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Abstract: We establish the asymptotical equivalence between L-spline smoothing and kernel estimation. The equivalent kernel is 

used to derive the asymptotic mean squared error of the L-smoothing spline estimator. The paper extends the corresponding 

results for polynomial spline smoothing. 
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1. Introduction 

Consider the model 

yi=g(ti) +.Si, i= l)...) n, 

where 0 gt, G ... gt, G 1, E ,,..., E, are i.i.d. 
normal random variables with zero mean and 
variance u 2, g(. ) is a fixed but unknown func- 
tion. 

Define a nonparametric estimate d(t) as a 
solution to the following minimization problem: 

g(t) = arg min 
f_(L) i 

$ ,g (Y, -f(Q)? + @Y) 

(1) 

where L : _@L) c L, + L, is a general differen- 
tial operator of order m. This method, known as 
L-spline smoothing, which is considered in 
Kimeldorf and Wahba (1971) and Wahba (1990), 
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is a natural generalization of polynomial spline 
smoothing (where L = kD”) which has become 
one of the most popular approaches in nonpara- 
metric regression (a wide list of references may 
be found in Eubank, 1988; Wahba, 1990). It is 
well-known that the solution of (1) i(t) is a 
natural L-spline for the differential operator L 
with the knots {tJ, that is g^(.) satisfies L*Le = 0 
everywhere except, maybe, the knots {tJ, where 
L* is the adjoint operator to L, and conditions 
L[g(t)] = 0 on [O, tl] and It,, 11, which imply 2m 
natural boundary conditions for endpoints 0 and 
1. An explicit formula for g^ is given in Kimeldorf 
and Wahba (1971) and Wahba (1990). 

From the quadratic nature of (11, g^(*) is linear 
in the observations {yJ and, hence, may be ex- 
pressed as 

s(t) = $ ,i JV(l, fi)Yi 
r=l 

for a certain weight function JV(t, ti). Thus, the 
L-smoothing spline may be viewed as a general 
type of a kernel estimator with the kernel W(. , . ) 
called the equivalent kernel. 
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Rather suprisingly, the connection between 
spline smoothing and kernel estimation, originally 
based on different ideas, has much deeper foun- 
dation. Remarkably, the function W in (2) is 
closely related to the Green functions for the 
differential operator L*L + I. It was shown for 
polynomial spline smoothing that the equivalent 
kernel WC., . ) asymptotically may be well ap- 
proximated by the Green function G(. , . ) for the 
differential operator ( - l)“k2D2” + I acting on 
the subspace of functions satisfying the natural 
boundary conditions (see Speckman, 1981; Cox, 
1983; Messer, 1991). The explicit asymptotic ex- 
pressions for G(. , . ) for the particular cases m 
= 1, 2, 3 were obtained in Silverman (1984). 

In the following Section we shall generalize 
these results for L-smoothing splines and formu- 
late the theorem that will show the asymptotic 
equivalence between L-spline smoothing and 
kernel estimation. This result will allow us to 
derive in Section 3 the asymptotic mean squared 
error for the L-smoothing spline estimator. 

2. The equivalent kernel 

In order to derive the equivalent kernel that 
corresponds to L-spline smoothing we shall first 
prove several lemmas given below. 

Lemma 1. The equivalent kernel W(t, ti> in (2) is 
the minimizer of 

+ ,k (f(t,) -nsij)2 + k1CLf12 dt 
J=l 

over all .f E53( L). 

Proof. Let gci,(t> be a minimizer of (3). Note that 
(3) is a particular case of (1) when the data-vector 
y is y(,) = (0,. . . , 0, n, 0,. . . ,O>‘. 

Then, according to (2), 

Define in L, with the usual inner product 
(fl,f2) = / fl(t)f2(t) dt the differential operator 
S = L*L + I and consider S acting on the sub- 
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space of functions from B(L*L) satisfying the 
same 2m natural boundary conditions at the end- 
points 0 and 1 as g(t). 

Lemma 2. S is a self-adjoint operator. 

Proof. 

(Sf,, f2) = (L*Lf,, f2> + (fl, f2> 

= (Lf,, Lf2> + (fl, f2> 

= (fl, L*Lf,) + (fl, f2> 

= (f1, Sf2)> q 

Lemma 3. S is a positive definite operator; that is 
there exists a strictly positive constant q, such that 

for every f ENS), (Sf, f > > q II f II 2. 

Proof. 

(sf,f>=(L*Lf,f)+(f,f) 

=(Lf, Lf)+(f,f)a Ilf l12. 0 

Consider the equation Sf = u, u EL,. From 
the theory of functional analysis it is known (e.g. 
Vulikh, 1967, p. 337) that for a positive definite, 
self-adjoint operator S, 

(i) there exists a unique solution of the above 
equation; 

(ii) this solution is the minimizer of the func- 

tion 

(Sf, f > - 2(f, u> 

over all f ENS). 
From (i) it follows that there exists an inverse 

operator G, called the Green operator, such that 
Gu = f. It is well-known that the operator G is an 
integral type operator with the kernel function 
G(. , . > being the Green function for the opera- 
tor S acting on g(S), 

G[u(t)] =k’G(t, s)u(s) ds. 

Note that being a positive definite operator, S 
has only positive eigenvalues. It is easy to show 
that the minimal eigenvalue is 1 of multiplicity m 
and the corresponding subspace of eigenfunctions 
is the m-dimensional kernel space of operator L, 
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N(L). Thus, G also has positive eigenvalues A’s 
with A,,, = 1 and, therefore, II G II = A,,, = 1. 

We have now finished all the preliminary re- 
sults and are ready to prove the main theorem of 
this section. Note that S[G(t, s)] = s(t -s). From 
(ii), G(t, ti) has to be a minimizer of 

(Sf, f> - 2(f, 6( t - li)> 

= II Lf II 2 + II f II 2 - 2f( li). (4) 

Require that the knots placement converges to a 
uniform distribution as n + a in the sense of Cox 
(1983) that is 

I lIt-Fn(t)Idt+O 
0 

where F,(t) is the c.d.f. of the probability mea- 
sure which assigns the mass l/n to each knot tj 
(some equivalent convergence conditions are 
mentioned in Cox’s paper). 

Then, asymptotically II f II 2 = /f 2(t) dt is ap- 
proximated by (l/n)X~=, f ‘(tj) and (4) may be 
replaced by 

/ul(Lf)‘dt+; ,g (f(tj)-n&i)‘-n. (5) 
I-1 

But according to the first lemma, the minimizer 
of (5) is W(t, tJ. Thus, the following result has 
been proved: 

Theorem 1. If the density of knots converges to a 
uniform distribution, the L-smoothing spline 
asymptotically behaves like a kernel estimator. The 
corresponding equivalent kernel if the Green func- 
tion of the differential operator S = L*L + I acting 
on 9(S) defined above. 0 

3. Asymptotic mean squared error for the L- 

smoothing spline 

Using the asymptotic equivalence between L- 
spline smoothing and kernel estimation estab- 
lished by the previous theorem we derive now a 
formula for the asymptotic mean squared error 
(MSE) of the L-smoothing spline estimator. 

We start with the bias term b(t). Suppose that 
g( .) E_NL). According to the theorem it follows 

from (2) that 

$(t) = ; ,f: G(t, ti)yi. 
I-1 

Replacing asymptotically the sum by the integral 
we have 

Et(t) =/G(t, s)g(s) ds. 

Since the operator S is self-adjoint, G(t, s) is a 
symmetric function, that is G(t, s) = G(s, t) for 
all s and t. Thus, G(t, s) satisfies 

L;L,[G(t, s)] +G(t, s) =6(s-t) (6) 

where L, shows that differentiation is performed 
with respect to s. 

Multiplying both parts of (6) by g(s) and inte- 
grating them one immediately has 

_/lLTL,[G(t, s)]g(s) ds+%(t) =s(t). 
0 

We note that since G(t, s> satisfies the natural 
boundary conditions, 

/L:L,[G(t> s)lg(s) ds 

= /L,[G(t, s)lL,[g(s)] ds. 

So, finally 

b(t) = jn’L,[G(& s)]Ls[g(s)] ds. (7) 

For the particalar case L = kD”, which yields 
polynomial smoothing splines of order 2m - 1, 
the corresponding Green function G,(t, s) (7) 
gives 

b(t) = k2~‘Gl:‘.m’( t, s) g’“‘( s) ds 

which coincides with known results for polyno- 
mial spline smoothing obtained in Speckman 
(1981). 

The asymptotic variance follows immediately 
from (2) by replacing the sum by the integral: 

Var g”(t) = GklG’(r, s) ds (8) 
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Combining (7) and (8) yields the asymptotic MSE: 

+ c/lG*(t, s) ds. 
n 0 

Remark. We would like to make brief comments 
about the notation /f(s)& - t) ds =f(t> used 
in the paper. Being formally not correct in the 
sense of Riemann-Lebesgue integration, it is, 
however, a customary and usual notation for gen- 
eralized functions. More rigorous proofs of the 
main results can be developed by first introducing 
a smoothed version of the S-function and then 
taking appropriate limits. 
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