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Abstract

Given noisy signal, its finite discrete wavelet transform is an estimator of signal’s wavelet
expansion coeflicients. An appropriate thresholding of coefficients for further reconstruction of
de-noised signal plays a key-role in the wavelet decomposition/reconstruction procedure. [DJ1]
proposed a global threshold A = o+/2logn and showed that such a threshold asymptotically
reduces the expected risk of the corresponding wavelet estimator close to the possible minimum.
To apply their threshold for finite samples they suggested to always keep coefficients of the first
coarse jo levels.

We demonstrate that the choice of jo may strongly affect the corresponding estimators. Then,
we consider the thresholding of wavelet coefficients as a multiple hypotheses testing problem
and use the False Discovery Rate (FDR) approach to multiple testing of [BH1]. The suggested
procedure controls the expected proportion of incorrectly kept coefficients among those chosen
for the wavelet reconstruction. The resulting procedure is inherently adaptive, and responds to
the complexity of the estimated function. Finally, comparing the proposed FDR-threshold with
that fixed global of Donoho and Johnstone by evaluating the relative Mean-Square-Error across
the various test-functions and noise levels, we find the FDR-estimator to enjoy robustness of
MSE-efficiency.

1 Introduction

Suppose we are given data

yi=g(:)+e, i=1,..,n, (1)
where t; = i/n, n = 271! for some J, ;s are i.i.d. normal variables with zero mean and variance
02 . We wish to estimate the unknown response function g(-) from the data without assuming
any particular parametric form of g by expanding g into wavelet series generated by translations
and dilations of a single function called mother wavelet (examples of mother wavelets are given in
[Dubl]). Unlike classical Fourier sine and cosine functions, wavelets are localized both in time and

frequency domains. This characteristic property allows parsimonious wavelet expansion for a wide



set of function spaces. This set includes such commonly used classes as Sobolev and Hoélder scales
of smooth functions, but in addition less traditional spaces, like the space of functions of bounded
variations that contains spatially inhomogeneous functions, as well (see [Meyl], [DJ2] for precise
details).

In the absence of random noise in the data we may find m = n — 1 = 2/t — 1 wavelet
coefficients of g’s expansion, d;z,j =0,...,J;k=10, ..., 27 — 1, by performing Mallat’s fast discrete
wavelet transform (DWT) of the vector of the noiseless data g = (g(t1), ..., 9(¢»))’. “Noisy” data
only allow us to find a vector of the coefficients of the MLE estimates d which is the DWT of the
vector y of the observed data. White noise contaminates all wavelet coefficients (ijk equally (the
DWT of the noise vector € is also a white noise). However, it is reasonable to assume that only a
few (ijk contain information about the real signal while others represent a random noise. The goal
is to extract these significant coefficients and to ignore others. Such an extraction can be naturally

performed by thresholding the (ijk ’s :

B _ dir , |dje | >
ik 0 , |djk|</\

where A is the threshold value.

The well-known [DJ1] global threshold A = 04/2Iogn can be shown to imply a wavelet estimator
which risk is asymptotically “close” to the minimal risk corresponding to the optimal (but unknown)
thresholding rule. However, it should be noted that such a threshold depends on the data only
through the estimated o and for fixed n is otherwise the same, for all samples and for all kinds of
functions. For finite samples Donoho and Johnstone further suggested to always keep the coefficients
of the first “coarse” jo levels, even if these coefficients do not pass the thresholding level. In their
paper they used jo = 5. Obviously, any fixed choice of j; does not change the asymptotic properties.
Intuitively, the proper choice of jg should depend on the smoothness of the estimated function. It
might be argued that jo should be greater for oscillating functions but smaller for smooth ones. The
examples considered in Section 4 illustrate the fact that the choice of jy in practice may strongly
affect the corresponding estimators. Some other thresholding rules are proposed in [DJ2], [Nasl].

From the statistical viewpoint, thresholding, as was also pointed out by [DJ1], is closely related
to another data-analytic approach to model building involving multiple hypotheses testing: for
each coefficient, test whether it is zero, and keep only the significant ones. Classical approaches
to hypotheses testing in this case face serious problems because of the large number of hypotheses
being tested simultaneously: if the error is controlled at an individual level, the chance of keeping
erroneously a coefficient is extremely high; if the simultaneous error is controlled, the chance of
keeping a coefficient is very low. Recently, [BH1] have suggested the False Discovery error Rate
(FDR) criterion as an alternative method in multiple hypotheses testing problems. This paper
proposes a statistical procedure for thresholding wavelet coefficients which is based on the FDR-
approach. In a way it controls the expected proportion of incorrectly kept coefficients among those

chosen for the model. The resulting FDR-thresholding procedure is inherently adaptive due to the



adaptiveness of the criterion being controlled.

In Section 2 we describe the FDR criterion of [BH1] and construct the FDR-procedure for thresh-
olding wavelet coefficients in Section 3. Several test-cases considered in Section 4 demonstrate the
limitation of non-adaptive global thresholding and compare it with alternative FDR-thresholding
procedure. Evaluating the relative Mean-Square-Errors across the various test-functions and noise

levels, we find the FDR-estimator to enjoy robustness of MSE-efficiency.

2 Thresholding as multiple hypotheses testing problem

We consider here the problem of testing the m = 27! — 1 hypotheses Hjp, : dji, = 0, where dj’s
are wavelet coefficients of a true (but unknown) function g. Of these hypotheses, m; are false,
or equivalently the corresponding coefficients should be kept in the wavelet expansion. The other
mo = m — m; coeflicients are in fact zeroes and ideally should all be dropped.

Separating the coefficients into those which are zero and those which are not zero may seem an
idealization of the real situation: in practice very few coefficients of a true function are identically
zero, while many of them will be merely very small. Nevertheless, if we consider a coefficient to
be incorrectly kept in the model either if it is truely zero and kept, or if it is truly of one sign but
is kept in the model with the wrong sign (directional error), then the case where such coefficients
are considered to be exactly zero is the extreme case that needs to be controlled (see [Tukl] for a
discussion of this point of view).

As we view the problem of thresholding wavelet coefficients in the framework of hypotheses
testing we have to face the problem caused by the multiplicity of the errors that have to be controlled
simultaneously. One approach is the “don’t worry” that ignores the problem altogether: conduct
each test at the usual significance level, say 0.05, as if it were the only one tested. Allas, with 1023
hypotheses to be tested (for 1024 observations) about 50 would be found (1023 x0.05 on the average)
significant, even when the representation of the true function needs none. Hence, a stronger control
of error is needed, and the most commonly used alternative is the “panic” approach: control the
probability that no truly zero coefficient enters the model (Bonferroni’s approach). The control
of such a stringent criterion is well-known to reduce power, implying that too few coefficients will
enter the model. It is therefore hardly used in practice in other similar problems such as variable
selection in regression, or choosing autoregressive terms in time series analysis.

Adapting the general idea of [BH1] we analyse the performance of a thresholding procedure as
follows. Let R be the number of coeflicients that are not dropped by the thresholding procedure for
a given sample, and are, thus, kept in the representation. Of these R coefficients, S are correctly
kept in the model and V are erroneously kept, R = V + S. The error in such a procedure is
expressed in terms of the random variable Q = V/R - the proportion of the coefficients kept in the
representation that should have been dropped. Naturally we define = 0 when R = 0 since no
error of this type can be made when no coefficient is kept.

The False Discovery Rate of Coefficients (FDR) can be now defined as the expectation of @,



and thus reflects the expected proportion of erroneously kept coefficients among the ones kept in
the representation. Following [BH1] we suggest maximizing the number of kept coefficients subject
to controlling of the FDR to some level g.

Two properties of the FDR are important to note:

a) If the data are pure noise, i.e., all true coefficients are zero, then controlling the FDR implies the
control of the probability of including erroneously even one coefficient (Bonferroni’s approach).
Because of this property the traditional levels for significance testing were used, e.g., ¢ = .01

or ¢ = .05.

b) The FDR increases with an increase in the number of incorrectly kept coefficients, and decreases
as more coefficients are chosen to be kept. If a number of large true coeflicients are present,
R will tend to be larger and, therefore, the FDR will tend to be smaller. Thus, the error rate

will respond to the complexity of the estimated function.

Note that Donoho-Johnstone’s thresholding can be also viewed as a multiple hypotheses testing
procedure. Their thresholding rule is equivalent to rejecting each null-hypothesis Hjj : d;jr = 0 at
a critical value o4/2logn. Using the well-known asymptotics ®(—a) ~ ¢(a)/a for large a, where
® and ¢ are standard normal c.d.f. and p.d.f. respectively, one can verify that the corresponding
significance level (the same for all tests) would be approximately (ny/mlogn)~'. Thus, we see that
not only Donoho and Johnstone’s procedure is equivalent to the “panic” procedure of controlling
the probability of even one erroneous inclusion of a coefficient at the level (y/7logn)~!, but the
level at which this error is controlled approaches zero as n increases. No wonder that the loss of
power is such that it requires the ad-hoc remedy of supressing the thresholding procedure for the
first coarse levels.

Finally, we note that while this paper only deals with the estimation of functions on the real
line, it is straightforward to extend the suggested thresholding algorithm to R and to recovering

images on R? in particular. The details are obvious, and we do not give them here.

3 FDR-procedure

Applying the procedure of [BH1] for wavelet thresholding yields the following procedure:

1) For each (ijk calculate the corresponding two-sided p-value, pjx, testing Hjp : djr = 0,

ik = 2(1 — ®(|djx |/0))

2) Order the pjx’s according to their size, P1) < Pe) £ -« < P(m); Where each of the p(;)’s

corresponds to some coefficient d .

3) Starting with ¢ = 1, let k be the largest i for which p;) < (i/m)g. For this k calculate
A= 0'@_1(1 — p(k)/2)



4) Threshold all coefficients at level Ag.

[BH1] proved that for independent Gaussian noise in the model (1) the above procedure controls

the FDR at the (unknown) level (mg/m)gq < q. The procedure also controls the FDR if the marginal
distribution of the noise in model (1) is other than Gaussian, say F, with the only change in the
above procedure being to replace ® by F .
Computational note. Step 4) can be replaced by taking the k coefficients corresponding to the k&
smallest p-values. Furthermore, since a coefficient can be kept in the model only if the corresponding
Pi) < ¢, it has to be at least larger (in absolute value) than Apin = oc®7 (1 — ¢q/2). Therefore,
the above steps could be performed only for |dji | > Anmin, making large computational savings in
sorting, etc.

Note that in a specific sample thresholding is done effectively at some (adaptive) level between
Amaz = 0®71(1 — ¢/2n) and Apin = 0@~ (1 — ¢/2). For practically used sample sizes n = 27+,
J+1=17,8,...,14 and the traditional ¢ = 0.05, the Donoho-Johnstone global threshold A satisfies
Amin < A < Apmaz. In fact, over this range Agqz is larger than A by 5% — 15%. Fig. 1 displays
some FDR-thresholds for n = 1024, assuming ¢ = 1. While Donoho-Jonstone’s A = 3.723, if
only one (the largest) coefficient enters the representation it should pass the threshold of 4.061.
If exactly four coefficients are significant, the corresponding FDR-threshold is equal to the global
DJ-threshold. As more coefficients enter the representation, the effective FDR-threshold is set at
lower values.

The procedure can be motivated as a samplewise implementation of the “maximization subject
to control” aproach. If p(;) corresponds to a potential threshold, exactly i coefficients will pass the
threshhold and be kept in the representation. The expected number of incorrectly kept coefficients
is mop(;) < mp(;), as for these coeflicients the estimated p-values are uniformly ditributed. Thus,
the expected proportion of incorrectly kept coefficients among those kept in the model can be given
by mgp(i)/i < mp(i)/i, which we wish to control below q. Selecting as many as possible coefficients

means choosing the largest possible ¢, leading to step 3) of the procedure.

4 Examples

We consider the performance of two FDR-estimators with ¢ = 0.01 (FDRO01) and ¢ = 0.05 (FDRO05).
We compare them with three versions of Donoho and Johnstone estimators corresponding to three
different thresholding starting levels of jo: jo = 1 (DJ1), jo = 3 (DJ3), the default value in Nason
and Silverman (1994), and jo = 5 (DJ5) used by Donoho and Johnstone. All the thresholding

procedures were tried on the following test cases (see Fig. 2) :
1) g(t) = (¢ - 0.4)°
2) g(t) = min(2t,-2(t — 1)) (triangular function)

3) g(¢)=(t—0.3)+ — (¢ —0.7)+ (block function)
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Figure 1: Threshold for the k-th largest coeflicient (n = 1024, ¢ = 0.05).



4) g(t) = 3°; h; K(t — t;), where K(t) = (1 + sign(t))/2,
(t;) = (.1,.13,.15, .23, .25, 40, .44, .65, .76, .78, .81),
(h;) = (4,-5,3,-4,5,-4.2,2.1,4.3,-3.1,5.1, -4,2)
([DJ1] Blocks example)

5) 9(t) = 533 hiK (¢ — 5)/w;), where K (t) = max((1 - [t)}%,0),
(t;) are the same as in the previous example,
(hj) = (4,5,3,4,5,4.2,2.1,4.3,3.1,5.1,4,2),
(w;) = (.005,.005,.006,.01,.01, .03, .01, .01, .005, .008, .005)
(similar to [DJ1] Bumps example)

For each case we ran simulations with four different values of o to satisfy the signal-to-noise
ratio § = SD(g)/o = 7,4,2 and 1 respectively. 1024 design points were taken equally spaced on
[0,1] and the data were generated for 500 replications of every combination of cases and o’s by
adding to g(¢(i/n)) independent random noise &; ~ N (0,02 ).

To find the vector of wavelet estimates § Mallat’s ([Mall]) well-known algorithm of decomposition-
reconstruction was used. On the decomposition step we found the wavelet coefficients (ijk by the
fast DWT of Mallat using the compactly supported mother wavelet D4 from Daubechies’s family
(see [Dubl]). Thresholding dj;, and performing the fast inverse DWT of the thresholded coeffi-
cients on the reconstruction step we derived the corresponding function estimates. The noise level
o was estimated by the standard deviation of the wavelet coefficients d 7, at the finest level J and
performed quite satisfactorily. All the programming was done in the statistical package S-Plus
using the S wavelet software developed by Nason and Silverman (the description may be found in
Nason and Silverman, 1994), and the built in normal random numbers generator. The goodness of
fit of each estimator was measured by its mean squared error MSE = n~!||g — g||;z averaged over
all 500 replications. The standard error of MSE was about 0.5 — 2.0% of its estimated mean value.

For each test-case, we found the best estimator among the five ones, i.e., the one achieving the
minimum MSE. Then the relative MSE for each estimator was evaluated as (min MSE;)/MSE;, i =
1,...,5. The results of simulation studies are summarized in Table 1.

Considering first the three DJ-estimators one sees that the relative MSE varies strongly for
different 7o and depends on the smoothness of the function. For example, for relatively smooth
functions (Cases 1, 2) DJ3 is highly preferable over DJ5, while in oscillating examples (Cases 4, 5)
DJ5 performs much better.

Comparing the performance of FDR and DJ-estimators one concludes (see Table 1) that for
smooth functions (Cases 1, 2) FDRO1 performs slightly better than FRDO05 (for such functions we
would like to be more conservative in including additional coefficients in the representation) but
both of them give in to DJ3 which is undoubtedly the best estimator for these Cases for all é’s.
However, for functions with rapid local changes (Cases 4, 5) FDRO05 is highly preferable over FDR01
and DJ3, and even somewhat better than DJ5, the best (for these cases) among DJ-estimators.

Then we found the minimal relative MSE (MRMSE) of each estimator over all the cases (see
bolded numbers in Table 1 and Fig. 3). The MRMSE reflects the loss of effectiveness at the most
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challenging test-case for each estimator and is a natural measure of its robustness to the test-
cases. This measure is further studied as a function of signal-to-noise ratio, which characterizes
the robustness of the procedures in face of different noise levels. Fig. 3 clearly shows that the
proper choice of jg in the Donoho-Johnstone algorithm should depend on the noise level. For large
noise (4 small) the optimal jo is small since the wavelet coefficients are strongly influenced by noise
and we should threshold them starting from the very coarse levels in order to decrease the noise
in the reconstruction. For moderate noise “significant” coefficients (especially those at low levels)
reflect the real signal and should not be dropped. In contrast to the behavior of the DJ-estimators,
FDR-estimators are much less sensitive to the noise level due to their adaptiveness, and perform
quite satisfactorily for all noise levels and test cases studied.

In conclusion, it might be interesting to note that the FDR-approach for choosing coeflicients
in the wavelet representation is philoshophically very different from traditional methods. Usually,
we seek the most compact presentation possible and enrich the model only if some condition is
met. Here we try to keep as many coeflicients as possible but subject them to a certain control
rule. While this approach might be carried over to other problems of model selection, its usefulness

should be demonstrated at each case separately, as it was done here.
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possible applications of the FDR-approach in a wide range of statistical problems including wavelets.
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Table 1. Relative MSE (averaged over 500 replications).

FDRO05 | FDR0O1 | DJ1 DJ3 DJ5
6="7
Case 1 | 0.859 0.962 | 0.917 | 1.000 | 0.690
Case 2 | 0.716 | 0.702 | 0.714 | 0.818 | 1.000
Case 3 | 1.000 0.951 | 0.923 | 0.923 | 0.941
Case 4 | 1.000 0.784 | 0.658 | 0.658 | 0.713
Case 5 | 1.000 0.747 | 0.602 | 0.604 | 0.680
d=4
Casel | 0.774 0.806 | 0.798 | 1.000 | 0.676
Case 2 | 0.799 0.849 | 0.844 | 1.000 | 0.885
Case 3 | 1.000 0.875 | 0.857 | 0.873 | 0.956
Case 4 | 1.000 0.848 | 0.774 | 0.781 | 0.849
Case 5 | 1.000 0.763 | 0.631 | 0.631 | 0.719
=2
Case 1 | 0.761 0.786 | 0.796 | 1.000 | 0.527
Case 2 | 0.767 0.791 | 0.793 | 1.000 | 0.729
Case 3 | 0.816 0.752 | 0.770 | 0.867 | 1.000
Case 4 | 0.992 0.934 | 0.913 | 0.922 | 1.000
Case 5 | 1.000 0.857 | 0.787 | 0.793 | 0.880
6=1
Case 1 | 0.760 0.805 | 0.767 | 1.000 | 0.470
Case 2 | 0.686 | 0.687 | 0.697 | 1.000 | 0.553
Case 3 | 0.722 0.694 | 0.718 | 0.793 | 1.000
Case 4 | 0.801 0.733 | 0.737 | 0.765 | 1.000
Case b | 1.000 0.857 | 0.845 | 0.878 | 0.959
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