi(Y i|θi), θi ∈ Ωi ⊂ R

di

and the multiple hypothesis testing problem (1.1). Following a Bayesian
methodology, one needs to set prior odds simultaneously for each of n null
hypotheses. However, it might not be obvious to formulate prior beliefs on
individual odds especially when they are not assumed to be independent. On
the other hand, one has usually some intuition on the number (proportion)
of hypotheses coming from the nulls and the alternatives (respectively, true
and false nulls). For example, in the analysis of microarray data, it might
be hard to estimate in advance the chances for each gene to be differentially
expressed but typically it is believed that the number of such genes is small.
A configuration of true and false null hypotheses is uniquely determined by
an n-dimensional indicator vector x, where xi = I{θi ∈ Θ̄i}, i = 1, ..., n.
Let k = x1 + ... + xn be the number of hypotheses coming from the alterna-
tives and assume some prior distribution k ∼ π(k) > 0, k = 0, ..., n. Several
possible choices for π(k) are discussed later in the paper. For a given k,
assume all

(

n
k

)

various configurations of true and false null hypotheses to be
equally likely a priori, i.e., conditionally on k,

P

(

x

∣

∣

∣

∣

∣

n
∑

i=1

xi = k

)

=

(

n

k

)

−1

. (2.1)

To complete the prior, assume

(θi|xi = 0) ∼ p0i(θi) and (θi|xi = 1) ∼ p1i(θi) (2.2)

for some specified densities p0i(θi) and p1i(θi) on Θi and Θ̄i respectively.

2.2. MAP multiple testing procedure. The Bayesian inference in multi-
ple hypothesis testing is based on the posterior joint distribution of null hy-
potheses that is uniquely defined by the posterior distribution π(x, k|Y 1, . . . ,
Y n).



440 Felix Abramovich and Claudia Angelini

For the independent data Y 1, . . . ,Y n and the proposed hierarchical prior
model, we have

π(x, k|Y 1, . . . ,Y n)

∝
(

n

k

)

−1

π(k)I

{

n
∑

i=1

xi = k

}

×
n

∏

i=1

(
∫

Θ̄i

fi(Y i|θi)p1i(θi) dθi

)xi
(

∫

Θi

fi(Y i|θi)p0i(θi) dθi

)1−xi

∝
(

n

k

)

−1

π(k)I

{

n
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i=1

xi = k

}

n
∏

i=1

(

∫

Θ̄i
fi(Y i|θi)p1i(θi) dθi

∫

Θi
fi(Y i|θi)p0i(θi) dθi

)xi

=

(

n

k

)

−1

π(k)I

{

n
∑

i=1

xi = k

}

n
∏

i=1

(B−1
i )xi , (2.3)

where Bi is the Bayes factor of H0i (e.g., Berger, 1985, Section 4.3.3):

Bi =

∫

Θi
fi(Y i|θi)p0i(θi) dθi

∫

Θ̄i
fi(Y i|θi)p1i(θi) dθi

. (2.4)

Given the posterior distribution π(x, k|Y 1, . . . ,Y n), a common approach
is to select the most likely configuration of true and false null hypotheses,
that is the posterior mode of (2.3). Such a Bayesian rule is also known as
a maximum a posteriori (MAP) rule and corresponds to the (non-additive)
“nothing or everything” multiple “0-1” loss discussed in the Introduction.
Generally, to find the posterior mode of π(x, k|Y 1, . . . ,Y n), one should
look through all 2n various configurations of true and false null hypothe-
ses. However, for the model at hand, the number of possible candidates
is essentially reduced to n + 1 only. To see this, let x̂(k) be a maxi-
mizer of (2.3) for a fixed k that indicates the most likely configuration
with k false null hypotheses. From (2.3), the obvious solution for x̂(k)
is x̂i(k) = 1 for the k tests with the smallest Bayes factors Bi and ze-
roes for others. Thus, one needs to choose only from n + 1 configurations
(x̂(k), k) = H1(1)

⋂

. . .
⋂

H1(k)

⋂

H0(k+1) . . .
⋂

H0(n), k = 0, . . . , n, where
H0(i) and H1(i) are respectively the null and alternative hypotheses corre-
sponding to B(i), B(1) ≤ ... ≤ B(n). This leads to the following Bayesian
MAP multiple testing procedure :

1. Calculate Bayes factors Bi, i = 1, . . . , n for all individual tests and
order them in increasing sequence B(1) ≤ · · · ≤ B(n).
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2. Find k̂ that maximizes

π̂k = π(x̂(k), k|Y 1, . . . ,Y n) ∝
(

n

k

)

−1

π(k)
k

∏

i=0

B−1
(i) , (2.5)

where we set B(0) = 1 to include k = 0.

3. Accept all null hypotheses if k̂ = 0; otherwise, reject k̂ null hypotheses
corresponding to B(1), . . . , B(k̂) and accept others.

One can also consider stepwise versions of the above MAP procedure. In
addition to the global maximum k̂ in (2.5), let k̂l and k̂r be respectively the
leftmost and the rightmost local maxima of π̂k. Obviously, k̂l ≤ k̂ ≤ k̂r.
Consider the successive ratios

π̂k

π̂k−1
=

k

n − k + 1

π(k)

π(k − 1)
B−1

(k).

Evidently, k̂r is the maximal k for which π̂k/π̂k−1 > 1. Hence, choosing
k = k̂r corresponds to the Bayesian step-up (MAP-up) multiple testing
procedure starting with the least significant null hypothesis with the largest
Bayes factor B(n) and accepting null hypotheses as long as

B(k) >
k

n − k + 1

π(k)

π(k − 1)
. (2.6)

Analogously, k = k̂l yields the Bayesian step-down (MAP-down) procedure
that starts with B(1) and rejects null hypotheses until for the first time (2.6)
holds.

3 Some Parallels with Existing Multiple Testing Procedures

In this Section, we discuss the relations between the presented MAP mul-
tiple testing procedures with several other existing Bayesian and frequentist
procedures.

3.1. Bayesian procedures. Bayesians usually treat simultaneous testing
of n hypotheses within model selection framework, where configuration of
true and false null hypotheses is considered as a disjoint partition of the
parameter space Ω1 ⊕ . . . ⊕ Ωn (e.g., Kass and Raftery, 1995; Berger and
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Pericchi, 1996). The main obstacle of this approach is that one then gen-
erally needs to compare 2n possible configurations. The proposed MAP
multiple testing procedure can also be viewed within such a framework but,
as we have already mentioned, assuming independence of fi(Y i|θi), there
are only n + 1 candidates to look through in our case. Similar to frequentist
analysis, stepwise multiple testing procedures allow further reduction of the
computational cost of the problem for large n. To the best of our knowledge,
the only attempt to develop a Bayesian multiple stepwise testing procedure
was in a recent paper of Sarkar and Chen (2004) although their hierarchical
prior model is different. Using our notations, the motivation behind their
procedure can be described as follows. Let πk and π̂k be a prior and the
corresponding posterior probability respectively of a configuration (x̂(k), k).

In particular, for our model πk =
(

n
k

)

−1
π(k) and π̂k is given in (2.5). The

stepwise Bayes factor B(k) of Sarkar and Chen (2004) is the Bayes factor of
(x̂(k), k) to any of (x̂(i), i), i = k + 1, . . . , n and is defined as

B(k) =
P (x̂(k), k)|Y 1, . . . ,Y n)

P (
⋃n

i=k+1{(x̂(i), i)|Y 1, . . . ,Y n})
· P (

⋃n
i=k+1{(x̂(i), i)})
P (x̂(k), k)

=
π̂k

∑n
i=k+1 π̂i

·
∑n

i=k+1 πi

πk
.

One then starts from k = 0 and stops the first time B(k) > 1. The main
difference between such a step-down procedure and the one proposed in
Section 2.2. is that the latter in effect compares (x̂(k), k) against (x̂(k +
1), k + 1) rather than against

⋃n
i=k+1(x̂(i), i). The critical values for the

corresponding Bayes factors also differ.

3.2. Frequentist procedures. As we have mentioned in the Introduction,
Bayesian multiple testing procedures and their frequentist counterparts are
conceptually different. The latter work with a series of p-values pi while the
former are typically based on a sequence of Bayes factors Bi. O’Hagan (1995)
and Berger and Pericchi (1996) proposed modifications of a standard Bayes
factor for the case of improper noninformative priors but these issues are
beyond the scope of the paper. The dispute about whether a Bayes factor or
a p-value represents the better evidence for statistical inference and attempts
to “reconcile” them have a long history (see e.g., Casella and Berger, 1987;
Good, 1992; Kass and Raftery, 1995; Berger et al. 1997; Berger, 2003;
Bayarri and Berger, 2004). The differences are generally due to different
philosophies behind frequentist and Bayesian approaches. Nevertheless, we
believe that they are not complete strangers and may benefit from each
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other. Rubin (1984) argued for the importance of frequentist analysis of
Bayesian procedures for better understanding and validating their results.
Similarly, Bayesian interpretation of a frequentist procedure is often helpful
in providing intuition behind it.

Generally, there are no immediate connections between Bi and pi, and
direct analogies between the two approaches to hypothesis testing can be
verified in some particular cases only. Consider the following, which is prob-
ably the most known case. Let Yi have independent symmetric location
distributions fi(|yi − θi|), i = 1, . . . , n that have monotone likelihood ra-
tios. Consider a set of n one-sided simultaneous tests H0i : θi ≤ θ0i against
H1i : θi > θ0i. Assume some prior π(k) on the number of false H0i, (2.1)
and noninformative priors p0i(θi) = 1(−∞,θ0i)(θi) and p1i(θi) = 1(θ0i,∞)(θi)
in (2.2). Simple straightforward calculus shows that in this case, due to the
symmetry of fi, P (θi ≤ θ0i|Yi) = pi, where pi is the p-value for the like-
lihood ratio test (e.g., Berger, 1985, Section 4.3.3). The resulting ordered
Bayes factors (2.4) are evidently B(i) = p(i)/(1 − p(i)), and the stepwise
MAP multiple testing procedures introduced in Section 2.2. then compare
p(i) with a sequence of critical values p∗i = ci/(1+ci), where ci is given in the
right-hand side of (2.6). Using the relation Bi = pi/(1 − pi) and re-writing
(2.6) in terms of pi, it is possible to find corresponding priors π(k) to mimic
various stepwise frequentist one-sided testing procedures. One is, however,
naturally looking for some “meaningful” priors. As an illustration, consider
two particular choices for π(k).

Let k ∼ B(n, αn). This binomial prior suggests that each null hypothesis
independently has the same prior probability αn (depending possibly on n)
of being false. Small αn reflects a sparsity assumption that there is only a
small fraction of hypotheses coming from alternatives (true alternatives or,
equivalently, false nulls) whereas the majority of true hypotheses arise from
nulls (true nulls). The binomial prior yields independent priors on θi and
the corresponding p∗i = αn are the same for all p(i) (see (2.6)). Obviously,

k̂l = k̂ = k̂r in this case, both stepwise versions coincide with the original
MAP procedure and reject all nulls with p-values less than αn. The binomial
prior, therefore, corresponds to independent testing of each individual null
hypothesis at the same significance level αn that implies the expected number
of erroneously rejected null hypotheses n0αn, where n0 is the (unknown)
number of true nulls. For a super-sparse case E(k) = nαn < 1, and it is
equivalent to the Bonferroni procedure with the significance level α = nαn.
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For the truncated geometric prior G∗

n(1−q), where π(k) = (1−q)qk/(1−
qn+1), k = 0, . . . , n; 0 < q < 1, the ordered p(i)’s are successively compared
with

p∗i =
i

n − i(1 − q) + 1
q, 1 ≤ i ≤ h,

which coincide with the critical values from the adaptive step-down proce-
dure of Benjamini et al. (2006). The authors gave the motivation for such
a procedure and reported on simulation results showing that its FDR level
does not exceed q although no rigourous proof was given.

The priors π(k) corresponding to both Bonferroni and adaptive FDR
procedures are sparse. In fact, this is not so surprising. The “nothing or ev-
erything” multiple “0-1” loss behind the MAP testing procedure places equal
penalties for a wrong decision in both directions. On the other hand, tra-
ditional frequentist criteria in multiple testing, like FWE and FDR, mainly
concern erroneous rejections of null hypotheses. Thus, both approaches are
likely to yield similar results when a Bayesian believes a priori that the
number of hypotheses arising from alternatives is small, and the total loss
for their wrong rejections is, therefore, relatively low. Finally, note that for
both cases, the resulting FWE and FDR levels respectively for the MAP
procedure are defined by the parameters of the prior π(k) instead of being
fixed in advance at some standard level (e.g., .01 or .05). In practice, these
parameters are rarely known a priori and should be estimated from the data
(see Section 5.1.), which makes the corresponding error levels data-adaptive.

4 Normal Data

In this Section, we discuss the proposed MAP multiple testing procedure
and its stepwise versions for the normal data. Let Yi1, . . . , Yimi

, i = 1, . . . , n
be independent random samples of sizes mi from N(µi, σ

2
i ), where the vari-

ance σ2
i is assumed to be known. Testing one-sided hypotheses H0i : µi ≤ µ0i

against H1i : µi > µ0i is essentially a particular case of a general one-sided
testing problem considered in Section 3.2, and all the results developed there
can be applied directly to normal data. In this section, we focus on multi-
ple testing of point null hypotheses H0i : µi = µ0i, which is probably more
relevant in practice, against the two-sided alternative H1i : µi 6= µ0i. Unlike
one-sided testing, frequentist and Bayesian inferences are different in this
case. There are several important issues in imposing priors for point null
hypotheses. To test a point null hypothesis one cannot use a continuous
prior density πi(µi) on µi since it yields a zero prior (and, hence, posterior)
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probability for µi = µ0i. A usual approach in this case is to set p0i to be
a probability atom δ(µ0i) at µ0i and a density p1i(µi) for µi 6= µ0i in (2.2),
where, unlike the case of one-sided hypotheses, p1i(µi) should be a proper
density to avoid Lindley’s paradox (e.g., Berger, 1985, Section 4.3.3). A
simple and common choice is a conjugate prior N(µ0i, τ

2) (see e.g., Berger
et al. 1997). Then straightforward calculus implies that

Bi =
√

1 + γi exp

{

− Z2
i

2(1 + 1/γi)

}

, (4.1)

where Zi =
√

mi(Ȳi − µ0i)/σi is the standardized sample average and γi =
miτ

2/σ2
i is the variance ratio (see also (4.15)–(4.17) of Berger, 1985). On

the other hand, the corresponding p-value for the i-th test is pi = 2Φ̃(|Zi|),
where Φ̃(·) = 1−Φ(·) and Φ(·) is the standard normal cumulative distribution
function. From (4.1), one has Bi ≤

√
1 + γi and

pi = 2Φ̃

(

(

2(1 + 1/γi) ln
{

√

1 + γi/Bi

})1/2
)

, (4.2)

which is an increasing function of Bi. Hence, imposing a prior π(k) on the
number of false null hypotheses, (2.6) in the stepwise MAP multiple testing
procedures becomes equivalent to comparing p(i) with the critical value p∗i ,
where

p∗i = 2Φ̃

(

(

2(1 + 1/γi) ln+

{

√

1 + γi ·
n − i + 1

i
· π(i − 1)

π(i)

})1/2
)

, (4.3)

and ln+(x) = max(0, ln(x)).

Consider several choices for π(k) with the same mean λn depending pos-
sibly on n. For simplicity of exposition, assume that all samples have the
same variance σ2 and are of an equal size m so that γi = γ = mτ2/σ2. For
the binomial prior B(n, ξn), where ξn = λn/n, (4.3) yields the same critical
value for all tests

p∗ = 2Φ̃

(

(

2(1 + 1/γ) ln+

{

√

1 + γ
1 − ξn

ξn

})1/2
)

. (4.4)

From a frequentist viewpoint, it corresponds to testing each individual null
hypothesis at the significance level p∗ and, therefore, controlling the expected
number of erroneously rejected null hypotheses at the level n0p

∗. As in
Section 3.2., p∗ is defined by the parameters of the prior and the noise level
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instead of being fixed in advance at .01 or .05, and, in practice, it is typically
estimated from the data (see Section 5.1.). Assuming λn = o(n) (sparsity)
for sufficiently large m, one gets a simpler approximation p∗a for p∗ :

p∗a ∼ 2Φ̃

(

(

2 ln

{√
γ

1 − ξn

ξn

})1/2
)

∼ ξn

1 − ξn

(

πγ ln

{√
γ

1 − ξn

ξn

})

−1/2

∼ ξn
√

πγ ln(
√

γ/ξn)
, (4.5)

where we exploited the well known asymptotic relation Φ̃(x) ∼ φ(x)/x for
large x, where φ(·) is the standard normal density (e.g., Barndorff-Nielsen
and Cox, 1989, p.56). If, in addition, λn <

√
πγ lnn (super-sparse case),

it follows immediately that the MAP multiple testing procedure with the
binomial prior is a Bonferroni procedure with the FWE controlling level

αn = np∗ ∼ λn
√

πγ ln(
√

γ/ξn)
(< 1) (4.6)

(see (4.5)).

Consider now the truncated Poisson distribution Pois∗(λn), where

π(k) =
λk

n/k!
∑n

j=0 λj
n/j!

, k = 0, . . . , n. (4.7)

Lemma 4.1. Suppose k has the truncated Poisson distribution Pois∗(λn)
(4.7), where λn = o(n). Then,

(i) E(k) = λn(1 − δn), where a positive sequence δn = o(1), and

(ii) k = o(n) almost surely.

The proof of Lemma 4.1 is given in the Appendix. From (4.3) and
Lemma 4.1, one has

p∗i = 2Φ̃

(

(

2(1 + 1/γ) ln+

{

√

1 + γ · n − i + 1

λn

})1/2
)

∼ λn

n − i + 1
· 1
√

πγ ln(
√

γ/ξn)
.
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Let again λn <
√

πγ lnn. The corresponding step-up and step-down proce-
dures in this case are, in fact, the FWE controlling procedures of Hochberg
(1988) and Holm (1979) respectively with the same FWE level αn in (4.6).
Therefore, the original MAP procedure sandwiched between its two stepwise
versions also asymptotically controls the FWE at the level αn.

Consider also a “reflected” truncated Poisson distribution, where

π(k) =
(n − λn)n−k/(n − k)!

∑n
j=0(n − λn)n−j/(n − j)!

, k = 0, . . . , n. (4.8)

Lemma 4.2. Let π(k) be given by (4.8), where λn = o(n) but λn/
√

n lnn →
∞. Then,

(i) E(k) = λn(1 + δn), where a positive sequence δn = o(1), and

(ii) k = λn(1 + o(1)) almost surely.

The proof of Lemma 4.2 is given in the Appendix. Lemma 4.2 and (4.3)
imply

p∗i = 2Φ̃

(

(

2(1 + 1/γ) ln+

{

√

1 + γ · n − λn

i

})1/2
)

∼ i

n − λn
· 1
√

πγ ln(
√

γ/ξn)
=

i

n
· qn, (4.9)

where qn = (1 − ξn)−1(πγ ln(
√

γ/ξn))−1/2. Within a frequentist framework,
the corresponding step-up procedure mimics the well-known step-up FDR
controlling procedure of Benjamini and Hochberg (1995) with the FDR pa-
rameter qn. They proved that its FDR level does not exceed (n0/n)qn ≤ qn.
Later, Benjamini and Yekutieli (2001) established that the FDR level is, in
fact, exactly (n0/n)qn. Sarkar (2002) showed that it is also true for the cor-
responding step-down procedure. In addition, Lemma 4.2 indicates that for
sparse cases typically k̂l ∼ k̂ ∼ k̂r ∼ λ (≤ E(k)) and all three versions of the
MAP testing procedure yield similar results (see also Section 5). The above
examples indicate again that the traditional frequentist procedures focusing
mainly on the control of erroneous rejections of null hypotheses, correspond
to sparse priors, where the expected proportion of false null hypotheses tends
to zero. For extremely conservative FWE controlling procedures, the ex-
pected number of false null hypotheses grows at most at logarithmic rate
(super-sparse priors), while for less stringent FDR controlling procedures it
grows as nβ , 0 < β < 1. We have discussed the reasons for such sparsity of
priors in Section 3.2.
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5 Simulated Example

To test the performance of the proposed procedure, we considered a
simulated example, where the data was generated according to the normal
model considered in Section 4 :

Yi,j = µi + ǫi,j i = 1, . . . , n; j = 1, . . . , m, (5.1)

where the ǫi,j ’s are i.i.d. N(0, σ2) variables. Such an example is similar to
that of Ishwaran and Rao (2003) motivated by the analysis of microarray
data. In microarray experiments, expression levels of thousands of genes
present in a biological sample are simultaneously measured to identify a small
proportion of differentially expressed genes. The model (5.1) is supposed to
mimic an experiment where two groups of biological samples (control and
treatment) are marked using two dyes (usually Cy5 and Cy3 for red and
green respectively) and then hybridized on several cDNA microarrays. In
such experimental context, the value Yi,j represents the log intensity ratio
between the control and the treatment groups for the i-th gene on the j-
th array after a suitable normalization procedure. To detect differentially
expressed genes, one simultaneously tests H0i : µi = 0 against H1i : µi 6= 0
for i = 1, . . . , n.

Let π(k) be a specified prior distribution on the number of differentially
expressed genes with E(k) = λ. Given k, all

(

n
k

)

possible configurations were
assumed to be equally likely. Unexpressed genes naturally had a zero expres-
sion level while the expression levels µi of differentially expressed genes were
simulated as independent N(0, τ2) variables. A similar simulation model
was considered in Ishwaran and Rao (2003) but with the same fixed µ for all
false nulls. We believe that our model is more realistic for the microarray
data where gene expression levels may be different.

It should be noted that model (5.1) might be, in fact, somewhat idealized
for real microarray data. In particular, it ignores co-regulations between gene
expressions. Storey and Tibshirani (2001) argue that these co-regulations
are commonly of “clumpy” type, where different genes can be clustered in
small independent groups having within group correlations. Several simula-
tion studies (see e.g. Storey and Tibshirani, 2001; Ishwaran and Rao, 2003;
Reiner, Yekutieli and Benjamini, 2003) indicate though that clumpy depen-
dencies have a relatively minor effect when group sizes are small compared
to the total number of tested hypotheses — a very reasonable scenario with
microarray data. In addition, the assumption of equal variances is not al-
ways valid. The proposed MAP testing procedure can still be adapted for
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different σ2
i (see Section 4) but estimation of the parameters of the model

described in Section 5.1 below should be modified in this case. Alternatively,
sometimes the data can be transformed first through a variance-stabilization
transformation (e.g. logarithmic).

5.1. Estimation of parameters. To apply the developed MAP proce-
dures for a chosen π(k), one still needs to specify the noise variance σ2 and
the prior variance τ2 or, equivalently, the variance ratio γ = mτ2/σ2. These
parameters are rarely known a priori in practice and should be estimated
from the data in the spirit of empirical Bayes. Moreover, we also assume
that π(k) has a prescribed parametric form with an unknown expectation λ
that should be estimated as well.

Straightforward calculus yields the following marginal likelihood of the
observed data Y = (Y 1, . . . ,Yn)′, i = 1, . . . , n, where Y i = (Yi,1, . . . , Yi,m)′ :

L(Y ; λ, σ2, γ) =
n

∑

k=0

π(k)

(

n

k

)

−1
∑

xj :
∑

i xji=k

n
∏

i=1

f1(Y i)
xjif2(Y i)

1−xji ,

where xj is the indicator vector, and f1 and f2 are m-variate normal den-
sities with zero means and variance matrices V = σ2(Im + (γ/m)11′) and
σ2Im respectively. Following the ideas of empirical Bayes approach, we es-
timate the unknown parameters λ, σ2 and γ by the corresponding marginal
maximum likelihood estimators (MLEs). There are no closed form solutions
and the EM algorithm is applied to obtain the MLEs numerically.

Regard the indicator vector x as a “missing” data. The complete log-
likelihood for the “augmented” data (Y , x) is then

l(Y , x; λ, σ2, γ) = lnπ(k)− ln

(

n

k

)

+
n

∑

i=1

xi ln f1(Y i)+
n

∑

i=1

(1−xi) ln f2(Y i),

where k = x1 + ... + xn.

At the h-th iteration, the E-step consists of computing the conditional
expectation

l̂[h] = E
(

l(Y , x)|Y , λ[h], σ
2
[h], γ[h]

)

= E

(

ln

(

π(k)

(

n

k

)

−1
)

∣

∣

∣

∣

Y , λ[h]

)

+
∑

ηi[h] ln f1(Y i)

+
n

∑

i=1

(

1 − ηi[h]

)

ln f2 (Y i) ,
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where ηi[h] = E
(

xi|Y i, λ[h], σ
2
[h], γ[h]

)

=
(

1 + Bi[h]
n−λ[h]

λ[h]

)

−1
and the Bayes

factor Bi[h] =
(

1 + γ[h]

)1/2
exp

{

−mȲ 2
i /

(

2σ2
[h]

(

1 + 1/γ[h]

)

)}

(cf. (4.1)).

Straightforward calculus shows that, regardless of the prior π(k), maxi-
mizing l̂[h] with respect to σ̂2

[h+1] and γ̂[h+1] under the positivity constraints
on the M-step results in the following solutions :

γ̂[h+1] = max

(

0,
m

∑n
i=1 ηi[h]Ȳ

2
i

σ̂2
0[h+1]

∑n
i=1 ηi[h]

− 1

)

,

σ̂2
[h+1] =

{

σ̂2
0[h+1] if γ̂[h+1] > 0

∑n
i=1

∑m
j=1 Y 2

i,j/(nm) if γ̂[h+1] = 0,

where

σ̂2
0[h+1] =

∑n
i=1 ηi[h]

∑m
j=1(Yi,j − Ȳi)

2 +
∑n

i=1

(

1 − ηi[h]

)
∑m

j=1 Y 2
i,j

nm − ∑n
i=1 ηi[h]

.

The solution for λ̂[h+1] is a maximizer of

m(λ) = E

{

ln

(

π(k)

(

n

k

)

−1
)

∣

∣

∣

∣

Y 1, . . . ,Y n, λ

}

and it depends on the particular type of π(k). Consider the three priors π(k)
discussed in the Section 4. For the binomial prior B(n, λ/n), one has

m(λ) = E(k|Y 1, . . . ,Y n, λ) ln
λ

n − λ
+ n ln

n − λ

n

=
n

∑

i=1

ηi ln
λ

n − λ
+ n ln

n − λ

n
,

and solving the equation m′(λ) = 0 immediately yields λ̂[h+1] =
∑n

i=1 ηi[h].

For the truncated Poisson prior Pois∗(λ) in (4.7),

m′(λ) =

∑n
i=1 ηi − λ

λ
+

λn/n!
∑n

j=0 λj/j!
.

After finding the root of m′(λ) under the conditions of Lemma 4.1, one has
λ̂[h+1] =

∑n
i=1 ηi[h](1 + o(1)) ∼ ∑n

i=1 ηi[h].
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Similarly, for the reflected truncated Poisson prior (4.8),

m′(λ) =

∑n
i=1 ηi − λ

n − λ
+

(n − λ)n/n!
∑n

j=0(n − λ)j/(n − j)!

and, under the conditions of Lemma 4.2, again λ̂[h+1] =
∑n

i=1 ηi[h](1+o(1)) ∼
∑n

i=1 ηi[h]. Hence, for all the above three priors π(k), the EM algorithm
results in essentially the same MLEs for γ, σ2 and λ.

5.2. The results. Data were generated according to the model (5.1),
where the µi’s were randomly sampled from N(0, τ2) in ξ percent of the
cases, and set to zero in the remaining cases. This corresponds to a scenario
where only ξ% of genes are differentially expressed. We set σ = 1 and τ = 2.
To mimic a typical microarray experiment, we choose a large number of
tested hypotheses (genes) n = 10000 with a small proportion ξ = .05 of
false nulls (differentially expressed genes) corresponding to a sparse (though
not super-sparse) case. Several values of m were also tried. The number of
replications was 1000.

The true values of σ2, τ2 and ξ were assumed to be unknown in simu-
lations and were estimated by the EM-algorithm described in the previous
Section 5.1. We investigated two MAP multiple testing procedures corre-
sponding to the binomial prior B(n, ξ) (Binomial) and the reflected trun-
cated Poisson prior (4.8), where π(k) ∝ (n − nξ)n−k/(n − k)! (Pois2). For
both priors λ = E(k) ∼ nξ and the EM-estimates for the parameters are
the same (see Section 5.1.). The entire study was carried out using the
MATLAB programming environment.

Table 1 summarizes the EM estimates of ξ, σ2 and γ = mτ2/σ2 averaged
over 1000 replications and their standard deviations. As expected, for the
given variance ratio τ2/σ2, the accuracy of estimation improves as γ increases
but even for moderate γ it is quite satisfactory. Similar results were obtained
for ξ = .01, .1, .2, .3.

Table 1. Means and standard deviations for the EM-estimates of the
unknown parameters ξ, σ2 and γ averaged over 1000 replications.

The true values are ξ = .05, σ = 1 and τ2 = 4.

m γ ξ̂ σ̂2 γ̂

5 20 .04859 (.00261) 1.00060 (.00657) 21.60540 (1.66995)
10 40 .04960 (.00194) 1.00030 (.00457) 41,37186 (2.91361)
20 80 .04988 (.00152) 1.00013 (.00312) 81.54536 (5.52843)
30 120 .04988 (.00138) 1.00011 (.00257) 121.49824 (8.52774)
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Figure 1. Ordered p-values p(i) and the corresponding critical values p∗i for
Binomial and Pois2 on the log-log scale for a single realization from (5.1)
with n = 10000, m = 5, σ = 1 and ξn = .05.

Figure 1 shows the ordered p-values as in (4.2) and the corresponding
critical values p∗i as in (4.4) and (4.9) for Binomial and Pois2 priors respec-
tively on the log-log scale evaluated from a single realization from (5.1). In
most realizations, there was a single intersection point for Pois2 prior, and
therefore all the three versions of the MAP procedure were identical.

The main simulation results on the performance of MAP multiple testing
procedures are presented in Table 2 and Table 3 for m = 5 (small samples)
and m = 20 (fairly large samples) respectively. The tables give the total
number of detections (rejected nulls), the total number of erroneous de-
cisions (misclassifications), the proportions of erroneous rejections of nulls
and alternatives (Type I and Type II errors), and the proportions of erro-
neously rejected null hypotheses among those being rejected (false discovery
rates, FDR) and erroneously nonrejected null hypotheses among those being
accepted (false negative rates, FNR) for the original MAP procedures and
for their stepwise versions. They are also compared with the two well-known
multiple testing procedures: the Bonferroni procedure with familywise error
levels α = .01 and .05 and the step-up FDR controlling procedure of Ben-
jamini and Hochberg (1995) with the FDR parameters q = .01 (BH.01) and
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.05 (BH.05). The results in Table 2 and Table 3 are averaged over 1000 repli-
cations. Standard errors are given in the brackets. The unknown parameters
were estimated by the EM-algorithm.

Table 2. Performances of MAP, Bonferroni and Benjamini-Hochberg
multiple testing procedures (m = 5, ξ = .05).

Method Detect Miss- Type I Type II FDR FNR
classified Error Error

Binomial 270 269 .00207 .49874 .07249 .02563
(.45124) (.38654) (.00002) (.00078) (.00052) (.00004)

Pois2 (step-down) 244 274 .00095 .52938 .03657 .02713
(.43028) (.39577) (.00001) (.00080) (.00041) (.00004)

Pois2 (step-up) 244 274 .00095 .52935 .03658 .02713
(.43015) (.39571) (.00001) (.00080) (.00041) (.00004)

Pois2 (global) 244 274 .00095 .52937 .03657 .02713
(.43022) (.39573) (.00001) (.00080) (.00041) (.00004)

Bonferroni (.05) 160 341 .00000 .68096 .00024 .03460
(.33067) (.33058) (.00000) (.00066) (.00004) (.00003)

Bonferroni (.01) 143 357 .00000 .71397 .00006 .03622
(.31796) (.31800) (.00000) (.00064) (.00002) (.00003)

BH.05 253 271 .00125 .51854 .04690 .02660
(.42965) (.38663) (.00001) (.00078) (.00044) (.00004)

BH.01 212 292 .00021 .58081 .00941 .02967
(.38999) (.38262) (.00000) (.00077) (.00022) (.00004)

Table 3. Performances of MAP, Bonferroni and Benjamini-Hochberg
multiple testing procedures (m = 20, ξ = .05).

Method Detect Miss- Type I Type II FDR FNR
classified Error Error

Binomial 372 152 .00123 .28011 .03131 .01454
(.35794) (.33236) (.00001) (.00065) (.00030) (.00003)

Pois2 (step-down) 364 152 .00087 .28806 .02270 .01495
(.35089) (.33121) (.00001) (.00065) (.00026) (.00003)

Pois2 (step-up) 364 152 .00087 .28805 .02271 .01495
(.35077) (.33098) (.00001) (.00065) (.00026) (.00003)

Pois2 (global) 364 152 .00087 .28806 .02270 .01495
(.3584) (.33111) (.00001) (.00065) (.00026) (.00003)

Bonferroni (.05) 306 194 .00001 .38774 .00017 .02000
(.34086) (.34124) (.00000) (.00068) (.00002) (.00003)

Bonferroni (.01) 294 206 .00000 .41204 .00003 .02127
(.34688) (.34683) (.00000) (.00069) (.00001) (.00003)

BH.05 383 153 .00191 .26946 .04711 .01401
(.36714) (.33741) (.00002) (.00064) (.00036) (.00003)

BH.01 349 157 .00034 .30845 .00928 .01598
(.33686) (.33830) (.00001) (.00066) (.00017) (.00003)
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The Bonferroni procedures, as expected, were extremely conservative and
resulted in the lowest numbers of detections and poor power properties. To
better understand the results in Table 2 and Table 3, recall that for the
binomial prior, the expected Type I error of the resulting MAP procedure
is p∗ given by (4.4). Table 4 compares Type I error from simulations with
p∗ and its simpler approximation (for large γ and small ξ) p∗a from (4.5)
calculated using the true parameters. The Type I error reported in the
table is the average over 1000 replications, and the unknown parameters
are estimates with the procedure described in Section 5.1.. One sees that
simulated Type I errors and p∗ match nicely. BH.01 and BH.05 controlled
FDR similar to the expected levels .95 × .01 = .0095 and .95 × .05 = .0475
respectively. For all cases, the simulated FDR levels of Pois2 procedures
were between those of BH.01 and BH.05, and that explains why the results
of Pois2 procedures were sandwiched between more conservative BH.01 and
less stringent BH.05. In fact, from the results of Section 4, for large γ and
small ξ, the step-up and step-down Pois2 should behave similar to the FDR
controlling procedures with the (adaptive) FDR level of about (n0/n)qn ∼
1/

√

πγ ln(
√

γ/ξ) (see (4.9)).

Table 4. Simulated Type I errors for the Binomial prior and the
corresponding p∗ and p∗a.

m = 5 (γ = 20) m = 20 (γ = 80)

ξ simul. p∗ p∗a simul. p∗ p∗a
.01 .00032 .00038 .00051 .00021 .00020 .00024
.05 .00207 .00219 .00202 .01230 .00125 .00138
.1 .00491 .00519 .00438 .02850 .00285 .00297
.2 .01265 .01345 .01431 .00699 .00706 .00647
.3 .02404 .02570 .02302 .01285 .01302 .01027

Table 5 shows simulated FDR for the Pois2 prior and the corresponding
approximated expected FDR from (4.9). The results show that for m = 20
(γ = 80), simulated FDR of Pois2 approaches the expected level. Binomial
MAP procedure tends to reject more null hypotheses than Pois2. However,
fairly large differences in Type I errors in favour of Pois2 and relatively
negligible differences in Type II errors indicate that most of the additional
detections made by Binomial were false. In fact, this is not surprising since
for sparse (but not super-sparse) cases, Binomial essentially is not supposed
to control any multiplicity criterion (FWE or FDR) while Pois2 is similar
to the FDR controlling procedure. Finally, note that the performance of all
the considered procedures improves with increasing γ.



Bayesian MAP multiple testing 455

Table 5. Simulated FDR for the Pois2 prior and the corresponding
approximated expected FDR from (4.9).

m = 5 (γ = 20) m = 20 (γ = 80)

ξ procedure simul. approx. simul. approx.

Step-Down .02945 .01957
.01 Step-Up .02957 .05106 .01957 .02419

Global .02948 .01957

Step-Down .03657 .02270
.05 Step-Up .03658 .05951 .02271 .02769

Global .03657 .02270

Step-Down .04095 .02497
.1 Step-Up .04097 .06471 .02497 .02975

Global .04096 .02497

Step-Down .04702 .02719
.2 Step-Up .04703 .07156 .02719 .03235

Global .04702 .02719

Step-Down .05226 .02918
.3 Step-Up .05227 .07675 .02918 .03423

Global .05227 .02918

6 Concluding Remarks

The paper considered the multiple hypothesis testing within a Bayesian
framework. We proposed a hierarchical prior model, where a prior distribu-
tion π(k) is imposed on the number of hypotheses arising from alternatives,
and then applied the maximum a posteriori (MAP) rule to find the most
plausible configuration of true and false null hypotheses. In the case of in-
dependent likelihoods, the resulting MAP procedure and its closely related
step-up and step-down versions are intuitively clear and computationally
inexpensive. They compare ordered Bayes factors of individual hypotheses
with a sequence of critical values depending on the prior and, in this sense,
are similar in spirit to frequentist multiple testing procedures based on or-
dered p-values. By choosing different π(k), one can mimic various existing
frequentist testing procedures. In particular, for the normal data, the spe-
cific choices of π(k) lead to several known FWE and FDR controlling proce-
dures. We showed that the FDR controlling procedures are related to sparse
π(k), while their much more conservative FWE counterparts correspond to
super-sparse priors. Furthermore, the resulting FWE and FDR levels for the
Bayesian procedures are defined by the parameters of the prior rather than
being fixed in advance at some traditional level (e.g., .01 or .05). In prac-
tice, the prior parameters are typically unknown and should be estimated
from the data, which makes the corresponding error levels data-adaptive.



456 Felix Abramovich and Claudia Angelini

The Bayesian MAP testing procedures demonstrated good performance in
a simulated example that mimics a microarray experiment.

The proposed general Bayesian approach can be used as a tool in a wide
range of multiple hypothesis testing set-ups for various types of data though
further analysis is needed for each specific problem at hand. Its use for
model selection is another interesting topic for further research.

Appendix: Proofs of Lemmas from Section 4

6.1. Proof of Lemma 4.1.
(i) Let ak = λk

n/k!. We have

E(k) =

∑n
k=0 kak

∑n
k=0 ak

= λn

∑n−1
k=0 ak

∑n
k=0 ak

= λn

(

1 − an
∑n

k=0 ak

)

< λn. (6.1)

On the other hand, the ratio an/
∑n

k=0 ak in (6.1) satisfies

an
∑n

k=0 ak
<

an

maxk ak
=

an

aλn

=
λn

n

n!

λn!

λλn
n

. (6.2)

Exploiting the Stirling formula, for every k, one has

kke−k
√

2πk < k! < kke−k+ 1
12k

√
2πk, (6.3)

and, hence, for λn = o(n), (6.2) implies

an
∑n

k=0 ak
<

(

λn

n
e1−λn/n

)n
√

λn

n
e1/(12λn) → 0

as n increases.

(ii) Consider an arbitrary sequence ǫn = o(n) and let Sn = P (k ≥ λn + ǫn).
In what follows, we will find a particular ǫn such that the series

∑

n Sn will
converge. The first Borel-Cantelli lemma will imply then that, for λn = o(n),
k = o(n) almost surely. One has

Sn =

∑n
k=λn+ǫn

ak
∑n

k=0 ak
<

aλn+ǫn
(n − λn − ǫn)

aλn

=
λλn+ǫn

n

λλn
n

· λn!(n − λn − ǫn)

(λn + ǫn)!
< nλǫn

n

λn!

(λn + ǫn)!
. (6.4)
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Applying (6.3) to get respectively the upper and lower bounds for the fac-
torials in the numerator and denominator of (6.4), straightforward calculus
yields

Sn < nκn e
1

12λn < Cnκn

for some C > 0, where

κn =
eǫn

(1 + ǫn/λn)λn+ǫn+1/2
.

Hence,

lnκn < ǫn

(

1 − ln
ǫn

λn

)

.

Consider ǫn = max(lnn, eζλn) = o(n), where ζ > 3. Then,

Sn < Cne−ǫn(ζ−1) < Cn−(ζ−2),

and, therefore, the series
∑

n Sn converges. 2

6.2. Proof of Lemma 4.2.
(i) Let bk = (n − λn)k/k!. After simple algebra one has

E(k) =

∑n
k=0(n − k)bk
∑n

k=0 bk
= λn +

(n − λn)bn
∑n

k=0 bk
> λn.

On the other hand, under the conditions of Lemma 4.2 on λn,

λn +
(n − λn)bn
∑n

k=0 bk
< λn +

n − λn

λn
= λn

(

1 − 1/λn + n/λ2
n

)

< λn(1 + δn),

where δn = o(1) and positive.

(ii) Consider the sequence bk defined above. For any positive sequence ǫn

define Sn1 = P (k ≥ λn + ǫn) and Sn2 = P (k ≤ λn − ǫn). Similar to the ideas
of the proof of Lemma 4.1, we will find a particular ǫn = o(λn) guaranteeing
the convergence of both

∑

n Sn1 and
∑

n Sn2 under the conditions of Lemma
4.2, and, hence, by the first Borel-Cantelli lemma, we have k = λn(1 + o(1))
with probability one. Note that maxk bk = bn−λn

, bk increases for k ≤ n−λn

and decreases otherwise. One has

Sn1 =

∑n−λn−ǫn

k=0 bk
∑n

k=0 bk
<

nbn−λn−ǫn

bn−λn

=
n

(n − λn)ǫn
· (n − λn)!

(n − λn − ǫn)!
.
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Applying (6.3) and straightforward calculus, one gets

Sn1 < nκn1

√

n − λn

n − λn − ǫn
e1/(12(n−λn)), (6.5)

where

κn1 =

(

(

1 +
ǫ

n − λn − ǫn

)(n−λn−ǫn)/ǫn

e−1

)ǫn

.

The Taylor expansion of lnκn1 implies

lnκn1 = −1

2
· ǫ2n
n − λn − ǫn

(1 + o(1)).

Consider ǫn =
√

cn lnn. Under the conditions of Lemma 4.2 on λn, ǫn =
o(λn), and one has

κn1 < e−
c
2
·
n ln n

n
(1+o(1)) = n−

c
2
(1+o(1)).

Thus, for any c > 4,
∑

n nκn1 < ∞ and, therefore,
∑

n Sn1 < ∞ since the

factor e1/(12(n−λn))
√

n−λn

n−λn−ǫn
in (6.5) tends to one. Similarly, for Sn2, one

has

Sn2 =

∑n
k=n−λn+ǫn

bk
∑n

k=0 bk
<

nbn−λn+ǫn

bn−λn

=
n(n − λn)ǫn(n − λn)!

(n − λn + ǫn)!

< nκn2

√

n − λn

n − λn + ǫn
e1/(12(n−λn)),

where

κn2 =

(

(

1 − ǫ

n − λn + ǫn

)(n−λn+ǫn)/ǫn

e

)ǫn

,

and, therefore,

lnκn2 = −1

2

ǫ2n
n − λn + ǫn

(1 + o(1)).

Repeating the same arguments for κn2, for ǫn =
√

cn lnn, one has

κn2 < n−
c
2
(1+o(1)),

and
∑

n Sn2 also converges for c > 4. 2
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