
A

Settling the open problems in Kleinberg-Oren time-inconsistent
planning models

SHENKE XIAO, Tsinghua University
YICHONG XU, Tsinghua University
YIFENG TENG, Tsinghua University
ZIHE WANG, Tsinghua University
PINGZHONG TANG, Tsinghua University

This article shows an extended work of [Kleinberg and Oren 2014]. It gives more properties of the graph
time-inconsistency model raised in [Kleinberg and Oren 2014] by solving three open problems proposed in
[Kleinberg and Oren 2014]. Generally speaking, it gives a tight upper bound for the ratio of actual cost due
to time-inconsistency to minimum theoretic cost, and shows the hardness of motivating agent. In the end of
this article, it also shows some directions of further work based on this model or its extended version.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics

Additional Key Words and Phrases: behavior economics, time-inconsistency, NP-hardness

1. INTRODUCTION
This article is generally based on [Kleinberg and Oren 2014]. According to [Kleinberg
and Oren 2014], there is a common fact in behavioral economics that people always
prefer present profile to future profile, which is called time-inconsistency. [Kleinberg
and Oren 2014] has formalized a graph-theoretic model to simulate this phenomenon.
In this model, it regards the edges as steps to reach the final target, and each edge has
a cost which represents the cost of this step. To keep the integrality of this article, we
will restate the model in the next section. [Kleinberg and Oren 2014] has shown many
interesting properties of this model, and proposes three open problems in the end. The
main result of this article is to solve these problems.

Section 2 restates this basic graph model shown by Kleinberg and Oren formally.
The next three sections solves the three problems respectively. Section 3 gives a tight
bound of the cost ratio (i.e. the ratio between the ideal minimum cost and the actual
cost due to time-inconsistency) for a graph with some constraints. Section 4 shows
the hardness of motivating an agent by removing edges or nodes in the graph, while
Section 5 shows the hardness of motivating an agent by dispersing the reward over
nodes in the graph, by reducing them to well-known 3-SAT problem. At last in Section
6, we shows a conclusion and some further directions of relative works.

2. BASIC MODEL
In this section we restate the graph-theoretic model shown by [Kleinberg and Oren
2014] and fix some important definitions. As [Kleinberg and Oren 2014] defines, we
have an acyclic direct graph G with a start node s and a target node t, where each edge
(u, v) has a non-negative cost c(u, v). For any node u, v, denote by d(u, v) the minimum
total cost from u to v, i.e.

d(u, v) = min
P∈P(u,v)

∑
e∈P

c(e),

where P(u, v) is the set of all possible paths from u to v. For simplifying, denote d(v) =
d(v, t) for any node v. We also have a present-bias parameter β ∈ [0, 1]. An agent starts
at s and goes along the edges towards t. In each step, the agent lying in node u chooses
the out-neighbor v that minimizes c(u, v)+βd(v) (if more than one node minimizes this
value, the agent choose one arbitrarily).

We can see this model simulates the time-inconsistency phenomenon to some extent.

ar
X

iv
:1

41
1.

74
72

v1
 [

cs
.G

T
]

 2
7

N
ov

 2
01

4

A:2 Shenke Xiao et al.

Fig. 1. a visible graph of Fk

While making choices, the agent considers future cost by multiplying the cost with the
coefficient β, which means that it cares more about present (the cost of edge it chooses
presently). The smaller β is, the less the agent cares about future. Suppose P is the s-t
path the agent chooses, then the cost ratio r is defined as

∑
e∈P c(e)/d(s), i.e. the ratio

of actual cost to theoretical minimum cost.
There are also some important concepts given in [Kleinberg and Oren 2014] and we

would restate them as follows. “Given two undirected graph H and K, we say that H
contains a K-minor if we can map each node κ of K to a connected subgraph Sκ in
H, with the properties that (i) Sκ and Sκ′ are disjoint for every two nodes κ, κ′ of K,
and (ii) if (κ, κ′) is an edge of K, then in H there is some edge connecting a node in Sκ
with a node in Sκ′” ([Kleinberg and Oren 2014] 554). “Let σ(G) denote the skeleton of
G, the undirected graph obtained by removing the directions on the edges of G. Let Fk
denote the graph with nodes v1, v2, . . . , vk, and w, and edges (vi, vi+1) for i = 1, . . . , k−1,
and (vi, w) for i = 1, . . . , k” ([Kleinberg and Oren 2014] 555). See Figure 1. Fk is a very
special structure in this setting. [Kleinberg and Oren 2014] has shown that a graph
containing Fk-minor may have exponential cost ratio, and a graph with asymptotic
exponential cost ratio must contain an Fk-minor. In fact, we will give a stronger result
immediately in the next section.

3. MAXIMUM COST RATIO
The first open problem proposed by [Kleinberg and Oren 2014] is that what is the
maximum cost ratio (or do not exist) if σ(G) does not contain an Fk-minor. Roughly
speaking, the problem asks how much can the waste resulted by time-inconsistency
reaches. Note an edge is exactly an F1, we will assume k > 1 in the following article.
Next we will prove the following theorem:

THEOREM 3.1. For any k > 1, if σ(G) does not contain an Fk-minor, the cost ratio is
at most β2−k.

We prove some lemmas firstly.

3.1. Some Lemmas
LEMMA 3.2. Fix real numbers t1, t2, . . . , tn such that ti ≥ i+ 1 for i = 1, 2, . . . , n. Let

Si = {j|1 ≤ j < i, tj ≥ i} for i = 1, 2, . . . , n. Then for any sequence {xi, i = 1, 2, . . .} and
for m = 2, 3, . . . , n, we have

xm−1 +
∑

j∈Sm−1

xj =
∑

j:tj=m−1
xj +

∑
j:m−1<tj<m

xj +
∑
j∈Sm

xj ,

A:3

and ∑
j∈Sm

xj = xm−1 +
∑

j∈Sm−1:tj≥m

xj .

PROOF. For m = 2, 3, . . . , n, note tm−1 ≥ m, i.e. m − 1 ∈ Sm and m − 1 /∈ Sm−1, we
have

Sm−1 ∪ {m− 1} = {m− 1} ∪ {j|1 ≤ j < m− 1, tj ≥ m− 1}
= {m− 1} ∪ {j|1 ≤ j < m− 1, tj ≥ m}∪ {j|m− 1 ≤ tj < m− 1}
= Sm ∪ {j|tj = m− 1}∪ {j|m− 1 < tj < m},

where all sets in each side of the equality are disjoint. Thus

xm−1 +
∑

j∈Sm−1

xj =
∑

j:tj=m−1
xj +

∑
j:m−1<tj<m

xj +
∑
j∈Sm

xj .

Also note ∑
j:tj=m−1

xj +
∑

j:m−1<tj<m
xj =

∑
j:m−1≤tj<m

xj =
∑

j∈Sm−1:m−1≤tj<m

xj ,

we have∑
j∈Sm

xj = xm−1 +
∑

j∈Sm−1

xj −
∑

j∈Sm−1:m−1≤tj<m

xj = xm−1 +
∑

j∈Sm−1:tj≥m

xj .

LEMMA 3.3. Fix real numbers t1, t2, . . . , tn such that ti ≥ i + 1 for i = 1, 2, . . . , n.
Let Si = {j|1 ≤ j < i, tj ≥ i} for i = 1, 2, . . . , n. Sequence {ai, i = 1, 2, . . .} and {bi, i =
1, 2, . . .} are constructed as follows:

a1 = 1, ai = βbi−1 +
∑

j:i−1<tj<i
(1− β)bj ,

bi = ai +
∑
j:tj=i

(1− β)bj .

Then for i = 1, 2, . . . , n+ 1, we have

ai ≥ β|Si|.

PROOF. Fix i. Firstly we prove that for m = 1, 2, . . . , n we have

am +
∑
j∈Sm

(1− β)bj = 1.

This can be proved by induction on m: it holds for m = 1, and if it holds for m− 1, then

am +
∑
j∈Sm

(1− β)bj

= bm−1 − (1− β)bm−1 +
∑

j:m−1<tj<m
(1− β)bj +

∑
j∈Sm

(1− β)bj

= am−1 +
∑

j:tj=m−1
(1− β)bj − (1− β)bm−1 +

∑
j:m−1<tj<m

(1− β)bj +
∑
j∈Sm

(1− β)bj

= am−1 +
∑

j∈Sm−1

(1− β)bj (1)

A:4 Shenke Xiao et al.

= 1,

where equality (1) is held by Lemma 3.2. Let Si =
{
j1, j2, . . . , j|Si|

}
where j1 < j2 <

· · · < j|Si|. Then for l = 1, 2, . . . , |Si| we have tjl ≥ i > jl, thus for all 1 ≤ p ≤ l ≤ |Si|, we
have tjp ≥ i ≥ jl + 1 > jp, i.e. jp ∈ Sjl+1. Now we can obtain for l = 1, 2, . . . , |Si|,

bjl +

l−1∑
p=1

(1− β)bjp = βbjl +

l∑
p=1

(1− β)bjp ≤ ajl+1 +
∑

j∈Sjl+1

(1− β)bj = 1.

Note ai+
∑|Si|
p=1(1−β)bjp = 1, to prove ai ≥ β|Si|, we only need to prove

∑|Si|
p=1(1−β)bjp ≤

1− β|Si|, or more strongly
l∑

p=1

(1− β)bjp ≤ 1− βl

for l = 1, 2, . . . , |Si|. We prove it by induction on l: for l = 1 it holds trivially, and if it
holds for l − 1, then

l∑
p=1

(1− β)bjp =

l−1∑
p=1

(1− β)bjp + (1− β)bjl

≤
l−1∑
p=1

(1− β)bjp + (1− β)

(
1−

l−1∑
p=1

(1− β)bjp

)

= β

l−1∑
p=1

(1− β)bjp + 1− β

≤ β
(
1− βl−1

)
+ 1− β

= 1− βl.

LEMMA 3.4. Let P be a path of G, and u1, u2, . . . , uk are nodes in order in P . If for
i = 1, 2, . . . , k − 1, there exists a path Pi such that (i) it starts at ui, and (ii) the second
crossing point in Pi with P (say u′i) exists and lies behind uk (not including uk) in P ,
then σ(G) contains an Fk-minor.

PROOF. Let v1, v2, . . . , vk, w
′ name the nodes of an Fk such that there are ex-

actly edges (vi, vi+1) for i = 1, 2, . . . , k − 1 and edges (vi, w
′) for i = 1, 2, . . . , k. Let

U1, U2, . . . , Uk,W be subgraphs of σ(G) which are constructed by their nodes com-
pletely: there is an edge between two nodes in one subgraph if and only if this edge
exists in σ(G). The nodes of these subgraph are collected as follows: for i = 1, 2, . . . , k−1,
nodes of Ui are nodes between ui and ui+1 in P (including ui and not including ui+1);
Uk is exactly uk; and nodes W are made up of k parts V1, V2, . . . , Vk−1,W ′ where Vi are
nodes between ui and u′i in P ′i (including u′i and not including ui) for i = 1, 2, . . . , k − 1
and W ′ are all nodes after uk in P (not including uk). See Figure 2.

For each 1 ≤ i ≤ k, Ui is connected, as its nodes are connected by P . Then we
show that W is also connected. Note that the nodes in Vi are connected through Pi for
i = 1, 2, . . . , k − 1 while the nodes in W ′ are connected through P , and Vi and W ′ are
also joint by u′i for i = 1, 2, . . . , k − 1, we can conclude that W is connected.

Trivial to see that U1, U2, . . . , Uk,W are disjoint. For i = 1, 2, . . . , k−1, Ui and Ui+1 are
connected by the edge lying before ui+1 in P , and Ui and W are connected by the edge

A:5

Fig. 2. the graph contains an Fk-minor.

lying after ui in P ′i . Uk and W are connected by the edge lying after uk in P . Now we
can establish a map f from {v1, v2, . . . , vk, w′} to {U1, U2, . . . , Uk,W} where f(vi) = Ui
for i = 1, 2, . . . , k and f(w′) = W . By definition, we can conclude that σ(G) contains an
Fk-minor.

3.2. Main Proof
Now we would prove Theorem 3.1.

PROOF. We firstly fix some notations: Let P be the path that the agent actually
travels. For any node u in P , denote by u′ the first node after u in P . For any pair of
nodes u, v in P , denote by c(u, v) the total cost of edges between u and v in P . A node
u in P is a shortcut node if the second point of the path from u to t with minimum
total cost (note the first node is just u) is not u′, and suppose that there are n shortcut
nodes: u1, u2, . . . , un in order. For i = 1, 2, . . . , n, denote by wi the second crossing point
of P and the ui-t path Pi with the minimum total cost (note the first crossing point is
ui, and if more than one path has the minimum total cost, arbitrarily choose one), and
denote by vi the first node after ui on Pi.

Note the agent at ui does not choose P ′i , we have
d(ui, wi) + βd(wi) ≥ c(ui, vi) + βd(vi, wi) + βd(wi) ≥ c(ui, u′i) + βd(u′i).

Adding both sides by (1− β)d(wi) we have
d(ui) ≥ c(ui, u′i) + βd(u′i) + (1− β)d(wi). (2)

Now for i = 1, 2, . . . , n, define ti as follows: if there exists j such that wi = uj , then
ti = j; otherwise if there exists j such that wi = u′j , then ti = j+0.5; otherwise ti is the
smallest index such that uti lies after wi in P (if no such index, ti = n+1). We have the
following lemma.

LEMMA 3.5. For i = 1, 2, . . . , n, ti has the following properties:

(1) ti ≥ i+ 1;
(2) if j < ti < j + 1 for some positive integer j, then wi = u′j ;
(3) if ti is an integer, d(wi) ≥ d(uti);
(4) if ti ≥ j for some positive integer j > 1, then wi lies after uj−1 in P .

PROOF. (1) We know wi must lie after ui in P . If wi = u′i, note ui is a shortcut node,
we have

c(ui, u
′
i) + d(u′i) > d(ui) ≥ c(ui, u′i) + βd(u′i) + (1− β)d(wi) = c(ui, u

′
i) + d(u′i),

which is a contradiction! Hence wi must lie after u′i in P . By the definition of ti, if there
exists j such that wi = uj , then uj lies after u′i in P , i.e. ti = j ≥ i + 1. Otherwise if

A:6 Shenke Xiao et al.

there exists j such that wi = u′j , then u′j lies after u′i in P , i.e. ti = j + 0.5 > j ≥ i+ 1; if
such j does not exist, uti lies after wi, or u′i in P , i.e. ti ≥ i+ 1.

(2) In this case ti = j + 0.5, then wi = u′j by the definition of ti directly.
(3) If there exists j such that wi = uj , then ti = j so that d(wi) = d(uj) = d (uti).

Otherwise if there exists j such that wi = u′j , ti is not an integer, and it makes a
contradiction; if such j does not exist, uti lies after wi in P and there is no shortcut
node between them (otherwise we will choose this node as uti), hence d(wi) = d (uti) +
c (wi, uti) ≥ d (uti).

(4) If there exists l such that wi = ul, then l = ti ≥ j, hence ul, or wi lies after uj−1
in P . Otherwise if there exists l such that wi = u′l, then l + 0.5 = ti ≥ j, or l ≥ j, hence
u′l, or wi lies after uj=1 in P ; if such l does not exist, ti is the smallest index such that
uti lies after wi in P , also note there does not exist l such that wi = ui, we have uti−1,
or uj−1 lies before wi in P .

By Lemma 3.5 (1), we can use these ti as the same parameters in Lemma 3.3 to con-
struct S1, S2, . . . , Sn and sequences {ai, i = 1, 2, . . .}, {bi, i = 1, 2, . . .}. Generally speak-
ing, Si represents those shortcut nodes whose shortcut “comes back” after or at ui. Next
we are trying to use inequality (2) iteratively to get an inequality with the following
form:

d(s) ≥
∑
e∈P

α(e)c(e),

for some coefficient α. If the inequality with this form is obtained, the bound with
cost ratio can be obtained easily. In fact we have the following inequality that for i =
1, 2, . . . , n+ 1,

d(s) ≥
i∑

j=1

(
ajc(u

′
j−1, uj) + bjc(uj , u

′
j)
)
+ ai+1d(u

′
i) +

∑
j∈Si+1

(1− β)bjd (wj) ,

where u′0 and un+1 are defined as s and t respectively. We prove the inequality above
by induction on i: it holds for i = 1, and if it holds for i− 1, then

d(s) ≥
i−1∑
j=1

(
ajc(u

′
j−1, uj) + bjc(uj , u

′
j)
)
+ aid(u

′
i−1) +

∑
j∈Si

(1− β)bjd (wj)

=

i−1∑
j=1

(
ajc(u

′
j−1, uj) + bjc(uj , u

′
j)
)
+ ai

(
c(u′i−1, ui) + d(ui)

)
+
∑
j:tj=i

(1− β)bjd (wj)

+
∑

j:i<tj<i+1

(1− β)bjd (wj) +
∑

j∈Si:tj≥i+1

(1− β)bjd (wj)

≥
i−1∑
j=1

(
ajc(u

′
j−1, uj) + bjc(uj , u

′
j)
)
+ aic(u

′
i−1, ui) +

ai + ∑
j:tj=i

(1− β)bj

 d(ui)

+
∑

j:i<tj<i+1

(1− β)bjd (u′i) +
∑

j∈Si:tj≥i+1

(1− β)bjd (wj) (3)

≥
i−1∑
j=1

(
ajc(u

′
j−1, uj) + bjc(uj , u

′
j)
)
+ aic(u

′
i−1, ui)

+ bi (c(ui, u
′
i) + βd(u′i) + (1− β)d(wi))

A:7

+
∑

j:i<tj<i+1

(1− β)bjd (u′i) +
∑

j∈Si:tj≥i+1

(1− β)bjd (wj)

≥
i∑

j=1

(
ajc(u

′
j−1, uj) + bjc(uj , u

′
j)
)
+

βai + ∑
j:i<tj<i+1

(1− β)bj

 d(u′i)

+ (1− β)bid (wi) +
∑

j∈Si:tj≥i+1

(1− β)bjd (wj)

=

i∑
j=1

(
ajc(u

′
j−1, uj) + bjc(uj , u

′
j)
)
+ ai+1d(u

′
i) +

∑
j∈Si+1

(1− β)bjd (wj) , (4)

where inequality (3) is held by Lemma 3.5 (2) and (3), and the last step (4) is held by
Lemma 3.2. Now choose i to be n, we can get

d(s) ≥
n∑
j=1

(
ajc
(
u′j−1, uj

)
+ bjc

(
uj , u

′
j

))
+ an+1d(u

′
n)

≥
n∑
j=1

(
β|Sj |c

(
u′j−1, uj

)
+ β|Sj |c

(
uj , u

′
j

))
+ β|Sn+1|c (u′n, t) . (5)

where the last step (5) holds by Lemma 3.3.
At last, we are going to prove |Si| ≤ k − 2 for i = 1, 2, . . . , n + 1. If |Si| ≥ k − 1 for

some i, choose k−1 elements from Si, say j1, j2, . . . , jk−1 where j1 < j2 < · · · < jk−1 < i.
For l = 1, 2, . . . , k − 1, note tjl ≥ i, by Lemma 3.5 (4) wjl must lie after ui−1, or ujk−1

in
P , and also wjl 6= u′jk−1

(otherwise tjl = jk−1 + 0.5 < i), wjl must lie after u′jk−1
in P .

Now consider uj1 , uj2 , . . . , ujk−1
, u′jk−1

. They lie in P in order, and for l = 1, 2, . . . , k − 1,
Pjl starts at ujl , and the next crossing point of Pjl and P lies after u′jk−1

in P , thus
by Lemma 3.4, σ(G) contains an Fk-minor, which forms a contradiction. Now we have
proved |Si| ≤ k − 2.

Hence

d(s) ≥
n∑
j=1

(
β|Sj |c

(
u′j−1, uj

)
+ β|Sj |c

(
uj , u

′
j

))
+ β|Sn+1|c (u′n, t) ≥ βk−2c(s, t),

or
c(s, t)

d(s)
≤ β2−k.

3.3. Tightness of the Bound
So far we have achieved an upper bound for r, now we would like to provide an example
to show that the bound is achievable. We would simply use the example mentioned in
[Kleinberg and Oren 2014] to show a graph may have exponential cost ratio, i.e. the
graph obtained from Fk−1 by adding directions (see Figure 3). In fact, this example
is a real example of shipping packages that was proposed firstly in [Akerlof 1991].
According to the analysis in [Kleinberg and Oren 2014], the cost ratio of the graph is
exactly β2−k, which proves the tightness of our upper bound.

4. HARDNESS OF FINDING MOTIVATING SUBGRAPHS
[Kleinberg and Oren 2014] also extends the model to allow the agent to give up: it sets a
reward r at the target node, and suppose the agent is in u now, if minv c(u, v) + βd(v) >

A:8 Shenke Xiao et al.

Fig. 3. Akerlof ’s example

βr, i.e. the weighted cost is less than the reward, the agent will stop and give up.
[Kleinberg and Oren 2014] also gave the definition of motivating graph: a graph is
motivating if the agent will arrive at the target node finally. [Kleinberg and Oren 2014]
stated that for a non-motivating graph, we can delete some nodes or edges to make it
motivating. The second problem is whether there is a polynomial-time algorithm that
“takes an instance G (including a reward r) and determines whether G contains a
motivating subgraph with reward r?” ([Kleinberg and Oren 2014] 563), i.e. to find a
motivating subgraph of the original graph. In this section, we are going to show the
following theorem:

THEOREM 4.1. Define problem ms as follows: for an acyclic graph G with n nodes,
given reward r on target node and present bias β, find a motivating subgraph of G.
Then ms is NP-hard.

[Kleinberg and Oren 2014] introduced a concept named minimal motivating subgraph
to denote a motivating subgraph of the original graph, such that every subgraph of it is
not motivating. Before proving Theorem 4.1, we first consider a easier problem related
to minimal motivating subgraphs.

4.1. Hardness of finding minimal motivating subgraph
In this section, we would show that finding a minimal motivating subgraph is hard.
Define problem mms as follows: for an acyclic graph G with n nodes, given reward r
on target node and present bias β, find a minimal motivating subgraph of G. Then we
have

THEOREM 4.2. mms is NP-hard.

PROOF. We show that finding a valid assignment to a 3-CNF can be polynomial-
time reduced to an instance of mms. Consider a 3-CNF with n variables x1, x2, ..., xn
and m clauses C1, C2, ..., Cm. Construct a weighted acyclic graph G with 4m + 3n + 7
vertices as follows:

(1) Each clause Ci corresponds to 4 nodes ui, ui,1, ui,2, ui,3, 1 ≤ i ≤ m;
(2) Each variable xi corresponds to 3 nodes vi, vi,1, vi,2, 1 ≤ i ≤ n;
(3) The other 7 nodes are start node s, target node t and interior points w1, w2, w3, w4

and w5;
(4) For any clause Ci = yi,1 ∨ yi,2 ∨ yi,3: for j = 1, 2, 3, if yi,j is xk, then there is a link

ui → ui,j with weight 16, and a link ui,j → vk with weight 11. We call such two
links an ”expensive path” from ui to vk; if yi,j is ¬xk, then there is a link ui → ui,j
with weight 9, and a link ui,j → vk with weight 11. We call such two links a ”cheap
path” from ui to vk.

A:9

(5) For any 1 ≤ i ≤ n: there is a link vi → vi,1 with weight 19, and a link vi,1 → t with
weight 0. We call such two links an ”expensive path” from vi to t; also, there is a
link vi → vi,2 with weight 12, and a link vi,2 → t with weight 0. We call such two
links a ”cheap path” from vi to t.

(6) s → u1 forms a link with weight 8. For each 1 ≤ i ≤ m − 1, ui → ui+1 forms a
link with weight 8. um → w1, w1 → w2, w2 → w3, w3 → v1 are arcs with weight 8,
8, 9, 10 respectively. For each 1 ≤ i ≤ n − 1, vi → vi+1 forms a link with weight
10. vn → w4 → t are two links with weight 10 respectively. The path from s to t
mentioned above is called ”bus”. There are final two links: w1 → w5 with weight
39, and w5 → t with weight 0.

As an example, figure 4 is a graph constructed from 3-CNF (x1∨¬x2∨x3)∧(x2∨¬x3∨x4)
following the instructions above. All expensive paths lie above the bus, while all cheap
paths are drawn below the bus.

Fig. 4. Corresponding graph of (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4).

To form an instance of mms, define the reward at t to be r = 119, and let the present
bias β be assigned 0.1. It can be easily seen that such instance can be constructed from
the 3-CNF in polynomial time. Now we have the following three lemmas about the
structure of minimal motivating subgraph of G.

LEMMA 4.3. Let G′ be a minimal motivating subgraph of G, then the bus of G is
fully included in G′.

PROOF. Assume by way of contradiction some nodes on the bus are not included
in G′. Consider the path traveled by the agent in G′, and let v be the first vertex not
on the bus. Let u → v be the edge that the agent passes. Notice that the cost of the
edge should not be greater than 11.9, otherwise the agent would rather not follow the
path. From the construction we know that v must be ui,j for some i, j, and let vk be
the node that can be directly reached from ui,j . But notice that at ui,j the agent would
rather give up, which forms a contradiction: the cost from vk to t is at least 12, thus
the evaluated cost from ui,j to t is no less than 11 + 12β = 12.2 > βr. Thus the bus of G
is fully included in G′.

LEMMA 4.4. Let G′ be a minimal motivating subgraph of G, then for any 1 ≤ i ≤ n,
exactly one path between the expensive path and the cheap path from vi to t is preserved.

PROOF. Fix i. Theorem 5.1 in [Kleinberg and Oren 2014] stated that every node in
a minimal motivating subgraph has no more than two outgoing edges, thus at most
one of the two nodes can be included, as vi has already got one out-degree in the bus
from Lemma 4.3. If both paths are eliminated, the agent would not travel to vi as its

A:10 Shenke Xiao et al.

evaluated cost from the former node of vi to t would be at least 10+ (10+12)β = 12.2 >
βr. Thus exactly one path remains.

LEMMA 4.5. Let G′ be a minimal motivating subgraph of G, then for any 1 ≤ i ≤ m,
exactly one node among ui,1, ui,2, ui,3 is included in G′.

PROOF. Fix i. Theorem 5.1 in [Kleinberg and Oren 2014] stated that every node in a
minimal motivating subgraph has no more than two outgoing edges, thus at most one
of the three nodes can be included, as ui has already got one out-degree in the bus from
Lemma 4.3. If all three nodes are eliminated, the agent would not travel to ui as its
evaluated cost from the former node of vi to t would be at least 8+(8+39)β = 12.7 > βr.
Hence exactly one of the three nodes remains in G′.

Now we would show how to transform a valid assignment of a 3-CNF to a corre-
sponding minimal motivating subgraph of G.

LEMMA 4.6. Given a valid assignment to a 3-CNF, there exists a polynomial-time
algorithm finding a minimal motivating subgraph of graph G constructed from the
formula.

PROOF. Construct a subgraph G′ of the original graph G as follows. For 1 ≤ i ≤ m,
let Ci = yi,1 ∨ yi,2 ∨ yi,3, assume yi,j is assigned true without loss of generality, then
preserve only ui,j among {ui,1, ui,2, ui,3}, eliminate the other two nodes fromG; for each
1 ≤ i ≤ n, if xi is assigned true, delete vi,1 (the more expensive one), otherwise delete
vi,2. Observe that for any 1 ≤ i ≤ m, there is no path from node ui to t formed by two
consecutive cheap paths or expensive paths. To show that the remaining graph is a
motivating graph, it suffices to show that at any time the agent would travel through
the bus and does not halt on his way.

(1) The agent is at ui, 0 ≤ i ≤ m − 1 (let u0 = s): Notice that the distance from
ui+1 to t is 16 + 11 + 12 = 9 + 11 + 19 = 39, thus the evaluated cost would be
8 + 3.9 = 11.9 if the agent wants to go to ui+1; the cost to follow the expensive path
would be greater than 16, while the cost to travel to follow the cheap path would
be 9 + (11 + 19)β = 12 > βr. Thus the agent would go straight to ui+1.

(2) The agent is at um, w1, w2, w3 or w4: the only reasonable move for the agent should
be following the bus. At um, w1, w2, w3, w4, the respective evaluated cost would be
11.9, 11.8, 11.9, 11.9, 10 respectively, which are all no larger than βr.

(3) The agent is at vi, 1 ≤ i ≤ n: the only reasonable move for the agent should be
following the bus, and the largest possible evaluated cost would be 11.9, which is
no larger than βr.

Finally, we remove w5 if possible, and it can be verified that w5 can be removed if and
only if x1 is assigned true. The minimality of the graph follows from Lemma 4.3, 4.4
and 4.5, and the entire procedure can be definitely done in polynomial time.

To see how Lemma 4.6 works, consider (x1∨¬x2∨x3)∧ (x2∨¬x3∨x4) as an example.
A valid assignment would be x1 = ¬x2 = ¬x3 = x4 = 1, and the corresponding minimal
motivating subgraph would be shown in Figure 5.

Finally, we would like to see how a minimal motivating subgraph of G can be trans-
formed to a valid assignment to the 3-CNF.

LEMMA 4.7. Let G′ be a minimal motivating subgraph of G. For any 1 ≤ i ≤ n, if
the expensive path from vi to t is remained, assign xi = 0, otherwise assign xi = 1, then
the assignment is a valid assignment to the original 3-CNF.

PROOF. To show that the assignment is valid, we only need to show that for any
1 ≤ i ≤ m, in G′ there is a path from ui to t that is a cheap path from ui to some vk,

A:11

Fig. 5. Corresponding minimal motivating subgraph of (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4).

then an expensive path from vk to t, meaning that xk is assigned false, Ci is satisfied as
it includes ¬xk; or there is a path from ui to t that is an expensive path from ui to some
vk, then a cheap path from vk to t, meaning that xk is assigned true, Ci is satisfied as it
includes xk. From Lemma 4.3, 4.4 and 4.5 we only need to show that there is no path
from node ui to t formed by two consecutive cheap paths or two consecutive expensive
paths. Consider the following two cases.

(1) Assume by way of contradiction there is a cheap path from ui to some vk, then a
cheap path from vk to t, here i is maximum. Then at ui, choosing the cheap path
leads to an evaluated cost 9 + (11 + 12)β = 11.3, while choosing the bus leads to an
evaluated cost at least 11.9. Then the agent would go through the cheap path, while
at the next vertex he would evaluate the cost to be at least 11 + 12β = 12.2 > βr,
then he would halt here, which contradicts the fact that G′ is a motivating graph.

(2) Assume by way of contradiction there is an expensive path from ui to some vk, then
an expensive path from vk to t. This is impossible since when the agent is at ui−1,
he would evaluate traveling through the bus with cost 8+(16+11+19)β = 12.6 > βr,
which means that he would rather not go through ui−1 → ui.

Directly from the two cases above we show the correctness of the lemma.

From Lemma 4.6 and Lemma 4.7, we know that if we can find a minimal motivating
subgraph for any graph in polynomial time, we may find a polynomial time algorithm
finding a valid assignment for any 3-CNF, which finishes the proof of Theorem 4.2. 2

4.2. Main Proof
Now we are going to prove Theorem 4.1, which implies not only finding a minimal
motivating subgraph is hard, it is also difficult to find a not minimal one.

PROOF. Assume by way of contradiction we have a poly-time algorithm A to solve
ms, consider the following algorithm solving mms.

The correctness of the algorithm is straightforward, while the running time of the
algorithm is polynomial of the size of the graph. From Theorem 4.2 we know that ms
is NP-hard.

5. HARDNESS OF MOTIVATING AGENTS TO REACH THE GOAL
[Kleinberg and Oren 2014] also considers the case where we can put rewards on all
nodes in the graph, denoted by r(v) for each node; the agent at node u will continue to

A:12 Shenke Xiao et al.

ALGORITHM 1: Solve mms by Applying Algorithm Solving ms.
Input: An acyclic graph G, reward r on target node and present bias β.
Output: Reject the input or output a minimal motivating subgraph.
Use A to check whether G has an motivating subgraph;
if no then

reject the input;
else

while G contains some edges do
for each edge e in G do

Use A to check whether G has a motivating subgraph after deleting e;
if yes then

record e;
end

end
if G has no motivating subgraph after deleting e for each edge e then

output G;
else

delete an edge recorded from G;
end

end
end

move if and only if there exists a path P such that

c′(P) = c(u, v0) + β
∑
v∈P

(c(v, v′)− r(v)) ≤ 0,

where v0 denotes the first node in P , and v′ denotes the next node of v on P . Let
c(t, t′) = 0. And the agent chooses the path that minimize c′(P). We aim to find the
configuration that puts the smallest total sum of rewards that motivates the agent to
finish at t.

5.1. Problem statement
We considers multiple versions of this problem, as suggested by [Kleinberg and Oren
2014]. In the first version, only positive rewards are allowed, and we can put rewards
on every node of the graph. But due to the trivialness of this problem, in this we
might put rewards that is never claimed - the agent simply use the reward as on its
shortest path but then deviates from its original computation. In the third version, we
consider the possible use of negative rewards; the negative reward might be used to
get the agent rid of paths that appears to be costless but then becomes very costly(for
example, a path start with 0 and then an edge with a very large cost). In this version,
we define the sum of rewards to be the sum of absolute values of all rewards put on
nodes; we do this because if we define the sum as the direct sum, we can put a rewards
of −∞ at some node that there still exists a path from s to t if deleted.

We formally restate this problem:
Finding the Minimum Total Reward for an agent with present bias β (fmtrβ)

— Input: a weighted acyclic graph G, node s, t, and a possible total possible reward R.
— Output: Whether there exists a reward setting r(v),∀v ∈ G, such that the agent with

a present bias β follows a path P from s to t using the strategy stated above, and
that ∑

v∈G
|r(v)| ≤ R.

A:13

The following three editions gives different constraints on the reward setting:
fmtrβ I: r(v) ≥ 0,∀v.
fmtrβ II: r(v) ≥ 0,∀v ∈ P ; r(v) = 0,∀v 6∈ P .
fmtrβ III: No constraints: r(v) ∈ R.

5.2. Main Theorem
Unfortunately, we find that this problem, along with each form of it, are all NP-hard:

THEOREM 5.1. fmtrβ I,II,III are NP-hard for all β < 1.

Generally, we prove the NP-hardness by reducing 3-SAT to fmtrβ .

5.3. Graph construction
For any 3-SAT instance, suppose it has m clauses and n variables.
Let x = β−1 − 1, y = 1

2x, and

gk = 6(2n− k),
hk = 6(2n− k) + 6 + y,

rt = 12n− 6 + 6β−1,

l =

⌈
nx+ 12n+ 6β−1 − 6

βx

⌉
+ 1.

We choose n large enough such that

nx = n(β−1 − 1) > 2β−1.

We construct graph G in the following way: We construct l nodes for each clause i,
namely ai,1, ai,2, · · · , ai,l, bi; and 4 nodes ui, u′i, vi, v′i for each variable i. We also have
node c∗, and s, t. We construct edges with weights in the following configuration: (each
triple is the start node, end node and the weight of an edge respectively)

(1) (s, a1,1, 0); (ai,1, bi, 0); (ai,j , ai,j+1, βx); (ai,l, ai+1,1, 0); (1 ≤ i ≤ m− 1, 1 ≤ j ≤ l − 1)
(2) (am,l, c1, 0), (ci, ci+1, 6), (cn, un, 6), (cn, u

′
n, 6); (1 ≤ i ≤ n− 1)

(3) (ui, vi, x); (u
′
i, v
′
i, x); (1 ≤ i ≤ n)

(4) (vi, ui−1, 6); (vi, u
′
i−1, 6); (v

′
i, ui−1, 6); (v

′
i, u
′
i−1, 6); (1 ≤ i ≤ n)

(5) (u0, t, 0); (u
′
0, t, 0).

For a clause i that contains variable k, we construct (bi, uk−1, hk), (bi, u
′
k−1, hk), If it

contains a positive subclause of k, we construct (ai,j , vk, gk), 2 ≤ j ≤ l; otherwise if
it contains “not variable k”, we construct (ai,j , v

′
k, gk), 2 ≤ j ≤ l. An illustration of the

graph is depicted below. For simplicity, direct values of hk and gk are drawn. The graph
shows an example of a clause with vn and ¬vk. The feasibility of this graph is easily
seen from the fact that β < 1 (so x > 0). We now prove the following main proposition:

PROPOSITION 5.2. The 3-CNF is satisfiable if and only if G has a minimum total
reward of at most nx+ rt.

5.4. Two Lemmas
To start with the proof, we first give two lemmas:

LEMMA 5.3. We have

hkβ
−1 + 6(k − 1) > nx+ rt, (6)
gkβ
−1 + 6k > nx+ rt, (7)

A:14 Shenke Xiao et al.

Fig. 6. Example figure for proving theorem 5.1, with a clause with vn and ¬vk. Edges that might be traveled
by the agent are in bold lines.

(l − 1)βx > rt + nx, (8)
hk < x+ gk + 6, (9)

x+ gk − x+ 6k < rt, (10)
x+ gk − x+ 6k < hk + 6(k − 1), (11)
βx+ gk − x+ 6k < rt, (12)

6β−1 + 6(n− 1) + 6n = rt, (13)
x+ gk − x+ 6k < gkβ

−1 − x+ 6k. (14)

PROOF. We have

hkβ
−1 + 6(k − 1) = β−1(6(2n− k) + 6 + y) + 6(k − 1)

> β−16(2n− k) + 6k

= gkβ
−1 + 6k.

On the other hand,

gkβ
−1 + 6k = β−16(2n− k) + 6k

≥ 6n+ 6nβ−1

= 12n+ 6n(β−1 − 1)

= 12n+ 6nx

> nx+ 12n+ 6β−1 − 6 = nx+ rt.

The last inequality is because the way we choose n: nx > 2β−1. So we prove (6) and (7).
We just choose an l large enough for (8) to stand: here we have

rt + nx = 12n− 6 + 6β−1 + nx ≤ βx(l − 1).

(9) is obvious from definition; For (10) the left hand side is

gk + 6k = 6(2n− k) + 6k = 12n < rt.

For (11) the right hand side is

hk + 6(k − 1) = 12n+ y > 12n,

A:15

which is the left hand side. (12) is a direct induction of (10). (13) is the definition of rt.
For (14), it is sufficient to prove that

x < gk(β
−1 − 1).

In fact we have

gk(β
−1 − 1) = gkx = 6(2n− k)x > x.

So we prove all the inequalities and equalities.

LEMMA 5.4. The agent continues to move if and only if there exists a path P such
that

β−1c(P) = β−1c(e1) +
∑

e∈P :e 6=e1

c(e) ≤
∑
v∈P

r(v),

where e1 is the first edge of P .

PROOF. This lemma can be obtained simply by multiplying β−1 in the definition of
motivating the agent.

By this lemma, we assume that the agent evaluates

β−1c(e1) +
∑

e∈P :e 6=e1

c(e)

instead of c(P) for every path P at each node; this makes convenience for discussions
follow.

5.5. Achievability
PROPOSITION 5.5. If the 3-CNF is satisfiable, then G has a minimum total reward

of at most nx+ rt.

PROOF. If the 3-CNF is satisfiable, we construct a reward as follows: Let r(vi) = x if
variable i is true, otherwise let r(v′i) = x; and r(t) = rt. All other nodes have reward 0.
We now prove that this is a valid setting: We define the length value of a path P from
v to v′, denoted l(P), to be the sum of all weights on the path minus sum of all rewards
on the path except v and v′:

l(P) =
∑
e∈P

c(e)−
∑

u∈P :u 6=v,v′
r(u).

The distance of a node v to t, denoted d(v), is defined as the minimum length value of
all paths getting from v to t. In fact, it’s easy to see that in this setting all vi, v′i have
d(vi) = d(v′i) = 6 + (k − 1)(6 + x − x) = 6k, and if variable i is true then d(ui) = 6k,
otherwise d(u′i) = 6k.

(1) node s will go a1,1 because (12) (d(a1,1) ≤ βx+ gk − x+ d(vk) = x+ gk − x+6k ≤ rt).
(2) ai,1 will go to ai,2: The path that goes through ai,2 and then vk(not losing generality,

suppose vk is true) has length value x + gk − x + d(vk) = x + gk − x + 6k, and the
path that goes through bi has length value hk+6(k−1). So we derive this from (10)
and (11).

(3) ai,j , j < l will go to ai,j+1, because (10) and (14) (The path that uses ai,j to vk has
length value gkβ−1 + 6k).

(4) ai,l, i < m will go to ai+1,1, because the path from ai+1,1 → ai+1,2 → vk → t has
length value βx+ gk − x+ 6k. So we derive this from (12) and (14).

(5) am,l will go to c1, because (13).
(6) ci will go to ci+1 for 1 ≤ i ≤ n− 1, because (13).

A:16 Shenke Xiao et al.

(7) cn will go to u∗n (here u∗n = un if variable n is true, otherwise u∗n = u′n) because (13).
(8) The agent then travels from u∗n to t , which is trivial by easy computation on the

weight values.

5.6. Satisfiability
PROPOSITION 5.6. If the 3-CNF is satisfiable, then G has a minimum total reward

of at most nx+ rt.

PROOF. First notice that in the minimum reward setting the agent cannot traverse
through any bi to uk, since otherwise it requires at least β−1hk + 6(k − 1) > rt + nx (by
(6)) rewards.

On the other hand, in a minimum setting the edge (ai,j , vk) also cannot be used, since
otherwise it requires at least β−1gk + 6k > rt + nx (by (7)) rewards.

Combine the two facts above, we know that the agent will reach c1. Notice that
all path from c1 to t has the form c1c2 · · · cnu∗nv∗nu∗n−1 · · · v∗1t, where u∗i ∈ {ui, u′i}, v∗i ∈
{vi, v′i}. On c1, the agent evaluates the cost of any of these paths (excluding the rewards
put) to be 6β−1+6(n−1)+6n = rt+nx (by (13)), so at least rt+nx rewards has to be put
on nodes {c1, c2, ..., cn, un, · · · , u1, u′n, · · · , u′1, vn, · · · , v1, v′n, · · · , v′1, t}, in all three versions
of fmtrβ . And so if if G has a minimal reward of at most rt + nx, no reward is put at
nodes ai,j or bi. Also in fmtrβ III, no negative rewards can be given. consider the path
that the agent chooses the shortest on c1, we know that there must be a path from c1
to t that has a total reward (including reward on t) of rt + nx. Then since there’s no
path from vk to v′k, uk to u′k (vice versa), we can’t put rewards on both vk and v′k or uk
and u′k.

Consider the following arrangement: if node vk has rewards on it, let variable vk=
true; otherwise let variable vk= false. In the following, we prove this arrangement gives
a valid arrangement of the original 3-SAT clause.

Note that if vk has rewards, then v′k doesn’t have; vice versa. So to prove this
proposition we only need to prove that for every clause i, the 3 v kind nodes (call them
v∗k1 , v

∗
k2
, v∗k3 , v∗k ∈ {vk, v′k}) that ai,2 connects to has at least one of them has costs. To

prove this, first notice that the shortest path from ai,2 to t must be through some v∗kj :
The path through ai,j(j > 2) and then to v∗kj has same costs but an additional βx cost;
and the path from ai+1,1 has cost at least βx(l−1) > nx+rt (by (8) and that ai,j doesn’t
have reward), which is larger than the total sum reward.

If none of v∗k1 , v
∗
k2
, v∗k3 has reward on it, then we have

d(ai,2) = min
1≤j≤3,v∗

kj

gkj + d(v∗kj) = min
1≤j≤3

min{gkj + 6 + d(ukj−1), gkj + 6 + d(u′kj−1)} := S.

So at ai,1 the edge to ai,2 is evaluated as βx · β−1 + S = x + S, since ai,1 does not have
reward. On the other hand, the path to bi is evaluated as (also, bi does not have reward)

0 + d(bi) = min
1≤j≤3

min{hkj + d(ukj−1), hkj + d(u′kj−1)}

< min
1≤j≤3

min{gkj + x+ 6 + d(ukj−1), gkj + x+ 6 + d(u′kj−1)}(by(9))

= x+ S.

So the agent will go to bi, which makes contradiction with above. So vk1 , vk2 , vk3 will
have at least one of them has rewards. Since it’s impossible that both vk and v′k has
rewards, we proved the proposition.

A:17

Combine the two sides above, we prove the main theorem.

6. CONCLUSION AND FURTHER WORK
So far we have extended the work of [Kleinberg and Oren 2014]. Firstly, we have shown
the close relationship between the special structure Fk and exponential cost ratio, thus
we should avoid this structure when we design the way of work if we do not want to
waste due to time-inconsistency. Also, we have shown the hardness of deleting edges
or distributing the reward to motivate the agent. This may be a bad properties of the
motivation model.

As an extension of our work, we can consider other forms of the problem, for exam-
ple, for fmtrβ , we can give the following extensions:

fmtrβ IV: We can put rewards on every edge and node of the graph. In this situation,
the agent gets the reward directly when he travels through it, instead of multiplying
it by β;

fmtrβ V: We can put any reward on any node, but only pays those reward that the
agent actually claimed.

It’s in fact easy to see that fmtrβ IV is in P: we can simply find the shortest
path(without the agent) of the graph, and put on each edge the cost of this edge. This
configuration have total cost the same as the shortest path, which is of course the
smallest possible.

On the other hand, fmtrβ V seems to be NPC. This problem is beyond the scope of
our method; we can put rewards on both v and v′ nodes. But maybe with slight changes
of the model, we can still prove this hardness.

Besides extensions of the problem, it’s also beneficial to explore approximation algo-
rithms of this problem. Also, practical algorithms that works for reality problems are
also a good exploration. We can also consider the case of multiple agents who cooperate
to get the target node.

REFERENCES

AKERLOF, G. A. 1991. Procrastination and obedience. The American Economic Review,
1–19.

KLEINBERG, J. AND OREN, S. 2014. Time-inconsistent planning: a computational
problem in behavioral economics. In Proceedings of the fifteenth ACM conference on
Economics and computation. ACM, 547–564.

	1 Introduction
	2 Basic Model
	3 Maximum Cost Ratio
	3.1 Some Lemmas
	3.2 Main Proof
	3.3 Tightness of the Bound

	4 Hardness of Finding motivating subgraphs
	4.1 Hardness of finding minimal motivating subgraph
	4.2 Main Proof

	5 Hardness of motivating agents to reach the goal
	5.1 Problem statement
	5.2 Main Theorem
	5.3 Graph construction
	5.4 Two Lemmas
	5.5 Achievability
	5.6 Satisfiability

	6 Conclusion and further work

