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Bayesian Approach To Wavelet
Decomposition and Shrinkage

Felix Abramovich
Theofanis Sapatinas

ABSTRACT We consider Bayesian approach to wavelet decomposition.
We show how prior knowledge about a function’s regularity can be in-
corporated into a prior model for its wavelet coefficients by establishing
a relationship between the hyperparameters of the proposed model and
the parameters of those Besov spaces within which realizations from the
prior will fall. Such a relation may be seen as giving insight into the mean-
ing of the Besov space parameters themselves. Furthermore, we consider
Bayesian wavelet-based function estimation that gives rise to different types
of wavelet shrinkage in non-parametric regression. Finally, we discuss an ex-
tension of the proposed Bayesian model by considering random functions
generated by an overcomplete wavelet dictionary.

1 Introduction

Consider the standard non-parametric regression problem:
yi=9(t;) +e, i=1,...,n, (1.1)

and suppose we wish to recover the unknown function g from additive
noise €; given noisy data y; at discrete points ¢; = i/n. Only very general
assumptions about g are made like that g belongs to a certain class of
functions.

One of the basic techniques in non-parametric regression and signal pro-
cessing is the generalized Fourier series approach. An unknown response
function g is expanded in some orthogonal basis {¢;}:

g9(t) = Zwﬂbj(t),

where w; = (g,%;). The key point for the efficiency of such an approach is
obviously a proper choice of a basis. A ‘good’ basis should allow parsimo-
nious expansion for a wide variety of possible responses using a relatively
small number of basis functions. The original signal then is represented by
the set of its few generalized Fourier coeflicients w; with high accuracy.
Such parsimonious representations may be the key to understanding the
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basic features of a signal, detecting its regularity, compression, etc. It also
plays a crucial role in the non-parametric regression problem (1.1) - instead
of estimating g directly, we estimate its generalized Fourier coeflicients w;
and the resulting estimate is §(¢) = 3_; @;;(¢). In a way, we transfer the
original non-parametric problem to an infinitely parametric one.

For a fixed basis, assuming g to belong to a specific class of possible re-
sponses, it implicitly or explicitly yields corresponding assumptions on its
generalized Fourier coefficients w;. Bayesian approach seems only natural
to exhibit these assumptions through putting a prior model on w;. Exam-
ples of Bayesian orthogonal series estimators based on different bases and
priors are well known in the literature. Wahba (1983) proposed a Bayesian
model for spline smoothing estimation. It turns out that her prior model
for the unknown response function is equivalent to placing a certain prior
on its Fourier sine and cosine coefficients. Silverman (1985) obtained simi-
lar results for B-spline basis. Steinberg (1990) presented a Bayesian model
for the coefficients of a function’s expansion in a power series of Hermite
polynomials.

Here we discuss Bayesian estimators using orthogonal wavelet series. In
Section 2, we show how prior knowledge about a function’s regularity can be
incorporated into a prior model for its wavelet coefficients. A relationship
between the hyperparameters of the proposed model and the parameters
of those Besov spaces within which realizations from the prior will fall is
established. Such a relation may be seen as giving insight into the mean-
ing of the Besov space parameters themselves. Furthermore, in Section 3,
we discuss Bayesian wavelet-based estimation that gives rise to different
types of wavelet shrinkage in non-parametric regression. In, particular, for
the prior specified, we show that a posterior median is a bona fide thresh-
olding rule. Finally, in Section 4, we discuss an extension of the proposed
Bayesian model by considering random functions generated by an overcom-
plete wavelet dictionary.

2 Wayvelets and Besov spaces

2.1 Wavelet series

Orthogonal wavelet series in L%(R) are generated by dilations and trans-
lations of a mother wavelet t: 1h;x(t) = 20/24(29t — k), j,k € Z.In many
practical situations, the functions involved are only defined on a compact
set, such as the interval [0, 1], and to apply wavelets then requires some
modifications. Cohen et al. (1993) have obtained the necessary boundary
corrections to retain orthonormality. In later sections, however, we confine
attention to periodic functions on R with unit period and work in effect
with periodic wavelets (see, for example, Daubechies, 1992, Section 9.3).
The wavelet coeflicients wj of the function are then actually restricted to
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the resolution and spatial indices j > 0 and k = 0,...,2/ — 1 respectively,
and the function can be expanded in the orthogonal wavelet series as:

co 29—1

g(t) = cod(t) + Y D wirthr(2),

=0 k=0

where:

co = / gOet)dt, wy, = / gty (t)dt.

The function ¢ called the scaling function or the father wavelet (see any
standard text on wavelets).

Wavelets are local in both time (via translations) and frequency/scale
(via dilations) domains. This localization allows parsimonious representa-
tion for a wide set of different functions in wavelet series — by choosing
the scaling function and the mother wavelet with corresponding regularity
properties, one can generate an unconditional wavelet basis in a wide set
of function spaces, such as Besov spaces (see Section 2.3 below). For de-
tailed comprehensive expositions of the mathematical aspects of wavelets
we refer, for example, to Meyer (1992) and Wojtaszczyk (1997).

We shall assume that the scaling function ¢ and the mother wavelet
correspond to an r-regular multiresolution analysis, for some integer r > 0
(see, for example, Daubechies, 1992). This will imply that ¢ and 1 are
members of the Holder space C'", and that ¢ has vanishing moments up to
order r. For examples of mother wavelets with various regularity properties,
and with compact support, see Daubechies (1992).

2.2  Prior model

As we have already mentioned, a large variety of different functions al-
low parsimonious representation in wavelet series where only a few non-
negligible coefficients are present in the expansion. To capture this char-
acteristic feature of wavelet bases, Abramovich, Sapatinas & Silverman
(1998a) suggested to place the prior on wj;, of the following form:

wik ~ T N(0,77) + (1 = 7;)6(0), j>0; k=0,...,2/ —1, (1.2)

where 0 < 7; < 1, §(0) is a point mass at zero, and wj;, are independent.
To complete the model a vague prior is placed on the scaling coefficient cp.

According to the prior model (1.11), every wjy, is either zero with proba-
bility 1 — 7; or with probability 7; is normally distributed with zero mean
and variance TJ-Q. The probability 7; gives the proportion of non-zero wavelet
coefficients at resolution level j while the variance sz is a measure of their
magnitudes. Note that the prior parameters 7; and sz are the same for all
coefficients at a given resolution level j.
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The hyperparameters of the prior model (1.2) are assumed to be of the
form:

Tj2 =27 and T = min(170227ﬂj)> J20, (1.3)

where ¢1, ¢2, a, and [ are non-negative constants. Some intuitive under-
standing of the model implied by (1.2), (1.3) can be found in Abramovich,
Sapatinas & Silverman (1998a, Section 4.2).
It is interesting to compare the priors (1.2) with the three point ‘least
favourable’ priors of the form:
j

o) + Z6(=py) + (1 = 7,)5(0) (L.4)

Wik ~ B

used for derivation minimax wavelet estimators. The expressions for 7; and
u; are given in Donoho & Johnstone (1994) and Johnstone (1994).

Clyde, Parmigiani & Vidakovic (1998) use a similar formulation to (1.2)
but with different forms for the hyperparameters 7; and sz. The prior
model (1.2) is also an extreme case of that of Chipman, Kolaczyk & Mc-
Culloch (1997). Their prior for each wj; is the mixture of two normal
distributions with zero means but different variances for ‘negligible’ and
‘non-negligible’ wavelet coefficients.

2.8 Besov spaces on the interval

Before establishing a relation between the hyperparameters of the prior
model (1.2) and the parameters of those Besov spaces within which real-
izations from the prior will fall, we introduce a brief review of some relevant
aspects of the theory of the (inhomogeneous) Besov spaces on the interval
that we exploit further. For a more detailed study we refer, for example, to
DeVore & Popov (1988), DeVore, Jawerth & Popov (1992), Meyer (1992)
and Wojtaszczyk (1997).
Let the r-th difference of a function g be:

A9 =3 () (0¥t + k),

k=0

and let the 7-th modulus of smoothness of g in L?[0, 1] be:
(g;1) = Al
Vrp\9; sup ||A} 9||LP[0,1—rh]-
h<t

Then the Besov seminorm of index (s,p,q) is defined for r > s, where
1 < p,q < o0, by:

1 q 1/q
vrp(g;h)\" dh :
s = Vrp\9ih) ) " Oh f1<
|9|Bp’q {/0 ( s ) Y , if 1<g< oo,
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and by:

Vnp(g;h)}
= Su EE— -
|g|B;’°° 0<h1ﬁ<)1{ h#

The Besov space B, , on [0,1] is the class of functions g : [0,1] — R for
which g € LP[0,1] and |g|gs < oc. The Besov norm is defined then as:
P.g

= P -+ , 1< < o0,
||9||B§,q [l9]]Lr(0,1] Ing;’q <q

llglls; . llgllzero,1) + l9lB; .-

The (not necessarily integer) parameter s measures the number of deriva-
tives, where the existence of derivatives is required in an LP-sense, while
the parameter ¢ provides a further finer gradation.

The Besov spaces include, in particular, the well-known Sobolev (B;?z)
and Holder (Bg, ) spaces of smooth functions, but in addition less tradi-
tional spaces, like the space of functions of bounded variation, sandwiched
between Bi1 and Bll’oo. The latter functions are of statistical interest be-
cause they allow for better models of spatial inhomogeneity (see, for exam-
ple, Meyer, 1992; Donoho & Johnstone, 1995).

For j > 0, define w; to be the vector of wavelet coefficients wj, k =
0,1,...,27 —1, as defined in Section 2.1. The Besov norm of g is equivalent
to the corresponding sequence space norm:

oo 1/q
lwllos,, = leol + D2 jwyllg », if 1<g<oo, (1.5)
Jj=0
leolleg,o. = ol +sup {27 [Jas s } (1.6)
j=0

where s’ = s+ 1/2 — 1/p (see, for example, Meyer, 1992; Donoho et al.,
1995).

In Section 2.4, we exploit this equivalence of the norms for relating prior
information about the function’s regularity to the hyperparameters of our
prior model for the wavelet coeflicients w.

In the particular case p = ¢ = 1 the sequence space norm in (1.5) becomes
a weighted sum of the |w;x| and the corresponding Besov space norm is
essentially an L'-norm on the derivatives of g up to order s. This will
provide motivation for the loss function we use in Section 3.

2.4 A relation between Besov space parameters and
hyperparameters of the prior model
In this section we demonstrate how knowledge about regularity properties

of an unknown response function can be incorporated into the prior model
(1.2) for its wavelet coefficients by specifying the hyperparameters of the
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prior. We explore the connections between the parameters o and 3 in (1.2)
of the prior model (1.11) and the Besov space parameters s and p.

Note first that it follows from (1.3) that the prior expected number of
non-zero wavelet coefficients on the j-th level is C527/(1=F)  Then, appealing
to the first Borel-Cantelli lemma, in the case § > 1, the number of non-
zero coefficients in the wavelet expansion is finite almost surely and, hence,
with probability one, g will belong to the same Besov spaces as the mother
wavelet 9, i.e. those for which max (0,1/p—1/2) <s<r, 1<p,q < 0.

More fruitful and interesting is, therefore, the case 0 < 8 < 1. The
case 3 = 0 corresponds to the prior belief that all coefficients on all levels
have the same probability of being non-zero. This characterises self-similar
processes such as white noise or Brownian motion, the overall regularity
depending on the value of a. The case § = 1 assumes that the expected
number of non-zero wavelet coefficients is the same on each level which is
typical, for example, for piecewise polynomial functions (see Abramovich,
Sapatinas & Silverman, 1998a for details). In general, for the case 0 < 8 <
1, the resulting random functions are fractal (rough) (see, Wang, 1997).

Suppose that g is generated from the prior model (1.2) with hyperpa-
rameters specified by (1.3). Because of the improper nature of the prior
distribution of ¢y, we consider the prior distribution of g conditioned on
any given value for ¢g. The following theorem, proved in Abramovich, Sap-
atinas & Silverman (1998a), establishes necessary and sufficient conditions
for g to fall (with probability one) in any particular Besov space.

Theorem 1 (Abramovich, Sapatinas & Silverman, 1998a). Let 1) be a
mother wavelet that corresponds to an r-reqular multiresolution analysis.
Consider constants s, p and q such that max(0,1/p—1/2) < s < r,
1 < p,g < oo. Let the wavelet coefficients wj, of a function g obey the
prior model (1.2) with 77 = ¢127* and w; = min (1,¢,2777), where ¢1, ¢,
a>0and0<B<1.

Then g € B, , almost surely if and only if either:

s+1/2—-8/p—a/2<0, (1.7)
or:
s+1/2—8/p—a/2=0 and 0<3<1,1<p<oo, g=00. (1.8)

Remark 2.1. The result of Theorem 1 is true for all values of the Besov
space parameter ¢. This should not be surprising due to the embedding
properties of Besov spaces (see, for example, Peetre, 1975). To give some
insight on the role of ¢, Abramovich, Sapatinas & Silverman (1998a) con-
sidered a more delicate dependence of the variance 7']2 on the level j by
adding a third hyperparameter v € R : Tf = ¢,27%47, and extended the
results of Theorem 1 for this case (see their Theorem 2).

Theorem 1 essentially includes several important aspects. It shows how

prior knowledge about a function’s regularity (measured by a Besov space
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membership) can be incorporated into the prior model (1.2) for its wavelet
coeflicients by choosing the corresponding hyperparameters of their prior
distribution. It may also be seen as giving insight into the meaning of the
Besov space parameters themselves and, in a way, attempts to ‘exorcise’
these ‘devilish’ spaces for statisticians (‘besov’ is the literal Russian trans-
lation of ‘devilish’!). Finally, unlike ‘least favourable’ realizations implied
by the three-point prior (1.4), the priors (1.2) may be preferable to generate
‘typical’ functions of particular Besov spaces (see, Abramovich, Sapatinas
& Silverman, 1998a, Section 4.3) for Bayesian simulation procedures that
have become very popular in recent years.

3 Bayesian wavelet estimators

3.1 Wawvelet-based thresholding procedure

Before discussing Bayesian wavelet estimators, we review some basic as-
pects of the wavelet-based thresholding procedure. Recall that according
to the original model (1.1), the unknown response function g(¢),t € [0, 1]
corrupted by ‘white’ noise is observable at n discrete points t; = i /n:

y,-:g(ti)+ez~, 1=1,...,n,

where €; are independent and identically distributed normal variables with
zero mean and variance o2.

Given observed discrete data y = (y1,...,y»)"T, we may find the vector d
of its sample discrete wavelet coefficients by performing the discrete wavelet
transform (DWT) of y:

d =Wy,
where W is the orthogonal DWT-matrix with (jk,4) entry given by:

Vi Wik = ¥ji(i/n) = 202275 /n — k).

As usual, we assume that n = 27 for some positive integer J. Then the
DWT yields (n — 1) sample discrete wavelet coefficients djx, j =0,...,J —
1; k=0,...,27 — 1, and one sample scaling coefficient &y, which is the
sample mean gy multiplied by /n.

Both DWT and inverse DWT are performed by Mallat’s (1989) fast
algorithm that requires only O(n) operations. Due to the orthogonality of
W, the DWT of a white noise is also an array ¢, of independent N(0,0?),
S0

(ijk =djr +€, j=0,...,J -1, kIO,...,Qj -1,

where the discrete wavelet coefficients dj;, are the DWT of the vector of dis-
crete function values (g(t1),...,g(t,))" and are related to the ‘theoretical’



8 Felix Abramovich, Theofanis Sapatinas

wavelet coefficients w;r = [ g(t)i;x(t) dt by djr = \/n wjr. The \/n fac-
tor essentially arises from the difference Between continuous and discrete
orthogonality conditions. This factor cannot be avoided and, therefore, we
use different letters d;; and wj; to clarify the distinction.

As we have discussed before, wavelets allow parsimonious representation
for a wide variety of functions so it is reasonable to assume that only a few
‘large’ dj, really contain information about the unknown function g, while
the ‘small’ coefficients are attributed to the noise. The extraction of those
‘significant’ coeflicients can be naturally done by thresholding d;’s:

I = dj I(|djx| > ) (hard thresholding) (1.9)
A;-‘k = sign(djk)max(0,|cijk|—)\) (soft thresholding), (1.10)

where A > 0 is a threshold value. The hard thresholding is a ‘keep’ or ‘kill’
rule, while the soft thresholding is a ‘shrink’ or ‘kill’ rule. The resulting
coefficients d7, are then used for selective reconstruction of an estimate by
the inverse DWT:

g — WT&*

The choice of A is obviously crucial: small/large threshold values will pro-
duce estimates that tend to overfit/underfit the data. Donoho & Johnstone
(1994) proposed the universal threshold Ap; = 01/2logn. Despite the ‘triv-
iality” of such a threshold, they showed that the resulting wavelet estima-
tor is asymptotically near-minimax among all estimators within the whole
range of Besov spaces. Wang (1996) and Johnstone & Silverman (1997)
studied corresponding universal thresholds for the case of ‘coloured’ noise.
Abramovich & Silverman (1998) derived universal thresholds for wavelet
estimators based on indirect data in inverse problems. However, the uni-
versal threshold essentially ‘ignores’ the data and, hence, it is not ‘tuned’
to the specific problem at hand.

Several data-adaptive thresholding rules have been developed recently.
Donoho & Johnstone (1995) proposed the SureShrink thresholding rule
which is based on minimizing the Stein’s unbiased risk estimate (Stein,
1981). Abramovich & Benjamini (1996), Ogden & Parzen (1996a, 1996b)
considered thresholding as multiple hypotheses testing procedure. Nason
(1996), Jansen, Malfait & Bultheel (1997) adjusted the well known cross-
validation approach for choosing A.

Bayesian approaches to thresholding were recently explored by Chip-
man, Kolaczyk & McCulloch (1997), Abramovich, Sapatinas & Silverman
(1998a), Clyde & George (1998), Clyde, Pargimiani & Vidakovic (1998),
Crouse, Nowak & Baraniuk (1998), Johnstone & Silverman (1998) and Vi-
dakovic (1998) among others, and some of them will be discussed in detail
below.
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3.2 Bayesian wavelet shrinkage

In this section we discuss a Bayesian formalism that leads to different types
of wavelet shrinkage estimators.

For the discrete wavelet coefficients d;i, the corresponding prior model
will be:

dig ~miN(0,77) + (1 —7;)8(0), j=0,....,J—1; k=0,...,27 —1,
(1.11)
where the hyperparameters are of the form:

7=C12"% and m=min(1,C,27%), j=0,...,J-1, (112)

with Cl = TLCl,CQ = Cy.

Subject to the prior (1.11), the posterior distribution djk|cijk is also a
mixture of a corresponding posterior normal distribution and §(0). Letting
® be the standard normal cumulative distribution function, the posterior
cumulative distribution function F'(d;x|d;r) is:

5 1 dix — djp72 /(02 + 72 , .
F(dji | du) = Y et TGRS (S
L+ 7k o7j[\/or + T} L+ nj
(1.13)
where the posterior odds ratio for the component at zero is:
2 2 2 72
1-— M Tj to 75 djk
ik = ——— . 1.14
ik 5 o AP 7502 (17 +0?) (1.14)

Different losses lead to different Bayesian rules. The traditional Bayes
rule usually considered in the literature (see, for example, Chipman, Ko-
laczyk & McCullagh, 1997; Clyde, Pargimiani & Vidakovic, 1998; Vidakovic,
1998) corresponds to the L2-loss and yields the posterior mean. Using (1.13)
and (1.14), we then have:

! i d (1.15)
1+ ik 77 + 02 ik '

E(djk | dji) =

Obviously, such a rule is never a thresholding rule but a (nonlinear)
smoothing shrinkage. Instead, Abramovich, Sapatinas & Silverman (1998a)
suggested the use of the posterior median that corresponds to the L!-loss
and leads to a bona fide thresholding rule. To fix terminology, a shrinkage
rule shrinks wavelet coefficients towards zero, whilst a thresholding rule in
addition sets actually to zero all coefficients below a certain threshold. As
explained in Section 2.3, L!-losses on the estimated function and its deriva-
tives, corresponding to By ; norms for the function space loss, will be, for
all applicable values of s, equivalent to suitable weighted combinations of
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L'-losses on the wavelet coefficients w;x. Thus, whichever weighted com-
bination is used, the corresponding Bayes rule will be obtained by taking
the posterior median of each wavelet coefficient. By following Abramovich,
Sapatinas & Silverman (1998a), one gets the following closed form for the
posterior medians:

Med(d;, | djx) = sign(djx) max(0, (),

where:

2 .

T; 5 T;O _1 {1+ min(n;,1)

Gk = 721 >|djk| — AJ ot ( 5 J ) (1.16)
om Ty o+ 17

The quantity (;; is negative for all Cij]g in some implicitly defined interval
[<Aj, Aj], and hence Med(d;|d;x) is zero whenever |d;x| falls below the
threshold A;. The posterior median is therefore a level-dependent ‘kill’ or
‘shrink’ thresholding rule with thresholds ;.

Abramovich, Sapatinas & Silverman (1998a) called this Bayesian thresh-
olding procedure BayesThresh. Note that, unlike soft thresholding (1.10),
extent of shrinkage in BayesThresh depends on |d;;|: the larger |d;;|, the
less it is shrinked. For large djk the BayesThresh asymptotes to linear
shrinkage by a factor of 77 /(0* 4 77), since the second term in (1.16) be-
comes negligible as |d;| — o.

Remark 3.1. The universal threshold Ap; = o0+/2logn of Donoho &
Johnstone (1994) can be also obtained as a particular limiting case of
BayesThresh rule setting @ = 8 = 0 and letting C; — oo, Co — 0 as
n increases in such a way that /C;/(Cyon) — 1. Such a peculiar prior is
a direct consequence of its ‘least favourable’ nature.

Another way to obtain a bona fide thresholding rule within a Bayesian
framework is via a hypothesis testing approach (see, Vidakovic, 1998). The
idea is simple: after observing djk, test the hypothesis Hy : d; = 0 against
a two-sided alternative Hj : dji # 0. If the hypothesis Hy is rejected, dj, is
estimated by Cijk, otherwise d;; = 0. Such a procedure essentially mimics
the hard thresholding rule:

dfy, = dirI(ny < 1), (1.17)

where: ) R
njk = P(Ho | djx)/P(Hy | dji)

is the posterior odds ratio. Vidakovic (1998) called this thresholding rule
Bayes factor (BF) thresholding since the posterior odds ratio is obtained
by multiplying the Bayes factor with the prior odds ratio. Thus, a wavelet
coefficient czjk will be thresholded if the corresponding posterior odds ratio
Nk > 1 and will be kept as it is otherwise, where 7;; for our prior model
(1.11), (1.12) is given by (1.14).
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To compare BayesThresh and BF, note that BF is always a ‘keep’ or ‘kill’
hard thresholding, whilst BayesThresh is a ‘shrink’ or ‘kill’ thresholding,
where extend of shrinkage depends on the absolute values of the wavelet
coefficients. In addition, BF thresholds d;; if the corresponding 7;; > 1.

One can verify from (1.16) that BayesThresh will ‘kill’ those dAjk; whose:

Tl
o4/0? —|—Tj2

and, hence, will threshold more coefficients. Figure 1 shows the different
Bayesian rules for some choices of the hyperparameters.

ik > 1 — 2P

pi=.05, tau2=4 pi=.05, tau2=100

pi=.4, tau2=4 pi=.4, tau2=100

FIGURE 1. The posterior medians (solid lines), the posterior means (dotted lines)
and the BF (dashed lines) rules as functions of the empirical wavelet coefficients
for some choices of the hyperparameters 7 and 72, while o was fixed at 1.
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3.8 Estimation of the hyperparameters

To apply the Bayesian wavelet-based methods discussed in Section 3.2 in
practice, it is necessary first to specify the hyperparameters a, 3,C; and
Cy in (1.12). Ideally, the choice of a and § should be made from prior
knowledge about regularity properties of the unknown function making
use of the results of Theorem 1. Some practical issues for the choice of
a and B have been investigated by Abramovich, Sapatinas & Silverman
(1998a) and will be briefly discussed further in Section 3.4 below.

In what follows, we assume that o and 8 have been chosen in advance
(or they are known quantities), and estimate C; and Cy by the following
procedure in the spirit of empirical Bayes as suggested by Abramovich,
Sapatinas & Silverman (1998a).

The set of sample wavelet coeflicients czjk contains both ‘non-negligible’
coeflicients of the unknown function g and ‘negligible’ coefficients repre-
senting a random noise. Apply the universal threshold of Donoho & John-
stone (1994) A\py = o+/2logn described above in Section 3.1. Donoho &
Johnstone (1994) showed that the probability that even one negligible co-
efficient will pass the threshold value Ap; tends to zero, so essentially only
non-negligible d;; will survive after universal thresholding. Suppose that,
on level j, the number of coefficients that pass Aps is M;, and that the
values of these coefficients are x;1, ..., z;u; . Conditioning on the value M;,
the x]m, m =1,..., M;, are independent realizations from the tails of the
N(0,0%+77) dlstrlbutlon beyond the points +0+/2logn. The log likelihood
function is therefore, up to a constant:

ApJ

75,y TI 1) = = Z 10g0 +77)—log | @ | -——
§=0 \/o? +T]-2
J-1 M;
- Z 02 +77) Z 7 (1.18)
=0 m=1

Substituting Tf = C127% and Ap;y = ov/2logn, and given the values of
«a and o, we can obtain an estimate of C; by a numerical maximization of

(1.18).
The parameter Cy can be chosen by a cognate procedure. We use the
numbers My, ..., Mj_; of coefficients passing the threshold to estimate the

7. Let ¢j = 2®(—Aps/4/0? + 77), the probability conditional on dj; # 0

that dj; passes the threshold Ap;. Neglecting the possibility that any d}k
corresponding to a zero d;j, passes the threshold Ap s, the ‘imputed number’
of non-zero djj, at level j is M;/q;, and the expected value of M;/q; is
C52(1-8) Given the value of 3, a simple method of moments estimate of
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(5 based on the total imputed number of non-zero djy, is:

. o(1-p) _1 11 M;
Cy, = ‘2(1_5)J_lzq—j, if 0<8<1,
7=0
J—1
N 1 M; .
02 = j Z ?7 lf 18 = ].-
j=0 Y

Note also that if the noise level ¢ is unknown, it is usual in practice
to estimate it robustly by the median absolute deviation of the wavelet
coefficients at the finest level, dj_1 4 : k =0,1,.. .,2771 — 1, divided by
0.6745 (see, Donoho & Johnstone, 1994). Alternatively, one can adapt a
fully Bayesian approach by placing a prior on 62 and considering a hierar-
chical Bayesian model (see, for example, Clyde, Pargimiani & Vidakovic,
1998; Vidakovic, 1998).

We point out that empirical Bayes approaches (conditional maximum
likelihood, marginal maximum likelihood) for estimating the hyperparam-
eters m; and 7']-2, at each resolution level j separately, in the general form
(1.11) have been recently considered by Clyde & George (1998), Johnstone
& Silverman (1998).

3.4 Simulations

Abramovich, Sapatinas & Silverman (1998a) performed a comprehensive
simulation study to compare BayesThresh procedure with standard non-
Bayesian thresholding rules. They considered the ‘Blocks’, ‘Bumps’, ‘Heav-
isine’ and ‘Doppler’ test functions of Donoho & Johnstone (1994) that
caricature spatially variable signals arising in diverse scientific fields and
have become standard tests for wavelet estimators.

The results showed that, for various signal-to-noise ratios for all test
functions, BayesThresh compares favourably with its non-Bayesian coun-
terparts (see, Abramovich, Sapatinas & Silverman, 1998a for details). In
particular, for « = 0.5 and 8 = 1, BayesThresh outperformed all non-
Bayesian estimators in almost all cases in terms of the mean square error.
Abramovich, Sapatinas & Silverman (1998a) suggested to make it a ‘stan-
dard default’ choice for prior hyperparameters when prior knowledge about
a function’s regularity properties is difficult to elicit.

We have continued the study of Abramovich, Sapatinas & Silverman
(1998a). Using the same test functions and for the same signal-to-noise
ratios, we have compared different Bayesian wavelet procedures discussed
in Section 3.2: posterior means (1.15), posterior medians (BayesThresh)
and Bayes Factor (1.17) using the ‘standard’ choice @ = 0.5 and g = 1.
The three Bayesian methods yield quite similar results. Usually, posterior
means have a smaller mean square error, Bayes Thresh second with BF very
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close to it. All of them outperformed their non-Bayesian competitors in all
cases.

4 Stochastic expansions in an overcomplete
wavelet dictionary

4.1  From bases to dictionaries

In recent years there has been growing interest in the atomic decompo-
sition of functions in overcomplete dictionaries (see, for example, Mallat
& Zhang, 1993; Davis, Mallat & Zhang, 1994; Chen, Donoho & Saunders,
1999). Every basis is essentially only a minimal necessary dictionary needed
to represent a large variety of different functions. Such ‘miserly’ represen-
tation usually causes poor adaptivity (Mallat & Zhang, 1993). The use
of overcomplete dictionaries increases the adaptivity of the representation,
because one can choose now the most suitable one among many available.
One can see an interesting analogy with colours. Theoretically, every other
colour can be generated by combining three basic colours (green, red and
blue) in corresponding proportions. However, a painter would definitely
prefer to use the whole available palette (overcomplete dictionary) to get
the hues he needs!

In mathematical terms, an atomic decomposition of a function (signal)
g is an expression of g as a superposition of a parametric collection of
waveforms (¢¥))aea:

9(t) =D wata(t).

A€A

The collection of waveforms (¢))xca is called a dictionary, and the wave-
forms 1 are called atoms.

Here, we naturally focus on wavelet dictionaries. The atoms of a wavelet
dictionary Dy = {t¢» : A € A} with the set A of indices A = (a,b) are
translations and dilations of a single mother wavelet and are of the form:

Ua(t) = a'?Pla(t — b)), a>1, 0<b<I.

In particular, for the orthonormal wavelet dictionary A = {(27,k277), j >
0, k=0,...,27 —1}. Overcomplete wavelet dictionaries are obtained by sam-
pling indices more finely. An important example of overcomplete wavelet
dictionaries is the non-decimated (or stationary or translation-invariant)
wavelet dictionary (see, for example, Coifman & Donoho, 1995; Nason &
Silverman, 1995). Atomic decompositions in overcomplete dictionaries are
obviously nonunique and one may think about choosing the ‘best’ possible
representation among many available (see, for example, Mallat & Zhang,
1993; Davis, Mallat & Zhang, 1994; Chen, Donoho & Saunders, 1999).
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4.2 Prior model

Consider the overcomplete wavelet dictionary where the scales and dilations
of wavelet atoms 1) are not dyadic constraints any longer, but arbitrary. To
extend the prior model (1.2) for orthonormal wavelet bases, Abramovich,
Sapatinas & Silverman (1998b) modelled the set of the locations of wavelet
atoms and their magnitudes as being sampled from a certain marked Pois-
son process.

More specifically, let the set A of indices A = (a,b) be sampled from a
Poisson process S on [1,00) x [0,1] with intensity p(A). Conditional on S,
the corresponding coefficients w) are assumed to be independent normal
random variables:

wx | S ~ N(0,72(N)). (1.19)

To complete the model it is assumed that both the variance 72()) and the
intensity u(A) depend on the scale a only, and are of the form:

Pxa® and pgoxa”S, a>1, (1.20)

where 0, ¢ > 0, with § + ¢ > 0.

The intuitive basis of the proposed model is an extension of the notion
that the orthogonal wavelet series representation of an unknown function
is sparse. The parameter  controls the relative rarity of ‘fine-scale’ wavelet
atoms in the function, while the parameter § controls the size of the con-
tribution of these atoms when they appear. For example, if ¢ is small and
0 is large, there will be a considerable number of ‘fine-scale’ atoms but
these will each have fairly low contribution, so one might expect the func-
tions to be reasonably smooth and homogeneous. On the other hand, if ¢
is large and ¢ is small, there will be occasional large ‘fine-scale’ effects in
the functions.

4.8  Reqgularity properties of random functions

Consider now a random function g generated by the wavelet dictionary
(Pa)rea :
9(t) = ) waga(t), (1.21)
AEA
where the random locations A of atoms and their random magnitudes wy
obey the prior (1.19), (1.20). The following Theorem 2 proved in Abramovich,
Sapatinas & Silverman (1998b) establishes a relation between the hyper-
parameters ¢ and d of the prior and the parameters s and p of those Besov
spaces within which g will fall (with probability one), extending thus The-
orem 1 for orthonormal wavelet bases.
Note that, for ¢ > 1, the intensity u, oc a=¢ is integrable over the range
of X for which 1) has support intersecting [0, 1]. Therefore, the number of
relevant terms in the atomic decomposition (1.21) is finite almost surely
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and, hence, with probability one, g will belong to the same Besov spaces as
the mother wavelet 1), namely those for which max (0,1/p—1/2) <s <,
1<p<o,1<q< . The more interesting case is again 0 < ( < 1.

Theorem 2 (Abramovich, Sapatinas & Silverman, 1998b). Let 1 be a
compactly supported mother wavelet that corresponds to an r-regular mul-
tiresolution analysis. Consider constants s, p and q such that max (0,1/p—
1/2) < s <r, 1 < p,q < oco. Consider a function g as defined in (1.21),
with the conditional variances 72 x a~° and the intensity of the Poisson
process fi, < a~¢. Assume that 6 > 0, 0 < ¢ < 1, and that 6 + ¢ > 0.
Assume also that the wavelets are sufficiently reqular that § < 2r +2p — 1.

Then g € B, , almost surely if and only if
s+1/2-(/p—-4/2<0. (1.22)

Theorem 2 establishes a sufficient and necessary condition for realizations
to fall in a particular Besov space. It shows that the function’s smoothness
measured by the parameter s depends both on the intensity of ‘fine-scale’
atoms (via {) and their magnitudes (via §). The parameter p can be seen
as ‘discouraging inhomogeneity’, in that the larger the value of p the more
emphasis is placed on the parameter §. For large §, no matter how many
‘fine-scale’ atoms there are, they each make a relatively low contribution.
On the other hand, if p is small, then there is a trade-off where large weights
on ‘fine-scale’ atoms (small §) can be tolerated if the corresponding atoms
are relatively rare (large ().

Theorem 2 makes it possible in principle to incorporate prior knowl-
edge about a function’s regularity into a prior model for its atomic wavelet
representation. The models considered in this section show how Bayesian
ideas can be extended to a broader range of wavelet models, freed from the
dyadic positions and scales considered in the classical case. The algorith-
mic details, probably involving modern Bayesian computational methods,
have yet to be worked out in detail and are an interesting subject for fu-
ture research. The improvement to ‘standard’ wavelet methods obtained
by moving from the discrete (decimated) wavelet transform to the non-
decimated wavelet transform (see, for example, Coifman & Donoho, 1995;
Nason & Silverman, 1995; Lang et al., 1996; Johnstone & Silverman, 1997)
suggest that a Bayesian approach based on a general atomic decomposition
may result in yet better performing wavelet shrinkage estimators.
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