MODEL SELECTION IN GAUSSIAN
REGRESSION FOR HIGH-DIMENSIONAL
DATA

Felix Abramovich and Vadim Grinshtein

Abstract We consider model selection in Gaussian regression, wheraumber
of predictors might be even larger than the number of obsens The proposed
procedure is based on penalized least square criteria witihmalexity penalty on a
model size. We discuss asymptotic properties of the reg dtstimators correspond-
ing to linear and so-called( p/k)-type nonlinear penalties for nearly-orthogonal
and multicollinear designs. We show that any linear penadtynot be simulta-
neously adapted to both sparse and dense setups, viilepZk)-type penalties
achieve the wide adaptivity range. We also present Bay@siepective on the pro-
cedure that provides an additional insight and can be usadaa for obtaining a
wide class of penalized estimators associated with vagouogplexity penalties.

1 Introduction

Modern statistics encounters new challenges, where thglggns have exploded
both in size and complexity. Analysis of complex high-dirsi@mal data sets of
very large sizes requires a new look on traditional statistinethods.

Consider the standard Gaussian linear regression setup

y=XB+e, (1)

wherey € R" is a vector of the observed response variahleX,,, is the design
matrix of p explanatory variables (predictor¥), ..., Xp, B € RP is a vector of un-
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known regression coefficients~ N(0, 0°l,) and the noise variana#’ is assumed
to be known.

The number of predictorp might be very large relatively even to the amount of
available datan that causes a severe “curse of dimensionality” problem. évery
it is usually believed that only a small fraction of them hasudy relevant impact
on the response. Thus, the problem of model (or variablecteh for reduction
dimensionality in (1) becomes of fundamental importantsemain goal is to select
the “best”, parsimonious subset of predictors (model) agnén ..., Xp. For a se-
lected modeM, the corresponding coefficiens, are then typically estimated by
least squares. The definition of the “best” subset howevpem#s on the particu-
lar aim at hand. One should distinguish, for example, betvestimating regression
coefficients3, estimating the mean vect¥3, identifying non-zero coefficients and
predicting future observations. Different aims may leadifferent optimal model
selection procedures especially for the larger thann” setup. In this paper we
focus on estimating the mean veckf and the goodness of a given modilis
measured by the quadratic rigk|X By, — XB||* = |[XBwm — XB|? + a?M|, where
XBy is the projection ofX3 on the span oM andf, is the least square estimate
of By,. The bias term represents the approximation error of thiegtion, wAhiIe the
variance term is the price for estimating the projectionflicents 3, by 3,, and
is proportional to the model size. The “best” model then édhe with the minimal
quadratic risk. Note that the true underlying model in (Ina$ necessarily the best
in this sense since sometimes it is possible to reduce kyiexcluding predictors
with small (but still nonzero!) coefficients.

Since the above criterion involves the unkno@nthe corresponding ideal min-
imal risk can be rather used as a benchmark for any availabtehselection pro-
cedure. Typical model selection criterion is based onetmpirical quadratic risk
lly — XBwm||?, which is essentially the least squares. The empirical slskously
decreases as the model size grows and to avoid overfittiisgyétnalized by a com-
plexity penaltyPen(|[M|) that increases withM|. This leads to thgenalizedeast
square criterion of the form

Iy —XBy|[?+Pen(|M|) — min )

The properties of the resulting estimator depends on thpeprohoice of the
complexity penaltyPen(-) in (2). A large amount of works has studied various types
of penalties. The most commonly used choice imear type penalty of the form
Pen(k) = 202Ak for some fixedA > 0. The most known examples motivated by
a wide variety of approaches inclu@g (Mallows, 1973) and AIC (Akaike, 1974)
for A =1, BIC (Schwarz, 1978) fok = (Inn)/2 and RIC (Foster & George, 1994)
for A =Inp. On the other hand, a series of recent works suggested thallso-
2kIn(p/k)-typenonlinearcomplexity penalties of the form

Pen(k) = 202ck(In(p/k) + {pk), (3)
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wherec > 1 and{p is some “negligible” term (see, e.g., Baégk Massart, 2001,
2007; Johnstone, 2002; Abramovieh al, 2006; Bunea, Tsybakov & Wegkamp,
2007; Abramovich & Grinshtein, 2010).

In this paper we discuss the asymptotic properties of liaear XIn(p/k)-type
penalized estimators (2) as both the samplersined the number of predictogsin-
crease. We distinguish between two different types of tisegtlenearly-orthogonal
where there is no strong collinearity between predictons, raulticollinear, that
usually appears whep>> n. Interesting, that the minimax rates for estimating the
mean vector for multicollinear design are faster than tHosanearly-orthogonal
by a certain factor depending on the design properties. Sygtitenomenon can be
explained by a possibility of exploiting strong correlasobetween predictors to
reduce the model size without paying much extra price in ths.b

We show that even for nearly-orthogonal design any lineaalte cannot be
simultaneously optimal (in the minimax sense) for both spand dense cases. On
the contrary, the Rn(p/k)-types penalties achieve the widest possible adaptivity
range. Moreover, under some additional assumptions onesigml and regression
coefficients vector, they remain asymptotically optimaltfee multicollinear design
as well.

We also describe a Bayesian interpretation of penalizeéchatirs (2) developed
in Abramovich & Grinshtein (2010) for a general case and lfer ¢tonsidered two
types of penalties in particular. Bayesian approach pes/ah additional insight in
these estimators and can be also used as a tool for obtainiiig &lass of penalized
estimators with various complexity penalties.

The paper is organized as follows. The notations, defirstenmd some prelimi-
nary results are given in Section 2, where, in particularpvesent the (nonasymp-
totic) minimax lower bound for the risk of estimating the msavectorX in
(1). The asymptotic minimax properties of penalized ediimsa(2) for nearly-
orthogonal and multicollinear designs are investigatexgpeetively in Sections 3
and 4. Section 5 presents a Bayesian perspective on (2). S8amekiding remarks
are given in Section 6.

2 Preamble

Consider the general linear regression setup (1), whereuhwber of possible pre-
dictorsp may be even larger then the number of observatiohetr = rank(X)(<
min(p,n)) and assume that amycolumns ofX are linearly independent. For the
“standard” linear regression setup, wherempredictors are linearly independent
and there are at leaptlinearly independent design points= p.

Any modelM is uniquely defined by the x p diagonal indicator matrioy =
diag(dw), wheredjy = I{X; € M} and, thereforgM| =tr(Dy ). For a giverM, the
least square estimate of its coefficientsﬁ'ﬁ = (DmX'XDp)TDmX'y, where “+”
denotes the generalized inverse matrix.
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For a fixedpog, define the sets of model#),, that have at mogto predictors, that
iS, M p, = {M : M| < po}. Obviously, if a true model in (1) belongs &, then
[IBllo < po, where thd quasi-norm of the coefficients vectfris defined as the
number of its nonzero entries. We consiggK r since otherwise, there necessarily
exists another vectgd* such that|3*||o < r andX = XB".

Within the minimax framework, the performance of a penaiieetimatqb([?,g,
of the unknown mean vect{ in (1) corresponding to the selected molteivith
respectto (2) over#p, is measured by its worst-case quadratic riSkﬁs-HﬁHoﬁpo El|IXBy —

XB||?. Itis then compared to the minimax risk — the best attainalest-case risk
among all possible estimatoiR(.#p,) = infy SURB.| B/16<po El|y — X8|

We present first the following result of Abramovich & Grinsint (2010) for the
lower bound for the minimax risR(.#y, ).

For any givenk = 1,...r, let @nin[k] and @gnaxk] be thek-sparse minimal and
maximal eigenvalues of the design defined as

o Ixp|

ink: 3
il = o o 1812
] = xpI*

max
B:a<|Bllo<k |IBI?

In fact, @gninlk] and@naxk] are respectively the minimal and maximal eigenvalues of
all k x k submatrices of the matrix’X generated by anlycolumns ofX. Let 7[k] =
@in[K]/ @naxK], k=1, ...,r. By the definition,r[K] is a non-increasing function &f
Obviously,t[k] < 1 and for the orthogonal design the equality holds fokall

Theorem 1. (Abramovich& Grinshtein, 2010). Consider the model (1) andlet
po < r. There exists a universal constantC0 such that

C20%1[2po] Po(In(p/po) +1) , L < po<r/2

C202T[po) T r/2<po<rt “)

Rictm) > {
Note that the minimax lower bound (4) depends on a designixnétonly through
its sparse eigenvalues ratios. Computationally simpléddas accurate minimax
lower bound can be obtained by replacii@po] and t[po] in (4) by 1]r], that for
the case = p < nis just the ratio of the minimal and maximal eigenvalueXof.

Consider now the asymptotics as the samplesinereases. We alloyw = p, to
increase witm as well in such a way thattends to infinity and look for a projection
of the unknown mean vector on an expanding span of predidtotke “classical”
regression setum, = o(n), while in the “modern” onep, may be larger than or
evenpy > n.

In such asymptotic setting one should essentially considequencef design
matricesXn p,, Wherer, — oo, For simplicity of exposition, in what follows the
index n is omitted andX, ,, will be denoted byX, emphasizing the dependence
on the number of predictons whenr tend to infinity. Similarly, we consider now
sequences of corresponding coefficients vegBoysin these notations, the original
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model (1) is transformed into a sequence of models

y=XpBp e, ()

whererank(X) =r and anyr columns ofX are linearly independent (henag]r] >
0), £ ~ N(0, 0?l,) and the noise varianag® does not depend amandp.

The minimax lower bound (4) indicates that depending on Hyamgtotic be-
havior of the sparse eigenvalues ratios, one should disshgbetween nearly-
orthogonal and multicollinear designs:

Definition 1. Consider the sequence of design matrigs The design is called
nearly-orthogonal if the corresponding sequence of speiganvalues ratios,|r]

is bounded away from zero by some constat0. Otherwise, the design is called
multicollinear.

Nearly-orthogonality assumption essentially means thettet is no collinearity in
the design in the sense that there are no “too strong” lirationships within any
set ofr columns ofX,. It is intuitively clear that it can happen only wheris not
“too large” relative tar (and hence tm), while for thepy, > n setup, multicollinear-
ity between predictors is inherent. Indeed, Abramovich é&n&tein (2010) showed
that for nearly-orthogonal design necessapily¢ O(r) and, theforep = O(n).

In what follows we consider separately the two types of thagieand investi-
gate the asymptotic optimality (in the minimax sense) ofdinand RIn(p/k)-type
penalties.

3 Nearly-orthogonal design

From the definition of nearly-orthogonal design it followsit there exists a constant
c> 0 such that < 1p[r] <... < 1p[1] = 1. In addition, as we have mentioned in the
previous Section 2, for this type of design= O(r) and, therefore, the minimax
lower bound (4) over#,, in this case is essentially of the ordey(In(p/po) + 1)
forall pp=1,...,r.

We start from linear penalties, whePen(k) = 202Ak. Foster & George (1994)
and Birge & Massart (2001, Section 5.2) showed that the best possikief cor-
responding penalized estimators ovef,, is of the ordera?pgln p achieved for
Ap = (1+4+9)Inp, & > 0 corresponding to the RIC criterion. This risk is of the
same order apo(In(p/po) + 1) in the minimax lower bound (4) whepy = O(r%)
for some O< a < 1 (sparse cases), but higher than the latter for the denss,cas
wherepg ~ r. On the other hand, it is the AIC estimatd,(= 1) with the risk of
the ordero?p, that is asymptotically similar to (4) for dense but muchHeigfor
sparse cases. In other words, no penalized estimator (B)aninear penalty can
be simultaneously rate-optimal for both sparse and dersescélote that a linear
penaltyPen(k) = 202k yields theconstantper predictor price @2A, that cannot
be adapted to both cases.
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Fig. 1 Various penalties: AIC (dotted line), RIC (dashed line) ak@r p/k) + 1) (solid line).

On the other hand, the nonlinear penalties of thin@/k)-type imply different
per predictor price: higher for small models but decreaamthe model size grows.
In fact, such type of penalty behaves like RIC for sparse al@i far dense cases
(see Figure 1). As we shall show, it allows the correspondstgnators to achieve
the widest adaptivity range.

Consider a generakh(p/k)-type penalty (3), where > 1. From the results of
Birgé & Massart (2001, 2007) and Abramovich & Grinshtein (2010)the corre-
sponding penalized estimators (2) it follows that for anyg o <,

sup  E|XBy; —XBI[? < Co?po(In(p/po) +1) (6)
B:11Bllo<po

for someC > 0. Comparing the risk upper bound (6) with the minimax loweund
implies the following Corollary:

Corollary 1. Let the design be nearly-orthogonal. Consider the pendlizast
square estimation (2) with akin(p/k)-type complexity penalty (3), wherexcl.
Then, as r— oo, the corresponding penalized estimator attains the miriownver-
gence rates simultaneously over a#p,, po=1,...,1.
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Furthermore, for sparse cases Bi§ Massart (2007) showed that for< 1 in
(3), the risk of the corresponding penalized estimator ishrarger than that in (6).
The valuec = 1 for the XIn(p/k)-type penalty (3) is, therefore, a borderline. For
the orthogonaldesign and various sparse settings, Abramowithl. (2006) and
Wu & Zhou (2009) proved that = 1 yields evensharp (with an exact constant)
asymptotic minimaxity. However, to the best of our knowledig is not clear what
happens for the choice= 1 in a general case. R R

Finally, note that for the nearly-orthogonal desigiX,3 oM —Xpo|| = ||/3pM -
Byll, where “<” means that their ratio is bounded from below and above. &her
fore, all the results of this section for estimating the meeactorX,f,, in (5) can be
straightforwardly applied for estimating the regressioefticientsf . This equiv-
alence, however, does not hold for the multicollinear designsidered below.

4 Multicollinear design

Recall that nearly-orthogonality assumption necessamlglies p = O(n). Thus,
it may be reasonable in the “classical” setup, whpris not too large relatively
to n but is questionable for the analysis of high-dimensionahdavherep > n.
In this section we investigate the performance bfh2p/k)-type penalties for the
multicollinear design.

When nearly-orthogonality does not hold, the sparse eideesaatios in (4)
may tend to zero ap increases and, thus, decrease the minimax lower bound rate
relatively to the nearly-orthogonal design. In this caserehis a gap between the
rates in the lower and upper bounds (4) and (6). Intuitivetiyong correlations be-
tween predictors can be exploited to diminish the size of dehfhence, to decrease
the variance) without paying much extra price in the biasl, simerefore, to reduce
the overall risk. It turns out that under certain additioasgumptions on the design
and the regression coefficients vector in (5) given below,uhper risk bound (6)
of the XIn(p/k)-type estimator can be indeed reduced to the minimax lowendo
rate (4). Under these conditiongI8( p/k)-type penalized estimator, therefore, re-
mains asymptotically rate-optimal even for the multiawdiar design.

For simplicity of exposition we considexp < r/2 although the results faor/2 <
po < r can be obtained in a similar way with necessary changes.rticpiar, for
the latter case one should slightly modify tHdr® p/k)-type penalty fok =r to be
of the formPer(r) ~ 2a?cr for somec > 0 (Abramovich & Grinshtein, 2010). Note
that for the nearly-orthogonal design, whese= O(r), 2kIn(p/k)-type penalties
automatically imply this condition oRen(r).

For any modeM of sizek <r /2 letXy be then x k submatrixXy containing the
corresponding columns ofX,,. Consider the matrixX;,Xw)~* and the maximum
of minimal eigenvalueggnin[(X{,Xw) m of all its symmetric| k(1 — 1p[2K]) | x
|k(1— 1p[2K])] submatrices corresponding to various submodi#ls- M of size
[K(1— 1p[2K]) |. Defined[K] = minm gin[(X;Xm) . that is,
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- i ' / -1
wlk = min, Wi Pnin[ (X Xaa) ™

IM'] = [k(1—wyp[K])]

It can be shown (Abramovich & Grinshtein, 2010) tkfgtl[k] measures an error of
approximating mean vector§,3 ,, where||B,,||o = k, by their projections on lower
dimensional subspans of predictors. The stronger is nolliiearity, the better is
the approximation and the Iarger§§[k].

The following theorem is a consequence of Theorem 5 of Abxécho% Grin-
shtein (2010):

Theorem 2.Let 15[r] — 0 as r — o (multicollinear design). Assume the following
additional assumptions on the design matrixatid the (unknown) vector of coeffi-
cientsf3, in (5):

D) forall p there existl < Kp1 < Kp2 < r/2 such that
p p

1. 61§Tp[2k]k§ k_1,~k:Kpl,...,Kp2
2. Tp[2kp2] > Esz/(pe))CZ

(B)  [IBpl13 < aTp[2po] - @[po] - (IN(p/po) +1), where p = ||B,|lo
for some positive constangs, &, €3 and&;,.

Then, the penalized least square estimator (2) wigla( p/k)-type complexity
penalty (3), where & 1, is asymptotically simultaneously minimax (up to a contstan
multiplier) over all.Zp,, Kp1 < po < Kp2.

Generally, Assumptions (D.1, D.2) and Assumption (B) allmve to reduce the
upper bound (6) for the risk of thekth(p/k)-type estimator by the factai[2po],
while Assumption (D.3) is required to guarantee that thetamtdhl constraint on
By in Assumption (B) does not affect the lower bound (4). We haentioned
that multicollinearity typically arises whep > n. One can easily verify that for
n=0(p?), 0 < a < 1, Assumption (D.2) always follows from Assumption (D.1)
and, therefore, can be omitted in this case.

5 Bayesian perspective

In this section we discuss the Bayesian approach to modettsmt in the Gaus-
sian regression model (1) proposed by Abramovich & Gririah(010). Bayesian
framework naturally interpretates the penalized leasasgjastimation (2) by treat-
ing the penalty term as proportional to the logarithm of ampdistribution on the
model size. Minimization of (2) corresponds then to the mmaxh a posteriori
(MAP) rule. Choosing different types of a prior, the resujtiBayesian MAP es-
timator can imply various complexity penalties, linear &hdh(p/k)-type penal-
ties in particular, that gives an additional insight in naation behind such types of
penalties.



Model selection in Gaussian regression for high-dimensional data 9

Consider the model (1), where the number of possible prediptmay be larger
then the number of observationsRecall thatr = rank(X) and we assume that any
r columns ofX are linearly independent.

Assume some prior on the model sizék) = P(|M| = k) , whererr(k) > 0, k=
0,...,r and (k) = O for k > r since the model becomes nonidentifiable when the
number of its parameters is larger than the number of obsemsx(see Section 2).

For anyk =0,...,r — 1, assume al(}) various models of siz& to be equally
likely, that is, conditionally ofiM| = k,

P(M||M|:k):<£)_l

The cas&k = r = rank(X) is slightly different. Although there ar(q‘?) various sets
of predictors of size, all of them evidently result in the same estimator for the
mean vector and, in this sense, are essentially undisthghle and associated with
asingle(saturated) model. Hence, in this case, we set

PM|M|=r)=1 ©)

Finally, assume the normal prior on the unknown vectok @oefficients of the
modelM: By ~ Np(0, yo?(DmX'XDy) ™), wherey > 0 and the diagonal indicator
matrix Dy was defined in Section 2. This is a well-known conventiapatior of
Zellner (1986).

For the proposed hierarchical prior, a straightforwarduwlais yields the posterior
probability of a modeM of size|M| =0,....,r —1:

- M ! / + /
P(MIV)D"(IM)<p> (1+y) 2 { y_Y'XDw(DmX"XDw) DMXY}

M s b 252
(8)

Finding the most likely model leads then to the following MA#Rbdel selection
criterion:

-1
y’XDM (DMX’XDM)+DMX/y+202(1+1/y) In { <|\F/)||> (M) (1+ y)_‘MT‘ } — mMax
or, equivalently,

||y—xﬁM||2+2az<1+1/v>ln{(hj')n(wl>1<1+v>“2”}emMin, ©)

which is of the general type (2) with the complexity penalty
Penk) = 20%(1+1/y)In { (E) (k) ~1(1+ y)'§< } , k=0,..,r—1 (10)

Similarly, for [M| =r from (7) one has
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Pen(r) = 20%(1+ 1/y)|n{n(r)‘1(1+ y)5} (11)

In particular, the (truncated b > r) binomial priorB(p, &) corresponds to the
prior assumption that the indicataig, are independent. The binomial prior yields
the linear penaltyenk) = 20%(1+ 1/y)kin(y/ I+ y(1—&)/&) ~ 20%kIn(/y(1—
&)/&), k=1,...,r — 1 for sufficiently large variance ratip The AIC criterion cor-
responds then t§ ~ ,/y/(e+./y), while & ~ ,/y/(p+./y) leads to the RIC cri-
terion. These relations again confirm our previous argusienection 3 that RIC
should be appropriate for sparse cases, where the size wiith@inknown) model
is believed to be much less than the number of possible pgoedjovhile AIC is
suitable for dense cases, where they are of the same ordgebiAomial prior or,
equivalently, any linear penalty cannot “kill two birds tvibne stone”.

On the other hand, there is a class of priors associated wihXIn(p/k)-
type penalties. In particular, the (truncated) geometistrithution 7r(k) O g, k =
1,...,r yields Per(k) ~ 26%(1+ 1/y)k(In(p/kK) + Z(y,q)), k=1,....,r — 1, where
we used thakIn(p/k) < In((f)) < k(In(p/k) + 1) (see Lemma 1 of Abramovich
et al, 2010). In addition, (11) implie®en(r) = 2g2c(q, y)r for some constant
c(q,y) > 1 that goes along the lines with the remark on the requirermefer(r)
for 2kIn(p/k)-type penalties in Section 4.

The Bayesian interpretation of the complexity penalizedhesgors can be also
exploited for their computations. Generally, minimizing) fequires an NP-hard
combinatorial search over all possible models. To make coatipns for high-
dimensional data feasible in practice, one typically sgpkither various greedy
algorithms (e.g., forward selection) approximating thebgll solution in (2) by a
stepwise sequence of local ones, or convex relaxation mietfgog., Lasso (Tibshi-
rani, 1996) and Dantzig selector (Cd&sd& Tao, 2007) for linear penalties) replac-
ing the original combinatorial problem by a related convesgpam. The proposed
Bayesian approach allows one instead to use the Gibbs satom@éiciently gen-
erate a sequence of models from the posterior distribiRidv|y) in (8) (see, e.g.
George & McCullooch, 1993 for more detail). The key pointhsttthe relevant
models with highest posterior probabilities will appearstivequently and can be
easily identified even for a generated sample of a relatiseigll length.

6 Concluding remarks

In this paper we considered model selection in Gaussiaaidiregression for high-
dimensional data, where the number of possible predictassbe even larger than
the number of available observations. The procedure isdbaseminimizing pe-
nalized least squares with a penalty on a model size. We sisduasymptotic
properties of the resulting estimators corresponding fferdint types of penalties.
Bayesian interpretation allows one to better understaadhtinition behind various
penalties and provides a natural tool for obtaining a wids<sbf estimators of this
type.
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We showed that any linear penalty, including widely used Alg, BIC and
RIC, cannot be simultaneously minimax for both sparse andeleases. More-
over, the same conclusions are valid for the well-known ag3#bshirani, 1996)
and Dantzig (Cangs & Tao, 2007) estimators that for the optimally chosen tun-
ing parameter, under nearly-orthogonality conditionsilsinto those considered in
this paper, can achieve only the same sub-optimal pgbep as RIC (Bickel, Ri-
tov & Tsybakov, 2009). These results are, in fact, shouldb®surprising since
both Lasso and Dantzig estimators are essentially basedrmmex relaxations of
M| = ||Bmllo in the linear complexity penalty in (2) in order to replace triginal
combinatorial problem by a convex program (see also remartkee conclusion of
Section 5). Thus, Lasso approximates ligg@orm||By,||o by the the corresponding
I1-norm||By]1. On the other hand, the nonlinedc(p/k)-type penalty adapts to
both sparse and dense cases.

It is also interesting to note that, unlike model identificator coefficients esti-
mation problems, where multicollinearity is a “curse”, iagnbecome a “blessing”
for estimating the mean vector. One can exploit strong tatioms between predic-
tors to reduce the size of a model (hence, to decrease tramuajiwithout paying
much extra price in the bias.
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