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6.1 the bottom line of myerson

for each agent i we are given Vi ∼ Fi. we then look at the ironed revenue
curve in quantile space, which is simply the minimum concaved function
that upper bounds the revenue curve R(q).we are not maximizing the social
welfare, instead we are maximizing the social welfare of the virtual values
in order to maximize profit. it is an optimal mechanism for maximizing
the revenue. its optimality comes from the optimality of VCG, we actually
simulate VCG on the virtual values Φ̄(b).

6.1.1 myerson auction

1. collect bids b = {b1, b2, ..., bn}.

2. compute the ironed virtual values Φ̄(b) and throw away negative virtual
values.

3. compute social welfare maximization (VCG) on the remaining virtual
values Φ̄(b)

4. compute the payments from BIC payment identity.

6.1.2 examples

the three following examples are for regular distributions, hence no ironing
is needed.

6.1.2.1 two bidders V1, V2 ∼ U [0, 1]

• F1,= F2 = U [0, 1]
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• q(v) = 1− F (v)

• R(v) = v · q(v) = v(1− v) = v − v2, maximized at 1
2

• R(q) = q · v(q)

• Φ(v) = v − 1−F (v)
f(v)

= 2v − 1 = R′(q)

• note that the revenue curve is concaved, no ironing needed.

• we throw away any vi such that 2vi − 1 < 0 , i.e vi <
1
2

now say agents i=1,2 get values V1, V2 then Φ1(v) = 2v1 − 1 and Φ2(v) =
2v2−1, in order to maximize revenue run VCG for these values. in that case,
since F1,= F2 = U [0, 1] the higher value also has higher virtual value.

6.1.2.2 n i.i.d bidders V1, V2..., Vn ∼ U [0, k]

• Φ(v) = v − 1− v
k

1
k

= 2v − k

• again, no ironing needed as revenue curve is concaved.

• we throw away any vi such that 2vi − k < 0, i.e vi <
k
2

• run VCG on remaining values.

here we have a different threshold value then the previous example but here
too, the higher value will also have higher virtual value.

6.1.2.3 2 bidders V1 ∼ U [0, 1], V2 ∼ U [0, 2]

• Φ1(v) = v − 1−F1(v)
f1(v)

= 2v1 − 1

• Φ2(v) = v − 1−F2(v)
f2(v)

= 2v2 − 2

• taking the same steps we took in the previous 2 examples we will ignore
v1 if v1 < 1

2
and ignore v2 if v2 < 1 and give it to the highest virtual

value left.

• if both values are below the critical values we don’t sell.
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now consider the case where v2 = 1.1 and v1 = 1, their virtual values are
Φ1(v1) = 1 and Φ2(v2) = 0.2. for this specific case we didn’t maximize profit
and the winner paid a lower price than the one we could charge. it happens
because we must set the auction rules in advance. we use an auction that
maximize the expected revenue, but it doesn’t guarantee that for any set of
V it maximize profit. when maximizing with respect to virtual values we
actually consider the values combined with their probability to occur so that
it maximizes the expected revenue.

6.2 the expected payment

6.2.1 expected payment for a regular distribution

recall that for regular distributions, the expected payment p for agent i with
value v and quantile q(v) is:

Eq[p(q)] = −Eq[R(q)x′(q)] = Eq[R
′(q)x(q)] = Eq[Φ(q)x(q)] (6.1)

from that we concluded that the optimal expected revenue is given by:

argmaxx(
∑
i

Φi(vi) · xi(vi)) (6.2)

this optimum is monotone in vi

6.2.2 expected payment for irregular distribution

the following lemma for the expected payments considering the ironed virtual
values holds for an irregular distribution:

Lemma 6.1
Ev(p(v)) = Eq[p(q)] ≤ Eq[Φ̄(q)x(q)] (6.3)

the equality occurs when ∀q.R̄(q) > R(q) =⇒ x′(q) = 0, i.e all have the
same virtual value.
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Figure 6.1: virtual value as a function of the real value, here v1, v2, v3 have
the same virtual value

.

in order to prove the lemma, lets look at the following statement:

Eq[p(q)]

= Eq[R
′(q)x(q)] + Eq[R̄

′(q)x(q)]− Eq[R̄
′(q)x(q)]

= Eq[R̄
′(q)x(q)]− Eq[(̄R

′
(q)−R′(q))x(q)]

= Eq[R̄
′(q)x(q)] + Eq[(̄R(q)−R(q))x′(q)]

(6.4)

the last equality follows from integrating by parts the integral form of
the expectation. note that the derivative of the allocation rule is non-
positive, since the the allocation rule is monotone non-decreasing in value
(non-increasing in quantile), also (̄R(q) − R(q)) is never negative, because
the ironed revenue curve upper bounds the original revenue curve, combin-
ing the two observations gives that Eq[(̄R(q) − R(q))x′(q)] ≤ 0 which prove
the lemma.

6.2.3 approximating myerson

in the last lessons we have shown an optimal mechanism to maximize revenue,
the myerson auction. however in some cases we want a mechanism that is
simpler and more “fair”, in the next lessons we will see such mechanisms that
are simpler and yet approximate myerson’s auction up to a constant factor.


