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2.1 Dominant Strategy

Let us consider a case where we are interested in selling a product.
There are various mechanisms that we can use to do so:

• Sealed bid first price auction (highest bidder wins)

• Sealed bid second price auction (highest bidder wins, but the price paid
is the second-highest bid)

• Lottery

• English auction (”going once, going twice, sold!”)

• Dutch auction (similar to English auction, only here the price de-
creases)

It is interesting to differentiate between such mechanisms from the agents
perspective - can an agent chooses a bidding strategy that will be better
than all others?

Definition A Dominant Strategy (DS) is a strategy profile which is at least
as good as all other strategies regardless of the strategies of all other agents.

Some examples:

• In a sealed bid first price auction there is no dominant strategy: every
agent will bid his value and the utility will be zero.

• In a sealed bid second price auction there exists a dominant strategy:
every agent should bid his value. This is in fact a special case of the
VCG mechanism studied in lecture 1.

• In an English Auction the dominant strategy will be to stay in the
game for as long as the bidding price is lower than the value.
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2.2 Complete Information Games

In games of complete information all players are assumed to know precisely
the pay-off structure of all other players for all possible outcomes of the game.
Formally, the information can be represented as a pay-off matrix : a multi-
dimensional matrix of vectors, where the dimension is the number of agents
(players), and the vectors represent the pay-off for the chosen strategy. So
in complete information games all the agents know this matrix.
A classic example of such a game is the prisoners’ dilemma, the story for
which is as follows:
Two prisoners who have jointly committed a crime, are being interrogated in
separate quarters. Unfortunately, the interrogators are unable to prosecute
either prisoner without a confession. Each prisoner is offered the following
deal: If he confesses and their accomplice does not, he will be released and
his accomplice will serve the full sentence of ten years in prison. If they both
confess, they will share the sentence and serve five years each. If neither
confesses, they will both be prosecuted for a minimal offence and each receive
a year of prison.
This story can be expressed as the following bimatrix game where entry (a,
b) represents row player’s pay-off a and column player’s pay-off b.

Silent Confess
Silent (-1,-1) (-5,0)
Confess (0,-5) (-3,-3)

A simple thought experiment enables prediction of what will happen in
the prisoners’ dilemma. Suppose the row player is silent. What should the
column player do? Remaining silent as well results in one year of prison
while confessing results in immediate release. Clearly confessing is better.
Now suppose that the row player confesses. Now what should the column
player do? Remaining silent results in ten years of prison while confessing
as well results in only five. Clearly confessing is better. In other words, no
matter what the row player does, the column player is better of by confessing.
We thus see that the strategy profile (confess, confess) is a dominant strategy.
It is in fact also a Dominant Strategy Equilibrium as we will now define.

2.2.1 Dominant Strategy Equilibrium

• S = (s1, ..., sn) is a vector of strategies.
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• Ai - set of possible actions for agent i. Note that si ∈ Ai.

• si is a Dominant Strategy for agent i if for all S−i = (s1, ..., si−1, si+1, ..., sn)
the utility (pay-off) of agent i is maximized by choosing si.

• A Dominant Strategy Equilibrium (DSE) is a vector S = (s1, ..., sn) s.t
si is a Dominant Strategy for every agent i.

As it turns out, DSE is quite a rare phenomenon. A weaker notion of equilib-
rium was defined by John Forbes Nash, who added the concept of response
to a strategy.
Let us observe a game called ”Battle of the Sexes”:
Imagine a couple that agreed to meet this evening, but cannot recall if they
will be attending the opera or a football match (and the fact that they forgot is
common knowledge). The husband would most of all like to go to the football
game. The wife would like to go to the opera. Both would prefer to go to the
same place rather than different ones.
A possible pay-off matrix is:

Opera Football
Opera (3,2) (0,0)
Football (0,0) (2,3)

If the couple cannot communicate, where should they go? If the husband
knows his wife went to the opera, it is clear that he should go to the opera
- this will maximizes his pay-off. Similarly, if he knows the wife went to the
football game he should also join her. Note that there is no DSE here. What
we have shown is that both strategy profiles (opera, opera) and (football,
football) are mutual best responses, a.k.a., Nash Equilibriums.

2.2.2 Nash Equilibrium

• si - some distribution over Ai.

• Si - all distributions over Ai.

• A Nash Equilibrium (NE) is a vector of strategies S = (s1, ..., sn) s.t
∀i, si is a best response for S−i.



4 Lecture 2: October 30

Note that DSE ( NE. Also, in the example above, the strategies of the
players correspond directly to actions in the game, a.k.a., pure strategies. In
general, Nash equilibrium strategies can be randomizations over actions in
the game, a.k.a., mixed strategies.

Theorem 2.1 (Nash, 1951) There always exists a mixed Nash Equilibrium

Proof Will be covered in...

2.3 Incomplete Information Games

Now we turn to the case where the pay-off structure of the game is not com-
pletely known. We will assume that each agent has some private information
and this information affects the pay-off of this agent in the game. We will
refer to this information as the agent’s ”type”, as opposed to ”value”.

2.3.1 Definitions

• Ti is the set of all possible types of agent i.

• ti ∈ Ti is some possible type of agent i.

• Ai is the set of actions.

• Si is the set of strategies.

• si ∈ Si is a function:

si : Ti −→ {Distributions over actions}

• In Incomplete Information Games a strategy si ∈ Si is a Domi-
nant Strategy for agent i if ∀t ∈ Ti, si(t) is a best response for any
b−i = (a1, ..., ai−1, ai+1, ..., an) .
Note that this is equivalent of saying that ak 6=i has a positive probabil-
ity.

• A Dominant Strategy Equilibrium (DSE) is a vector S = (s1, ..., sn) s.t
si is a Dominant Strategy (as defined herein) for every agent i.
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The auctions described in section Dominant Strategy were games of in-
complete information where an agent’s private type was his value for receiving
the item, i.e., ti = vi. As we described, strategies in the English auction
were si(vi) = ”drop out when the price exceeds vi” and strategies in the
second-price auction were si(vi) = ”bid bi = vi”. We refer to this lat-
ter strategy as truth-telling. Both of these strategy profiles are in dominant
strategy equilibrium for their respective (incomplete information) games.
It is interesting to find an equivalent for Nash Equilibrium of incomplete
information games as well.

2.3.2 Bayes-Nash Equilibrium

Recall that equilibrium is a property of a strategy profile. It is in equilibrium
if each agent does not want to change his strategy given the other agents’
strategies. Meaning, for an agent i, we want to the fix other agent strategies
and let agent i optimize his strategy (meaning: calculate his best response
for all possible types ti he may have). This is an ill-specified optimization
as just knowing the other agents’ strategies is not enough to calculate a best
response. Additionally, i ’s best response depends additionally on i ’s beliefs
on the types of the other agents. The standard economic treatment addresses
this by assuming a common prior. This is called Bayesian Updating.

Definition A Bayesian-Nash Equilibrium (BNE) for an incomplete informa-
tion game G and a Common Prior D is a strategy profile S = (s1, ..., sn)
s.t ∀t ∈ Ti, si(t) is a best response when other agents play s−i(t−i), and
t−i ∼ D−i|ti .

The suffix ( t−i ∼ D−i|ti) means that the agent utilizes an updated dis-
tribution of types given that he knows his own determined value.

In incomplete games we only have a prior assumption about how the ac-
tions are distributed, rather than specific knowledge about actions that will
be taken by the other (rational) agents. This differentiates BNE from NE.
To illustrate BNE, consider using the first-price auction to sell a single
item to one of two agents, each with valuation drawn independently and
identically from U [0, 1], i.e., D = D × D with D(z) = Pu∼D[u < z] = z.
Here each agent’s type is his valuation.
We will calculate the BNE of this game by the ”guess and verify” technique.
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First, we guess that there is a symmetric BNE with si(z) =
z

2
, i ∈ {1, 2}.

Second, we calculate agent 1’s expected utility with value vi and bid bi un-
der the standard assumption that the agent’s utility ui is his value less his
payment(when he wins).

• E[u1] = (v1 − u1)× P [1 wins]

• P [1 wins] = P [b2 ≤ b1] = P [
v2
2
≤ b1] = P [v2 ≤ 2b1] = P [D(2b1)] = 2b1

• =⇒ E[u1] = (v1 − u1)× 2b1 = 2v1b1 − 2b21

Third, we optimize agent 1’s bid. Agent 1 with value v1 should maximize
this quantity as a function of b1, and to do so, can differentiate the function
and set its derivative equal to zero. The result is

• d

db1
(2v1b1 − 2b21) = 2v1 − 4b1 = 0

• =⇒ the optimal bis is b1 =
v1
2

This proves that agent 1 should bid as prescribed if agent 2 does; and vice
versa. Thus, we conclude that the guessed strategy profile is in BNE.

Q: What will be the result for n players?

2.3.3 Bayesian Games

In Bayesian games it is useful to distinguish between stages of the game in
terms of the knowledge sets of the agents. The three stages of a Bayesian
game are:

1. ex ante - before agents know their types.

2. interim - immediately after the agents learn their types, but before
playing in the game.

3. ex post - the game is played and the actions of all agents are known.


