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Abstract

We consider nonparametric estimation of a one-dimensional piecewise-smooth
function observed with white Gaussian noise on an interval. We propose a
two-step estimation procedure, where one first detects jump points by a
wavelet-based procedure and then estimates the function on each smooth
segment separately by bridge regression splines. We prove the asymptotic
optimality (in the minimax sense) of the resulting amalgamated bridge re-
gression spline estimator and demonstrate its efficiency on simulated and real
data examples.
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1 Introduction

In a variety of nonparametric regression applications, the underlying re-
sponse function is piecewise-smooth with abrupt changes between smooth
segments. Examples include i) seismology, where the density of the sedi-
mentary layers of the earth’s crust can be locally approximated by a step
function, ii) image processing, where discontinuities are present at the edges
and iii) econometric models, where structural changes due to governmen-
tal policies are not rare. “Direct” methods for estimating piecewise-smooth
functions in nonparametric regression include wavelets that are known to
efficiently tackle local singularities. However, in practice wavelets often pro-
duce pseudo-Gibbs phenomena and other local artifacts in reconstructing
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smooth regions (e.g. Coifman and Donoho, 1995; Antoniadis and Gijbels,
2002). Alternatively, following a two-step segmentation approach, one first
detects the locations of change points and then applies some smooth non-
parametric techniques on each segment separately (e.g. Oudshoorn, 1998;
Antoniadis and Gijbels, 2002; Lee, 2002; Fink and Wells, 2004; Gill and
Baron, 2004). Somewhat similar ideas are considered in Chu et al. (1998).

In this paper, we consider the latter approach and combine methods that
are most suitable for each step. In particular, we present a wavelet-based
method for detecting discontinuities (jumps) of a function and then intro-
duce amalgamated penalized regression splines for estimating the function
at smooth regions. The multi-resolutional nature of wavelet analysis makes
it an excellent tool for detecting local singularities (Mallat and Hwang, 1992;
Wang, 1995), while penalized regression splines are popular statistical tech-
niques for recovering smooth functions from noisy data due to their various
optimal properties, good practical performance and computational simplic-
ity (Eilers and Marx, 1996; Eubank, 1999, Section 6).

The developed wavelet-based jumps detection procedure is somewhat
similar in spirit to that of Wang (1995). Its error adds a negligible contri-
bution to the overall quadratic risk of the resulting amalgamated regression
spline estimator and allows one to obtain the same optimal convergence rates
for the latter as for the case with known jumps. In addition, for the fixed
knots the traditional l2-penalty leads to a linear shrinkage (essentially ridge
regression) estimator. In this paper, we consider a more general lρ-type
penalty for ρ > 0. Such an approach has a direct analogy with the bridge re-
gression of Frank and Friedman (1993) and we will call the resulting splines
bridge regression splines. In particular, ρ = 1 corresponds to the LASSO
estimator of Tibshirani (1996). Generally, lρ-penalties for 0 < ρ ≤ 1 lead to
(nonlinear) spline estimators with fewer knots.

The proposed two-step procedure has some similarities with that of Lee
(2002) and the recent adaptive multi-order penalized splines (AMPS) hybrid
procedure of Fink and Wells (2004). Lee (2002) suggests to choose the
number and placement of discontinuity points by several model selection
criteria. However, he provides no theoretical results on the optimality of the
resulting spline estimator. Fink and Wells (2004) estimate the locations of
jumps of a piecewise-smooth function on the basis of the first differences of
the data and then fit regression splines using a quadratic penalty. In fact, in
terms of wavelet analysis, such jump detection corresponds to an application
of the Haar wavelets at the finest resolution level. As a result, the AMPS
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procedure is not powerful enough, does not attain the optimal rates and can
detect only sufficiently sharp jumps.

In what follows, we propose a two-step amalgamated bridge regression
spline (ABS) estimation procedure for piecewise-smooth functions and show
its optimality (in the minimax sense) over amalgam Sobolev balls. We also
demonstrate the good performance of ABS on several simulated and a real
data examples. In particular, it produces smooth curves between estimated
jumps and, unlike “direct” wavelet denoising, does not suffer from a pseudo-
Gibbs phenomena.

The rest of the paper is organized as follows. We present the two-step
ABS estimation procedure in Section 2 and establish its optimality in Section
3. Section 4 illustrates the performance of the ABS on several simulated and
a real data examples. Some concluding remarks are made in Section 5. All
the proofs are given in the Appendix.

2 Amalgamated Bridge Regression Spline Estimation Procedure

2.1. The model. Consider the standard nonparametric regression model
with equidistant design

Yi = f(xi) + σZi, (2.1)

where f is an unknown response function, xi = i/n and Zi are i.i.d. standard
normal random variables. Assume also that the sample size n = 2J for some
integer J > 0.

Assume that f is a piecewise-smooth function and belongs to the amal-
gam Sobolev ball H(m, R, κ, S) of radius R of functions satisfying the fol-
lowing conditions :

M1. f ∈ L∞([0, 1]).

M2. f has D discontinuity (jump) points at locations 0 < θ1 < · · · < θD < 1,
where the integer D and the real θl’s are unknown and θl+1 − θl > κ,
l = 1, . . . , D − 1 for some κ > 0. In particular, D = 0 corresponds to
a continuous f .

M3. At each discontinuity point θl, the left and right limits f(θl−) and
f(θl+) exist and |f(θl+) − f(θl−)| ≥ S for some S > 0.
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M4.
D

∑

l=0

∫ θl+1

θl

[f (m)(x)]2 dx ≤ R,

where integer m ≥ 1, θ0 = 0 and θD+1 = 1.

Note that the condition M2 implies that the number of change points D is
finite and bounded from above by 1/κ < ∞.

The statistical challenges in estimating a piecewise-smooth function from
H(m, R, κ, S) are:
1. estimating the number of jumps D and their locations θl, l = 1, . . . , D;
2. recovering the function at smooth regions without degrading its disconti-
nuities.

In this regard, we propose the following two-step procedure: first, to
detect the jump points by wavelet-based procedure and then to apply amal-
gamated bridge regression splines for estimating f between them. We start
with presenting the estimation of a piecewise-smooth function with the
known jump points by an amalgamated bridge regression spline and then
provide a wavelet-based procedure for adaptive estimation of jump points
from the data.

2.2. Amalgamated bridge regression splines. Assume that f∈H(m,R,κ,S).
Consider a standard polynomial regression spline estimator f̃ of order m with
the fixed knots ξ1 < · · · < ξK . It is a continuous piecewise polynomial of
degree m − 1 with m − 2 continuous derivatives at the knots and can be
represented as

f̃(x) =
m−1
∑

k=0

βkx
k +

K
∑

j=1

βm−1+j(x − ξj)
m−1
+ , (2.2)

where z+ = max(0, z). The unknown coefficients β are estimated from the
data.

Polynomial splines are useful for approximating smooth functions but ev-
idently inappropriate for fitting functions with abrupt local changes. There
have been proposed various knot selection algorithms to adapt to inhomoge-
neous smoothness of the unknown response function by placing more knots
where it shows rapid changes (e.g., Zhou and Shen, 2001; He, Shen and Shen,
2001). However, the resulting spline estimator is still a polynomial spline
of the same order and therefore cannot provide a satisfactory remedy for
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fitting piecewise-smooth functions with jumps. To model such sharp local
features of a function efficiently, one can consider a more general and flexible
multi-order spline regression spline of the form

f̃(x) =

m−1
∑

k=0

βkx
k +

K
∑

j=1

βm−1+j(x − ξj)
mj

+ , (2.3)

where the smoothness 0 ≤ mj ≤ m− 1 at different knots ξj may vary (Koo,
1997; Fink and Wells, 2004).

Multi-order splines allow jumps in the mj-th derivative at ξj . In partic-
ular, zero-order knots (mj = 0) model discontinuities of the function while
first and second order knots allow one to represent sharp changes in local
linear trend and local curvature, respectively. Standard polynomial splines
(2.2) of order m correspond to the particular case when mj = m − 1 for all
j = 1, . . . , K. A piecewise-smooth function with D jumps θ1, . . . , θD can be
approximated by a multi-order spline with D zero-order knots at jump points
θl, l = 1, . . . , D and a set of m − 1-order knots at smooth segments (Fink
and Wells, 2004). However, as it follows from (2.3), such a multi-order spline
necessarily implies the conditions on one-sided derivatives at jump points,
namely, f̃ (j)(θl−) = f̃ (j)(θl+), j = 1, . . . , m−1. Additional flexibility can be
achieved if one considers amalgamated polynomial regression splines of order
m with zero-order knots θ1, . . . , θD obtained by amalgamation of separate m-
order splines at each segment. An amalgamated polynomial regression spline
f̃(x) of order m with D zero-order knots θ1, . . . , θD and q knots ξ1, . . . , ξq of
order m − 1 can be represented then as

f̃(x) = f̃0(x)I{0≤x<θ1} + f̃1(x)I{θ1≤x<θ2} + · · · f̃D(x)I{θD≤x≤1}, (2.4)

where each f̃l, l = 0, . . . , D is a polynomial regression spline of order m with
ql knots located at ξ1,l, . . . , ξql,l and

∑D
l=0 ql = q.

Re-number the observations and the m − 1-order knots ξ1, . . . , ξqn using
the double indices (xi,l, Yi,l) and ξν,l, i = 1, · · · , nl, ν = 1, . . . , qnl

, l =
0, . . . , D, respectively, where θl ≤ xi,l < θl+1 and θl ≤ ξν,l < θl+1. Using
(2.2) and (2.4), f̃ can be represented by:

f̃(x) =
D

∑

l=0

[

m−1
∑

k=0

βk,lx
k +

qnl
∑

ν=1

βm−1+ν,l(x − ξν,l)
m−1
+

]

I(θl ≤ x < θl+1),

(2.5)
where

∑D
l=0 qnl

= qn.
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By the definition of an amalgamated spline, on each interval θl ≤ x <
θl+1, f̃(x) is a usual m-order polynomial spline with qnl

knots located at
ξ1,l, . . . , ξqnl

,l. Unless some prior information is available, the m − 1-order
knots ξ1,l, . . . , ξqnl

,l are usually placed on the sufficiently dense equidistant
grid. An excessive number of m − 1-order knots might imply too much
variability in the resulting spline estimator, so one needs some regularization
procedure to remove superfluous ξν,l within each segment. We present an
example of such a procedure below. The jump points are assumed meanwhile
to be known, and, hence, using the representation (2.5), one can estimate
the vector of unknown coefficients βl on each l-th segment separately.

Let X(l) be the n×(m+qnl
) matrix with the rows (1, xi,l, · · · , xm−1

i,l , (xi,l−
ξ1,l)

m−1
+ , · · · , (xi,l − ξqnl

,l)
m−1
+ ) and Yj be the vector with components Yi,l,

i = 1, · · · , nl. Consider the penalized maximum likelihood estimator of βl

with lρ-penalty, ρ > 0, derived by minimizing

Ql(βl,Yl) = ‖Yl − X(l)βl‖2 + nlλnl

m−1+qnl
∑

k=m

|βk,l|ρ (2.6)

with respect to βl, where λnl
> 0 is a smoothing parameter.

The idea of lρ-penalty in regression was introduced by Frank and Fried-
man (1993) and the corresponding technique is known as bridge regression
estimation. The traditional l2-penalty yields a ridge regression estimator
which is based on linear shrinkage, while ρ = 1 leads to the LASSO esti-
mator of Tibshirani (1996). Any choice 0 < ρ ≤ 1 implies a thresholding
estimator of βl and, therefore, results in a spline with fewer m − 1-order
knots (see Antoniadis and Fan, 2001). Plugging the coefficients β̃k,l into

(2.5) leads to the amalgamated bridge regression spline estimator f̃(x) of
f(x).

A closed form solution of (2.6) is available for ρ = 2. For ρ = 1 the mini-
mizer of (2.6) is unique and can be found either by a LASSO-type algorithm
(Tibshirani, 1996; Osborne et al., 2000), once the matrices X(l) are nor-
malized to have columns of norm 1, or via surrogate functionals, a method
recently introduced by Daubechies et al. (2004) in the context of wavelet
shrinkage methods for deblurring. When ρ < 1, the objective function is no
longer convex but one can still find a local minimizer using, for example,
an approximate algorithm of Ruppert and Carrol (2000), a backfitting type
algorithm of Fu and Kneight (2000) or a recently developed algorithm of
Amato et al. (2006). We discuss these issues in more details in Section 4.1
below.
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To conclude this section, note that we have used truncated power bases
for a clearer exposition of a spline-based regression. However, the truncated
power bases may lead to numerical instabilities, especially when a larger
number of knots and a small penalty parameter are involved. Equivalent
bases with more stable numerical properties are the B-spline bases, and it
is easy to transform the matrices X(l) to a corresponding B-spline version.
For this reason, we shall not further discuss numerical stability issues when
we formulate the ABS estimator.

2.3. Jumps detection. In this section, we present a wavelet-based proce-
dure for adaptive estimation of jump points. As it has been mentioned in the
Introduction, due to their multiresolutional nature, wavelets have become an
efficient and widely used tool for detecting local abrupt changes (jumps, in
particular) of a function. The general idea behind wavelet-based detection
is based on the characterization of function’s local regularity at a point by
the rate of decay of its wavelet coefficients across scales around this point.
Local singularities can be then identified by the presence of large wavelet
coefficients at high scales in their neighbourhood.

Let ψ be a mother wavelet, and djk and d̂jk, j = 0, . . . , J − 1, k =
0, . . . , 2j − 1 be the corresponding sets of discrete wavelet transform (DWT)
coefficients of the unknown response vector f = (f1, . . . , fn)′ and data Y =
(y1, . . . , yn)′ respectively. For equispaced design and the sample size n = 2J ,
fast algorithms of Mallat (1989) allow one to perform the DWT in O(n)
operations.

It is well-known, that the DWT coefficients cannot be generally used to
detect a local singularity point, since the discrete grid on scales for the DWT
might be too “crude” in view of the possible presence of other singularities
or strong oscillations around this point (Mallat and Hwang, 1992). In this
respect, the DWT coefficients differ from the coefficients of the continuous
wavelet transform or its discrete analog – the non-decimated wavelet trans-
form (NWT) (Shenza, 1992) that generates an equal number of n coefficients
at each of J levels. However, we will show that for piecewise-smooth func-
tions from amalgam Sobolev balls, the DWT can still be used to detect jump
points.

The detection algorithm described below analyses the DWT coefficients
at an appropriately chosen scale and selects a threshold large enough to
prevent the coefficients corresponding to smooth segments to penetrate by,
but still small enough to allow coefficients corresponding to singularities to
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pass it through. The locations of jumps are then estimated by the locations
of coefficients which exceed the threshold.

We will assume hereafter that the variance σ2 of the noise is known.
Otherwise, for regression functions from amalgam Sobolev balls, it can be
estimated at a parametric rate in the wavelet domain by the median of the
absolute deviation of the empirical wavelet coefficients of the data at the
highest resolution level divided by 0.6745.

Assume that the mother wavelet ψ has a compact support [L; U ], L <
0 < U and denote ψjk(x) = 2j/2ψ(2jx−k), j = 0, . . . , J−1, k = 0, . . . , 2j−1.
Fix an arbitrarily small δ > 0. Define j∗ such that 2j∗ = (U −L)n/(lnn)1+δ

and a sequence of indices τ(k) = −L + (U − L)k, k = 0, . . . , 2j∗/(U −
L) − 1. Without loss of generality, we may assume that j∗ and 2j∗/(U − L)
are integers; otherwise, we take the corresponding integer parts. Note that
Ωj∗k = supp ψj∗τ(k) = [2−j∗(U − L)k; 2−j∗(U − L)(k + 1)] and, therefore,
the intersection Ωj∗k ∩ Ωj∗(k+1) is a zero-measure set containing a single

boundary point 2−j∗(U −L)(k + 1). Hence, the unit interval is divided into
a grid of N = 2j∗/(U−L) non-overlapping intervals of lengths 2−j∗(U−L) =
(lnn)1+δ/n. Due to M2, for sufficiently large n, each of these intervals can
contain only a single jump point.

Let Tj∗ be a set of indices τ(k) such that the corresponding interval Ωj∗k

does not contain a jump point. For an arbitrary 0 < α < δ/2, define a
threshold

t∗n = σ
√

n−1(log n)1+δ−2α . (2.7)

Proposition 2.1. Consider the model (2.1), where the unknown f ∈
H(m, R, κ, S) defined in Section 2.1. Let the wavelet ψ be differentiable with
a compact support and d̂jk, j = 0, . . . , J − 1, k = 0, . . . , 2j − 1 be the set of
the DWT coefficients of the data Y = (Y1, . . . , Yn)′. Then, for the threshold
t∗n defined in (2.7) one has uniformly in f ∈ H(m, R, κ, S):

1. P(maxτ(k)∈Tj∗
|d̂j∗τ(k)| > t∗n) = o(n−γ)

2. P(minτ(k)/∈Tj∗
|d̂j∗τ(k)| < t∗n) = o(n−γ)

as n → ∞ for an arbitrarily large γ > 0.

Proposition 2.1 shows that we can track down the jumps by the presence
of large DWT coefficients dj∗τ(k) with very high accuracy.
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Remark 2.1. The proposed jump detection procedure is performed at
such a high resolution level j∗, that there are essentially no differences be-
tween the DWT and NWT coefficients. This explains why for a piecewise-
smooth function f satisfying the conditions of Section 2.1 the DWT can still
be used.

Based on the Proposition 2.1, we suggest the following jumps estimation
procedure:

1. Consider the DWT coefficients d̂j∗τ(k) at the level j∗ and find all τ(k)

such that |d̂j∗τ(k)| > t∗n. If the set {|d̂j∗τ(k)| > t∗n} is empty, set D̂ = 0.
Otherwise,

2. Estimate the number of jump points D by D̂ = #{|d̂j∗τ(k)| > t∗n} and

the locations θ` of the jumps by the mid-points θ̂` of the corresponding
intervals Ωj∗k, i.e., θ̂` = 2−j∗(U − L)(k + 1/2), l = 1, . . . , D̂.

Proposition 2.1 immediately implies that P{D̂ 6= D} = o(n−γ) for an
arbitrarily large γ > 0. Note also that

E(|θ̂l − θl|2ID̂=D) ≤ 2−2j∗ + P{|θ̂l − θl| > 2−j∗}, (2.8)

where the first term in the right-hand side of (2.8) is O((lnn)2+2δ/n2), while
the second one is negligible due to the first statement of Proposition 2.1.
Hence, the following Corollary holds.

Corollary 2.1. Under the assumptions of Proposition 2.1, as n → ∞,

1. P{D̂ 6= D} = o(n−γ) for any γ > 0.

2. Uniformly in f ∈ H(m, R, κ, S),

E

(

|θ̂l − θl|2ID̂=D

)

= O(2−2j∗) = O
(

n−2 (lnn)2(1+δ)
)

, l = 1, . . . , D̂.

2.4. The ABS procedure. The resulting two-step ABS procedure natu-
rally combines amalgamated bridge regression spline estimation with jumps
detection and can be summarized as follows.

1. Estimate the number of jump points D̂ and their locations θ̂1, . . . , θ̂D̂
by the DWT-based procedure described in Subsection 2.3.

2. Plug in D̂ and θ̂1, . . . , θ̂D̂ into (2.5) and minimize the resulting expres-
sion (2.6) to obtain an amalgamated bridge regression spline estima-
tor f̂ .
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3 Optimality of the ABS procedure

In this section, we prove the optimality (in the minimax sense) of the
proposed ABS procedure.

Consider the quadratic risk (L2-loss) R(f̂ , f) = E{‖f̂ − f‖2
2} for an esti-

mator f̂ of f ∈ H(m, R, κ, S): The minimax quadratic risk over H(m, R, κ, S)
is then defined by

R (H(m, R, κ, S)) = inf
f̂

sup
f∈H(m,R,κ,S)

R(f̂ , f),

where the infimum is taken over all estimators f̂ . Antoniadis and Gijbels
(2002) derived the minimax rate over R (H(m, R, κ, S)) and showed that as
n increases,

R (H(m, R, κ, S)) = O
(

n− 2m
2m+1

)

(3.1)

Note that the optimal rate (3.1) for estimating piecewise-smooth functions
from amalgam Sobolev classes satisfying M1–M4 is the same as for homoge-
neously smooth functions from the usual Sobolev spaces.

We now show that the proposed ABS estimator attains the minimax rate
(3.1). We first prove that for the fixed zero-order knots the amalgamated
bridge regression spline estimator from Section 2.2 achieves the optimal rate
O(n−2m/(2m+1)) and then demonstrate that the accuracy of the zero-knots
estimation procedure of Section 2.3 is sufficiently high not to damage it.

Consider the amalgamated bridge regression spline estimator f̃ from Sec-
tion 2.2 with qn equally spaced m−1-order knots and fixed zero-order knots.
Impose the following asymptotic assumptions on the design matrix X, the
number of m − 1-order knots qn and the smoothing parameters λnl

in (2.6)
as n → ∞ and qn → ∞:

M5. There exists C1 > 0 and C2 > 0 such that 0 < C1n < λmin < λmax <
C2n, where λmin and λmax are the minimal and the maximal eigenval-
ues of the matrix XTX.

M6. qn = Cn1/(2m+1) for some C > 0.

M7. λnl
n

1−ρ/2
l = O(1) as nl → ∞, l = 1, . . . , D.

Due to the assumption M2, the number of observations nl and the number
of m − 1-order knots qnl

on each l-th segment are of the order n and qn
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respectively, the same as on the entire unit interval, and, therefore, the
assumptions M5 and M6 holds on each segment as well. Thus, when the
zero-order knots are fixed, the asymptotic properties of the amalgamated
estimator f̃ on the entire unit interval are the same as on each of its segments.

Consider then minimization of (2.6) under the assumptions M5–M7. The
following proposition guarantees the existence of a local

√

nl/qnl
-consistent

penalized maximum likelihood estimator β̃l of (2.6) of βl.

Proposition 3.1. Under assumptions M5 and M7, there exists a local
minimizer β̃l of (2.6) such that ‖β̃l − βl‖ = Op(

√

qnl
/nl) = Op(

√

qn/n).

Proposition 3.1 only establishes the existence of a local
√

qn/n consistent
minimizer of (2.6) but does not provide any tools to obtain it. We have
discussed briefly the computational issues in Section 2.2 and will give more
technical details later in Section 4.1.

The resulting ABS estimator f̃ is obtained by amalgamation of the cor-
responding estimators at each segment, that is, f̃ = Xβ̃. The following
proposition shows that f̃ achieves the optimal rates (3.1).

Proposition 3.2. Let assumptions M5–M7 hold and f̃ = Xβ̃. Then, as
n → ∞,

sup
f∈H(m,R,κ,S)

R(f̃ , f) = O
(

n−2m/(2m+1)
)

. (3.2)

So far we considered an idealized situation, where the jump locations were
assumed to be known. The following proposition shows that when zero-order
knots are estimated by the wavelet-based jumps detection procedure from
Section 2.3, the resulting ABS estimator f̂ still attains the optimal rates
(3.1). The high accuracy of estimating jump points makes the additional
error contribution to be negligible in the overall estimation error.

Proposition 3.3. Let assumptions M1–M7 hold and let f̂ be the ABS
estimator with zero-order knots estimated by the wavelet-based procedure pro-
posed in Section 2.3. Then, as n → ∞,

sup
f∈H(m,R,κ,S)

R(f̂ , f) = O
(

n−2m/(2m+1)
)

. (3.3)

Remark 3.1. As we have already mentioned, due to the high accuracy of
estimating jumps locations, the resulting optimal rates for the ABS estimator
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f̂ are the same as that of f̃ with known jumps. Hence, for a finite number
D of jumps these rates are essentially the same as those optimal within
Sobolev balls with the known smoothness index m. Furthermore, using the
corresponding results of Agarwal and Studden (1980) under the assumptions
M5–M7, one can show that the constant in the upper bound of the risk in
(3.3) is, in fact, the Pinsker constant (Pinsker, 1980)

CP = (R(2m + 1))1/(2m+1)

(

m

π(m + 1)

)2m/(2m+1)

.

For simplicity of exposition, we considered the case of equidistant design
in the model (2.1). As long as M5 holds, this assumption does not really
matter on the spline step. Nevertheless, some technical modifications are
needed for the proposed wavelet-based jumps detection procedure to adapt
the discrete wavelet transform to a non-equidistant design. For n = 2J one
can use an interpolating wavelet basis (Donoho, 1992) to interpolate the
observed values and map then the data to a set of dyadic equidistant points.
For a sufficiently regular design density, all the required DWT properties
remain valid. When n is not a power of two, one can still use the above
approach by adapting the interpolating wavelet basis to the sampling grid
using an appropriate subdivision interpolation scheme (Cohen et al., 2003).

Finally, note that, in fact, one can use any jumps detection method on
the first step that achieves the detection rates established in Corollary 2.1.

4 Numerical Analysis

In this section, we discuss the computational/practical implementation
of the proposed ABS procedure and demonstrate its performance on several
simulated examples and a real data set.

4.1. Computational implementation. Following the proposed two-step
ABS algorithm, we first estimate the number and locations of jumps of an
unknown function by the wavelet-based detection procedure. We then place
zero order knots on estimated jump points and a relatively large number
of quadratic knots (m = 3) at locations fixed at “equally-spaced sample
quantiles” similarly to standard penalized splines designed for estimating
smooth functions (e.g. Ruppert and Carroll, 2000). As it has been noted in
the previous sections, this step serves to refine the regression spline basis by
allowing for additional smoothness between any zero-order features. During
the second step, the ABS regression spline is fitted using either penalized
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least squares with a quadratic penalty or with a more general lρ-type penalty,
penalizing coefficients of the basis functions which are the least supported
by the data.

Recall that the bridge regression estimators β̃j of coefficients βj within
each segment are obtained by minimizing Ql in (2.6) separately for each
l = 0, . . . , D with respect to βj :

Ql(βl,Yl) = ‖Yl − X(l)βl‖2 + nlλnl

m−1+qnl
∑

k=m

|βk,l|ρ

Suppressing index l in the equation above for simplicity, we consider mini-
mization of

Q(β,Y) = ‖Y − Xβ‖2 + λ

m−1+qnl
∑

k=m

|βk|ρ.

As we have mentioned above, a closed solution is available for ρ = 2, while
for ρ = 1 there exist numerical algorithms (e.g. LASSO) for computing the
estimator. For any 0 < ρ ≤ 1, a possible numerical solution is to minimize Q
iteratively, one component of β at a time (backfitting). Assume for simplicity
that Ȳ = 0 (or replace Yi by Yi − Ȳ ). The algorithm we have used in our
numerical implementation for ρ ≤ 1 can be described then as follows:

(0). Center the columns of X to have the mean 0 and scale them to have
unit variance. Using centered columns, define an initial value β̂ by
using the least squares algorithm. Set k = 1.

(1). Define Qk(βk) =
∑n

i=1(Yi −
∑

j 6=k β̂jxij − βkxik)
2 + λ|βk|ρ.

(2). Set β̂k = arg minQk. The minimization of Qk with respect to βk is
solved by Newton-Raphson or fixed-point iteration.

(3). Set k = k + 1 if k < m − 1, and k = 1 otherwise.

(4). Repeat (1), (2) and (3) until convergence occurs.

The above algorithm always converges (see Nikolova and Ng, 2005) and
works very well if the design is not “too collinear” (hence the interest in
using B-splines). Otherwise, it might get stuck at a local minima. The
problem is less severe when ρ is not too close to 0. For ρ = 1, it may be
also computationally simpler than LASSO that involves linear programming
techniques.
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In the simulation and real data examples below, we considered ρ = 2
(ABS2) and ρ = 1 (ABS1), where in the latter, we used the backfitting
algorithm described above. The quadratic l2-penalty (ABS2) is equivalent
to placing quadratic penalties on finite differences of adjacent B-splines co-
efficients and it results in shrinking all coefficients toward zero. On the
contrary, the l1-penalty on adjacent B-splines coefficients (ABS1) not only
shrinks the coefficients but also thresholds them, removing, in the process,
the corresponding “superfluous” second order knots.

In both approaches, the smoothing parameter λn was automatically cho-
sen from the data by generalized cross-validation (GCV) as is usual in spline
smoothing (see, e.g. Fan and Li, 2001). For all examples, we found the rea-
sonable choice for the tuning parameters of the jumps detection procedure
to be δ = 1/2 and α = 1/4.

4.2. Simulations. In this subsection, we compare the estimators based
on the ABS1 and ABS2 procedures with another related method, namely, the
Spatially Adaptive Regression Splines (SARS) developed by Zhou and Shen
(2001) which is particularly suited for functions that have jumps by them-
selves or in their derivatives. SARS is locally adaptive to variable smooth-
ness and automatically places more knots in the regions where the function
is not smooth. It has been proved as an effective tool for estimating such
functions. For completeness, we also compare the above estimators with
a standard wavelet denoising procedure based on universal thresholding of
Donoho and Johnstone (1994), since wavelet based procedures are known to
efficiently denoise inhomogeneous functions.

To investigate the performance of the developed ABS estimators we con-
ducted a simulations study based on synthetic data. We used two of the
standard test functions of Donoho and Johnstone (1994) that are examples
of piecewise-smooth functions and commonly used for various wavelet pro-
cedures, namely, the blocks and heavisine. In addition, we considered
two other test functions punctuated by jump discontinuities called burt and
cosine, defined on [0, 1], respectively, as

cosine(x) = cos(5.5πx) − 4 sign(0.23 − x) − 2 sign(0.3 − x)

−1.75 sign(0.55 − x) + 3 sign(0.7 − x)

and
burt(x) = 20x cos(16x1.2) − 20I(x < 0.5).

The functions are depicted in Figure 4.1. The sample size used in the simu-
lations was n = 256 and the design points were uniformly spaced within the
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Figure 4.1: Four benchmark test functions punctuated by jump discontinuities

used in the simulations.

unit interval. In each simulation, we added a normally distributed zero mean
white noise with the standard deviation σ implying a chosen signal-to-noise-
ratio (SNR). SNR are measured as sd(f)/σ, where sd(f) is the estimated
standard deviation of the regression function over the grid. For each func-
tion and two values of SNR (4 and 6), we ran 200 simulations. In each
realization, we placed equally-spaced 50 quadratic knots. The noise level σ
was assumed unknown and estimated by the median of the absolute devia-
tion of the empirical wavelet coefficients of the data at the highest resolution
level divided by 0.6745. For each realization, we calculated the ABS1 and
ABS2 estimators using the developed procedures, where the wavelet-based
jumps detection was based on Symmlets of order 6, the SARS estimator and
a wavelet denoising estimator (Wav) also with Symmlets of order 6. All
simulations were performed using Matlab 7 (Mathworks 2001) and R.
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The accuracy of an estimator f̂ of f was measured by the average mean
square error (MSE) averaged over 200 simulation runs defined as

MSE =
1

n

n
∑

i=1

(f̂(xi) − f(xi))
2,

where {xi} is the set of design points. The average MSEs for each method
are reported in Table 1 with corresponding boxplots in Figure 4.2.

Figure 4.2 and Table 4.1 show that all the three spline estimators with
adaptively placed knots outperform a standard wavelet denoising procedure
and, unlike the latter, do not suffer from pseudo-Gibbs phenomena. ABS1
and ABS2 provide similar results and in most of the cases, they are some-
what better than SARS. The unusually large MSE for ABS2 for the blocks
example, SNR=6 is explained by an extremely high MSE obtained in one
simulation run (cf. Figure 4.2). As one can also see, application of the l1-
type penalty in ABS provides a relatively small gain. This can be explained
by the fact that, for each of the functions, the regions between any two jumps
are relatively smooth.

Table 4.1. Average mean squared errors based on 200 samples obtained using
signal to noise ratios of 6 and 4 (in parenthesis) for four different
procedures: ABS1 (`1-penalty); ABS2 (`2 penalty), SARS and Wav.
The hyperparameters are chosen by generalized cross-validation.

estimate blocks heavisine burt cosine

ABS1 0.47 (1.52) 0.21 (0.35) 0.43 (0.87) 0.25 (0.33)
ABS2 1.94 (1.52) 0.22 (0.37) 0.46 (0.99) 0.25 (0.33)
SARS 0.62 (1.45) 0.29 (0.48) 0.49 (1.11) 0.25 (0.34)
Wav 6.09 (8.91) 0.52 (0.61) 2.24 (3.42) 0.64 (0.86)

4.3. A real example. Since the ABS1 has shown the better performance in
our simulations we applied the ABS1 procedure to the real life data provided
by Mike Battaglia from the Department of Forestry at Virginia Tech (see
Battaglia, 2000). For comparison, we have also applied the SARS procedure.

The data set contains relative light transmittance data recorded at equal
time intervals throughout the daylight hours for numerous days (see Fig-
ure 4.3 for a plot of the relative light transmittance data for one station
during one day). In this data set, sun light from various forest stations
in plots with different cutting treatments is compared to the sun light in a
nearby open plot. Cloud interference and overstory patterns (the shades pro-
duced by the trees) are the two most common phenomena that cause jump
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Figure 4.2: Boxplots of the mean squared errors on 100 samples obtained by

four different procedures: ABS1 (l1-penalty); ABS2 (l2 penalty); SARS, Spatially

Adaptive Regression Splines; Wav, Wavelet denoising. The hyperparameters are

chosen by generalized cross-validation.
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points in the relative transmittance data. Jump points that remain consis-
tent across days may be attributed to overstory pattern while jump points
that do not remain consistent across days are probably caused by cloud in-
terference. Since variation of the light availability increases as canopy gaps
become larger, in order to predict the forest dynamics it is useful to estimate
the relative transmittance taking into account such discontinuities.

We applied the ABS1 procedure to the data shown at Figure 4.3. Symm-
lets of order 6 were again used for jumps detection. The noise level σ, as
usual, was estimated by the median of the absolute deviation of the empir-
ical wavelet coefficients of the data at the highest resolution level divided
by 0.6745. The procedure found three jump points located at 0.138, 0.494
and 0.873. On the spline step on each of the resulting four segments 12
quadratic knots were placed at equally spaced quantiles. The corresponding
GCV-chosen smoothing parameters λ were 1.180e-06, 1.635e-05, 2.993e-06
and 4.816e-06. The ABS1 reduced the numbers of necessary quadratic knots
to 3, 4, 3 and 3 respectively. The Figure 4.3 shows the resulting ABS1
and SARS estimates. ABS1 nicely fits the data, while SARS faces difficul-
ties in detecting relatively small jumps and evidently misses a jump point
around 0.14. The overall residual sums of squares were 0.003213 for ABS1
and 0.003826 for SARS. Summarizing, we can conclude that the developed
ABS procedure successfully estimates trends of the daily relative light trans-
mittance data and their jumps and can be therefore a powerful tool for the
characterization of gap openings in forest stations.

5 Concluding Remarks

In this paper, we developed a two-step procedure for estimating piecewise-
smooth functions by amalgamated bridge regression splines. It first detects
the unknown jump points by a wavelet-based method and then estimates the
regression function on each smooth segment separately by bridge regression
splines. We showed that the resulting amalgamated estimator achieves min-
imax convergence rates over amalgam Sobolev balls. From a practical view,
ABS is fairly accurate and computationally efficient: it requires a little more
computation time than traditional penalized regression splines. The number
of operations necessary to locate the zero-order knots grows linearly with n,
inheriting the algorithmic complexity of the discrete wavelet transform. We
demonstrated a good performance of ABS on several simulated and a real
data examples. Summarizing, we believe that the proposed ABS estimators
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Figure 4.3: Display of the relative light transmittance data (data plotted as stars)

for one station during one day from the Forestry Department of Virginia Tech.

The x-axis is a daylight hours time interval rescaled to [0, 1]. The display also

includes the ABS1 regression fit (solid line) to the transmittance data (with 3 jumps

detected) and the fit obtained by the SARS procedure (dashed line).

are an attractive alternative to the existing estimators of piecewise-smooth
functions.

6 Appendix

Throughout the proofs, we use the symbol C to denote a generic positive
constant, not necessarily the same each time it is used, even within a single
equation.

A.1. Proof of Proposition 2.1. Applying the DWT to the both sides of
(2.1) we obtain d̂jk = djk + εjk, where djk and εjk, j = 0, . . . , J − 1, k =
0, . . . , 2j − 1 are the DWT of the unknown f and the Gaussian noise respec-
tively. Note that εjk are independent Gaussian variables with Var(εjk) =
σ2/n.
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Consider the level j∗ and the corresponding sequence of indices τ(k)
defined in Section 2.3. Consider first τ(k) ∈ Tj∗ . Since m ≥ 1, the function
f is at least of Lipschitz regularity one for all x ∈ Ωj∗k. Then, for sufficiently
large n,

max
k∈Tj∗

|dj∗τ(k)| < C2−
3

2
j∗ = O

(

(

n−1 (lnn)1+δ
)3/2

)

= o(t∗n) (A.1)

(e.g. Daubechies, 1992, p.299). As n increases, for any 0 < α < δ/2 and for
all τ(k) ∈ Tj∗

P{|d̂j∗τ(k)| > t∗n} ≤ P{|εj∗τ(k)| > t∗n − |dj∗τ(k)|}
≤ P{|εj∗τ(k)| > t∗n/2}
≤ C(log n)α−(1+δ)/2 exp(−(log n)1+δ−2α/8)

= o(n−γ̃) (A.2)

for any γ̃ > 1. Since card{Tj∗} = O(2j∗) = O(n/(lnn)1+δ), we have

P{max
k∈Tj∗

|dj∗τ(k)| > t∗n} ≤
∑

k∈Tj∗

P{|d̂j∗k| > t∗n} = o(n−γ),

where γ = γ̃ − 1 > 0.

Let now τ(k) /∈ Tj∗ . The condition M2 guarantees that for sufficiently
large n there is a single jump point θl ∈ Ωj∗k. Similarly to the arguments of
Wang (1995) and Antoniadis and Gijbels (2002) but applied for the DWT,
under the conditions M1–M4 we derive that

|dj∗k| = 2−j∗/2 |f(θl+) − f(θl−)|
{∣

∣

∣

∣

∫

ψ(θl − u)sign(u)du

∣

∣

∣

∣

+ O(1)

}

≥ C2−j∗/2. (A.3)

For each τ(k) /∈ Tj∗ , it then follows from (A.3) that

P{|d̂j∗τ(k)| < t∗n} ≤ P{|εj∗τ(k)| > C2−j∗2/2}
> C(log n)−(1+δ) exp(−C2(log n)1+δ/2)

= o(n−γ)

for any γ > 0. Hence, P{minτ(k)/∈Tj∗
|d̂j∗τ(k)| < t∗n} ≤ ∑D

k=1 P{|d̂j∗τ(k)| <

t∗n} = o(n−γ) whenever D is finite, that completes the proof. 2
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A.2. Proof of Proposition 3.1. As we have mentioned, the asymptotic
properties of β̃l are same for each l and for simplicity of exposition we omit
the index l throughout the proof.

Let β be the true set of coefficients. Let M be a relatively large number
and αn =

√

qn/n. In order to prove Proposition 3.1 we show that

lim
n→∞

P

{

sup
‖u‖=M

Q(β + αnu,Y) > Q(β,Y)

}

= 0. (A.4)

Equality (A.4) implies that with probability tending to one, there is a local
minimum β̃ of (2.6) in the ball with the center β and radius αnM such that
‖β̃ − β‖ = Op(αn). Let ε = Y − Xβ and

Dn(u) = Q(β + αnu,Y) − Q(β,Y) = ∆1 + ∆2 + ∆3 (A.5)

= α2
n‖Xu‖2 − 2αnu

TXT ε + nλn

qn
∑

k=1

[|βp+k + αnuk|ρ − |βp+k|ρ]

Note that ∆1 is a constant and, by assumption M5, ∆1 ≥ C1α
2
nn‖u‖2 =

C1M
2α2

nn = C1M
2qn. The second term, ∆2 is a random variable with

E∆2 = 0, so that, for any δ > 0 by Markov inequality, and M5 we have

P (|∆2| > δ) ≤ 2δ−1αn

√

E(uTXT εεTXu) ≤ 2δ−1Mσαn

√

C2n.

Therefore, setting δ = 0.5C1M
2α2

nn, we obtain P (|∆2| > 0.5C1M
2α2

nn) ≤
4σ(C1M)−1(αn

√
n)−1 → 0. For an upper bound for ∆3, note that since

|x + y|ρ − |x|ρ ≤ |y|ρ as 0 < ρ ≤ 1, by condition M7 when M is large enough
we have

|∆3| ≤ nλnαρ
n

qn
∑

k=1

|uk|ρ ≤ nλnαρ
nMρ/2q1−ρ/2

n < 0.5 C1M
2qn. 2

A.3. Proof of Proposition 3.2. The proof Proposition 3.2 is based on the
following lemma.

Lemma 1.1. Let w(z, α) = arg minw[w2−2wz+α|w|ρ], 0 < ρ ≤ 1. Then,
w(z, α) = 0 whenever |z| < aρα

1/(2−ρ). If ρ 6= 1, then |w(z, α)| ≥ bρα
1/(2−ρ)

whenever |z| ≥ aρα
1/(2−ρ). Here aρ = (2 − ρ)(ρ/2)1/(2−ρ)(1 − ρ)(ρ−1)/(2−ρ)

and bρ = [ρ(1 − ρ)/2]1/(2−ρ).
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Proof of Lemma 1.1. Since w(−z, α) = −w(z, α), it is enough to
consider z > 0. The derivative of the objective function is of the form
h(w, z) = 2w − 2z + αρ|w|ρ−1sgn(w). Note that the function φ(w) =
2w+αρ|w|ρ−1sgn(w) is odd and for w > 0 has a minimum at w0 = bρα

1/(2−ρ)

equal to aρα
1/(2−ρ). Hence, whenever 0 < z < aρα

1/(2−ρ) equation h(w, z) =
0 has no solutions and h(w, z) is negative for any w < 0 and positive for
any w > 0. Thus, in this case w(z, α) = 0. If z > aρα

1/(2−ρ), equation
h(w, z) = 0 has two solutions 0 < w1 < w2 where solution w1 < w0 cor-
responds to the local maximum of the objective function while w2 > w0

corresponds to its absolute minimum. 2

We now complete the proof of Proposition 3.2. Let βj be the j-th

component of β and β(−j) be the vector β without component βj . Sim-
ilarly, let Xj be the j-th column of matrix X and X(−j) be the matrix
X without column j. Note that n−1Q(β,Y) in (2.6) can be rewritten as
n−1Q(βj , β

(−j),Y) = n−1‖Y − Xjβj − X(−j)β(−j)‖2 + λn
∑m−1+qn

k=m |βk|ρ
and β̃j = arg minβj

Q(βj , β
(−j),Y). If 0 ≤ j ≤ m− 1, equating derivative of

n−1Q(β,Y) over β̃j to zero we obtain

n−1XT
j Xβ̃ − n−1XT

j Y = 0. (A.6)

If m+1 ≤ j ≤ m+qn, then application of Lemma 1.1 with α = λ/(n−1XT
j Xj)

and z = n−1XT
j (Y − X(−j)β̃

(−j)
)/(n−1XT

j Xj) yields that β̃j = 0 whenever

|n−1XT
j (Y − X(−j)β̃

(−j)
)| < aρλ

1/(2−ρ)(n−1XT
j Xj)

(1−ρ)/(2−ρ). (A.7)

In this case, taking into account condition M5, β̃j = 0 and Xβ̃ =

X(−j)β̃
(−j)

+ Xj β̃j , we obtain

|n−1XT
j (Y − Xβ̃)| = O

(

λ1/(2−ρ)
)

. (A.8)

If inequality (A.7) does not hold, then β̂j is the solution of the equation

n−1XT
j (Xβ − Y) + λρ|β̂j |ρ−1sgn(β̃j) = 0. For 0 < ρ < 1, by Lemma 1.1 we

obtain

|n−1XT
j (Y − Xβ̃)| = λρ|β̃j |ρ−1 = O

(

λ1+(ρ−1)/(2−ρ)
)

= O
(

λ1/(2−ρ)
)

.

(A.9)
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Observe that for ρ = 1, (A.9) continues to hold. Combining (A.6), (A.8)
and (A.9), we derive that for any j

n−1|XT
j Xβ̃ − n−1XT

j Y| = O
(

λ1/(2−ρ)
)

. (A.10)

Now, denote by β̃∗ the global minimizer of ‖Y−Xβ‖2. It is easy to see that

n−1XT
j Xβ̃∗ − n−1XT

j Y = 0. (A.11)

Moreover, Agarwal and Studden (1980) showed that for f̃∗ = Xβ̃∗ under
condition M7, one has

sup
f∈H(m,R,κ,S)

R(f̃∗, f) = O
(

n−2m/(2m+1)
)

. (A.12)

Subtracting equation (A.11) from equation (A.10) one derives n−1|(XTX(β̃−
β̃∗))j | = O

(

λ1/(2−ρ)
)

for all j = 0, · · · , m − 1 + qn, so that (A.10) together

with condition M7 imply that ‖Xβ̃ − Xβ̃∗‖2 = O(qnλ2/(2−ρ)). To com-
plete the proof combine the last equality with (A.12) and the conditions M6
and M7. 2

A.4. Proof of Proposition 3.3. Let T̂ = {θ̂j , j = 1, . . . , D̂} be the set of

estimated jump points of f and define the event F = {D̂ = D}∩{|θ̂j −θj | <
n/(log n)1+δ, j = 1, . . . , D̂}. We have

R(f̂ , f) = E{‖f̂ − f‖2
2} = E{‖f̂ − f‖2

2IF } + E{‖f̂ − f‖2
2IF c}. (A.13)

Note that

E{‖f̂ − f‖2
2IF c} = E

(

E{‖f̂ − f‖2
2IF c |T̂}

)

= E

(

IF cE{‖f̂ − f‖2
2|T̂}

)

.

Exploiting the results of Section 3 and the fact that both f̂ and f belong to
amalgam Sobolev ball H(m, R, κ, S), one easily gets E{‖f̂−f‖2

2|T̂} = OP (1).
Furthermore, by Proposition 2.1, P{F c} = o(n−γ) for an arbitrarily large
γ > 0. Hence the second term in the right-hand side of (A.13) is o(n−γ) and
is negligible.

Consider now the first term in the right-hand side of (A.13). For simplic-
ity of exposition, consider first the case where there is a single jump point θ
and D = 1. The unknown f can be decomposed as f(x) = I[0,θ](x)f0(x) +
I(θ,1](x)f1(x), where f0 and f1 both belong to the Sobolev balls H(m, R)
of radius R. From the known properties of spline approximation, we can
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approximate f by an amalgamated m-order polynomial spline s as s(x) =
I[0,θ](x)s0(x)+I(θ,1](x)s1(x), where s0 and s1 are spline approximations of f0

and f1 respectively, with the approximation error ‖f − s‖2
2 ≤ O(n−2m/2m+1)

Let θ̂ the estimate of θ. Given the data, define amalgamated spline estima-
tors f̃ and f̂ with a zero-knot at true θ and estimated θ̂ respectively. Then,
f̃(x) = I[0,θ](x)s̃0(x)+I(θ,1](x)s̃1(x) and f̂(x) = I[0,θ̂](x)ŝ0(x)+I(θ̂,1](x)ŝ1(x),
where s̃j , j = 0, 1 and ŝj , j = 0, 1 are the corresponding spline estimates.

In order to simplify the notation, denote hereafter E{·IF } by EF {·}. We
have EF {‖f̂ − f‖2

2} = EF {‖f̂ − s‖2
2} + O(n−2m/(2m+1)).

Consider only the case θ̂ ≤ θ since the opposite case can be treated in a
similar way. Then,

EF {‖f̂ − s‖2
2} = EF

{

∫ θ̂

0
(s(x) − f̂(x))2dx

}

+ EF

{
∫ θ

θ̂
(s(x) − f̂(x))2dx

}

+ EF

{
∫ 1

θ
(s(x) − f̂(x))2dx

}

= (A) + (B) + (C). (A.14)

For the first term (A) in (A.14) we have

EF

{

∫ θ̂

0
(s(x) − f̂(x))2dx

}

= EF

{

∫ θ̂

0
(ŝ0(x) − s0(x))2dx

}

≤ EF

{

∫ θ̂

0
(ŝ0(x) − s̃0(x))2dx

}

+ EF

{

∫ θ̂

0
(s̃0(x) − s0(x))2dx

}

= (A1) + (A2).

By Proposition 3.2 , the term (A2) is O(n−2m/(2m+1). For (A1), note that by
construction and assumption M6, the sup-norm distance between the knots

of ŝ and those of s̃ is bounded above by O
(

q−1
n (θ − θ̂)

)

' oP (n−2m/(2m+1)).

The knots of ŝ may be viewed as the set of knots of s̃ perturbed by an
amount o(n−2m/(2m+1)). Using Theorem 6.2 of Lyche and Mørken (1999) it
follows that ‖ŝ0(x) − s̃0(x)‖2

∞ ≤ O(n−2m/(2m+1)) and therefore (A1) is also
O(n−2m/(2m+1).

The third term (C) in the right-hand side of (A.14) can be handled
exactly in the same way to verify that it is O(n−2m/(2m+1). Finally, it is
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easy to see that the remaining term (B) is O
(

EF (|θ − θ̂|)
)

which is also

O(n−2m/(2m+1)) by Corollary 2.1.

Summarizing, so far we have proved the proposition for D = 1. For a
general (but still finite!) D, one may partition the unit interval by θl and
θ̂l, l = 1, . . . , D in a similar way and use the established result for a single
jump to obtain the rates stated in Proposition 3.3 similarly to the proof of
Proposition 2 in Antoniadis and Gijbels (2002). 2
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