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Abstract: We establish the asymptotical equivalence between L-spline smoothing and kernel estimation. The equivalent kernel is
used to derive the asymptotic mean squared error of the L-smoothing spline estimator. The paper extends the corresponding

results for polynomial spline smoothing.
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1. Introduction

Consider the model
y;=g8(t)+e, i=1,...,n,

where 0<t, < -+~ <1,<1, &,...,¢, are iid.
normal random variables with zero mean and
variance o2, g(-) is a fixed but unknown func-
tion.

Define a nonparametric estimate £(t) as a
solution to the following minimization problem:

1 " 1
7 L=+ [ (Lf)z}

i=1

g(t) =arg min {
fea(L)

(1)

where L: 2(L)cL,— L, is a general differen-
tial operator of order m. This method, known as
L-spline smoothing, which 1is considered in
Kimeldorf and Wahba (1971) and Wahba (1990),
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is a natural generalization of polynomial spline
smoothing (where L =kD™) which has become
one of the most popular approaches in nonpara-
metric regression (a wide list of references may
be found in Eubank, 1988; Wahba, 1990). It is
well-known that the solution of (1) £(¢) is a
natural L-spline for the differential operator L
with the knots {z,}, that is g(-) satisfies L*Lg =0
everywhere except, maybe, the knots {z,}, where
L* is the adjoint operator to L, and conditions
L[g(t)1=0on [0, ¢,] and [¢,, 1], which imply 2m
natural boundary conditions for endpoints 0 and
1. An explicit formula for ¢ is given in Kimeldorf
and Wahba (1971) and Wahba (1990).

From the quadratic nature of (1), g(-) is linear
in the observations {y;} and, hence, may be ex-
pressed as

b=

1
ﬁ(t)=;. W(t, )y, (2)

1

for a certain weight function W(s, ¢,). Thus, the
L-smoothing spline may be viewed as a general
type of a kernel estimator with the kernel W(-, -)
called the equivalent kernel.
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Rather suprisingly, the connection between
spline smoothing and kernel estimation, originally
based on different ideas, has much deeper foun-
dation. Remarkably, the function W in (2) is
closely related to the Green functions for the
differential operator L*L + I. It was shown for
polynomial spline smoothing that the equivalent
kernel W(-, -) asymptotically may be well ap-
proximated by the Green function G(-, -) for the
differential operator (—1)"k2D?™ + [ acting on
the subspace of functions satisfying the natural
boundary conditions (see Speckman, 1981; Cox,
1983; Messer, 1991). The explicit asymptotic ex-
pressions for G(-, +) for the particular cases m
=1, 2, 3 were obtained in Silverman (1984).

In the following Section we shall generalize
these results for L-smoothing splines and formu-
late the theorem that will show the asymptotic
equivalence between L-spline smoothing and
kernel estimation. This result will allow us to
derive in Section 3 the asymptotic mean squared
error for the L-smoothing spline estimator.

2. The equivalent kernel
In order to derive the equivalent kernel that
corresponds to L-spline smoothing we shall first

prove several lemmas given below.

Lemma 1. The equivalent kernel W(t, t;) in (2) is
the minimizer of

1 g 2 gl
;,‘; (f(5;) —ndy) +f0 (Lf)* dt (3)
over all fe(L).

Proof. Let £, (t) be a minimizer of (3). Note that
(3) is a particular case of (1) when the data-vector
yis y;,=0,..., 0,n,0,...,0).

Then, according to (2),

1 n
g(,-)(t)=; le(tatj)Y(i)j=W(t7ti)‘ d
o

Define in L, with the usual inner product
(f1.f2> = [ F{e)f(2) dt the differential operator
S=L*L + 1 and consider S acting on the sub-
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space of functions from (L*L) satisfying the
same 2m natural boundary conditions at the end-
points 0 and 1 as g(z).

Lemma 2. S is a self-adjoint operator.

Proof.

(Sfi, f22 =L*Lfy, f0 + {f1, f)
=(Lfy, Lfy) + (f f2)
={fi, L*Lfy) + (f1, f2)
= {f1, Sf2), o

Lemma 3. S is a positive definite operator; that is
there exists a strictly positive constant q, such that

for every f€(S), {Sf, fY=qll fll*

Proof.
(S, £y =LL*Lf, f>+<f, )
=(Lf, LEY+<f, fr=1 117 m]

Consider the equation Sf=u, u€L,. From
the theory of functional analysis it is known (e.g.
Vulikh, 1967, p. 337) that for a positive definite,
self-adjoint operator S,

(i) there exists a unique solution of the above

equation;

(ii) this solution is the minimizer of the func-

tion

(Sf, ) =2{f, w

over all fe2(5).

From (i) it follows that there exists an inverse
operator G, called the Green operator, such that
Gu = f. Tt is well-known that the operator G is an
integral type operator with the kernel function
G(-, -) being the Green function for the opera-
tor S acting on 2(S),

Glu(t)] =fOIG(t, s)u(s) ds.

Note that being a positive definite operator, S
has only positive eigenvalues. It is easy to show
that the minimal eigenvalue is 1 of multiplicity m
and the corresponding subspace of eigenfunctions
is the m-dimensional kernel space of operator L,
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N(L). Thus, G also has positive eigenvalues A’s
with A, =1 and, therefore, |G|l =2A_,, =1
We have now finished all the preliminary re-
sults and are ready to prove the main theorem of
this section. Note that S[G(¢, s)] = 8(¢ — 5). From

(i), G(1, t,) has to be a minimizer of
(Sf, )= 2f, 8(t=1,))
= ILFIZ+ N fFIP=21(2). (4)

Require that the knots placement converges to a
uniform distribution as #n — « in the sense of Cox
(1983), that is

fllt—Fn(t)ldt—»O
0

where F,(t) is the c.d.f. of the probability mea-
sure which assigns the mass 1/n to each knot ¢;
(some equivalent convergence conditions are
mentioned in Cox’s paper).

Then, asymptotically || £ ||*= [ f3(¢) dt is ap-
proximated by (1/n)L}_,f*(¢;) and (4) may be
replaced by

| 2
[ ats X (£(5) =noy) =n ()

j=1

But according to the first lemma, the minimizer
of (5) is W(¢, t;). Thus, the following result has
been proved:

Theorem 1. If the density of knots converges to a
uniform distribution, the L-smoothing spline
asymptotically behaves like a kernel estimator. The
corresponding equivalent kernel if the Green func-
tion of the differential operator § = L¥L + I acting
on 2(8) defined above. 0O

3. Asymptotic mean squared error for the L-
smoothing spline

Using the asymptotic equivalence between L-
spline smoothing and kernel estimation estab-
lished by the previous theorem we derive now a
formula for the asymptotic mean squared error
(MSE) of the L-smoothing spline estimator.

We start with the bias term b(¢). Suppose that
g(-)€2(L). According to the theorem it follows
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from (2) that

g(1) = G(1, 1)y

X | =
M:

1

i

i
Replacing asymptotically the sum by the integral
we have

E(t) =/G(t, s)g(s) ds.

Since the operator § is self-adjoint, G(¢, s) is a
symmetric function, that is G(¢, s) = G(s, t) for
all s and ¢. Thus, G(¢, s) satisfies

L*L,[G(t, s)] + G(t, s) =8(s — 1) (6)

where L shows that differentiation is performed
with respect to s.

Multiplying both parts of (6) by g(s) and inte-
grating them one immediately has

/:L;“LS[G(t, )] g(s) ds + Eg(t) =g(t).

We note that since G(¢, s) satisfies the natural
boundary conditions,

JLILG (1, 9)]g(s) ds

= [LIG(t, 9)]L,[g(s)] ds.

So, finally

b(1) =/01LS[G(t, 9H]L.[g(s)] ds. (7)

For the particalar case L = kD™, which yields
polynomial smoothing splines of order 2m — 1,
the corresponding Green function Gy(¢, s) (7)
gives

b(r) =k ['GP™(1, 5)8(s) ds

0
which coincides with known results for polyno-
mial spline smoothing obtained in Speckman
(1981).

The asymptotic variance follows immediately
from (2) by replacing the sum by the integral:

Var §(t) = %fle(t, 5) ds (8)
0
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Combining (7) and (8) yields the asymptotic MSE:
2
MSE = [flLS[G(t, )IL,[g(s)] ds
0

+sz1G2(t ) ds
— , S .
n o

Remark. We would like to make brief comments
about the notation [ f(s)8(s —1) ds=f(¢) used
in the paper. Being formally not correct in the
sense of Riemann-Lebesgue integration, it is,
however, a customary and usual notation for gen-
eralized functions. More rigorous proofs of the
main results can be developed by first introducing
a smoothed version of the §-function and then
taking appropriate limits.
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