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ABSTRACT. We investigate the asymptotic optimality of several Bayesian wavelet estimators,

namely, posterior mean, posterior median and Bayes Factor, where the prior imposed on wavelet

coefficients is a mixture of a mass function at zero and a Gaussian density. We show that in terms

of the mean squared error, for the properly chosen hyperparameters of the prior, all the three

resulting Bayesian wavelet estimators achieve optimal minimax rates within any prescribed Besov

space Bs
p;q for p ‡ 2. For 1 £ p < 2, the Bayes Factor is still optimal for (2s+2)/(2s+1) £ p < 2

and always outperforms the posterior mean and the posterior median that can achieve only the best

possible rates for linear estimators in this case.

Key words: Bayes Factor, Bayes model, Besov spaces, minimax estimation, non-linear
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1. Introduction

Consider the standard non-parametric regression model:

yi ¼ f
i
n

� �
þ �zi; zi �i:i:d:Nð0; 1Þ; i ¼ 1; . . . ; n; ð1Þ

where the unknown function f, which we want to recover, belongs to a certain class of

functions F[0, 1]. One of the basic techniques in non-parametric regression is the generalized

Fourier series approach. Instead of estimating f directly, we expand it into some orthogonal

series and then estimate the coefficients of its expansion from the data. The original non-

parametric problem is thus transformed to a parametric problem although with an infinite

number of parameters. The key point for the efficiency of such an approach is obviously a

proper choice of a basis. A ‘good’ basis should be sparse in the sense that a wide variety of

possible responses from F can be approximated well by only a few terms of the expansion.

As it is well known, wavelet series allow sparse representation for a large set of function

spaces, in particular, for Besov spaces that include among others the Hölder and Sobolev

classes of smooth functions, functions of bounded variations, etc. (e.g. Meyer, 1992). For the

last decade wavelet-based estimators have been intensively studied in the literature (see

Antoniadis, 1997; Vidakovic, 1999; Abramovich et al., 2000 for comprehensive reviews). In

particular, the well-known results of Donoho & Johnstone (1994, 1998) established the

asymptotic optimality (in the minimax sense) of wavelet estimators within the whole range

of Besov spaces.

Various Bayesian wavelet estimators have also been proposed in the literature (e.g.

Chipman et al., 1997; Abramovich et al., 1998; Clyde et al., 1998; Vidakovic, 1998), see

also Müller & Vidakovic (1999) for an overview. Following a Bayesian approach, a prior

distribution is imposed on wavelet coefficients of the function and a Bayesian estimator is

then obtained by applying a suitable Bayesian rule to the resulting posterior distribution of
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the coefficients. Different Bayesian estimators are now widely used and numerous simu-

lation studies showed their good mean squared error (MSE) performance in comparison

with other existing wavelet estimators (e.g. Abramovich et al., 1998; Abramovich &

Sapatinas, 1999; Antoniadis et al., 2001). However, their asymptotic optimality in the

minimax sense have not been studied. This paper is a step to fill this gap. A pure Bayesian

would probably generally oppose such a frequentist approach but yet Rubin (1984) argued

for the importance of frequentist analysis of Bayesian procedures, in particular, for un-

derstanding and validating their results. Despite all criticism, the minimaxity is the mostly

used criterion for comparison between various estimators. Diaconis & Freedman

(1986), Cox (1993), Freedman (1999), Zhao (2000) among others studied the asymptotical

properties of various Bayesian estimators within the minimaxity framework. In this paper,

we investigate the asymptotic optimality of several known Bayesian wavelet estimators

and derive their convergence rates within a range of Besov spaces. In particular, we find

the subsets of Besov spaces where they achieve the optimal minimax rates (up to a log-

factor).

The paper is organized as follows. In section 2, some necessary background is given: we start

from a short review of wavelets and some relevant aspects of Besov spaces, discuss the prior

model on wavelet coefficients and several Bayesian wavelet estimators corresponding to dif-

ferent losses. The main results on their convergence rates and asymptotic optimality are

established in section 3. In section 4, we provide a small simulation study to illustrate our

results. Some concluding remarks and discussion are made in section 5. All the proofs are

given in the appendix.

2. The model

2.1. Short review of wavelet series and Besov spaces

For simplicity of exposition we assume that f is periodic and work with periodic orthonormal

wavelet bases on [0,1] generated by a compactly supported scaling function u and a corres-

ponding mother wavelet w (e.g. Daubechies, 1992, section 9.3). Then, f can be expanded as

f ðtÞ ¼ w�10uðtÞ þ
X1
j¼0

X2j�1

k¼0

wjkwjkðtÞ;

where w�10 ¼
R 1
0 f ðtÞuðtÞdt and wjk ¼

R 1
0 f ðtÞwjkðtÞdt.

Let w be a mother wavelet of regularity r. Then, the corresponding wavelet series constitute

unconditional bases for Besov spaces Bsp;q½0; 1
, max(0,1/p)1/2) < s < r, p, q ‡ 1 (see Meyer,

1992, section 2.9 for rigorous definitions and details), and the Besov norm of f is equivalent to

the corresponding sequence space norm:

jjf jjBsp;q � jjwjjbsp;q ¼ jw�10j þ
X1
j¼0

2jðsþ1=2�1=pÞqjjwjjjqp

( )1=q

; 1  q < 1;

jjf jjBsp;1 � jjwjjbsp;1 ¼ jw�10j þ sup
j�0

2jðsþ1=2�1=pÞjjwjjjp
n o

(e.g. Meyer, 1992, section 6.10; Donoho & Johnstone, 1998). The Besov spaces include, in

particular, the well-known Sobolev (Bm2;2) and Hölder (Bs1;1) spaces of smooth functions, but

in addition less traditional spaces, like the space of functions of bounded variation,

sandwiched between B11;1 and B11;1.
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2.2. Prior model

Consider the following white noise model

dY ðtÞ ¼ f ðtÞdt þ rn dW ðtÞ; ð2Þ

where r2
n ¼ �2=n, f 2 Bsp;q½0; 1
 and W is a standard Wiener process. Brown & Low (1996)

showed the asymptotic equivalence between (2) and the original non-parametric regression

model (1) under mild conditions.

Let f 2 Bsp;q½0; 1
, s > max(0,1/p)1/2), p, q ‡ 1. Performing the wavelet transform on (2)

with a mother wavelet w of regularity r > s, one has

Yjk ¼ wjk þ rnzjk ; j � �1; k ¼ 0; . . . ; 2j � 1; ð3Þ

where Yjk ¼
R 1
0 wjk dY ðtÞ, w)10(t) ¼ u(t) and zjk are independent N(0, 1) random variables.

As we have already mentioned, a large variety of different functions allow sparse repre-

sentation in wavelet series. To capture this characteristic feature of wavelets, Abramovich

et al. (1998) suggested to place the following prior on the wavelet coefficients wjk of the

unknown f:

wjk � pjNð0; s2j Þ þ ð1� pjÞdð0Þ; j � 0; k ¼ 0; . . . ; 2j � 1; ð4Þ

where 0 £ pj £ 1, d(0) is a point mass at zero, and wjk are independent. To complete the model

a vague prior is placed on the scaling coefficient w)10.

According to the prior (4), every wjk is either zero with probability 1)pj or with probability

pj, is normally distributed with zero mean and variance s2j . The probability pj gives the

proportion of non-zero wavelet coefficients at resolution level j while the variance s2j is a

measure of their magnitudes. Note that the prior parameters pj and s2j are the same for all

coefficients at a given resolution level j.

The hyperparameters of the prior model (4) are assumed to be of the form:

s2j ¼ c12�aj and pj ¼ min ð1; c22�bjÞ; j � 0; ð5Þ

where a and b are non-negative constants, c1, c2 > 0. Some intuitive understanding of the

model implied by (4) and (5) can be found in Abramovich et al. (1998, section 4.2).

Similar priors but with different forms for the hyperparameters pj and s2j are considered in

Clyde et al. (1998). The prior model (4) is also an extreme case of that of Chipman et al. (1997)

which is the mixture of two normal distributions with zero means but different variances for

‘negligible’ and ‘non-negligible’ wavelet coefficients.

Abramovich et al. (1998) established a relationship between the hyperparameters of the

prior (4) and (5), and the parameters of Besov spaces within which realizations from the prior

will fall. Note first that the prior yields the expected number of non-zero wavelet coefficients

on the jth level to be c22
j(1)b). Then, applying the first Borel–Cantelli lemma, in the case

b > 1, the number of non-zero coefficients in the wavelet expansion is finite almost surely

and, hence, with probability 1, f will belong to the same Besov spaces as the mother wavelet w,
i.e. those for which max(0,1/p)1/2) < s < r, 1 £ p, q £ 1. More fruitful and interesting is,

therefore, the case 0 £ b £ 1. The case b ¼ 0 corresponds to the prior belief that all coefficients

on all levels have the same probability of being non-zero. This characterizes self-similar

processes such as white noise or Brownian motion, the overall regularity depending on the

value of a. The case b¼1 assumes that the expected number of non-zero wavelet coefficients is

the same on each level which is typical, for example, for piecewise polynomial functions (see

Abramovich et al., 1998).
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Suppose that f is generated from the prior model (4) and (5). Because of the improper nature

of the prior distribution of w)10, we consider the prior distribution of f conditioned on any

given value for w)10. The following theorem, proved in Abramovich et al. (1998), establishes

necessary and sufficient conditions for f to fall (with probability 1) in any particular Besov

space.

Theorem 1 (Abramovich et al., 1998)

Let w be a mother wavelet of regularity r. Consider constants s, p and q such that

max(0,1/p� 1/2) < s < r, 1 £ p, q £ 1. Let the wavelet coefficients wjk of a function f obey the

prior model (4) and (5), where c1, c2 > 0, a ‡ 0 and 0 £ b £ 1. Then f 2 Bsp;q almost surely if and

only if either:

sþ 1

2
� b
p
� a
2
< 0; ð6Þ

or

sþ 1

2
� b
p
� a
2
¼ 0 and 0  b < 1; 1  p < 1; q ¼ 1: ð7Þ

Theorem 1 holds for all values of the Besov space parameter q. This should not be sur-

prising due to the embedding properties of Besov spaces. To give some insight on the role

of q, Abramovich et al. (1998) considered a more delicate dependence of the variance s2j on
the level j by adding a third hyperparameter c : s2j ¼ c12�ajjc, and extended the results of

theorem 1 for this case (see their theorem 2). More general analogues of theorem 1 for

overcomplete wavelet dictionaries were obtained in Abramovich et al. (2000).

2.3. Bayesian wavelet estimators

Subject to the prior (4) and (5) and the model (3), the posterior distribution of wjk|Yjk is also a

mixture of a corresponding posterior normal distribution and d(0). Letting U be the standard

normal cumulative distribution function, the posterior cumulative distribution function

F(wjk|Yjk) is

F ðwjk j YjkÞ ¼
1

1þ gjk
U
wjk � Yjks2j=ðr2

n þ s2j Þ

rnsj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ s2j

q
0B@

1CAþ
gjk

1þ gjk
IðYjk � 0Þ; ð8Þ

where the posterior odds ratio for the component at zero is

gjk ¼
1� pj

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j þ r2

n

q
rn

exp �
s2j Yjk

2

2r2
nðs2j þ r2

nÞ

 !
: ð9Þ

To derive a Bayesian rule one should specify the loss function. Different losses lead to different

Bayesian estimators. The most popular Bayes rule usually considered in the literature cor-

responds to the L2-loss and yields the posterior mean (e.g. Chipman et al., 1997; Clyde et al.,

1998; Vidakovic, 1998). Using (8) and (9), we then have
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ŵjk ¼ Eðwjk j YjkÞ ¼
1

1þ gjk

s2j
s2j þ r2

n

Yjk : ð10Þ

Such a rule is a non-linear smoothing shrinkage. Abramovich et al. (1998) suggested the use of

the posterior median that corresponds to the L1-loss and can be obtained in the following

closed form

~wjk ¼ Medðwjk j YjkÞ ¼ signðYjkÞmaxð0; fjkÞ; ð11Þ

where

fjk ¼
s2j

r2
n þ s2j

jYjk j �
sjrnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ s2j

q U�1
1þminðgjk ; 1Þ

2

� �
: ð12Þ

The quantity fjk is negative for all Yjk in some implicitly defined interval ½�kPMj ; kPMj 
, and
hence Med(wjk|Yjk) is zero whenever |Yjk| falls below the threshold kPMj . The posterior median

is therefore a level-dependent ‘kill’ or ‘shrink’ thresholding rule with thresholds kPMj known

also in the literature as the BayesThresh (Abramovich et al., 1998). Donoho & Johnstone

(1994, 1998) showed that thresholding wavelet coefficients with proper chosen thresholds

yields asymptotically optimal (minimax) estimators within Besov spaces and most of the

existing wavelet estimators are of this type. In this paper, we investigate the optimality of the

thresholds kPMj .

Vidakovic (1998) considered another way to obtain a bona fide thresholding rule within a

Bayesian framework via a hypothesis testing approach. This rule essentially corresponds to the

0/1-loss: after observing Yjk, test the hypothesis H0 : wjk ¼ 0 against a two-sided alternative

H1 : wjk „ 0. If the hypothesis H0 is rejected, wjk is estimated by Yjk, otherwise wjk ¼ 0:

�wjk ¼ YjkIðgjk < 1Þ; ð13Þ

where the posterior odds ratio gjk ¼ P(H0 ŒYjk)/P(H1 ŒYjk) is given by (9). Vidakovic (1998)

called this thresholding rule Bayes Factor thresholding as the posterior odds ratio is obtained

by multiplying the Bayes Factor with the prior odds ratio. From (9), the Bayes Factor rule (13)

mimics the level-dependent hard thresholding rule:

�wjk ¼ YjkIðjYjk j � kBFj Þ;

where

ðkBFj Þ2 ¼
2r2
nðr2

n þ s2j Þ
s2j

log
1� pj

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ s2j

q
rn

0@ 1A: ð14Þ

To compare the BayesThresh and the Bayes Factor thresholding rules, note that the Bayes

Factor is always a ‘keep’ or ‘kill’ hard thresholding, while the posterior median is a ‘shrink’ or

‘kill’ thresholding, where extent of shrinkage depends on the absolute values of the wavelet

coefficients. In addition, the Bayes Factor thresholds Yjk if the corresponding gjk > 1. From

(9), (11) and (12) it follows that the posterior median ‘kills’ those Yjk, whose

gjk > 1� 2U � sjjYjk j
rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ s2j

q
0B@

1CA
and, hence, will threshold more coefficients.
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Nevertheless, the lemma below shows that kPMj and kBFj are ‘similar’ (we denote it by

kPMj � kBFj ) in the sense that there exist two positive constants 0 < C1 £ C2 such that

C1k
PM
j  kBFj  C2k

PM
j for all j. Moreover, it gives the approximations for both threshold

sequences.

Lemma 1

kPMj � kBFj � k�j , where

k�j ¼

ffiffiffiffiffiffiffi
log n
n

q
; j  Jaffiffiffiffiffiffi

j2aj

n

q
; j > Ja,

8<:
and Ja ¼ (1/a) log2 n.
The proof is given in the appendix A1.

Lemma 1 shows that on coarse resolution levels (j £ Ja) both kPMj and kBFj are of the same

order as the well-known universal threshold kUN ¼ rn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
of Donoho & Johnstone

(1994), but larger on high levels (j > Ja). The universal threshold is known to be optimal

within the whole range of Besov spaces, so one would expect that the ‘severe’ thresholds k�j will
‘kill’ the significant coefficients present on high levels for spatially inhomogeneous functions.

Moreover, the posterior median, in addition, will shrink the ‘survivors’. Thus, for such

functions the considered Bayesian estimators might not be optimal. The results of the fol-

lowing section will give a rigorous theoretical ground to these preliminary considerations.

3. Main results

In this section we investigate the asymptotic minimax properties of the posterior mean, pos-

terior median and Bayes Factor estimators ŵ, ~w and �w defined in section 3. The proofs of all

the results are given in the appendix A2.

Consider again the white noise model (2), where f 2 Bsp;q, s > max(0,1/p ) 1/2), p, q ‡ 1.

Among all possible estimators fest of f define the minimax mean squared error as

Rðn;Bsp;qÞ ¼ inf
f est

sup
f2Bsp;q

Ejjf est � f jj2L2 ½0;1
:

In addition, let RLðn;Bsp;qÞ be the minimax MSE within the class of linear estimators. Donoho

& Johnstone (1998) showed that for large n,

Rðn;Bsp;qÞ � n�2s=ð2sþ1Þ ð15Þ
RLðn;Bsp;qÞ � n�ð2s�2=pþ2=p�Þ=ð2sþ1�2=pþ2=p�Þ; ð16Þ

where p) ¼ max(p, 2). Hence, for 1 £ p < 2 that characterizes spatially inhomogeneous

functions, linear estimators cannot achieve the optimal rate.

Let w be a mother wavelet of regularity r > s. Then, the set of the corresponding wavelet

coefficients w of f belongs to a Besov ball of some radius R, bsp;qðRÞ ¼ fw : jjwjjbsp;q  Rg (see

section 2.1) and due to the orthonormality of a wavelet basis,

Rðn;Bsp;qÞ ¼ inf
west

sup
w2bsp;qðRÞ

Ejjwest � wjj2l2 ;

where west are the wavelet coefficients of fest.

We derive now the upper bounds for MSE of ŵ, ~w and �w and compare them with the

optimal (in the minimax sense) ones in (15) and (16).
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Theorem 2 (upper bounds)

Let a mother wavelet w have regularity r, max(0, 1/p�1/2) < s < r, p, q ‡ 1 and a > 1.

1. For p ‡ 2, let w* be any of the ŵ, ~w or �w. Then,

sup
w2bsp;qðRÞ

Ejjw� w�jj2l2 ¼ O log n n�ða�1Þ=a
� �

þO n�2s=a
� �

:

2. For 1 £ p < 2, let w* be either ŵ or ~w. Then,

sup
w2bsp;qðRÞ

Ejjw� w�jj2l2 ¼ O log n n�ða�1Þ=a
� �

þO n�ð2sþ1�2=pÞ=a
� �

;

while for the Bayes Factor estimator �w we have

sup
w2bsp;qðRÞ

Ejjw� �wjj2l2 ¼ O log n n�ða�1Þ=a
� �

þO ðlog nÞð2�pÞ=pn�ða�ap=2þspþp=2�1Þ=a
� �

þO ðlog nÞð2�pÞ=p nffiffiffiffiffiffiffiffiffiffi
log n

p
� ��ð2sþ1�2=pÞ=ða=2þ1=2þs�1=pÞ

 !
:

The optimal choice of the hyperparameters a and b of the prior should minimize the upper

bounds derived in theorem 2. However, to avoid the paradox, it should also guarantee that the

prior (4) and (5) is supported on the assumed Besov space (see theorem 1).

We start from the posterior mean and the posterior median estimators whose asymptotic

properties turn out to be similar. The corollary below is an immediate consequence of theo-

rems 1 and 2.

Corollary 1

Let w* be one of ŵ or ~w. Choose

1. a ¼ (2s + 1), any 0 < b £ 1 (q < 1) or 0 £ b < 1 (q ¼ 1), p ‡ 2.

2. a ¼ (2s + 2 ) 2/p), any 1 ) p/2 < b £ 1 (q < 1) or 1 ) p/2 £ b < 1 (q ¼ 1),

1 £ p < 2

Such a choice satisfies the conditions (6) and (7) of theorem 1 and

sup
w2bsp;qðRÞ

Ejjw� w�jj2l2 ¼
O log n n�2s=ð2sþ1Þ� �

; p � 2

O log n n�ð2sþ1�2=pÞ=ð2sþ2�2=pÞ� �
; 1  p < 2:

�

Corollary 1 shows that with the properly chosen hyperparameters of the prior, both the

posterior mean and the posterior median estimators are asymptotically optimal up to a log-

factor for p ‡ 2. The following theorem shows that the log-factor for p ‡ 2 is unavoidable and

that the upper bound for 1 £ p < 2 also essentially cannot be improved, that is they can

achieve only the best possible rate among linear estimators.

Theorem 3

Let again w* be either ŵ or ~w. Then the choice of a and b from Corollary 1 implies that there

exists a positive constant C such that
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sup
w2bsp;qðRÞ

Ejjw� w�jj2l2 �
C log n

n

� �2s=ð2sþ1Þ
; p� 2

Cn�ð2sþ1�2=pÞ=ð2sþ2�2=pÞ; 1  p < 2.

8<: :

Summarizing, we can conclude that asymptotic minimax properties of the non-linear posterior

mean and posterior median estimators are similar to those of optimal linear estimators.

The corresponding results for the Bayes Factor estimator are somewhat different for

1 £ p < 2 as it is shown in the following corollary:

Corollary 2

Choose

1. a ¼ (2s + 1), any 0 < b £ 1 (q < 1) or 0 £ b < 1 (q ¼ 1), p ‡ (2s+2)/(2s+1).

2. a ¼ a� ¼ s þ 1 � 1=p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 1� 1=pÞ2 þ ð2sþ 1� 2=pÞ

q
,

any p(s+1/2 ) a*/2) < b £ 1 (q < 1) or p(s+1/2 ) a*/2) < b < 1 (q ¼ 1), 1 £ p <

(2s+2)/(2s+1).

Such a choice satisfies the conditions (6) and (7) of theorem 1 and

sup
w2bsp;qðRÞ

Ejjw� �wjj2l2 ¼
O log n n�2s=ð2sþ1Þ� �

; p � ð2sþ 1Þ=ð2sþ 2Þ
O log n n�ða��1Þ=a�� �

; 1  p < ð2sþ 1Þ=ð2sþ 2Þ.

�
Hence, with such a choice of a and b, the Bayes Factor estimator achieves the optimal

minimax rate (15) (up to a log-factor) for p ‡ (2s+1)/(2s+2). In addition, one can easily verify

that a* ‡ 2s+2)2/p and, thus, even for p < (2s+1)/(2s+2), �w outperforms the posterior

mean, the posterior median and linear estimators.

Again, it is possible to prove that the upper bound in corollary 2 cannot be improved.

Theorem 4

With the choice of a and b given in corollary 2 the following lower bound holds

sup
w2bsp;qðRÞ

Ejjw� �wjj2l2 �
C log n

n

� �2s=ð2sþ1Þ
; p � ð2sþ 2Þ=ð2sþ 1Þ

Cn�ða��1Þ=a� ; 1  p < ð2sþ 2Þ=ð2sþ 1Þ,

8<:
where a* is defined in corollary 2.

4. Simulation study

In this section, we provide a small simulation study to illustrate both the finite sample and

asymptotic properties of the considered Bayesian procedures and compare them with the

universal thresholding wavelet estimator of Donoho & Johnstone (1994). We refer to

Antoniadis et al. (2001) for a comprehensive simulation analysis of various wavelet esti-

mators.

We chose two functions from a battery of test functions used in Antoniadis et al. (2001),

namely, ‘Time Shifted Sine’ and ‘Angles’ (see Fig. 1). ‘Time Shifted Sine’ is a typical example

of a smooth function considered in traditional smoothing estimation. ‘Angles’ is a piecewise

linear continuous function with large jumps in its first derivative and can be viewed as an

example of a spatially inhomogeneous function.

For each test function, noisy data were generated for 500 replications by adding inde-

pendent random noise ni � N(0, �2) at 1024 data points uniformly spaced on the unit interval.
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The values of � were taken to correspond to values 16, 144(4) for the signal-to-noise ratio

(SNR),
R 1
0 ðf � �f Þ2=�2, where �f ¼

R 1
0 f . Coiflet 5 and Coiflet 3 mother wavelets were used for

‘Time Shifted Sine’ and ‘Angles’, respectively.

The goodness-of-fit of each estimator was measured by its average mean squared error

(AMSE) defined as the average of simulated replications of n�1
Pn
i¼1ðf̂i � fiÞ

2. We were also

interested in the rate of decay of the AMSE as SNR increases. The rate was estimated by a

slope of the least squares linear regression on the log10(AMSE) ) log10(SNR) scale.

In the initial pilot study we investigated the effect of varying a and b for the posterior mean,

posterior median and Bayes Factor estimators. The additional constants c1 and c2 in the prior

model (5) were numerically estimated by the methods of Abramovich et al. (1998). The results

were robust towards choices of b, and even different values of a ¼ 2, 3, 4, 5 did not have a

drastic impact. For ‘Time Shifted Sine’ the rates of decay were somewhat faster for larger a,
while smaller a were preferable for ‘Angles’. We chose a ¼ 4, b ¼ 0.5 for ‘Time Shifted Sine’

and a ¼ 2, b ¼ 0.5 for ‘Angles’ for further study where we compared the three Bayesian

estimators with the universal threshold wavelet estimator. All the four estimators yield
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Fig. 2. log10(AMSE) vs. log10(SNR) for different wavelet estimators. Dotted lines represent the least

squares linear regression fits. Their slopes estimate the convergence rate.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Time shifted sine

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Angles

Fig. 1. Test functions used in the simulation study.
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comparable results (see Fig. 2) and the differences in AMSE disappear as SNR increases.

Posterior means have somewhat smaller AMSEs, while posterior medians, Bayesian factors and

universal threshold estimators are close to it. The rates of decays of AMSEs are also similar –

they are faster for smooth ‘Time Shifted Sine’ (the estimated slopes are within the range )0.88 to
)0.95) and slower for ‘Angles’ (the estimated slopes vary between )0.75 to )0.80). Overall, the

simulation results are in accord with the theoretical findings of the previous section.

5. Discussion and concluding remarks

We have investigated the minimax properties of the three Bayesian wavelet estimators: pos-

terior mean, posterior median and Bayes Factor within a range of Besov spaces, where the prior

distribution imposed on wavelet coefficients can be adjusted to give realizations within any

given Besov space Bsp;q. All the three estimators are inherently non-linear: the posterior mean is a

non-linear smoothing shrinkage, the posterior median is a ‘shrink’ or ‘kill’ thresholding, while

the Bayes Factor mimics a ‘keep’ or ‘kill’ hard thresholding rule. We showed that for the

properly chosen hyperparameters of the prior, up to a log-factor, all of them achieve the optimal

convergence rate within any prescribed Besov space Bsp;q for p ‡ 2. For 1 £ p < 2, the situation

is, however, different. The posterior mean and posterior median do not outperform linear

estimators and do not achieve the optimal rate in this case. The Bayes Factor is optimal for a

wider range of Besov spaces (p ‡ (2s + 2)/(2s + 1)) while for 1 £ p < (2s + 2)/(2s + 1) it is

also not optimal although it converges faster than linear estimators.

To understand this phenomenon note that level-dependent thresholds resulted by the pos-

teriormedian and the Bayes Factor thresholding are too large on high resolution levels. This fact

does not affect spatially homogeneous functions (p ‡ 2) whose wavelet coefficients are con-

centrated on coarse levels anyway but becomes important for spatially inhomogeneous func-

tions (1 £ p < 2) that are characterized by the presence of significant wavelet coefficients even

for large j. The corresponding thresholds are ‘too severe’ towards them. The posteriormedian, in

addition, even shrinks the ‘survivors’ that explains why the Bayes Factor performs better in this

case. The behaviour of the posterior mean is quite similar to that of the posterior median. The

posterior mean is a non-linear shrinkage rule, where the extent of shrinkage increases with j – it

yields optimal shrinking on coarse levels but too strong on high. Recent results of Johnstone &

Silverman (2002, 2003), Pensky (2003) show that to get the optimal posteriormean and posterior

median Bayesian estimators even for 1 £ p < 2 one should replace a Gaussian part Nð0; s2j Þ of
the mixture in (4) by heavier-tailed priors, e.g. by a double-scaled exponential density.

It is interesting to compare our results with those of Zhao (2000). Zhao studied the opti-

mality of Bayesian estimation in non-parametric regression within Sobolev spaces (p ¼ q ¼ 2

in terms of parameters of Besov spaces) using the standard Fourier basis. She showed that for

no Gaussian prior supported on the space of possible distributions, the resulting posterior

mean estimator (that obviously coincides with the posterior median in this case) can achieve

the optimal minimax rate. Instead, she proposed priors which are compound, or hierarchical

mixtures of suitable Gaussian distributions and proved the optimality of the posterior mean

estimator within Sobolev classes in this case. Our prior, which is a mixture of a single Gaussian

distribution and a point mass at zero, is somewhat simpler than that of Zhao and still yields

optimal estimators even within a wider range of function spaces.
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Appendix

Appendix A1: Proof of lemma 1

For kBFj the proof follows directly from (14). For kPMj define the function

gðkjÞ ¼
1� pj

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j þ r2

n

q
rn

exp �
s2jk

2
j

2r2
nðs2j þ r2

nÞ

 !
þ 2U � sjkj

rn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j þ r2

n

q
0B@

1CA
The posterior median threshold kPMj then satisfies gðkPMj Þ ¼ 1. Note that U()x) £ c/(x),
x ‡ 0, where /(Æ) is a standard normal density and c is some suitable positive constant (e.g.

c ¼ 2).

gðkjÞ  g1ðkjÞ ¼ exp �
s2jk

2
j

2r2
nðs2j þ r2

nÞ

 !
1� pj

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j þ r2

n

q
rn

þ c

0@ 1A
Let k1j be the solution of g1(kj) ¼ 1. Both g(kj) and g1(kj) are decreasing functions of kj and,
therefore, kPMj  k1j. Solving the equation g1(kj) ¼ 1 one has

k21j ¼
2r2
nðr2

n þ s2j Þ
s2j

log
1� pj

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ s2j

q
rn

þ c

0@ 1A;

so

kPMj  k1j �

ffiffiffiffiffiffiffiffiffiffi
log n
n

r
; j  Jaffiffiffiffiffiffiffiffi

j2aj
p
n ; j > Ja

8><>:
To complete the proof recall that on the other hand, kPMj � kBFj and lemma 1 has been already

verified for the latter.

Appendix A2: Proofs of the main results

Although theorems 2 and 3 are stated jointly for several estimators, the corresponding proofs

are different for each estimator and will be considered separately.

First, without loss of generality assume that � ¼ 1 in the model (1) or, equivalently,

r2
n ¼ 1=n in the model (2). Define bj ¼ s2j=ðs2j þ r2

nÞ, where s2j is given in (5). Obviously,

c1/(c1+1) £ bj £ 1 for j £ Ja, and c1/(c1+1) 2)ajn £ bj £ c1 2)ajn for j > Ja, where Ja ¼
(1/a) log2 n was defined in lemma 1. Then,

bj �
1; j  Ja
2�ajn; j > Ja

�
ð17Þ

We start the proofs from several lemmas. In what follows we use C to denote a generic positive

constant, not necessarily the same each time it is used, even within a single equation.

Lemma 2

Let a>1. Then,
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r2
n

X1
j¼0

2jb2j ¼ O n�ða�1Þ=a
� �

:

Proof of lemma 2.

From (17) we have

r2
n

X1
j¼0

2jb2j  r2
n

XJa
j¼0

2j þ
X1
j¼Jaþ1

n22�jð2a�1Þ

 !
¼ O n�ða�1Þ=a

� �
:

Lemma 3

For any function f 2 Bsp;q½0; 1
X1
j¼0

1� bj
� �2X2j�1

k¼0

w2
jk ¼

O n�2s=a
� �

; p � 2

O n�ð2sþ1�1=pÞ=a� �
; 1  p < 2

�

Proof of lemma 3

X1
j¼0

1� bj
� �2X2j�1

k¼0

w2
jk ¼

X1
j¼0

1

2�ajnþ 1

� �2X2j�1

k¼0

w2
jk

Let s¢ ¼ s for p ‡ 2 and s¢ ¼ s+1/2 ) 1/p otherwise. Then, for sequences from Besov balls

X2j�1

k¼0

w2
jk  C2�2js0 ð18Þ

(e.g. Johnstone, 1999, lemma 9.3). Applying (18) for p ‡ 2 we have

X1
j¼0

1

2�ajnþ 1

� �2X2j�1

k¼0

w2
jk  C

X1
j¼0

1

2�ajnþ 1

� �2

2�j2s

 C 1

n2
XJa
j¼0

22ða�sÞj þ
X1
j¼Jaþ1

2�2sj

 !
¼ Oðn�2s=aÞ;

while for 1 £ p < 2,

X1
j¼0

1

2�ajnþ 1

� �2X2j�1

k¼0

w2
jk  C 1

n2
XJa
j¼0

2�ð2sþ1�2=p�2aÞj þ
X1
j¼Jaþ1

2�ð2sþ1�2=pÞj

 !

¼ Oðn�ð2sþ1�2=pÞ=aÞ:

Lemma 4

Let a > 1. Then, for any function f 2 Bsp;q½0; 1


X1
j¼0

b2j
X2j�1

k¼0

wjkE
gjkYjk
1þ gjk

 !
¼

O log n n�ða�1Þ=a� �
þO n�2s=a

� �
; p � 2

O log n n�ða�1Þ=a� �
þO n�ð2sþ1�1=pÞ=a� �

; 1  p < 2 .

(
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Proof of lemma 4. As gjk/(1+gjk) £ min(gjk,1), we have

X1
j¼0

b2j
X2j�1

k¼0

wjkE
gjkYjk
1þ gjk

 !
 C

XJa
j¼0

X2j�1

k¼0

min wjkEðgjkYjkÞ;w2
jk

� � 

þ
X1
j¼Jaþ1

ð1� bjÞ2
X2j�1

k¼0

w2
jk

!
:¼ A1 þ A2 ð19Þ

Consider the first term A1 in (19). The straightforward calculus implies

EðgjkYjkÞ ¼
1� pj

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n þ s2j

q
rn

r2
n þ s2j

r2
n þ 2s2j

 !3=2

exp �
w2
jks

2
j

2r2
nðr2

n þ 2s2j Þ

 !
wjk

and solving the equation wjkEðgjkYjkÞ ¼ w2
jk for j £ Ja one has w2

jk � log n=n. Thus,

A1  C
XJa
j¼0

2j
log n
n

¼ O log n n�ða�1Þ=a
� �

The upper bound for A2 in (19) immediately follows from lemma 3.

Proof of theorem 2

1. Posterior mean. From (10) we have

ŵjk ¼ bj
Yjk

1þ gjk
; j � 0; k ¼ 0; . . . ; 2j � 1;

where the posterior odds ratio gjk is given by (9). Then, for any sequence of wavelet coefficients

w ¼ ðwjkÞ 2 bsp;qðRÞ,

X1
j¼0

X2j�1

k¼0

E ŵjk � wjk
� �2¼X1

j¼0

X2j�1

k¼0

E bjð
Yjk

1þ gjk
� wjkÞ � ð1� bjÞwjk

 !2

 2
X1
j¼0

b2j
X2j�1

k¼0

E
Yjk

1þ gjk
� wjk

 !2

þ
X1
j¼0

ð1� bjÞ2
X2j�1

k¼0

w2
jk

8<:
9=; :¼ 2ðA1 þ A2Þ:

Consider the first term A1:

A1 ¼
X1
j¼0

b2j
X2j�1

k¼0

E
Yjk

1þ gjk

 !2

þ w2
jk � 2wjkE

Yjk
1þ gjk

 !8<:
9=;

¼
X1
j¼0

b2j
X2j�1

k¼0

E
Yjk

1þ gjk

 !2

� w2
jk þ 2wjkE

gjkYjk
1þ gjk

 !8<:
9=;


X1
j¼0

b2j
X2j�1

k¼0

ðEY 2
jk � w2

jkÞ þ 2wjkE
gjkYjk
1þ gjk

 !( )

¼ r2
n

X1
j¼0

b2j2
j þ 2

X1
j¼0

b2j
X2j�1

k¼0

wjkE
gjkYjk
1þ gjk

 !
:¼ B1 þ B2:

To complete the proof apply lemma 2, lemma 4 and lemma 3 to get the upper bounds for B1,

B2 and A2, respectively.
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2. Posterior median. Define w0
jk ¼ bjYjkIðjYjk j � kPMj Þ and w¢¢jk ¼ bjwjk. Then,

X1
j¼0

X2j�1

k¼0

E ~wjk � wjk
� �2 ¼X1

j¼0

X2j�1

k¼0

E ð~wjk � w0
jkÞ þ ðw0

jk � w00
jkÞ þ ðw00

jk � wjkÞ
� �2

 3
X1
j¼0

X2j�1

k¼0

ðw00
jk � wjkÞ

2 þ Eð~wjk � w0
jkÞ

2 þ Eðw0
jk � w00

jkÞ
2

h i
:¼ 3 A1 þ A2 þ A3ð Þ;

The upper bound for A1 follows immediately from lemma 3. Consider now the second term

A2. Note that ~wjk ¼ w0
jk ¼ 0 for jYjk j < kPMj and ~wjk ! w0

jk monotonically as |Yjk| fi 1.

Hence, the difference between the two thresholding rules is maximal at jYjk j ¼ kPMj and,

therefore, maxYjkj~wjk � w0
jk j ¼ bjk

PM
j . Then,

A2 
X1
j¼0

X2j�1

k¼0

ðkPMj Þ2b2j  C
XJa
j¼0

2j
log n
n

þ
X
j>Ja

j2j2�aj

 !
¼ O n�ða�1Þ=a log n

� �
;

Finally, for the last term A3, lemma 1 of Donoho & Johnstone (1994) for hard thresholding yields

Eðwjk � YjkIðjYjk j � kPMj ÞÞ2  C
ðkPMj Þ2 þ r2

n; w2
jk > ðkPMj Þ2

w2
jk þ rnk

PM
j / kPMj =rn

� �
; w2

jk  ðkPMj Þ2.

8<: ð20Þ

Moreover, as x/(x) £ c/x2 for some constant c and rn ¼ oðkPMj Þ for all j,

A3  C
X1
j¼0

b2j min 2jðkPMj Þ2;
X2j�1

k¼0

w2
jk

 !
þ
X1
j¼0

b2j2
j r4

n

ðkPMj Þ2

 !
:¼ B1 þ B2: ð21Þ

Then, from lemma 1, (17) and (18),

B1  C
XJa
j¼0

2jðkPMj Þ2 þ
X
j>Ja

b2j
X2j�1

k¼0

w2
jk  C

XJa
j¼0

2j
log n
n

þ
X
j>Ja

n22�2jðaþs0Þ

¼ O log n n�ða�1Þ=a
� �

þO n�2s0=a
� �

while

B2  C
XJa
j¼0

2j
1

n log n
þ
X
j>Ja

n22�jð3a�1Þj�1

 !
¼ O ðlog nÞ�1n�ða�1Þ=a

� �
:

3. Bayes Factor. Due to the embedding properties of Besov spaces (Bsp;q � Bsp;1) it is sufficient

to prove the result for q¼1. Similar to (21), from (20) we have:

X1
j¼0

X2j�1

k¼0

Eðwjk � �wjkÞ2  C
X1
j¼0

X2j�1

k¼0

min ðkBFj Þ2;w2
jk

� �
þ
X1
j¼0

2j
r4
n

ðkBFj Þ2

 !
:¼ A1 þ A2:

Then, from lemma 1

A1  C
XJa
j¼0

2j
log n
n

þ
X
j>Ja

X2j�1

k¼0

min j
2aj

n2
;w2
jk

� � !
:¼ B1 þ B2;

where B1 ¼ O(log n n)(a)1)/a). For p ‡ 2, apply (18) to get B2 
P
j>Ja

P2j�1
k¼0 w

2
jk ¼

O n�2s=a
� �

:
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More delicate analysis is required to find an upper bound for B2 within bsp;qðRÞ for 1 £ p < 2.

Consider the upper bound for
P2j�1
k¼0 min ðkBFj Þ2;w2

jk

� �
subject to

P2j�1
k¼0 jwjk jp  Cpj , where

Cj ¼ 2)j(s+1/2)1/p). For 1 £ p < 2 the extreme vectors are permutations of the ‘spike’ (Cj, 0, . . . , 0)

if kBFj � Cj and permutations of the vector ðkBFj ; . . . ; kBFj ; 0; . . . ; 0Þ, where the number of

nonzero entries kBFj is ðCj=kBFj Þp, otherwise. The corresponding upper bounds are then C2
j and

Cpj ðkBFj Þ2�p respectively. Let J* satisfy kBFj ¼ Cj, where recall that kBFj �
ffiffiffiffiffiffiffiffi
j2aj

p
=n for j ‡ Ja.

Then J � ¼ ða=2þ sþ 1=2� 1=pÞ�1 log2ðn=
ffiffiffiffiffiffiffiffiffiffi
log n

p
Þð1 þ oð1ÞÞ. Note that for a satisfying

theorem 1, J* ‡ Ja. Apply now the above upper bounds to get the upper bound for B2:

B2 
XJ�
j¼Jaþ1

2jað2�pÞ=2n�ð2�pÞjð2�pÞ=22�jpðsþ1=2�1=pÞ þ
X
j>J�

2�jð2sþ1�2=pÞ

¼ O ðlog nÞð2�pÞ=pn�ða�ap=2þspþp=2�1Þ=a
� �

þO ðlog nÞð2�pÞ=p nffiffiffiffiffiffiffiffiffiffi
log n

p
� ��ð2sþ1�2=pÞ=ða=2þ1=2þs�1=pÞ

 !
:

Finally, for any p

A2  C
XJa
j¼0

2j
1

n log n
þ
X
j>Ja

2�jða�1Þj�1

 !
¼ O ðlog nÞ�1n�ða�1Þ=a

� �
:

Proof of theorem 3

1. Posterior mean. Note that wjk � E Yjk
1þgjk

� �
wjk � 0 and, therefore, one obtains the following

lower bound for the risk:

X1
j¼0

X2j�1

k¼0

E wjk � ŵjk
� �2 ¼X1

j¼0

X2j�1

k¼0

E wjk � bj
Yjk

1þ gjk

 !2

�
X1
j¼0

X2j�1

k¼0

wjk � bjE
Yjk

1þ gjk

 ! !2

¼
X1
j¼0

X2j�1

k¼0

bj wjk � E
Yjk

1þ gjk

 !
þ wjkð1� bjÞ

 !2

�
X1
j¼0

X2j�1

k¼0

b2j E
gjkYjk
1þ gjk

 !2

þð1� bjÞ2w2
jk

24 35 ð22Þ

Consider first the case p ‡ 2. From (22),

X1
j¼0

X2j�1

k¼0

E wjk � ŵjk
� �2 �X1

j¼0

X2j�1

k¼0

b2j E
gjkYjk
1þ gjk

 !2

� 1

4

X1
j¼0

X2j�1

k¼0

b2j min EðgjkYjkÞ;wjk
� �2

; ð23Þ

where we have used the fact that
gjk

gjk þ 1
� minðgjk=2; 1=2Þ.

Define J¢s¼(2s+1))1 log2(n/ log n) and consider the following wavelet sequence

wjk ¼ c
ffiffiffiffiffiffiffiffiffiffi
log n
n

q
; 0  j  J 0s; 0  k < 2j;

0; j > J 0s; 0  k < 2j.

(
ð24Þ

Using the definition of jjwjjbsp;q given in section 2.1 one can easily verify that it is always

possible to choose the normalized constant c such that jjwjjbsp;q  R.
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Recall that a ¼ 2s+1, so J¢s<Ja, where Ja was defined in lemma 1 and, therefore,

b2j � c21=ðc1 þ 1Þ2 for j £ J¢s. In the proof of lemma 4 we argue that for wjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
,

E(gjkYjk) � wjk, j £ Ja. Then, (23) implies

X1
j¼0

X2j�1

k¼0

E wjk � ŵjk
� �2 � C

XJ 0s
j¼0

b2j 2
j log n
n

� C log n
n

� �2s=ð2sþ1Þ

Analogously, for 1 £ p < 2, from (22) one also has

X1
j¼0

X2j�1

k¼0

E wjk � ŵjk
� �2 �X1

j¼0

X2j�1

k¼0

ð1� bjÞ2w2
jk : ð25Þ

Consider the sequence of wavelet coefficients with wjk ¼ c n)(s+1/2)1/p)/adk0, j £ Ja and zero

otherwise, where dk0 is a Kronecker delta. Then, obviously, jjwjjbsp;q < 1. On the other hand,

for a ¼ 2s + 2 ) 2/p from (25) one has

XJa
j¼0

X2j�1

k¼0

E wjk � ŵjk
� �2 � CXJa

j¼1

1

2�ajnþ 1

� �2

n�ð2sþ1�2=pÞ=ð2sþ2�2=pÞ

� C n�ð2sþ1�2=pÞ=ð2sþ2�2=pÞ:

2. Posterior median. Consider the case p ‡ 2. One can easily verify that

ðw00
jk � wjkÞEð~wjk � w0

jkÞ � 0; ðw00
jk � wjkÞEðw00

jk � w0
jkÞ � 0;

E ðw00
jk � w0

jkÞð~wjk � w0
jkÞ

� �
� 0

Thus,

X1
j¼0

X2j�1

k¼0

E ewjk � wjk� �2 ¼X1
j¼0

X2j�1

k¼0

E ð~wjk � w0
jkÞ þ ðw0

jk � w00
jkÞ þ ðw00

jk � wjkÞ
� �2

�
X1
j¼0

X2j�1

k¼0

Eðw0
jk � w00

jkÞ
2 ¼

X1
j¼0

b2j
X2j�1

k¼0

E YjkIðjYjk j � kPMj Þ � wjk
� �2

Consider again the sequence w 2 bsp;qðRÞ from (24). Note that wjk � kPMj ;

j  J 0s ¼ ð2sþ 1Þ�1 log2ðn= log nÞ, so from (6.11) of Johnstone (1999), E YjkIðjYjk j �
�

kPMj Þ � wjkÞ2 � CðkPMj Þ2. Then, the straightforward calculus yields

X1
j¼0

b2j
X2j�1

k¼0

E YjkIðjYjk j � kPMj Þ � wjk
� �2

� C
XJ 0s
j¼0

2j
log n
n

� �
¼ C log n

n

� �2s=ð2sþ1Þ

Analogously, for 1 £ p < 2,

X1
j¼0

X2j�1

k¼0

E ~wjk � wjk
� �2 � X1

j¼0

X2j�1

k¼0

ðw00
jk � wjkÞ

2 ¼
X1
j¼0

X2j�1

k¼0

ð1� bjÞ2w2
jk

and the rest of the proof is exactly as for the posterior mean case above.
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Proof of corollary 2

For p ‡ 2 the proof follows immediately from theorems 1 and 2. For 1 £ p < 2, the optimal a
is obtained as the minimum between the solutions of (2a ) ap+2sp+p)2)/(2a) ¼ 1 ) 1/a and

(2s+1 ) 2/p)/(1/2+a/2+s ) 1/p) ¼ 1 ) 1/a, i.e. between 2s+1 and a* defined in the corol-

lary depending on whether p ‡ (2s+2)/(2s+1) or not. The restrictions on b in the corollary,

as usual, are the result of (6) and (7) in theorem 1.

Proof of theorem 4

For p ‡ (2s+2)/(2s+1) we apply the arguments similar to those used in the proof of theorem

3. Consider again the sequence w 2 bsp;qðRÞ defined in (24). For j £ Js¢, wjk � kBFj , so

EðYjkIðjYjk j � kBFj Þ � wjkÞ2 � CðkBFj Þ2 [(6.11) of Johnstone, 1999]. Then,

X1
j¼0

X2j�1

k¼0

E wjk � �wjk
� �2� CXJ 0s

j¼0

2j
log n
n

� �
� C log n

n

� �2s=ð2sþ1Þ

For 1 £ p<(2s+2)/(2s+1), define ~J ¼ ða�=2þ sþ 1=2� 1=pÞ�1 log2 n and consider the

sequence with the only non-zero entry w~J0 ¼ R n�ðsþ1=2�1=pÞ=ða�=2þsþ1=2�1=pÞ. Obviously,

jjwjjbsp;q ¼ R. Recall that ~J > J� � Ja� , where J* was defined in the proof of theorem 2 for the

Bayes Factor. Hence, w2
~J0

 ðkBF~J Þ2 and from (6.11) of Johnstone (1999) we have

EðY~JkIðjY~Jk j � kBFj Þ � w~JkÞ
2 � Cw2

~J0
. Then,

X1
j¼0

X2j�1

k¼0

E wjk � �wjk
� �2 � Cw2

~J0 � Cn�ð2sþ1�2=pÞ=ða�=2þ1=2þs�1=pÞ ¼ Cn�ða��1Þ=a�
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