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Abstract We consider model selection in Gaussian regression, where the number
of predictors might be even larger than the number of observations. The proposed
procedure is based on penalized least square criteria with acomplexity penalty on a
model size. We discuss asymptotic properties of the resulting estimators correspond-
ing to linear and so-called 2k ln(p/k)-type nonlinear penalties for nearly-orthogonal
and multicollinear designs. We show that any linear penaltycannot be simulta-
neously adapted to both sparse and dense setups, while 2k ln(p/k)-type penalties
achieve the wide adaptivity range. We also present Bayesianperspective on the pro-
cedure that provides an additional insight and can be used asa tool for obtaining a
wide class of penalized estimators associated with variouscomplexity penalties.

1 Introduction

Modern statistics encounters new challenges, where the problems have exploded
both in size and complexity. Analysis of complex high-dimensional data sets of
very large sizes requires a new look on traditional statistical methods.

Consider the standard Gaussian linear regression setup

y = Xβ + ε, (1)

wherey ∈ R
n is a vector of the observed response variableY, Xn×p is the design

matrix of p explanatory variables (predictors)X1, ...,Xp, β ∈ R
p is a vector of un-
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known regression coefficients,ε ∼ N(0,σ2In) and the noise varianceσ2 is assumed
to be known.

The number of predictorsp might be very large relatively even to the amount of
available datan that causes a severe “curse of dimensionality” problem. However,
it is usually believed that only a small fraction of them has atruly relevant impact
on the response. Thus, the problem of model (or variable) selection for reduction
dimensionality in (1) becomes of fundamental importance. Its main goal is to select
the “best”, parsimonious subset of predictors (model) among X1, ...,Xp. For a se-
lected modelM, the corresponding coefficientsβ M are then typically estimated by
least squares. The definition of the “best” subset however depends on the particu-
lar aim at hand. One should distinguish, for example, between estimating regression
coefficientsβ , estimating the mean vectorXβ , identifying non-zero coefficients and
predicting future observations. Different aims may lead todifferent optimal model
selection procedures especially for the “p larger thann” setup. In this paper we
focus on estimating the mean vectorXβ and the goodness of a given modelM is
measured by the quadratic riskE||Xβ̂ M −Xβ ||2 = ||Xβ M −Xβ ||2 + σ2|M|, where
Xβ M is the projection ofXβ on the span ofM andβ̂ M is the least square estimate
of β M. The bias term represents the approximation error of the projection, while the
variance term is the price for estimating the projection coefficientsβ M by β̂ M and
is proportional to the model size. The “best” model then is the one with the minimal
quadratic risk. Note that the true underlying model in (1) isnot necessarily the best
in this sense since sometimes it is possible to reduce its risk by excluding predictors
with small (but still nonzero!) coefficients.

Since the above criterion involves the unknownβ , the corresponding ideal min-
imal risk can be rather used as a benchmark for any available model selection pro-
cedure. Typical model selection criterion is based on theempirical quadratic risk
||y−Xβ̂ M||2, which is essentially the least squares. The empirical riskobviously
decreases as the model size grows and to avoid overfitting, itis penalized by a com-
plexity penaltyPen(|M|) that increases with|M|. This leads to thepenalizedleast
square criterion of the form

||y−Xβ̂ M||2 +Pen(|M|) → min
M

(2)

The properties of the resulting estimator depends on the proper choice of the
complexity penaltyPen(·) in (2). A large amount of works has studied various types
of penalties. The most commonly used choice is alinear type penalty of the form
Pen(k) = 2σ2λk for some fixedλ > 0. The most known examples motivated by
a wide variety of approaches includeCp (Mallows, 1973) and AIC (Akaike, 1974)
for λ = 1, BIC (Schwarz, 1978) forλ = (lnn)/2 and RIC (Foster & George, 1994)
for λ = ln p. On the other hand, a series of recent works suggested the so-called
2k ln(p/k)-typenonlinearcomplexity penalties of the form

Pen(k) = 2σ2ck(ln(p/k)+ζp,k), (3)
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wherec > 1 andζp,k is some “negligible” term (see, e.g., Birgé & Massart, 2001,
2007; Johnstone, 2002; Abramovichet al., 2006; Bunea, Tsybakov & Wegkamp,
2007; Abramovich & Grinshtein, 2010).

In this paper we discuss the asymptotic properties of linearand 2k ln(p/k)-type
penalized estimators (2) as both the sample sizen and the number of predictorsp in-
crease. We distinguish between two different types of the design:nearly-orthogonal,
where there is no strong collinearity between predictors, and multicollinear, that
usually appears whenp≫ n. Interesting, that the minimax rates for estimating the
mean vector for multicollinear design are faster than thosefor nearly-orthogonal
by a certain factor depending on the design properties. Sucha phenomenon can be
explained by a possibility of exploiting strong correlations between predictors to
reduce the model size without paying much extra price in the bias.

We show that even for nearly-orthogonal design any linear penalty cannot be
simultaneously optimal (in the minimax sense) for both sparse and dense cases. On
the contrary, the 2k ln(p/k)-types penalties achieve the widest possible adaptivity
range. Moreover, under some additional assumptions on the design and regression
coefficients vector, they remain asymptotically optimal for the multicollinear design
as well.

We also describe a Bayesian interpretation of penalized estimators (2) developed
in Abramovich & Grinshtein (2010) for a general case and for the considered two
types of penalties in particular. Bayesian approach provides an additional insight in
these estimators and can be also used as a tool for obtaining awide class of penalized
estimators with various complexity penalties.

The paper is organized as follows. The notations, definitions and some prelimi-
nary results are given in Section 2, where, in particular, wepresent the (nonasymp-
totic) minimax lower bound for the risk of estimating the means vectorXβ in
(1). The asymptotic minimax properties of penalized estimators (2) for nearly-
orthogonal and multicollinear designs are investigated respectively in Sections 3
and 4. Section 5 presents a Bayesian perspective on (2). Someconcluding remarks
are given in Section 6.

2 Preamble

Consider the general linear regression setup (1), where thenumber of possible pre-
dictorsp may be even larger then the number of observationsn. Let r = rank(X)(≤
min(p,n)) and assume that anyr columns ofX are linearly independent. For the
“standard” linear regression setup, where allp predictors are linearly independent
and there are at leastp linearly independent design points,r = p.

Any modelM is uniquely defined by thep× p diagonal indicator matrixDM =
diag(dM), whered jM = I{Xj ∈M} and, therefore,|M|= tr(DM). For a givenM, the
least square estimate of its coefficients isβ̂ M = (DMX′XDM)+DMX′y, where “+”
denotes the generalized inverse matrix.
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For a fixedp0, define the sets of modelsMp0 that have at mostp0 predictors, that
is, Mp0 = {M : |M| ≤ p0}. Obviously, if a true model in (1) belongs toMp0, then
||β ||0 ≤ p0, where thel0 quasi-norm of the coefficients vectorβ is defined as the
number of its nonzero entries. We considerp0 ≤ r since otherwise, there necessarily
exists another vectorβ ∗ such that||β ∗||0 ≤ r andXβ = Xβ ∗.

Within the minimax framework, the performance of a penalized estimatorXβ̂ M̂
of the unknown mean vectorXβ in (1) corresponding to the selected modelM̂ with
respect to (2) overMp0 is measured by its worst-case quadratic risk supβ :||β ||0≤p0

E||Xβ̂ M̂−
Xβ ||2. It is then compared to the minimax risk – the best attainableworst-case risk
among all possible estimators,R(Mp0) = infŷ supβ :||β ||0≤p0

E||ŷ−Xβ ||2.

We present first the following result of Abramovich & Grinshtein (2010) for the
lower bound for the minimax riskR(Mp0).

For any givenk = 1, ..., r, let φmin[k] and φmax[k] be thek-sparse minimal and
maximal eigenvalues of the design defined as

φmin[k] = min
β :1≤||β ||0≤k

||Xβ ||2
||β ||2 ,

φmax[k] = max
β :1≤||β ||0≤k

||Xβ ||2
||β ||2

In fact,φmin[k] andφmax[k] are respectively the minimal and maximal eigenvalues of
all k×k submatrices of the matrixX′X generated by anyk columns ofX. Let τ[k] =
φmin[k]/φmax[k], k = 1, ..., r. By the definition,τ[k] is a non-increasing function ofk.
Obviously,τ[k] ≤ 1 and for the orthogonal design the equality holds for allk.

Theorem 1. (Abramovich& Grinshtein, 2010). Consider the model (1) and let1≤
p0 ≤ r. There exists a universal constant C> 0 such that

R(Mp0) ≥
{

C2σ2τ[2p0] p0(ln(p/p0)+1) , 1≤ p0 ≤ r/2
C2σ2τ[p0] r , r/2≤ p0 ≤ r

(4)

Note that the minimax lower bound (4) depends on a design matrix X only through
its sparse eigenvalues ratios. Computationally simpler but less accurate minimax
lower bound can be obtained by replacingτ[2p0] andτ[p0] in (4) by τ[r], that for
the caser = p≤ n is just the ratio of the minimal and maximal eigenvalues ofX′X.

Consider now the asymptotics as the sample sizen increases. We allowp= pn to
increase withn as well in such a way thatr tends to infinity and look for a projection
of the unknown mean vector on an expanding span of predictors. In the “classical”
regression setup,pn = o(n), while in the “modern” one,pn may be larger thann or
evenpn ≫ n.

In such asymptotic setting one should essentially considera sequenceof design
matricesXn,pn, where rn → ∞. For simplicity of exposition, in what follows the
index n is omitted andXn,pn will be denoted byXp emphasizing the dependence
on the number of predictorsp whenr tend to infinity. Similarly, we consider now
sequences of corresponding coefficients vectorsβ p. In these notations, the original
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model (1) is transformed into a sequence of models

y = Xpβ p + ε, (5)

whererank(X) = r and anyr columns ofX are linearly independent (hence,τp[r] >
0), ε ∼ N(0,σ2In) and the noise varianceσ2 does not depend onn andp.

The minimax lower bound (4) indicates that depending on the asymptotic be-
havior of the sparse eigenvalues ratios, one should distinguish between nearly-
orthogonal and multicollinear designs:

Definition 1. Consider the sequence of design matricesXp. The design is called
nearly-orthogonal if the corresponding sequence of sparseeigenvalues ratiosτp[r]
is bounded away from zero by some constantc > 0. Otherwise, the design is called
multicollinear.

Nearly-orthogonality assumption essentially means that there is no collinearity in
the design in the sense that there are no “too strong” linear relationships within any
set ofr columns ofXp. It is intuitively clear that it can happen only whenp is not
“too large” relative tor (and hence ton), while for thepn ≫ n setup, multicollinear-
ity between predictors is inherent. Indeed, Abramovich & Grinshtein (2010) showed
that for nearly-orthogonal design necessarilyp = O(r) and, thefore,p = O(n).

In what follows we consider separately the two types of the design and investi-
gate the asymptotic optimality (in the minimax sense) of linear and 2k ln(p/k)-type
penalties.

3 Nearly-orthogonal design

From the definition of nearly-orthogonal design it follows that there exists a constant
c > 0 such thatc≤ τp[r] ≤ ... ≤ τp[1] = 1. In addition, as we have mentioned in the
previous Section 2, for this type of designp = O(r) and, therefore, the minimax
lower bound (4) overMp0 in this case is essentially of the orderp0(ln(p/p0)+1)
for all p0 = 1, ..., r.

We start from linear penalties, wherePen(k) = 2σ2λpk. Foster & George (1994)
and Birǵe & Massart (2001, Section 5.2) showed that the best possiblerisk of cor-
responding penalized estimators overMp0 is of the orderσ2p0 ln p achieved for
λp = (1+ δ ) ln p, δ > 0 corresponding to the RIC criterion. This risk is of the
same order asp0(ln(p/p0)+1) in the minimax lower bound (4) whenp0 = O(rα)
for some 0< α < 1 (sparse cases), but higher than the latter for the dense cases,
wherep0 ∼ r. On the other hand, it is the AIC estimator (λp = 1) with the risk of
the orderσ2p, that is asymptotically similar to (4) for dense but much higher for
sparse cases. In other words, no penalized estimator (2) with a linear penalty can
be simultaneously rate-optimal for both sparse and dense cases. Note that a linear
penaltyPen(k) = 2σ2λpk yields theconstantper predictor price 2σ2λp that cannot
be adapted to both cases.
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Fig. 1 Various penalties: AIC (dotted line), RIC (dashed line) and 2k(ln(p/k)+1) (solid line).

On the other hand, the nonlinear penalties of the 2k ln(p/k)-type implydifferent
per predictor price: higher for small models but decreasingas the model size grows.
In fact, such type of penalty behaves like RIC for sparse and AIC for dense cases
(see Figure 1). As we shall show, it allows the correspondingestimators to achieve
the widest adaptivity range.

Consider a general 2k ln(p/k)-type penalty (3), wherec > 1. From the results of
Birgé & Massart (2001, 2007) and Abramovich & Grinshtein (2010) for the corre-
sponding penalized estimators (2) it follows that for any 1≤ p0 ≤ r,

sup
β :||β ||0≤p0

E||Xβ̂ M̂ −Xβ ||2 ≤Cσ2p0(ln(p/p0)+1) (6)

for someC > 0. Comparing the risk upper bound (6) with the minimax lower bound
implies the following Corollary:

Corollary 1. Let the design be nearly-orthogonal. Consider the penalized least
square estimation (2) with a2k ln(p/k)-type complexity penalty (3), where c> 1.
Then, as r→ ∞, the corresponding penalized estimator attains the minimax conver-
gence rates simultaneously over allMp0, p0 = 1, ..., r.
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Furthermore, for sparse cases Birgé & Massart (2007) showed that forc < 1 in
(3), the risk of the corresponding penalized estimator is much larger than that in (6).
The valuec = 1 for the 2k ln(p/k)-type penalty (3) is, therefore, a borderline. For
the orthogonaldesign and various sparse settings, Abramovichet al. (2006) and
Wu & Zhou (2009) proved thatc = 1 yields evensharp (with an exact constant)
asymptotic minimaxity. However, to the best of our knowledge, it is not clear what
happens for the choicec = 1 in a general case.

Finally, note that for the nearly-orthogonal design,||Xpβ̂ pM̂ −Xpβ p|| ≍ ||β̂ pM̂ −
β p||, where “≍” means that their ratio is bounded from below and above. There-
fore, all the results of this section for estimating the meanvectorXpβ p in (5) can be
straightforwardly applied for estimating the regression coefficientsβ p. This equiv-
alence, however, does not hold for the multicollinear design considered below.

4 Multicollinear design

Recall that nearly-orthogonality assumption necessarilyimplies p = O(n). Thus,
it may be reasonable in the “classical” setup, wherep is not too large relatively
to n but is questionable for the analysis of high-dimensional data, wherep ≫ n.
In this section we investigate the performance of 2k ln(p/k)-type penalties for the
multicollinear design.

When nearly-orthogonality does not hold, the sparse eigenvalues ratios in (4)
may tend to zero asp increases and, thus, decrease the minimax lower bound rate
relatively to the nearly-orthogonal design. In this case there is a gap between the
rates in the lower and upper bounds (4) and (6). Intuitively,strong correlations be-
tween predictors can be exploited to diminish the size of a model (hence, to decrease
the variance) without paying much extra price in the bias, and, therefore, to reduce
the overall risk. It turns out that under certain additionalassumptions on the design
and the regression coefficients vector in (5) given below, the upper risk bound (6)
of the 2k ln(p/k)-type estimator can be indeed reduced to the minimax lower bound
rate (4). Under these conditions, 2k ln(p/k)-type penalized estimator, therefore, re-
mains asymptotically rate-optimal even for the multicollinear design.

For simplicity of exposition we considerp0 ≤ r/2 although the results forr/2≤
p0 ≤ r can be obtained in a similar way with necessary changes. In particular, for
the latter case one should slightly modify the 2k ln(p/k)-type penalty fork = r to be
of the formPen(r)∼ 2σ2cr for somec> 0 (Abramovich & Grinshtein, 2010). Note
that for the nearly-orthogonal design, wherep = O(r), 2k ln(p/k)-type penalties
automatically imply this condition onPen(r).

For any modelM of sizek≤ r/2 letXM be then×k submatrixXM containing the
correspondingk columns ofXp. Consider the matrix(X′

MXM)−1 and the maximum
of minimal eigenvaluesφmin[(X′

MXM)−1]M′ of all its symmetric⌊k(1− τp[2k])⌋×
⌊k(1− τp[2k])⌋ submatrices corresponding to various submodelsM′ ⊂ M of size
⌊k(1− τp[2k])⌋. Defineφ̃p[k] = minM φmin[(X′

MXM)−1]M′ , that is,
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φ̃p[k] = min
M:|M|=k

max
M′ ⊂ M

|M′| = ⌊k(1−wp[k])⌋

φmin[(X
′
MXM)−1]M′

It can be shown (Abramovich & Grinshtein, 2010) thatφ̃−1
p [k] measures an error of

approximating mean vectorsXpβ p, where||β p||0 = k, by their projections on lower
dimensional subspans of predictors. The stronger is multicollinearity, the better is
the approximation and the larger isφ̃p[k].

The following theorem is a consequence of Theorem 5 of Abramovich & Grin-
shtein (2010):

Theorem 2.Let τp[r] → 0 as r→ ∞ (multicollinear design). Assume the following
additional assumptions on the design matrix Xp and the (unknown) vector of coeffi-
cientsβ p in (5):

(D) for all p there exist1≤ κp1 ≤ κp2 ≤ r/2 such that

1. c̃1 ≤ τp[2k] ·k≤ k−1, k = κp1, ...,κp2

2. τp[2κp2] ≥ (κp2/(pe))c̃2

3. φp,min[2k] · φ̃p[k] ≥ c̃3, k = κp1, ...,κp2

(B) ||β p||2∞ ≤ c̃4τp[2p0] · φ̃p[p0] · (ln(p/p0)+1), where p0 = ||β p||0
for some positive constantsc̃1, c̃2, c̃3 andc̃4.

Then, the penalized least square estimator (2) with a2k ln(p/k)-type complexity
penalty (3), where c> 1, is asymptotically simultaneously minimax (up to a constant
multiplier) over allMp0, κp1 ≤ p0 ≤ κp2.

Generally, Assumptions (D.1, D.2) and Assumption (B) allowone to reduce the
upper bound (6) for the risk of the 2k ln(p/k)-type estimator by the factorτp[2p0],
while Assumption (D.3) is required to guarantee that the additional constraint on
β p in Assumption (B) does not affect the lower bound (4). We havementioned
that multicollinearity typically arises whenp ≫ n. One can easily verify that for
n = O(pα), 0≤ α < 1, Assumption (D.2) always follows from Assumption (D.1)
and, therefore, can be omitted in this case.

5 Bayesian perspective

In this section we discuss the Bayesian approach to model selection in the Gaus-
sian regression model (1) proposed by Abramovich & Grinshtein (2010). Bayesian
framework naturally interpretates the penalized least square estimation (2) by treat-
ing the penalty term as proportional to the logarithm of a prior distribution on the
model size. Minimization of (2) corresponds then to the maximum a posteriori
(MAP) rule. Choosing different types of a prior, the resulting Bayesian MAP es-
timator can imply various complexity penalties, linear and2k ln(p/k)-type penal-
ties in particular, that gives an additional insight in motivation behind such types of
penalties.
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Consider the model (1), where the number of possible predictorsp may be larger
then the number of observationsn. Recall thatr = rank(X) and we assume that any
r columns ofX are linearly independent.

Assume some prior on the model sizeπ(k) = P(|M| = k) , whereπ(k) > 0, k =
0, ..., r andπ(k) = 0 for k > r since the model becomes nonidentifiable when the
number of its parameters is larger than the number of observations (see Section 2).

For anyk = 0, ..., r − 1, assume all
(p

k

)

various models of sizek to be equally
likely, that is, conditionally on|M| = k,

P(M
∣

∣ |M| = k) =

(

p
k

)−1

The casek = r = rank(X) is slightly different. Although there are
(p

r

)

various sets
of predictors of sizer, all of them evidently result in the same estimator for the
mean vector and, in this sense, are essentially undistinguishable and associated with
asingle(saturated) model. Hence, in this case, we set

P(M
∣

∣ |M| = r) = 1 (7)

Finally, assume the normal prior on the unknown vector ofk coefficients of the
modelM: β M ∼ Np(0,γσ2(DMX′XDM)+), whereγ > 0 and the diagonal indicator
matrix DM was defined in Section 2. This is a well-known conventionalg-prior of
Zellner (1986).

For the proposed hierarchical prior, a straightforward calculus yields the posterior
probability of a modelM of size|M| = 0, ..., r −1 :

P(M|y) ∝ π(|M|)
(

p
|M|

)−1

(1+ γ)−
|M|
2 exp

{

γ
γ +1

y′XDM(DMX′XDM)+DMX′y
2σ2

}

(8)
Finding the most likely model leads then to the following MAPmodel selection
criterion:

y′XDM(DMX′XDM)+DMX′y+2σ2(1+1/γ) ln

{

(

p
|M|

)−1

π(|M|)(1+ γ)−
|M|
2

}

→max
M

or, equivalently,

||y−Xβ̂ M||2 +2σ2(1+1/γ) ln

{(

p
|M|

)

π(|M|)−1(1+ γ)
|M|
2

}

→ min
M

, (9)

which is of the general type (2) with the complexity penalty

Pen(k) = 2σ2(1+1/γ) ln

{(

p
k

)

π(k)−1(1+ γ)
k
2

}

, k = 0, ..., r −1 (10)

Similarly, for |M| = r from (7) one has
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Pen(r) = 2σ2(1+1/γ) ln
{

π(r)−1(1+ γ)
r
2

}

(11)

In particular, the (truncated ifp > r) binomial priorB(p,ξ ) corresponds to the
prior assumption that the indicatorsd jM are independent. The binomial prior yields
the linear penaltyPen(k) = 2σ2(1+1/γ)k ln(

√
1+ γ(1−ξ )/ξ ) ∼ 2σ2k ln(

√γ(1−
ξ )/ξ ), k = 1, ..., r −1 for sufficiently large variance ratioγ. The AIC criterion cor-
responds then toξ ∼√γ/(e+

√γ), while ξ ∼√γ/(p+
√γ) leads to the RIC cri-

terion. These relations again confirm our previous arguments in Section 3 that RIC
should be appropriate for sparse cases, where the size of thetrue (unknown) model
is believed to be much less than the number of possible predictors, while AIC is
suitable for dense cases, where they are of the same order. Any binomial prior or,
equivalently, any linear penalty cannot “kill two birds with one stone”.

On the other hand, there is a class of priors associated with the 2k ln(p/k)-
type penalties. In particular, the (truncated) geometric distribution π(k) ∝ qk, k =
1, ..., r yields Pen(k) ∼ 2σ2(1+ 1/γ)k(ln(p/k) + ζ (γ,q)), k = 1, ..., r − 1, where
we used thatk ln(p/k) ≤ ln(

(p
k

)

) < k(ln(p/k) + 1) (see Lemma 1 of Abramovich
et al., 2010). In addition, (11) impliesPen(r) = 2σ2c(q,γ)r for some constant
c(q,γ) > 1 that goes along the lines with the remark on the requirementon Pen(r)
for 2k ln(p/k)-type penalties in Section 4.

The Bayesian interpretation of the complexity penalized estimators can be also
exploited for their computations. Generally, minimizing (2) requires an NP-hard
combinatorial search over all possible models. To make computations for high-
dimensional data feasible in practice, one typically applies either various greedy
algorithms (e.g., forward selection) approximating the global solution in (2) by a
stepwise sequence of local ones, or convex relaxation methods (e.g., Lasso (Tibshi-
rani, 1996) and Dantzig selector (Candés & Tao, 2007) for linear penalties) replac-
ing the original combinatorial problem by a related convex program. The proposed
Bayesian approach allows one instead to use the Gibbs sampler to efficiently gen-
erate a sequence of models from the posterior distributionP(M|y) in (8) (see, e.g.
George & McCullooch, 1993 for more detail). The key point is that the relevant
models with highest posterior probabilities will appear most frequently and can be
easily identified even for a generated sample of a relativelysmall length.

6 Concluding remarks

In this paper we considered model selection in Gaussian linear regression for high-
dimensional data, where the number of possible predictors may be even larger than
the number of available observations. The procedure is based on minimizing pe-
nalized least squares with a penalty on a model size. We discussed asymptotic
properties of the resulting estimators corresponding to different types of penalties.
Bayesian interpretation allows one to better understand the intuition behind various
penalties and provides a natural tool for obtaining a wide class of estimators of this
type.
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We showed that any linear penalty, including widely used AIC, Cp, BIC and
RIC, cannot be simultaneously minimax for both sparse and dense cases. More-
over, the same conclusions are valid for the well-known Lasso (Tibshirani, 1996)
and Dantzig (Cand́es & Tao, 2007) estimators that for the optimally chosen tun-
ing parameter, under nearly-orthogonality conditions similar to those considered in
this paper, can achieve only the same sub-optimal ratep0 ln p as RIC (Bickel, Ri-
tov & Tsybakov, 2009). These results are, in fact, should notbe surprising since
both Lasso and Dantzig estimators are essentially based on convex relaxations of
|M| = ||β M||0 in the linear complexity penalty in (2) in order to replace the original
combinatorial problem by a convex program (see also remarksin the conclusion of
Section 5). Thus, Lasso approximates thel0-norm ||β M||0 by the the corresponding
l1-norm ||β M||1. On the other hand, the nonlinear 2k ln(p/k)-type penalty adapts to
both sparse and dense cases.

It is also interesting to note that, unlike model identification or coefficients esti-
mation problems, where multicollinearity is a “curse”, it may become a “blessing”
for estimating the mean vector. One can exploit strong correlations between predic-
tors to reduce the size of a model (hence, to decrease the variance) without paying
much extra price in the bias.

Acknowledgements The work was supported by Israel Science Foundation (ISF), grant ISF-
248/08. Valuable remarks of the two referees are gratefully acknowledged.

References

1. Abramovich, F., Benjamini, Y., Donoho, D.L. and Johnstone, I.M. (2006). Adapting to un-
known sparsity by controlling the false discovery rate. Ann. Statist. 34, 584–653.

2. Abramovich, F. and Grinshtein, V. (2010). MAP model selectionin Gaussian regression.
Electr. J. Statist.4, 932–949.

3. Abramovich, F., Grinshtein, V., Petsa, A. and Sapatinas, T. (2010). On Bayesian testimation
and its application to wavelet thresholding. Biometrika97, 181–198.

4. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.
In: Second International Symposium on Information Theory. (eds. B.N. Petrov and F. Czáki).
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