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Abstract

We give a simple reduction from Bayesian incentive
compatible mechanism design to algorithm design in
settings where the agents’ private types are multi-
dimensional. The reduction preserves performance
up to an additive loss that can be made arbitrarily
small in polynomial time in the number of agents and
the size of the agents’ type spaces.

1 Introduction

Motivated by Internet applications the methodologies
of mechanism design have been adopted to consider
design of algorithms and protocols for selfish agents.
A central problem in this area is in merging compu-
tational constraints (from approximation algorithms)
with incentive constraints (from mechanism design).
Much of the recent literature on this problem has fo-
cused on mechanisms satisfying the strongest possible
incentive constraints and the strongest possible no-
tions of tractability. Namely, the focus has been on ex
post incentive compatibility (i.e., truthtelling in dom-
inant strategies) and worst-case approximation algo-
rithms. Positive results in this area are in the form of
new algorithms for paradigmatic problems that sat-
isfy incentive constraints and match the worst-case
performance bounds of the algorithmic design prob-
lem sans incentive constraints. For ex post incentive
compatibility, no general reductions are known.

In this paper we consider a relaxation of the in-
centive constraints to Bayesian incentive compatibil-
ity (BIC) where truthtelling is a Bayes-Nash equilib-
rium, i.e., where strategies are a mutual best response
to strategies of other agents when agent preferences
are drawn from a known distribution. We also con-
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sider a relaxation of the performance constraints of
algorithms; we allow algorithms not to be worst-case
approximations. In this context we give a very gen-
eral reduction from Bayesian mechanism design to
algorithm design that approximately preserves or im-
proves the expected performance, i.e., social welfare,
of the algorithm. Of course, our reduction can also be
applied to a worst-case β-approximation algorithm;
in such a setting it results in a mechanism that is a
Bayesian β(1 + ε)-approximation.

This approach to mechanism design sits well with
a standard paradigm for algorithm design wherein a
practitioner might fine-tune their algorithm to the
actual workload they face rather than optimize for the
worst case. Furthermore, in the Internet applications
that motivate this field, protocols are executed at a
large scale and distributions are likely to be learnable.

This paper is a direct followup to work of Hartline
and Lucier [8] that gives a such a Bayesian reduction
for the special case where the selfish agents’ prefer-
ences are single-dimensional, e.g., a value for receiv-
ing service. While this work has elegant economic
motivation, its sampling-based blackbox reduction
requires much extra machinery to achieve Bayesian
incentive compatibility; furthermore, it has no clear
generalization of its ironing-based approach to more
the general (and fundamental) multi-dimensional set-
ting, e.g., where an agent might have distinct values
for several services that are available. In contrast we
consider multi-dimensional settings and give a very
simple reduction. Essentially: incentive constraints
in BIC mechanism design are as simple as solving
a bipartite matching problem independently on the
type space of each agent. In settings with small type
spaces but many agents, this gives a general polyno-
mial time reduction from mechanism design to algo-
rithm design.

The main approach is similar to the one in [8].
Our reduction will accept reported types from agents.
It will transform each of these types to a distribution
over types with the properties: (a) the transforma-
tion applied to a random type from the distribution
results in the transformed type with the same distri-
bution, (b) the transformation weakly improves per-
formance, and (c) the algorithm composed with the
transformation is Bayesian incentive compatible. It



then inputs the transformed types into the original al-
gorithm and returns its output. Finally, it computes
appropriate payments.

The transformation we apply to each agent’s
type is based on computing the maximum weighted
matching in a bipartite graph between the random
types from the distribution (including the agent’s real
type), termed “replicas”, and the set of outcomes of
the algorithm on another equal-sized random set of
types drawn from the distribution, termed “surro-
gates”. The transformation then outputs the surro-
gate type to which the agent’s real type is matched.
This basic replica-surrogate-matching approach can
be further refined and improved for the special cases
of single-dimensional agents and discrete explicitly
specified type spaces. (The latter reduction was in-
dependently and concurrently discovered by Bei and
Huang [2].)

To solve the above maximum weighted matching
problem we need to be able to evaluate the value of
each replica for the outcome the algorithm obtains
for each of the surrogates. If a replica is matched
to a surrogate the value it obtains is the expected
value over outcomes the algorithm produces when
run on the surrogate and random types of the other
agents. We consider two computational models:
an ideal model (Section 3) where we are able to
exactly calculate the expected value an agent might
have for the distribution over outcomes produced
by the algorithm, and a blackbox model (Section 4)
where we can only estimate this value by repeatedly
sampling the types of the other agents and running
the algorithm. Naturally, the blackbox model is more
realistic, though it presents some serious challenges.

Results. In the ideal model the replica-
surrogate matching and variants are BIC and we
give bounds on the number of replicas and surrogates
needed to ensure that the surplus loss of the result-
ing mechanism is at most a small additive ε. Nat-
urally, these bounds degrade with a suitable notion
of the complexity of the type space. In the black-
box model our results for single-dimensional settings
can be extended to give BIC mechanisms. For dis-
crete explicitly specified type spaces we can correct
errors inherent in sampling to give a BIC reduction in
pseudo-polynomial time. For continuous type spaces
our reduction is not BIC but it is ε-BIC.

Related Work. There has been extensive work
on designing ex post incentive compatible and
tractable mechanisms that provide worst-case ap-
proximation guarantees. The paradigmatic problem
of single-minded combinatorial auctions was solved
by Lehmann et al. [10] and related machine schedul-
ing (to minimize makespan) was solved by Dhang-

watnotai et al. [5], where “solved” means that the
approximation factor of the mechanism matches the
algorithmic lower bound. There is also a large lit-
erature on multi-dimensional combinatorial auctions
and approximation that we do not cite exhaustively.

There have been a few reductions from ex post
incentive compatible mechanism design to algorithm
design for special classes of algorithms. Of course the
VCG mechanism reduces the IC mechanism design
problem to exact algorithm design [13, 4, 7]. Lavi
and Swamy [9] consider IC mechanisms for multi-
parameter packing problems and give a technique for
constructing a (randomized) β-approximation mech-
anism from any β-approximation algorithm that ver-
ifies an integrality gap. For polynomial time approx-
imation schemes (PTAS), Briest et al. [3] solve the
single-dimensional case and Dugmhi and Roughgar-
den [6] solve the case of multi-dimensional additive
valuations in downward-closed settings; both papers
can be viewed as blackbox reductions from the ex
post IC mechanism design problem to the PTAS al-
gorithm design problem.

Finally, for Bayesian incentive compatibility,
Hartline and Lucier [8] give a blackbox reduction
from BIC mechanism design to algorithm design in
single-dimensional settings. This reduction converts
any algorithm into a mechanism and approximately
preserves its expected (for the Bayesian prior) per-
formance. Our approach follows their methodol-
ogy closely. We improve on their results for single-
dimensional settings and extend them to to multi-
dimensional settings.

In concurrent and independent work Bei and
Huang [2] reduce ε-BIC mechanism design to algo-
rithm design in settings with discrete and explicitly
given type spaces. In contrast, our work for discrete
settings uses the same basic approach but produces
a BIC mechanism, albeit in pseudo-polynomial time.
Importantly, Bei and Huang give a nice application
of the approach to the paradigmatic problem of com-
binatorial auctions with subadditive bidders.

2 Preliminaries

We consider mechanisms for selfish agents. An agent
has a private type t from type space T . There are
n agents. When we wish to be specific about a
particular agent κ ∈ [n] we index as, e.g., tκ and
T κ. The type profile of the n agents is denoted by
t = (t1, . . . , tn) ∈ T 1 × · · · × T n. An algorithm A
maps a type profile t to an outcome x from outcome
space X . Agent κ with type tκ has valuation v(tκ, x)
for outcome x. We assume that agent values are
non-negative and come from a bounded range that,
without loss of generality, is [0, 1]. A mechanism



M = (A,p) maps the type profile into an outcome
via an algorithm A and into a payment profile p =
(p1, . . . , pn). We overload notation and refer to pκ as
both the payment for κ and, when invoked on a type
profile, as the mapping from type profile to payment
profile, e.g., as pκ(t). Agent κ with type tκ has utility
v(tκ, x) − pκ for outcome x at payment pκ. Agents
are quasi-linear utility maximizers, i.e., they aim to
maximize their expected utility.

We are looking for mechanisms for maximizing
the social surplus, i.e., the sum of the values of the
agents less any cost to the designer. Denote by c(x)
the designer’s cost for outcome x. The optimal social
surplus is OPT(t) = supx∈X

∑
i v(tκ, x) − c(x). We

will overload notation and use A(t) to refer to both
the outcome and its surplus; i.e., an algorithm A
with outcome x = A(t) has social surplus A(t) =∑

i v(tκ, x)− c(x).
In Bayesian algorithm design and mechanism

design the types are drawn from a distribution. Fκ

denotes the distribution for tκ ∈ T κ and F =
F 1×· · ·×Fn the joint (product) distribution. When
reporting on the expected surplus of the algorithm we
will often take the distribution as implicit and denote
the expected surplus of an algorithm on types from
the distribution as A = Et∼F[A(t)]. We will denote
by Aκ = Et∼F[v(tκ,A(t))] the expected surplus
contributed by agent κ.

From agent κ’s perspective, the algorithm and
payment rule are composed with the other agent
types which are drawn from the joint distribution
F−κ. We will denote by A(tκ) the distribution over
outcomes when κ’s type is tκ and the other agents’
types are drawn from the distribution. Agent κ’s
value for the outcome distribution A(tκ) is denoted
v(tκ,A(tκ)) = Et∼F[v(tκ,A(t)) ‖ tκ]. We will denote
by pκ(tκ) = Et∼F[pκ(t) ‖ tκ] the expected payment
of agent κ with type tκ when the other agents’ types
are drawn from the distribution.

A mechanism is Bayesian incentive compatible
(BIC) if for all agents κ, and all types tκ, τ ∈ T κ,
when all agents except κ truthfully report their types
then κ’s expected utility is maximized by truthful
reporting as well, i.e.,

v(tκ,A(tκ))− pκ(tκ) ≥ v(tκ,A(τ))− pκ(τ).

For instance, the well known Vickrey-Clarke-Groves
(VCG) mechanism [13, 4, 7] selects the outcome
that maximizes the social surplus, i.e., OPT(t),
and assigns each agent κ a payment equal to the
externality that κ imposes on the other agents, i.e.,
pκ = OPT(t−κ) − OPT−κ(t) where the first term
is the surplus of the optimal outcome that excludes
agent κ and the second term is the surplus of the

optimal outcome with agent κ but does not include
κ’s value in the sum.

Unlike (ex post) IC mechanism design where the
mechanism, for all profiles of bids, must be have
a truthful reporting best response, for BIC mecha-
nisms all that is relevant is the outcome behavior
of the composition of the mechanism with the dis-
tribution of values of the other agents. The follow-
ing theorem rephrases the well-known characteriza-
tion of Bayesian implementable allocation rules via
cyclic monotonicity [12].

Theorem 2.1. For an algorithm A, there exists p
such that M = (A,p) is BIC if and only if a
maximum weighted matching property is satisfied on
an induced graph on any finite subset of the agent
types: in the weighted bipartite graph given by

• left-hand-side vertices: any finite subset of the
agent’s types T ′ ⊂ T ,

• right-hand-side vertices: the corresponding mul-
tiset of outcome distributions

X ′ = {X = A(t) ‖ t ∈ T ′}, and

• edge weights: v(t, X) between every t ∈ T ′ and
X ∈ X ′,

the maximum weighted matching is the identity, i.e.,
t matched to X = A(t).

From this perspective the various types of an agent
are competing amongst themselves for potential out-
comes of the algorithm. For the algorithm to be
BIC, it must resolve this competition to maximize
expected social surplus. For finite type spaces, ap-
propriate payments can be calculated from the maxi-
mum weighted matching on the full typespace T ′ = T
as they would be by VCG.

We will be giving reductions from BIC mecha-
nism design to algorithm design. In other words,
we will take an algorithm A and convert it into a
mechanism M that is BIC. Importantly, while the
algorithm A may not satisfy the maximum weighted
matching property, the mechanism M will. While
our goal is to perform this transformation and pre-
serve the expected performance of the algorithm, we
will only achieve this goal approximately. We refer
to ε as the additive loss of our reduction when M’s
performance satisfies M ≥ A − ε. Our reductions
will allow for arbitrarily small additive loss in time
polynomial in 1/ε; n, the number of agents; and a
notion of the “size” of the type space.

A further distinction that is relevant to our
results concerns the structure of the agents’ type



spaces. When we refer to single-dimensional types,
we mean that X ⊆ [0, 1]n, T κ = [0, 1] for all κ, and
v(tκ, x) = tκxκ. This is the standard model of single-
dimensional mechanism design, normalized so that
types and allocations take [0, 1] values. When we
refer to the setting of discrete type spaces, we mean
that each type space T κ has finite cardinality, the
algorithm is given a complete description of the type
distribution of agent κ, in the form of a listing of all
the points of T κ and their associated probabilities,
and the algorithm’s running time is allowed to be
polynomial in this input representation. Finally,
the setting of multi-dimensional continuous types is
the fully general setting defined at the start of this
section.

We consider two computational models: an ideal
model that makes strong (and often unrealistic) as-
sumptions about our ability to exactly compute ex-
pected values, and a blackbox model in which our
only access to the algorithm A and distribution F
is by sampling and blackbox evaluation, i.e., we can
draw a random type profile t from F, sample out-
come x ∼ A(t), and evaluate the value v(t, x) that
an agent with a given type t derives from a specific
outcome x. We present our reduction for the concep-
tually simpler ideal model on Section 3 and explain
how to extend most of these results to the blackbox
model in Section 4.

3 Ideal Model

In this section we make the simplifying, but unrealis-
tic, assumption that we have access to a closed-form
formula for calculating the expected value that an
agent derives from the outcome of the algorithm on a
distribution of agent types. That is, we can directly
calculate v(tκ,A(tκ)) = Et[v(tκ,A(t)) ‖ tκ].

At the heart of our reduction is a surrogate
selection rule, Γ, that, for a given agent type, selects
a distribution over types (a.k.a., surrogate types) to
be input into the algorithm in place of the agent’s
real type. We will typically specify a surrogate
selection rule as a randomized algorithm that outputs
a surrogate type. The surrogate selection rule is
then employed in the following generic reduction that
converts an algorithm into a mechanism (essentially
from [8]).

Definition 3.1. The Γ reduction is:

1. Apply the surrogate selection rule Γ indepen-
dently to each agent’s type to get a surrogate type
profile.

2. Call A on the profile of surrogate types.

3. Output the outcome of A and appropriate pay-
ments.

As in [8] this generic reduction will result in
a good mechanism if the surrogate selection rule
satisfies the following three properties.

1. Distribution preservation: When applying the
surrogate selection rule to a random type from
the distribution, the resulting distribution of
the surrogate type is identical to the original
distribution of the type.

2. (Approximate) surplus preservation: The ex-
pected valuation of an agent in the algorithm
approximately improves by the mapping.

3. Bayesian maximum-weight matching property:
The composition of the algorithm (with other
agent types drawn from the distribution)
with the surrogate selection rule satisfies the
maximum-weight matching property.

Notice that the distribution preservation condi-
tion will imply that we can perform the surrogate
selection rule independently to each agent and no
agent notices that the other agents’ types have been
transformed. The Bayesian maximum-weight match-
ing property, then, implies that the reduction is BIC.
We will not tend to take this approach; instead, we
will argue that our reductions are BIC because of dis-
tribution preservation and by analogy to VCG.

It remains to describe a surrogate selection rule
that satisfies the above conditions and discuss pay-
ment computation. These operations pertain to each
agent independently; therefore, we proceed by con-
sidering a single agent and assume the algorithm is
hard-wired with the distribution of types from other
agents. For convenience, since we consider only a sin-
gle agent, we drop the index κ from all notations.

Definition 3.2. The Replica-Surrogate Matching
(RSM) surrogate selection rule is implemented by the
following randomized algorithm, given agent’s type t
and an integer parameter m:

1. Pick i∗ uniformly at random from [m].

2. Sample the replica type profile, r, an m-tuple
of types with ri∗ = t, the real agent’s type,
and with each remaining replica type in r−i∗

drawn independently and identically from type
distribution F .

3. Sample the surrogate type profile, ss, an m-tuple
of types with each surrogate type independent and
identically drawn from type distribution F .



4. Define the surrogate outcome profile as X with
Xj as the distribution of outcomes from A(sj).

5. Define an edge-weighted bipartite graph between
replicas (left-hand side) and surrogate outcomes
(right-hand side) with the weight of the edge
between replica i and surrogate outcome j equal
to v(ri, Xj).

6. Simulate the VCG mechanism to select a match-
ing between replicas (as agents) and surrogate
outcomes (as items), i.e., compute the maximum
weighted matching and appropriate payments.

7. Select the surrogate to whose outcome the real
agent’s type, i∗, is matched.

The appropriate payment for the replica-surrogate
matching reduction is the VCG payment for the real
agent’s type calculated in Step 6.

We argue that this reduction is distribution pre-
serving and Bayesian incentive compatible.

Lemma 3.3. In the ideal model, RSM is distribution
preserving.

Proof. Each surrogate is i.i.d. from F . Each surro-
gate is matched to some replica. Using the principle
of deferred decisions, we now pick the replica i∗ that
corresponds to the real type. Since this choice of
replica is uniform from [m], then the selection of sur-
rogate types is uniform from [m], and therefore the
distribution of the selected surrogate type is F . 2

Theorem 3.1. In the ideal model, RSM is Bayesian
incentive compatible.

Proof. Consider an agent. VCG on the constructed
bipartite matching problem is incentive compatible
for any instantiation of r and ss under the assumption
that the expected value that any type ri derives from
being matched to surrogate outcome Xj is exactly
v(ri, Xj). This property holds in the Bayesian sense,
i.e., when the surrogate types of other agents are
drawn from their respective distributions, as happens
when the other agents bid truthfully. (Here we
are applying the distribution-preservation property,
Lemma 3.3.) Therefore, conditioning on the replica
and surrogate type profiles, r and ss, the mechanism
is Bayesian incentive compatible. The theorem now
follows by averaging over the random choice of r and
ss. 2

We now turn to evaluating the social surplus.
The RSM reduction is based on a weighted bipar-
tite matching between types (replicas) and outcomes

(surrogate outcomes) where the weights are given by
the agent’s valuation function. Central to our proof
will be a weighted bipartite matching between types
(replicas) and types (surrogates) where costs on edges
are given by how different the types are. Specifically,
the costs are the maximum, over outcomes, of the
magnitude of the difference in the value of the two
types.

The following steps give the high-level proof of
approximate surplus preservation.

1. The surplus of the mechanism is a 1/m fraction
of the total weight of the maximum replica-to-
surrogate-outcome matching.

2. This maximum replica-to-surrogate-outcome
matching is certainly more than the maximum
value surrogate-to-surrogate-outcome matching
less the minimum cost replica-to-surrogate
matching.

3. The surplus of the original algorithm is a 1/m
fraction of the total weight of the identity
surrogate-to-surrogate-outcome matching which
is certainly at most the maximum surrogate-to-
surrogate-outcome matching.

4. Therefore, the reduction approximately pre-
serves surplus if the minimum cost replica-to-
surrogate matching is small.

Below we give formal statements and proofs of each
of these steps. By far the most technical result is
that of showing that the cost of the optimal replica-
to-surrogate matching is small.

Lemma 3.4. The expected valuation of the agent in
M from the RSM reduction is a 1/m fraction of the
maximum weighted matching between the replicas and
the surrogate outcomes.

Proof. The valuation of the agent is equal to the
weight of the edge matched to it. Since the index
of the agent i∗ is uniform from [m], this weight is a
uniform draw from the m edges in the matching. 2

Lemma 3.5. The expected valuation of the agent in
A, to which the RSM reduction is applied, is at most
a 1/m fraction of the maximum weighted matching
between the surrogates and surrogate outcomes.

Proof. Consider the weighted bipartite graph given
by the surrogates and surrogate outcomes, i.e., the
weights are the valuations of each surrogate for each
outcome. Consider the matching where surrogate `
is matched to surrogate outcome `, i.e., the matching
that the algorithm A produces. The expected weight



of each edge in this matching is equal to the expected
surplus of A so the expected weight of the entire
matching is m times A’s expected surplus. Of course
the weight of the maximum matching is at least as
great as this matching. 2

We now get a bound on how far the replicas are
from the surrogates. To do this we first formally
define a distance metric on the agent’s type space.
The metric is given by distance function:

d(t1, t2) = sup
x∈X

|v(t1, x)− v(t2, x)|.

We second define the notion of a covering of the type
space. This is a common notion in machine learning
theory.

Definition 3.6. Type subspace T ′ ⊂ T is an r-cover
of the type space T if every t ∈ T is within distance
r from some type t′ ∈ T ′.

Now we can express the cost from matching replicas
to surrogates in terms of any r and the minimum
cardinality r-cover.

Lemma 3.7. For any r > 0 and any r-cover T ′ with
cardinality β = |T ′|, the expected cost of the min-
imum weight matching between replicas and surro-
gates (with weights equal to the distance function) is
O(2mr +

√
βm).

Proof. We are considering a stochastic matching
problem where m red points (e.g., replicas) and m
blue points (e.g., surrogates) in a metric space (as
given by d(·, ·)) are being drawn i.i.d. from a distri-
bution. The space has a r-cover T ′ with cardinality
β. We consider the heuristic matching that prefers
matching points with the same covering. For such
points the cost of the edge in the matching is at most
2r; for the remaining points the cost is at most one, by
our assumption that values are in [0, 1]. Let D denote
the number of matches of this latter type. The cost of
this matching is at most 2rm+D. Of course this up-
per bounds the minimum cost matching. It remains
for us to prove that D satisfies E[D] = O(

√
βm).

Define c : T → {0, 1}β to indicate a point in the
cover for every type and let c(t) =

∑m
i=1 c(ti) for any

vector of types t. Notice that ct′(r) is the number of
replicas (red) covered by t′ and ct′(ss) is the number
of such surrogates (blue), min{ct′(r), ct′(ss)} is the
number that can be matched to each other, and the
remaining |ct′(r)− ct′(ss)| contribute to D. The total
number of points that must be matched outside their
cover is thus given by the L1-norm, |c(r)−c(ss)|1. Of
course the number of such matches is half the number

of points matched, i.e.,

(3.1) 2 ·D =
∥∥∥∑m

i=1
c(ri)− c(si)

∥∥∥
1
.

The terms in the sum on the right side of (3.1) are
independent random vectors. Each of them has mean
zero (since rk and sk are sampled from the same
distribution) and consequently,

E
[
‖c(r)− c(ss)‖22

]
= m ·E

[
‖c(r1)− c(s1)‖22

]
< 2m.

Finally,

E[D] =
1
2
E [‖c(r)− c(ss)‖1]

≤ 1
2

√
E [‖c(r)− c(ss)‖21] ≤

√
βm,

using the fact that ‖z‖21 ≤ β‖z‖22 for any vector
z ∈ Rβ . 2

Combining lemmas 3.4, 3.5, and 3.7 we conclude
the following theorem.

Theorem 3.2. For any r > 0, any r-cover T ′ with
cardinality β = |T ′|, and any agent κ, the mechanism
M from the RSM reduction on algorithm A has
expected surplus satisfying

Mκ ≥ Aκ −O(r +
√

β/m).

Corollary 3.1. For any T with doubling dimen-
sion ∆, any ε > 0, and any agent κ, the RSM re-
duction with m = Ω(ε−∆−2) has an expected surplus
satisfying

Mκ ≥ Aκ −O(ε).

Proof. The assumption that T has doubling dimen-
sion ∆ implies that there is an r-cover with cardi-
nality β = O(r−∆). The corollary now follows by
substituting r = ε in Theorem 3.2. 2

In fact, when T has doubling dimension ∆ > 2,
one can replace ε−∆−2 with ε−∆−1 in Corollary 3.1
using a more delicate analysis: one partitions T into
sets of radius 1/2, 1/4, . . ., each partition refining
the preceding one, and one constructs the matching
recursively based on this hierarchical partition. The
details are left to the full version of this paper.

3.1 Single-dimensional Settings. Let us now
specialize to single-dimensional settings where X ⊆
[0, 1]n, T κ = [0, 1], and v(tκ, x) = tκxκ. Again, we
will take the perspective of a single agent and drop
the agent index κ. What is special about single-
dimensional settings is that a maximum matching



between replicas and surrogate outcomes can be
calculated simply by sorting the replica types and
the surrogate outcomes and matching in this sorted
order.

Notice that for single-dimensional settings Theo-
rem 3.2 with r = m−1/3 implies that the RSM reduc-
tion has loss O(m−1/3) per agent. A sharper analysis
establishes a bound of O(m−1/2) in this setting; for
details see the full version of this paper.

In this section we improve on these bounds by
giving a single-dimensional variant of RSM with
loss Θ(m−1). Informally this variant defines the
surrogates to be equal to the replicas, except with
the real type ri∗ replaced by a new type drawn from
the distribution. This approach gives the best known
reduction for single-dimensional settings.

Definition 3.8. The Replica-Replica Matching
(RRM) surrogate selection rule is equivalent to RSM
with j∗ drawn uniformly from [m] and Steps 3 and 5
replaced with:

3′. Define surrogates equal to replicas, i.e., ss = r.

5′. Define a weighted bipartite graph between replicas
r−j∗ (left-hand side) and surrogate outcomes
X−i∗ (right-hand side).

We now argue that in single-dimensional settings
RRM is distribution preserving and approximately
surplus preserving. Importantly, neither of these re-
sults for RRM generalize to multi-dimensional set-
tings.

Lemma 3.9. The RRM surrogate selection rule is
distribution preserving.

Proof. Sort the replicas r in decreasing order of
value and the surrogate outcomes X is decreasing
order of expected value. Since we are in the single-
dimensional setting, we know that the maximum
weight matching selected in Step 6 of the reduction
is the unique order-preserving matching between the
subsets r−j∗ and X−i∗ of these two ordered lists.
As in the proof of Lemma 3.3, we must show that
the surrogate outcome to which i∗ is matched is
uniformly distributed among the m − 1 elements of
X−i∗ . For the surrogate outcome occurring kth in the
sorted list, it is matched to i∗ if and only if either:
(a) i∗ occurs kth in the list of replicas and j∗ occurs
after it, or (b) i∗ occurs (k+1)th in the list of replicas
and j∗ occurs before it. The two events are mutually
exclusive. The probability of the first one is 1

m · m−k
m−1 ,

and the probability of the second one is 1
m · k

m−1 , so
their combined probability is exactly 1

m−1 as claimed.
2

The proof of Theorem 3.1 can be applied as is to
RRM and, together with Lemma 3.9, implies that it
is BIC.

Theorem 3.3. For any agent κ, the mechanism M
from the RRM reduction on algorithm A has expected
surplus satisfying

Mκ ≥ Aκ − 1/m.

Proof. Sort the replicas r in decreasing order of
value and the surrogate outcomes X in decreasing
order of expected value. Notate the kth ranked in
each ordering as r(k) and X(k), respectively. The
maximum weighted matching between r and X would
assign replica to surrogate outcome by this rank
order.

Compared to the above matching, the matching
between r−j∗ and X−i∗ , at worst, matches the kth

highest replica to the (k + 1)th highest surrogate
outcome. Since the real agent, corresponding to
replica i∗, is uniformly at random from these m
replicas, the expected surplus of the real agent is at
least (for convenience defining X(m+1) = 0),

Mκ ≥ 1
m

∑m

k=1
r(k)X(k+1)

≥ 1
m

∑m

k=2
r(k)X(k)

≥ 1
m

[∑m

k=1
r(k)X(k) − 1

]
= Aκ − 1

m .

2

3.2 Discrete Type Spaces. In the ideal model,
settings with discrete type spaces can be solved with
no loss by a reduction with running time that is
polynomial in the combined cardinality of the type
spaces. The mechanism is a variant on the RSM
mechanism, though we will not make the connection
precise. This reduction is based on network flow,
and for convenience we will adopt the terminology
of replica and surrogate even though neither the
replicas nor the surrogates are random draws from
the distribution.

Definition 3.10. The Replica-Surrogate Flow
(RSF) surrogate selection rule for type space with
cardinality m is:

1. For each distinct type t ∈ [m], let replica rt = t,
surrogate st = t, and surrogate outcome, Xt =
A(st).

2. Define a minimum cost network flow instance on
the replicas and surrogate outcomes:



• Connect the source to each replica rt with
capacity πt (equal to the probability that t
is drawn from F ).

• Connect the sink to each surrogate outcome
Xt with capacity πt (equal to the probability
that t is drawn from F ).

• Connect all replicas i to surrogates out-
comes j with capacity 1 and cost −v(ri, Xj).

• Let f(i, j) denote the flow from replica i to
surrogate j in the minimum cost flow.

3. Run the VCG mechanism to find the minimum
cost flow and appropriate payments.

4. Replace the real type t with a convex combination
of the surrogates as suggested by the flow, i.e.,
surrogate type sj with probability f(t, j)/πt.

The appropriate payment for the replica-surrogate
flow reduction is the VCG payment for the real agent
as calculated in Step 3.

The proofs of Lemma 3.3 and Theorem 3.1 can be
adapted to RSF and imply that it is BIC. Further-
more, the expected surplus of the resulting mecha-
nism is equal to the magnitude of the minimum cost
flow which is at least the magnitude of the cost of
the identity flow, i.e., with f(i, i) = πi, which is the
expected surplus of the original algorithm.

Theorem 3.4. In the ideal model in discrete settings
with finite type spaces, the mechanism M from the
RSF reduction on algorithm A has expected surplus
satisfying M≥ A and runs in polynomial time in m,
the number of distinct types, and n, the number of
agents.

4 The blackbox model

In this section we explain how to modify RSM reduc-
tions to achieve incentive compatibility in the black-
box model, in which we can only access the algo-
rithm A by evaluating it at a given type profile. In
particular, we cannot directly evaluate the expecta-
tion of v(tκ,A(tκ, t−κ)) over a random type profile
t−κ, as is allowed in the ideal model. Instead, such
quantities must be estimated by sampling. The main
difficulty, then, lies in designing a mechanism that
satisfies Bayesian incentive compatibility despite the
inevitability of small sampling error.

As before, we focus on a single agent κ and omit
its index; A(t) denotes the distribution of outcomes
obtained by evaluating the algorithm A on the agent
with type t assuming all other agent types are random
from the distribution.

Consider the following definitions.

Definition 4.1. For a given positive integer L, the
estimation procedure Est for outcome distribution
X is the following. Draw L outcomes x1, . . . , xL

independently and identically from X. The outcome
estimate X̃ = Est(X) is the uniform distribution over
these L outcomes. The value estimate for type t and
outcome estimate X̃ is v(t, X̃) = 1

L

∑L
j=1 v(t, xj).

Definition 4.2. The Estimated Replica-Surrogate
Matching (ERSM), surrogate selection rule is iden-
tical to RSM except with outcome distribution
Xj = A(sj) replaced with outcome estimate X̃j =
Est(A(sj)) for all j ∈ [m]. Similarly, for discrete set-
tings define ERSF for RSF using outcome estimates
in place of outcome distributions.

Unfortunately ERSM and ERSF are not gener-
ally BIC. We first show that in single-dimensional
settings a variant of ERSM with (to be defined) bi-
nomial estimates is BIC. We then turn to discrete set-
tings and show that the convex combination of ERSF
with a (to be defined) blatantly monotone algorithm
is BIC. Finally, for general continuous settings, as
we know of no general BIC reduction, we show that
ERSM itself is in fact ε-BIC for a suitable choice of
L.

4.1 Single-dimensional types. Consider single-
dimensional settings, i.e., where X ⊆ [0, 1]n, T κ =
[0, 1], v(tκ, x) = tκxκ.

Observe that ERSM is not BIC via the following
simple counterexample. Assume that the agent’s type
distribution is uniform on [0, 1], that L = 1,1 and
that the function A(t) has the following structure.
When t > 1/2, A(t) = 4/m with probability 1. When
t ≤ 1/2, A(t) = 1 with probability 2/m and A(t) = 0
otherwise. Note that since L = 1, each X̃j is obtained
by simply sampling a random type sj ∈ [0, 1] and
drawing one sample from the distribution A(sj). We
have that for all j, Pr(X̃j = 1) = (1/2) · (2/m) =
1/m, and hence Pr(max1≤j≤m X̃j < 1) = (1 −
1/m)m ∼ 1/e. Accordingly, if an agent with type
t = 1 bids truthfully and is assigned to s` where
` = argmaxj{X̃j}, then Pr(s` ≥ 1/2) ≈ 1/e and
E[v(t,A(s`))] ≈ (1/e) · (2/m) + (1 − 1/e) · (4/m). If
the agent instead bids 3/4 and is matched to some
other surrogate ss, then ss > 1/2 unless the set
{s1, . . . , sm} contains more than 3m/4 samples from
[0, 1/2] or the multiset {X̃1, . . . , X̃m} contains more
than m/4 instances of the number 1. Both of these
events have exponentially small probability (in m), so

1Similar counterexamples can be constructed for any value
of L, by modifying the parameters in this counterexample to
have the appropriate dependence on L.



E[v(t,A(ss))] ≈ 4/m. Thus we see that the agent’s
expected allocation is higher when bidding 3/4 than
when bidding 1, violating monotonicity.

The problem with ERSM is that the head-to-
head comparison between random values from differ-
ent distributions may not be consistent with the ex-
pected values of these distributions. To address this
we explicitly turn each estimate distribution into the
binomial distribution.

Definition 4.3. The binomial estimation procedure
BinomEst for outcome distribution X is the fol-
lowing. Draw L outcomes x1, . . . , xL independently
and identically from X (note: xj ∈ [0, 1]). Draw
Bernoulli trials y1, . . . , yL independently, setting yj =
1 with probability xj and 0 otherwise. The binomial
outcome estimate X̃ = BinomEst(X) is the average
of these L binary outcomes, i.e., X̃ = 1

L

∑L
j=1 yj.

Notice, in the definition of the binomial estima-
tion procedure, that without conditioning on the xj ’s,
the yj ’s are i.i.d. Bernoulli trials with success prob-
ability equal to the expectation of X. Therefore,
X̃ = BinomEst(X) is a binomial random variable.

Definition 4.4. The Binomial Estimated Replica-
Surrogate Matching (BERSM) surrogate selection
rule is identical to RSM except with outcome distri-
bution Xj = A(sj) replaced with outcome estimate
X̃j = BinomEst(A(sj)) for all j ∈ [m]. Similarly,
define BERRM for RRM using binomial outcome es-
timates in place of outcome distributions.

The surplus of the blackbox model BERSM (and
BERRM) reduction is close that of the ideal model
RSM reduction.

Lemma 4.5. The expected surplus of the BERSM
mechanism M̃ relative to the RSM mechanism M
satisfies M̃κ ≥ Mκ − O(1/m) when surrogate out-
comes are estimated with L > m2 ln(m2) samples.
The same bound applies to the expected surplus of the
BERRM mechanism relative to the RRM mechanism.

Proof. The Chernoff-Hoeffding bound implies that
when L > 2ε−2 ln(m/ε), the event that there exists
an estimate X̃k that differs from the actual value
yk by more than ε has probability no greater than
ε. When this event does not occur, the matching
with the greatest estimated value has an actual value
that differs by at most 2εm from the actual value
of the maximum matching. Rescaling the matching
weight by 1

m in accordance with Lemma 3.4, we find
that the RSM reduction’s expected welfare loss in the
blackbox model differs from its expected welfare loss
in the ideal model by at most 3ε. 2

To prove that the reduction is BIC, we use the
following property of binomial distributions that we
call posterior monotonicity.

Lemma 4.6. (Posterior Monotonicity)
Suppose p, q are real numbers with 0 ≤ p ≤ q ≤ 1,
X, Y are random variables with binomial distribu-
tions B(n, p) and B(n, q), respectively, and a, b are
integers with 0 ≤ a ≤ b, then

Pr(X = a) Pr(Y = b) ≥ Pr(X = b) Pr(Y = a).

Proof. The lemma is trivial if either p or q is equal to
0 or 1. Consequently, let us assume henceforth that
p(1− p)q(1− q) 6= 0. Then it is easy to see that

Pr(X = a) Pr(Y = b)
Pr(X = b) Pr(Y = a)

=
pa(1− p)n−aqb(1− q)n−b

pb(1− p)n−bqa(1− q)n−a

=
(

q(1− p)
p(1− q)

)b−a

=
(

1 +
q − p

p(1− q)

)b−a

,

which is greater than or equal to 1 by our hypotheses
that p ≤ q, a ≤ b. 2

Theorem 4.1. In the blackbox model and single-
dimensional settings, BERSM and BERRM are BIC.

Proof. [Proof sketch; full proof is in Appendix A.]
Let M be the mechanism that results from applying
the BERSM reduction to algorithm A. Let t1 < t2
be any pair of types for an agent. To show that
E[M(t1)] ≤ E[M(t2)], we show that this inequality
holds when we condition on all the relevant data
about an execution of the BERSM reduction except
the identities of the surrogates to whom t1, t2 would
be matched. (Thus, we condition on the types of all
replicas and surrogates, the estimates X̃j for all but
two surrogates α, β, and the unordered pair of values
{X̃α, X̃β}.) Posterior monotonicity (Lemma 4.6)
implies that the probability of generating this data
is maximized when the higher of the two estimates
X̃α, X̃β is generated by the surrogate who has the
higher expected allocation. Using Bayes’ Law, this
in turn implies that the agent’s expected allocation
is maximized when matched to the surrogate with
the higher estimate. The RSM matches the highest
bidders to the surrogates with the highest estimates,
implying monotonicity. 2

Finally, we describe how to compute payments
so as to satisfy BIC when using the RSM reduc-
tion combined with the binomial estimator. Accord-
ing to the well-known characterization of truthful
single-parameter mechanisms [11, 1], a mechanism is
Bayesian incentive compatible as long each agent κ’s



expected allocationMκ(t) is monotone in t, and their
expected payment when bidding t satisfies

E[pκ(t)] = tκ · Mκ(t)−
∫ t

0

Mκ(z) dz(4.1)

= t

∫ 1

0

Mκ(t)−Mκ(yt) dy.

Thus, to compute the payment for an agent, the
mechanism samples a uniformly random y ∈ [0, 1],
runs the RSM reduction again replacing tκ with ytκ,
and charges a price of tκ · (M(tκ) −M(ytκ). The
expectation of this price is equal to the right side
of (4.1), thus ensuring Bayesian incentive compati-
bility.

4.2 Discrete types. Consider settings with dis-
crete, finite type spaces. Without loss of generality
the types are T = [m] and type t occurs with proba-
bility πt. We assume oracle access to the agent valu-
ation function, i.e., for any type t and outcome x we
can evaluate v(ti, xj). Define µ to be the minimum
granularity of the utility function, e.g., if utilities are
given in k-bit binary then µ = 2−k. We will allow
our BIC reduction in this section to be polynomial
in m and 1/µ, i.e., it is a pseudo-polynomial time
reduction.

We restrict attention to general feasibility set-
tings, i.e., where the designer’s cost function is c(·) ∈
{0,∞}. We assume, without loss of generality for
these settings, that there is a special “status quo”
outcome 0, e.g., corresponding to not running the
mechanism at all. All types t ∈ T are assumed to
satisfy v(t, 0) = 0.2

The reduction we give exploits the following two
aspects of discrete settings for mechanism design.
First, in discrete settings if we make the estimated
outcomes under distinct reports of an agent different
enough, then even small errors in estimation are not
enough to violate the discrete incentive constraints.
Second, while with continuous type spaces the pay-
ments for a given allocation rule are uniquely deter-
mined up to an additive shift, for discrete type spaces

2In settings where there is no “status quo” outcome, we
can artificially create one by defining outcome 0 to be a
random outcome, i.e. the distribution over outcomes defined
by sampling a random type profile from the agents’ type
distributions and evaluating algorithm A on this type profile.
In that case the assumption ∀t v(t, 0) = 0 will not be satisfied,
but we can adjust each type by adding a constant to its
valuation function so that v(t, 0) = 0 is satisfied. All of our
RSM and RSF reductions have the property that their behavior
is unaffected when an agent shifts its valuation function by
an additive constant, so this transformation doesn’t affect our
mechanisms’ behavior.

there is some “wiggle room”. For example, if the val-
ues are {0, 1, 2} in a single-dimensional setting, and
we wish to only allocate to the agent with value 2
then any price in (1, 2] is sufficient for guaranteeing
incentive compatibility.

Given the above minimum-granularity assump-
tion, two types t and t′ are either the same or they
differ on some outcome x by at least µ. Given any set
of outcomes, there is a minimal distinguishing subset,
of size at most M =

(
m
2

)
, that distinguishes between

any two types that are distinguished by the original
set.

Definition 4.7. Parameterized by a distinguishing
subset of M outcomes {x1, . . . , xM}, the blatantly
monotone algorithm for an agent κ, is denoted by
BMκ. On type t, for each j ∈ [M ] it outputs outcome
xj with probability 1

M v(t, xj), and with the remaining
probability, i.e., 1 − 1

M

∑
j∈[M ] v(t, xj), it outputs

outcome 0. The payment charged to κ is

pκ(t) =
1

2M

∑M

j=1
(v(t, xj))

2
,

and the payment charged to all other agents is zero.

Note that our assumption that all agent values
are in [0, 1] ensures that the probabilities defined in
Definition 4.7 constitute a valid probability distribu-
tion.

Surrogate selection rule ERSF draws L outcomes
for each of m surrogates for a total of Lm outcomes.
Two types that have the same values across all Lm
of these outcomes are indistinguishable and ERSF
treats them identically. Two types that are treated
identically do not permit strategic manipulation as
an agent with either type receives the same outcome
for either report. The blatantly monotone mechanism
then only needs to correct for estimation error in out-
comes for types that are distinguishable. However,
in order to use the blatantly monotone mechanism
BMκ to restore Bayesian incentive compatibility to
the ERSF, we will see that the probability of distin-
guishing two types using BMκ must be greater than
the probability of distinguishing them using ERSF.
For this reason, we allow BMκ to distinguish types
using Km > Lm sampled outcomes.

Definition 4.8. The Blackbox Replica-Surrogate
Flow (BRSF) reduction with parameters K, L and δ
is the following:

1. With probability 1 − δ run the ERSF reduction,
drawing L samples of the algorithm’s outcome
for each of the m types of each of the n agents.



2. With probability δ pick an agent κ uniformly at
random. Draw K samples of the algorithm’s
outcome for each of the m types of κ, and run
the blatantly monotone mechanism as defined
by BMκ for a distinguishing subset of the Km
outcomes sampled for κ.

We now give three lemmas. First, we present two
lemmas to show that the benefit an agent can gain
in ERSF by misreporting its type is not too large.
Then, in Lemma 4.12, we show that agents who mis-
report their type in the blatantly monotone mecha-
nism suffer a strictly positive penalty. Combining the
lemmas, Theorem 4.2 will show how to set the param-
eters K, L, δ such that the penalty of misreporting in
BMκ is large enough to cancel out the potential ben-
efit from misreporting in ERSF.

Lemma 4.9. Fix two types t, t′ ∈ T and a real
number γ > 0. If L > 2γ−2 ln(γ/2m) then an agent
of type t who bids t′ in ERSF instead of bidding
truthfully cannot increase its utility by more than 3γ.

Proof. For any specific surrogate outcome Xj , the
Chernoff-Hoeffding inequality implies that

Pr
(
|v(t, Xj)− v(t, X̃j)| > γ

)
< 2 exp

(
−Lγ2

2

)
= γ

m .

Taking the union bound over all surrogate outcomes
Xj we now see that with probability at least 1 − γ,
the estimate

(4.2) |v(t, Xj)− v(t, X̃j)| ≤ γ

holds for all j, and consequently the same estimate
also holds for any convex combination of surrogate
outcomes, for example the convex combinations to
which types t, t′ are assigned in the minimum cost
flow computed by the ERSF mechanism. Denote
these convex combinations of surrogate outcomes by
X(t), X(t′), respectively, and denote the correspond-
ing convex combinations of outcome estimates by
X̃(t), X̃(t′), respectively.

Recall that ERSF uses the VCG mechanism on
the minimum-cost flow instance defined by costs
−v(t, X̃j). We know that type t gains nothing by
misreporting its type as t′ in this VCG mechanism,
i.e.

v(t, X̃(t))− pκ(t, t−κ) ≥ v(t, X̃(t′))− pκ(t′, t−κ).

Assuming that (4.2) holds for all j, it implies that
|v(t, X(t))− v(t, X̃(t))| and |v(t, X(t′))− v(t, X̃(t′))|
are both bounded above by γ, hence

v(t, X(t))−pκ(t, t−κ)+2γ ≥ v(t, X(t′))−pκ(t′, t−κ),

i.e., type t gains no more than 2γ by misreporting
her type as t′. Finally, the event that (4.2) fails to
hold for all j has probability at most γ and in that
case the benefit of misreporting one’s type cannot be
greater than 1. Combining these two cases, we see
that the expected benefit of misreporting type t as t′

is no more than 3γ. 2

We will need to use a different upper bound on
the benefit of misreporting t as t′ in case t and t′ are
very hard to distinguish, meaning that the outcomes
distinguishing t from t′ are very rarely sampled when
evaluating A on randomly sampled type profiles. To
quantify this, we need the following definition.

Definition 4.10. The indistinguishability parame-
ter of two types t, t′ ∈ T , denoted by ι(t, t′), is defined
to be the probability that we fail to observe an out-
come that distinguishes t from t′ when sampling one
outcome independently for each of the m elements of
T .

Lemma 4.11. For any two types t, t′ ∈ T , an agent
of type t who bids t′ in ERSF instead of bidding
truthfully cannot increase its utility by more than
1− ι(t, t′)L.

Proof. Consider the L independent outcomes drawn
by the ERSF reduction in defining the outcome esti-
mates X̃j . If this set of Lm outcomes fails to contain
an outcome distinguishing t from t′ then the ERSF
mechanism will output exactly the same outcome and
payment for agent κ regardless of whether its bid
is t or t′. The probability of this event is ι(t, t′)L.
The lemma now follows from the observation that an
agent can never gain a benefit greater than 1 from
misreporting its type. 2

We turn now to analyzing the blatantly mono-
tone mechanism.

Lemma 4.12. Consider the blatantly monotone
mechanism BMκ with distinguishing outcome set
{x1, . . . , xM}. For any two types t, t′ ∈ T , an agent
of type t is indifferent between reporting its type
as t or t′ unless {x1, . . . , xM} contains an outcome
distinguishing t from t′. In that case, reporting type
t′ rather than t decreases the agent’s utility by at
least µ2

2M .

Proof. Let v,w ∈ RM denote the vectors whose
components are specified by vj = v(t, xj) and wj =
v(t′, xj), respectively. When we run BMκ on inputs
t, t′ to obtain two outcome distributions, we find that
type t assigns value 1

M v ·v and 1
M v ·w, respectively,

to these two outcome distributions. The payment is



1
2M ‖v‖2 when bidding t and 1

2M ‖w‖2 when bidding
t′, where ‖ · ‖ denotes the L2 norm on RM . Hence,
the decrease in utility when bidding t′ rather than t
is given by

1
M

(
v · v − 1

2
‖v‖2 − v ·w +

1
2
‖w‖2

)
=

1
2M

(
‖v‖2 − 2v ·w + ‖w‖2

)
=

1
2M

‖v −w‖2.

If the set {x1, . . . , xM} contains no outcome distin-
guishing t from t′, then v = w = 0 and the right side
is zero. Otherwise, ‖v−w‖2 is bounded below by µ2,
so the decrease in utility is at least µ2

2M . 2

The preceding lemmas established upper bounds
on the expected benefit that an agent of type t can
obtain by misreporting t′ in ERSF and a lower bound
on the expected penalty that the agent suffers by
misreporting t′ in BMκ. Our next goal is to prove
that for suitable choices of the parameters δ, L,K,
the penalty outweighs the benefit, resulting in a BIC
mechanism. To do so, we need the following simple
inequality, whose proof appears in Appendix A.

Lemma 4.13. For any real numbers a, b, z in the
interval (0, 1) such that a ≤ b/2, if q is any integer
greater than 1/a, then

(4.3) min{a, 1− z} < b(1− zq).

Theorem 4.2. If δ, γ, L, K satisfy

δ < ε/n

γ <
µ2δ

6m2n

L > 2γ−2 ln(2m/γ)

K > Ldγ−1e,

then the BRSF reduction yields a mechanism M
satisfying BIC, and its social surplus satisfies the
bound M≥ A−O(ε).

Proof. To verify BIC, consider agent κ of type t
misreporting t′. Let z = ι(t, t′)L. With probability
δ/n, we run the mechanism BMκ. In that case,
the probability that the K sampled outcomes fail
to distinguish t from t′ is at most zq, where q =
dγ−1e. So, with probability at least (δ/n)(1 − zq),
we run BMκ using an outcome set {x1, . . . , xM} that
distinguishes t from t′. Applying Lemma 4.12, we
find that the possibility of running BMκ yields a
contribution of

− µ2

2M
· δ

n
· (1− zq)

to the agent’s expected utility. Meanwhile, Lem-
mas 4.9 and 4.11 ensure that the possibility of run-
ning ERSF contributes at most

min{3γ, 1− z}

to the agent’s expected utility. To see that the neg-
ative contribution from BMκ outweighs the positive
contribution from ERSF, it merely suffices to apply
Lemma 4.13 with a = 3γ and b = µ2δ

2Mn . The inequal-
ity q > 1/a is obvious because q = dγ−1e. To see that
a ≤ b/2, note first that 2M < m2, hence

b > (µ2δ)/(m2n) > 6γ = 2a.

We have verified all of the conditions for Lemma 4.13,
and the lemma now implies that

min{3γ, 1− z} − µ2

2M
· δ

n
· (1− zq) ≤ 0,

from which it follows immediately that M is BIC.
The following observations guarantee that the

welfare loss of M is bounded by O(ε). First, let
us exclude two bad events: the event that we run
the blatantly monotone mechanism for some agent
(combined probability δ), and the event that we run
the ERSF reduction but there exists an agent κ and
a type j ∈ T such that (4.2) is violated (combined
probability γn, by applying the union bound over
agents). As δ + γn < 2δ < 2ε/n, and the combined
welfare loss of all agents in this case is at most n, the
two bad events contribute at most 2ε to the expected
loss in social surplus. Excluding the two bad events,
mechanism M solves a minimum-cost flow problem
to maximize estimated utility for each agent, and
each agent’s estimated utility differs from its actual
utility by at most 2γ. Consequently, the actual social
surplus achieved by M differs from that which is
achieved by A by at most 2γn, which is bounded
above by 2ε/n. 2

4.3 Multi-dimensional continuous types. Un-
fortunately, when agents have multi-dimensional con-
tinuous types and we only have blackbox access to
the algorithm A, we do not know of any way to use
the RSM reduction to translate it into a perfectly
BIC mechanism. As in the single-dimensional case,
there are examples to illustrate that one cannot sim-
ply define X̃k to be the average of L samples from
the outcome distribution of sk. One might think that
this difficulty can be overcome by estimating v(vj , sk)
using a binomial estimator, as we did in the single-
dimensional case, but this idea fails even in dimension
2.3

3A counterexample when m = 2, L = 1 can be obtained
by taking agent i’s type distribution to be uniformly ran-



On the other hand, achieving ε-Bayesian in-
centive compatibility is easy using the RSM reduc-
tion, where we define X̃k to be the average of L =
Ω(ε−2 log(m/ε)) samples from the outcome distribu-
tion A(sk). As before, Chernoff-Hoeffding bounds
imply now that with probability 1−ε, there is no edge
in the bipartite graph whose estimated weight differs
from its true weight by more than ε/m. Since the
prices are defined using shortest augmenting paths
in the bipartite graph, and an augmenting path has
fewer than 2m edges, our prices differ from the prices
in the ideal model by at most 2ε with probability at
least 1 − ε, and the price difference is O(1) regard-
less. Consequently, an agent can gain at most O(ε)
in expectation by bidding untruthfully.
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A Proofs omitted from Section 4

A.1 Proof of Theorem 4.1. In this section we
restate and prove Theorem 4.1.

Theorem A.1. In the single-dimensional setting,
the RSM reduction using the binomial estimator is
monotone.

Proof. Let t1 < t2 be any pair of types for agent i. We
need to show that E[Ā(t1)] ≤ E[Ā(t2)], and we will
do this by defining an appropriate random variable
W and showing that the relation E[Ā(t1) ‖W = w] ≤
E[Ā(t2) ‖W = w] holds for every possible value w of
W . To begin with, note that when we run the RSM
reduction, the maximum matching of {v1, . . . , vm}
to {X̃1, . . . , X̃m} will be order-preserving; we may
assume the algorithm breaks ties randomly if one or
both of these multisets contains a repeated element.
Let a be the position of v1 when v1, . . . , vm are
placed in increasing order (breaking ties randomly)
and v1 = t1. Define b similarly but using v1 =
t2. Note that a ≤ b. Similarly, let σ : [m] →
[m] be a permutation that places {X̃1, . . . , X̃m} in
increasing order, breaking ties at random. Letting
α = σ−1(a), β = σ−1(b), we see that the RSM
reduction assigns v1 to sα if v1 = t1 and to sβ if
v1 = t2. Let s = (s1, s2, . . . , sm) denote the sequence
defined by si = L · X̃σ(i). Finally, define the random
variable W to be the ordered tuple consisting of the
types s1, . . . , sm, the sequence s, the random numbers
a, b, and the values of σ−1(k) for every k ∈ [m] \
{a, b}. Thus, W encodes all the relevant information
about one execution of the RSM reduction except
for one crucial missing piece: we know the value of
the unordered pair {α, β} but we don’t know which
element of this pair is α and which one is β; this
information is crucial because the reduction assigns
t1 to sα and t2 to sβ .

We now express the expected allocations of t1
and t2 in terms of the values of W,β. Let k =
argmaxj∈{α,β}(yj), ` = argminj∈{α,β}(yj). Note that
the value of W determines the pair of indices α, β and
it also determines the tuple s = (s1, . . . , sm), which
in turn determines y = (y1, . . . , ym). Consequently
the values k, ` are determined by W . In the following
equations, when we condition on the event “W = w”,
we abbreviate this by writing “w”.



E[Ā(t1) ‖w] = E[Ā(t1) ‖w, β = k] · Pr[β = k ‖w]
+ E[Ā(t1) ‖w, β = `] · Pr[β = ` ‖w]

= y` Pr[β = k ‖w] + yk Pr[β = ` ‖w]

E[Ā(t2) ‖w] = E[Ā(t2) ‖w, β = k] · Pr[β = k ‖w]
+ E[Ā(t2) ‖w, β = `] · Pr[β = ` ‖w]

= yk Pr[β = k ‖w] + y` Pr[β = ` ‖w]

E[Ā(t2)− Ā(t1) ‖w]
= (yk − y`) · (Pr[β = k ‖w]− Pr[β = ` ‖w])

=
yk − y`

Pr(W = w)
·
(

Pr
[

β = k,
W = w

]
− Pr

[
β = `,
W = w

])
.

Every factor in the last line is non-negative, except
possibly the probability difference Pr[β = k, W =
w]− Pr[β = `,W = w]. To prove that this difference
is in fact positive, we will in fact prove that

Pr[β = k, W = w ‖ a, b, s] ≥ Pr[β = `,W = w ‖ a, b, s].

for all possible values of the random variables a, b,
and s. Note that when we condition on a, b, s, the
values of β, W determine the value of the vector
X̃ = (X̃1, . . . , X̃m) and vice-versa. Specifically, since
X̃ is the vector obtained from s/L by rearranging
its entries using σ−1, W constrains X̃ to be one of
two possible vectors z, z′ that differ by interchanging
their kth and `th components. Assume without loss of
generality that zk ≥ z`. (Otherwise, simply rename
z to z′ and vice-versa.) Then

Pr[β = k, W = w ‖ a, b, s] = Pr[X̃ = z ‖ a, b, s]

=
m∏

j=1

Pr[L · X̃j = zj ](A.1)

Pr[β = `,W = w ‖ a, b, s] = Pr[V X̃ = z′ ‖ a, b, s]

=
m∏

j=1

Pr[L · X̃j = z′j ],(A.2)

where we have used the fact that the random vari-
ables X̃j are conditionally independent given a, b, s.
Finally, combining (A.1) and (A.2) we obtain

Pr[β = k, W = w ‖ a, b, s]
Pr[β = `,W = w ‖ a, b, s]

=
Pr[L · X̃k = zk] Pr[L · X̃` = z`]

Pr[L · X̃k = z`] Pr[L · X̃` = zk]
.

The right side is greater than or equal to 1, by
Lemma 4.6, since L · X̃k, L · X̃` are binomial random
variables with expectations L·yk ≥ L·y`, and zk ≥ z`.
2

A.2 Proof of Lemma 4.13. In this section we
restate and prove Lemma 4.13.

Lemma A.1. For any real numbers a, b, z in the in-
terval (0, 1) such that a ≤ b/2, if q is any integer
greater than 1/a, then

min{a, 1− z} < b(1− zq).

Proof. As q > 1/a we have

(1− a)q < e−aq < e−1 <
1
2
.

The proof consists of applying this inequality in two
cases.

Case 1: a < 1 − z. In this case we have z < 1 − a,
hence

1− zq > 1− (1− a)q >
1
2

min{a, 1− z} = a ≤ b

2
< b(1− zq),

as claimed.

Case 2: a ≥ 1− z. The equation

1− zq

1− z
= 1 + z + · · ·+ zq−1

reveals that 1−zq

1−z is an increasing function of z ∈
(0, 1). As z ≥ 1− a, we may conclude that

b

(
1− zq

1− z

)
≥ b

(
1− (1− a)q

1− (1− a)

)
=

b

a
(1− (1− a)q) >

b

a
· 1
2
≥ 1,

whence b(1− zq) ≥ 1− z = min{a, 1− z}, as desired.
2
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