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Abstract

This paper develops tools for welfare and revenue analyses of Bayes-Nash equilibria in
asymmetric auctions with single-dimensional agents. We employ these tools to derive price
of anarchy results for social welfare and revenue. Our approach separates the standard
smoothness framework [e.g., 16] into two distinct parts. The first part, value covering, em-
ploys best-response analysis to individually relate each agent’s expected price for allocation
and welfare in any Bayes-Nash equilibrium. The second part, revenue covering, uses proper-
ties of an auction’s rules and feasibility constraints to relate the revenue of the auction to the
agents’ expected prices for allocation (not necessarily in equilibrium). Because value cover-
ing holds for any equilibrium, proving an auction is revenue covered is a sufficient condition
for approximating optimal welfare, and under the right conditions, the optimal revenue. In
mechanisms with reserve prices, our welfare results show approximation with respect to the
optimal mechanism with the same reserves.

As a center-piece result, we analyze the single-item first-price auction with individual
monopoly reserves (the price that a monopolist would post to sell to that agent alone, these
reserves are generally distinct for agents with values drawn from distinct distributions).
When each distribution satisfies the regularity condition of Myerson [13] the auction’s revenue
is at least a 2e

e−1
≈ 3.16 approximation to the revenue of the optimal auction revenue. We also

give bounds for matroid auctions with first price or all-pay semantics, and the generalized first
price position auction. Finally, we give an extension theorem for simultaneous composition,
i.e., when multiple auctions are run simultaneously, with single-valued and unit demand
agents.

∗We thank Vasilis Syrgkanis for comments on a prior version of this paper for which simultaneous composition
did not hold, suggesting study of the simultaneous composition setting and for perspective on price-of-anarchy
methodology.
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1 Introduction

The first step of a classical microeconomic analysis is to solve for equilibrium. Consequently, such
analysis is restricted to settings for which equilibrium is analytically tractable; these settings
are often disappointingly idealistic. Methods from the price of anarchy provide an alternative
approach. Instead of solving for equilibrium, properties of equilibrium can be quantified from
consequences of best response. These methods have been primarily employed for analyzing social
welfare. While welfare is a fundamental economic objective, there are many other properties of
economic systems that are important to understand. This paper gives methods for analyzing
the price of anarchy for revenue.

Equilibrium requires that each agent’s strategy be a best response to the strategies of others.
A typical price-of-anarchy analysis obtains a bound on the social welfare (the sum of the revenue
and all agent utilities) from a lower bound an agent’s utility implied by best response. Notice
that the agents themselves are each directly attempting to optimize a term in the objective. This
property makes social welfare special among objectives. Can simple best-response arguments be
used to quantify and compare other objectives? This paper considers the objective of revenue,
i.e., the sum of the agent payments. Notice that each agent’s payment appears negatively in
her utility and, therefore, she prefers smaller payments; collectively the agents prefer smaller
revenue.

The agenda of this paper parallels a recent trend in mechanism design. Mechanism design
looks at identifying a mechanism with optimal performance in equilibrium. Optimal mechanisms
tend to be complicated and impractical; consequently, a recent branch of mechanism design has
looked at quantifying the loss between simple mechanisms and optimal mechanisms. These
simple (designed) mechanisms have carefully constructed equilibrium (typically, the truthtelling
equilibrium). The restriction to truthtelling equilibrium, though convenient in theory, is prob-
lematic in practice [1]. In particular, this truthtelling equilibrium is specific to an ideal agent
model and tends to be especially non-robust to out-of-model phenomena. The price of anar-
chy literature instead considers the analysis of the performance of simple mechanisms absent a
carefully constructed equilibrium.

As an example, consider the single-item first-price auction, in which agents place sealed bids,
the auctioneer selects the highest bidder to win, and the winner pays her bid. The fundamental
tradeoff faced by the agents in selecting a bidding strategy is that higher bids correspond to
higher chance of winning (which is good) but higher payments (which is bad). This first-price
auction is the most fundamental auction in practice and it is the role of auction theory to
understand its performance. When the agents’ values for the item are drawn independently and
identically then first-price equilibria are well-behaved: the symmetry of the setting enables the
easy solving for equilibrium [10], the equilibrium is unique [3, 11, 12], and the highest valued
agent always wins (i.e., the social welfare is maximized). When the agents’ values are non-
identically distributed, analytically solving for equilibrium is notoriously difficult. For example,
Vickrey [18] posed the question of solving for equilibrium with two agents with values drawn
uniformly from distinct intervals; this problem was finally resolved half a century later by Kaplan
and Zamir [7].

The intractibility of solving analytically for equilibrium is foremost a problem of theory. It
does not rule out BNE as a practical concept: agents can reach equilibrium by playing learning
strategies, numerically solving the differential equations implied by equilibrium, etc. Free from
the demands of theoretical analysis, agents may use these heuristic techniques, may focus on
specific instances of their optimization problem, and may employ algorithmic techniques such
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as those developed by Jiang and Leyton-Brown [6], rather than pursuing a general, analytical
characterization.

Price-of-anarchy analysis allows us to make general statements about equilibrium nonethe-
less. For example, a recent analysis of Syrgkanis and Tardos [16] shows that the first-price
auction’s social welfare in equilibrium is at least an e/(e − 1) ≈ 1.58 approximation to the
optimal social welfare, and moreover, this bound continues to hold if multiple items are sold
simultaneously by independent first-price auctions. Importantly, this price-of-anarchy analysis
sidesteps the intractability of solving for equilibrium and instead derives its bounds from simple
best-response arguments.

1.1 Methods

Our analysis breaks down the problem of analyzing welfare and revenue into two parts. The first
part, value covering, considers each agent individually and requires that an agent’s contribution
to BNE welfare and the expected price for allocation she faces combine to approximate her
contribution to the welfare in the optimal mechanism. It uses only properties of BNE. The
second part, revenue covering, captures the relevant mechanism-specific details and considers
the auction rules in aggregate across the agents. It requires that the auction’s expected revenue
approximately covers the effective prices for an allocation across agents. The two parts combine
to give a price of anarchy bounds for welfare. More importantly, proving these welfare bounds
in this manner allows us to extend the same approximation with reserve prices and to revenue.

Our analysis begins by translating the payments in any auction into equivalent bids: the first-
price bids or payments if the payment rule of the mechanism used first-price semantics. Beyond
first-price auctions, it allows us to simplify the action space and the optimization problem a
bidder faces into effectively the same problem a bidder in the first price auction faces. From
this standard viewpoint we show that an agent’s welfare in Bayes-Nash equilibria of any auction
and her equivalent bid thresholds, combine to cover an (e − 1)/e fraction of her welfare in the
optimal mechanism. Intuitively, either the agent’s welfare is high, or the price she has to pay
for allocation is high relative to her value for service.

We then make use of the characterization of revenue in Bayes-Nash equilibrium of Myer-
son [13] to reduce revenue to welfare. Value covering has a direct analog in terms of positive
virtual values. Combined with revenue covering, this implies an approximation result for the
virtual welfare for agents with positive virtual values. We provide several ways to then prove
that a revenue covered mechanism has approximately optimal revenue for bidders with regular
distributions.

1.2 Results

For single-item and matroid auctions (where the feasibility constraint is given by a matroid set
system), we give welfare and revenue price of anarchy results with both first-price and all-pay
payment semantics. The first-price variants of these auctions (a) solicit bids, (b) choose an
outcome to optimize the sum of the reported bids of served agents, and (c) charge the agents
that are served their bids. These results are compatible with reserve prices. The all-pay variants
of these auctions (a) solicit bids, (b) choose an outcome to optimize the sum of the reported
bids of served agents, and (c) charge all agents their bids.

Welfare. In first-price auctions, we show that the price of anarchy for welfare is at most
2e/(e − 1), with or without reserves. These results also extend to the generalized first-price
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position auction. For all-pay auctions in the above environments, the price of anarchy for
welfare is 3e/(e− 1). Tighter versions of these results with no reserves are known via Syrgkanis
and Tardos [16]; the results with reserves are new.

Revenue. For first-price auctions with monopoly reserves in regular, single-parameter en-
vironments, we show that the price of anarchy for revenue is at most 2e/(e − 1). The same
bound holds in the generalized first-price position auction with monopoly reserves. If instead of
reserves each bidder must compete with at least one duplicate bidder, the price of anarchy for
revenue in first-price auctions is at most 3e/(e − 1); in all-pay auctions, at most 4e/(e − 1).

Simultaneous Composition. We also show via an extension theorem that the above bounds
hold when auctions are run simultaneously if agents are unit-demand and single-valued across
the outcomes of the auctions.

1.3 Related Work

Understanding welfare in games without solving for equilibrium is a central theme in the smooth
games framework of Roughgarden [14] and the smooth mechanisms extension of Syrgkanis
and Tardos [16]. Using this framework, one can show many properties based on a simple,
full-information property, smoothness. In addition, Syrgkanis and Tardos [16] show that the
smoothness guarantees hold under sequential and simultaneous composition. Our framework
differs from smoothness in three notable ways. First, we decompose smoothness into two com-
ponents, value- and revenue-covering, and argue about individual agents approximating their
contribution to the optimal welfare and revenue. Second, we only consider the Bayesian setting,
which allows us to use the BNE characterization for revenue, and allows us to relate other auc-
tions to the first-price auction via equivalent bids. Third, equivalent bids allow us to eschew the
deviations in the definitions of smoothness.

There have been a number of papers looking at revenue guarantees for the welfare-optimal
Vickrey-Clarke-Groves (VCG) mechanism in asymmetric settings. Hartline and Roughgarden [5]
show that VCG with monopoly reserves or duplicate bidders achieves revenue that is a constant
approximation to the revenue optimal auction. Dhangwatnotai et al. [4] show that the single-
sample mechanism, which is essentially VCG with a reserve sampled from all of the distributions
of the bidders, achieves approximately optimal revenue in broader settings. Roughgarden et al.
[15] showed that in broader environments, including matching settings, limiting the supply of
items in relation to the number of bidders gives a constant approximation to the optimal auction.

In the economics literature, a number of papers have explored properties of asymmetric
first-price auctions. Kirkegaard [8] shows that understanding the ratios of expected payoffs in
equilibrium can be easier than understanding equilibrium and lead to insights about equilibria.
Kirkegaard [9] shows that some properties of distributions can be used to compare revenue of
the first price auction to revenue of the second price auction. Lebrun [11] and Maskin and Riley
[12] establish equilibrium uniqueness in the asymmetric setting with some assumptions on the
distributions of agents.

2 Preliminaries

Bayesian Mechanisms This paper considers mechanisms for n single-dimensional agents
with linear utility. Each agent has a private value for service, vi, drawn independently from a
distribution Fi over Vi, the agent’s valuation space. We write F =

∏

i Fi andV =
∏

i Vi to denote
the joint value distribution and space of value profiles, respectively. A mechanism consists of an
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allocation rule x̃ and a payment rule p̃, mapping actions of agents to allocations and payments
respectively. Each agent i draws their private value vi from Fi and selects an action according to
some strategy si : Vi → Ai, where Ai is the set of possible actions for i. We write s = (s1, . . . , sn)
to denote the vector of agents’ strategies. Given the actions a = (a1, . . . , an) selected by each
agent, the mechanism computes x̃(a) and p̃(a). Each agent’s utility is ũi(a) = vix̃i(a)− p̃i(a).

Mechanisms typically operate with constraints on permissible allocations. A feasibility envi-
ronment is a set of feasible allocation vectors. Mechanisms for a feasibility environment choose
only allocations from the feasible set. The simplest example is a single-item auction, in which
at most one person at a time can be served. This paper assumes feasibility environments are
downward-closed : if (x1, . . . , xk, . . . , xn) is feasible, so is (x1, . . . , 0, . . . , xn). We will often con-
sider the special case of matroid environments, in which the set of feasible allocations correspond
to the independent sets of a matroid set system.

Given a strategy profile s, we often consider the expected allocation and payment an agent
faces from choosing some action ai ∈ Ai, with expectation taken with respect to other agents’
values and actions induced by s. We treat s as implicit and write x̃i(ai) = Ev−i

[x̃i(ai, s−i(v−i))],
with p̃i(ai) and ũi(ai) defined analogously. Given s, we also consider values as inducing payments
and allocations. We write x(v) = x̃(s(v)) and p(v) = p̃(s(v)), respectively. Furthermore, we
can denote agent i’s interim allocation probability and payment by xi(vi) = x̃i(si(vi)) and
pi(vi) = p̃i(si(vi)). We define u(v) and ui(vi) similarly. In general, we use a tilde to denote
outcomes induced by actions, and omit the tilde when indicating outcomes induced by values.
We refer to x̃ as the bid allocation rule, to distinguish it from x, the allocation rule. We adopt
a similar convention with other notation.

Bayes-Nash Equilibrium. A strategy profile s is in Bayes-Nash equilibrium (BNE) if for all
agents i, si(vi) maximizes i’s interim utility, taken in expectation with respect to other agents’
value distributions F−i and their actions induced by s. That is, for all i, vi, and alternative
actions a′: Ev−i

[ui(s(v))] ≥ Ev−i
[ui(a

′, s−i(v−i))].
We consider only mechanisms where agents can gain from participation, regardless of their

value - that is, we require that mechanisms be interim individually rational. We implement
this by assuming each agent can withdraw from the mechanism. Specifically, define a withdraw
action as any action wi such that x̃i(wi,a−i) = 0 and p̃i(wi,a−i) = 0 for any value of a−i. We
assume all mechanisms have at least one such action for each agent. In any BNE, each agent
has the option to withdraw and must therefore get nonnegative utility.

Myerson [13] characterizes the interim allocation and payment rules that arise in BNE. These
results are summarized in the following theorem.

Theorem 1 (13). For any mechanism and value distribution F,

1. (monotonicity) The interim allocation rule xi(vi) for each agent is monotone non-decreasing
in vi.

2. (payment identity) The interim payment rule satisfies pi(vi) = vixi(vi)−
∫ vi
0 xi(z)dz.

3. (revenue equivalence) Mechanisms and equilibria which result in the same interim alloca-
tion rule x(v) must therefore have the same interim payments as well.

Mechanism Design Objectives We consider the problem of maximizing two main objectives
in BNE: expected welfare and expected revenue. The revenue of a mechanism M is the total
payment of all agents. Mechanism M ’s expected revenue for v ∼ F in a given Bayes-Nash
equilibrium s is denoted Rev(M) = Ev[

∑

i pi(v)] = Ev[
∑

i φi(vi)xi(v)]. The welfare of a
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mechanism M is the total utility of all participants including the auctioneer; its expected welfare
is denoted Welfare(M) = Rev(M) +Ev[

∑

i vixi(v)− pi(v)] = Ev[vixi(v)]. We will also refer
to welfare throughout the paper as surplus.

Our welfare benchmark is pointwise-optimal feasible allocation. That is, we seek to approx-
imate Welfare(Opt) = Ev[maxx∗

∑

i vix
∗
i ]. This can be implemented via the Vickrey-Clarke-

Groves (VCG) mechanism. We measure a mechanism M ’s welfare performance by the Bayesian
price of anarchy for welfare, given by maxF,s∈BNE(M,F)Welfare(Opt)/Welfare(M), where
BNE(M,F) is the set of BNE for M under value distribution F.

To understand revenue, we rely on the alternate characterization derived in Myerson [13]:

Lemma 2. In BNE, the ex ante expected payment of an agent is Evi [pi(vi)] = Evi [φi(vi)xi(vi)],

where φi(vi) = vi −
1−Fi(vi)
fi(vi)

is the virtual value for value vi. It follows that Rev(M) =

Ev[
∑

i pi(v)] = Ev[
∑

i φi(vi)xi(v)].

Using this result, Myerson [13] derives the revenue-optimal mechanism for any value dis-
tribution F. This mechanism is parameterized by the value distribution F, and the opti-
mality is in expectation over v ∼ F. We specifically consider distributions where φi(vi) is
monotone in vi for each i. Such distributions are said to be regular. If each agent has a
regular distribution, then the revenue-optimal mechanism selects the allocation which maxi-
mizes

∑

i φi(vi)xi(v). We will seek to minimize the Bayesian price of anarchy for revenue,
maxF∈R,s∈BNE(M,F)Rev(OptF)/Rev(M), whereR is the set of regular distributions and OptF

is the Bayesian revenue-optimal mechanism for value distribution F.

3 Single-Item First Price Auction with Reserves

We begin by analyzing the single-item first price auction with per-bidder reserves, and show
that it approximates the welfare of the optimal mechanism with the same reserves. With zeroed
reserves, this result implies that the welfare of the first-price auction with no reserves approxi-
mates the welfare of the welfare optimal auction. We will then connect these results to revenue
approximation results, and taking the reserves to be the monopoly reserves gives revenue (and
welfare) approximation results with respect to the revenue optimal mechanism.

3.1 Welfare

We now aim to show that the welfare and revenue of the first price auction together approximate
the welfare of the optimal auction:

Welfare(FPAr) +Rev(FPAr) ≥
e−1
e Welfare(Optr). (1)

Our proof will proceed by first analyzing the optimization problem of the bidder, then relating
that optimization problem to welfare and revenue. We will conclude with the following theorem.

Theorem 3. The welfare in any BNE of the first price auction with reserves r is at least a
2e
e−1-approximation to the welfare of the welfare optimal mechanism that serves no agent with
vi < ri.

Note that equation (1) is quite similar to the inequality in the smooth games and mechanism
frameworks [16, 14]. It differs primarily in that we are not defining a specific deviation but
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x̃i(d)
1

Bid (d)vi

ũi(d)

x̃i(d)

d

Bid Allocation Rule

Figure 1: For any bid d, the area of a rectangle between (d, x̃i(d)) and (vi, 0) on the bid allocation rule is the
expected utility ũi(d). The BNE bid bi is chosen to maximize this area.

deriving bounds explicitly from BNE. Moreover we show that (a variant of) equation (1) holds
in the interim for every bidder and realized valuation, rather than only in aggregate.

A bidder’s optimization problem. Consider the optimization problem faced by a bidder i
with value vi in the first price auction. A bidder’s expected utility over possible bids d is
ũi(d) = (vi − d)x̃i(d), where x̃i(d) is the interim bid allocation rule faced by the bidder. Let
bi be her best response bid given her value vi. If we plot the bid allocation rule x̃i(d) for any
alternate bid d, then ũi(bi) is precisely the area of the rectangle in the lower right of Figure 1.

ũi(bi)
vi−d

x̃i(d)

ũi(bi)

1

Bid (d)vi

x̃i(bi)

bi

ũi(bi)/vi

Bid Allocation Rule

(a) As bi is a best-response to the actions of other
agents, the indifference curve ũi(bi)/(vi − d) upper
bounds x̃i(d).

x̃i(d)
1

Bid (d)vi

ũi(bi)

Ti[xi(vi), x
′]

xi(vi)

x′

bi

Bid Allocation Rule

(b) The additional threshold bid Ti[xi(vi), x
′]

prevents bidders from bidding to receive alloca-
tion x′.

Figure 2

When other bidders have realized values and submitted bids, there is a minimum or threshold
bid a bidder must make to win, τi(v−i) = max(ri,max(b−i(v−i))), the maximum of a player’s
reserve and the bids of all other bidders. We call this bidder i’s pointwise threshold bid. As we
are in the Bayesian setting, a bidder is not reacting to this pointwise threshold, but is acting in
expectation over the types and actions of her competitors. These actions induce a distribution
over threshold bids. The cumulative distribution function of threshold bids for a bidder i is
precisely her bid allocation rule x̃i.

We will also refer to thresholds using the probability of allocation that they represent
achieving. Let τi(x) refer to the smallest bid that achieves allocation of at least x, hence
τi(x) = min{ b | x̃i(b) ≥ x}. Let B−i(b) be the cumulative distribution function of the highest
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Ti[xi(vi), x
∗

i (vi)]

x̃i(d)
1

Bid (d)vi

vixi(vi)

xi(vi)

x∗

i (vi)

bi

Bid Allocation Rule

(a) Lemma 4 shows the shaded areas cover a
(e − 1)/e fraction of the dashed box, bidder i’s
contribution to the optimal welfare (vix

∗

i (vi)).

Ti[xi(vi), x
∗

i (vi)]

x̃i(d)
1

Bid (d)viφi(vi)

φi(vi)xi(vi)

xi(vi)

x∗

i (vi)

bi

Bid Allocation Rule

(b) Lemma 7 shows the shaded areas cover an
(e−1)/e fraction of i’s contribution to the optimal
virtual welfare, φi(vi)x

∗

i (vi). The proof can be
done by comparison with Figure 3a.

Figure 3

bids from other bidder. Then τi(x) is either the reserve ri or the bid required to beat the highest
bid from other agents a x fraction of the time, τi(x) = max(ri, B

−1
−i (x)).

1

For an alternate allocation probability x′, the additional threshold Ti[xi, x
′] =

∫ x′

xi
τi(z) dz

will be used as a measure of how much more expensive it is for a bidder to get allocation x′ > xi.
This is illustrated in Figure 2b.

Relating Contribitions to First-Price and Optimal Welfare. Let x∗ be the allocation rule
from the welfare optimal mechanism that serves no agent with value vi < ri, Optr. Thus
Welfare(Optr) =

∑

iEvi [vix
∗
i (vi)], and we can view vix

∗
i (vi) as a bidder’s contribution to the

optimal welfare. We will now aim to approximate each bidder’s contribution individually, using
the bidder’s contribution to welfare in the first-price auction, i.e., vixi(vi), and a fraction of the
revenue in the first-price auction:

Our proof proceeds in two steps:

1. Value Covering : A bidder’s contribution to welfare in the FPAr and additional threshold
together approximate her contribution to welfare in any alternate allocation. (Lemma 4)

2. Revenue Covering : The revenue of the FPAr approximates the additional threshold for
all agents. (Lemma 5)

The final approximation result follows by summing the value covering condition across agents,
taking expectation over values, and combining with revenue covering.

Lemma 4 (Value Covering). For any bidder i with value vi ≥ ri in a BNE of the FPAr and
alternate feasible allocation x′,

vixi(vi) + Ti[xi(vi), x
′] ≥ e−1

e vix
′. (2)

When value covering is used to approximate the welfare induced by an allocation rule x∗i , the
alternate allocation x′ used for every bidder and value will be precisely x′ = x∗i (vi).

Proof. We will prove value covering in two steps: first, by developing a lower bound T on the
additional threshold T ; second, by optimizing the lower bound to get the right side of (2).

1If B−i is not invertible, then define B−1
−i (x) to be the function B−1

−i (x) = inf{b | x̃i(b) ≥ x}.

8



Lowerbounding T In best responding, bidder i chooses an action which maximizes her utility.
If bi is a best response bid, then for any alternate bid d, ũi(bi) ≥ (vi − d)x̃i(d), hence

x̃i(d) ≤
ũi(bi)
vi−d . With equality, this bound gives an indifference curve for bidder i; it is the

alternate bid allocation rule that would lead to her being indifferent over all reasonable
bids (see Figure 2a). Call T i[xi(vi), x

′] the expected threshold bid from the indifference

curve, then T i[xi(vi), x
′] =

∫ x′

xi(vi)
max(0, vi − ui(vi)/z) dz and

vixi(vi) + Ti[xi(vi), x
′] ≥ vixi(vi) + T i[xi(vi), x

′] ≥ ui(vi) + T i[ui(vi)/vi, x
′]. (3)

The last inequality followed because bi(vi)xi(vi) ≥ T i[ui(vi)/vi, xi(vi)] if xi(vi) > ui(vi)/vi.

Optimizing T i Evaluating the integral for T i[ui(vi)/vi, vi] gives ui(vi) + T i[ui(vi)/vi, x
′] =

vix
′ + ui(vi) ln

ui(vi)
vix′ . Holding vix

′ fixed and minimizing with respect to ui(vi) yields a

minimum at ui(vi) =
vix

′

e , hence

ui(vi) + T i[ui(vi)/vi, x
′] ≥ e−1

e vix
′. (4)

Combining (3) and (4) gives exactly our desired result, (2).

We now show that in the first price auction, the expected revenue is greater than the addi-
tional threshold bids for any alternate feasible allocation x′, which we can then combine with
value covering to give a welfare approximation result. While value covering depended critically
on equilibrium (or at least on bidders best responding), revenue covering will only depend on
the form of the first price auction, and will thus hold for arbitrary (not necessarily BNE) bidding
strategies that satisfy a light participation requirement (that is always satisfied in BNE). We
call a bidding strategy participatory if bidders always bid at least their reserve unless no bid in
[ri, vi] gives positive probability of allocation.

Lemma 5 (Revenue Covering). For any participatory bidding strategies s and alternative allo-
cation x′,

Rev(FPAr) ≥
∑

i : vi≥ri

Ti[x̃i(si(vi)), x
′
i]. (5)

Proof. It suffices to show that for bidder i with value above her reserve,

Rev(FPAr) ≥ Ti[x̃i(si(vi)), 1]. (6)

Once (6) is shown, multiplying by x′i, summing over agents, and observing that Ti[x̃i(si(vi)), z]
is convex in z concludes the lemma:

Rev(FPAr) ≥
∑

i
x′iTi[x̃i(si(vi)), 1] ≥

∑

i
Ti[x̃i(si(vi)), x

′
i]. (7)

We now show (6). By the participatory assumption, a bidder i with value above her reserve
bids above her reserve ri. Thus the additional threshold when playing si(vi) is bounded by the
additional threshold when bidding the reserve, hence Ti[x̃i(si(vi)), 1] ≤ Ti[x̃i(ri), 1]. Then, using
the definition of T and the monotonicity of B−1

−i (x), we have:

Ti[x̃i(si(vi)), 1] ≤ Ti[x̃i(ri), 1] =

∫ 1

x̃i(ri)
max(ri, B

−1
−i (z)) dz =

∫ 1

x̃i(ri)
B−1

−i (z) dz. (8)
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As the revenue of a first price auction is the expected highest bid, and B−1
−i (z) is the inverse

of the cumulative distribution function of highest bid from bidders aside from i,
∫ 1
0 B−1

−i (z) dz =

Ev[maxj 6=i, si(vj)≥rj si(vj)] ≤ Rev(FPAr). Combining this with monotonicity of B−1
−i (z) gives

Ti[x̃i(si(vi)), 1] ≤

∫ 1

x̃i(ri)
B−1

−i (z) dz ≤

∫ 1

0
B−1

−i (z) dz ≤ Rev(FPAr). (9)

Chaining (8) and (9) gives Rev(FPAr) ≥ Ti[x̃i(si(vi)), 1].

We now combine value and revenue covering to attain an approximation to the optimal
welfare.

Proof of Theorem 3. We apply value covering and revenue covering with x′ = x∗(v). Taking
expectation of (2) over all players and values and combining with (5) gives Welfare(FPAr)+
Rev(FPAr) ≥ e−1

e Welfare(Optr). As Welfare(FPAr) ≥ Rev(FPAr), Welfare(FPAr)
is then a 2e/(e − 1) approximation to Optr.

The following are the main ideas and differences between the proof above and the proof of
Syrgkanis and Tardos [16] that enables treatment of reserve prices. The Syrgkanis and Tardos
[16] result can be viewed as combining value covering and revenue covering in one step (via
the smoothness definition). Their equation has bidders’ utilities where we have the bidders’
surpluses and they have the full expected threshold where we have the additional threshold.
The thresholds that a bidder faces that correspond to bids of other bidders translate to revenue
and can be thus bounded by a revenue covering argument. Reserve prices, however, induce
thresholds that do not correspond to bids of other bidders. A participatory bidder, however,
will bid above the reserve when her value is above the reserve. Therefore, this bidder’s payment
will always compensate for the part of the threshold distribution that corresponds to the reserve
price. Because we use surplus instead of utility our analysis loses a factor of two on the no-
reserves bound of Syrgkanis and Tardos [16].2

3.2 Revenue

In the tradition of Bayesian mechanism design, we will prove the revenue approximation result
by reducing to the welfare approximation above. Let x∗i now denote the allocation rule from the
revenue optimal auction, given by Theorem 1. For revenue, we will instead approximate each
bidders contribution to the optimal virtual welfare, φi(vi)x

∗
i (vi) when φi(vi) ≥ 0. In a regular

environment, monopoly reserves at ri = φi(vi) for each bidder will result in no bidder being
served with a negative virtual value. Thus approximating the optimal virtual surplus using only
agents with positive virtual values will be sufficient to approximate the expected surplus of the
optimal auction.

Theorem 6. In any BNE of the first price auction with monopoly reserves (FPAr) in a regular
environment, the revenue is at least a 2e

e−1-approximation to revenue of the optimal auction.

Recall that in the welfare proof, the expected threshold bid plus BNE welfare approximated
each bidders contribution to optimal welfare (Lemma 5). For revenue, we will use the expected
threshold bid and each bidders BNE virtual welfare to approximate their virtual welfare in Opt.

2The bound of e/(e− 1) ≈ 1.58 is not known to be tight for the single-item first-price auction. An example is
provided in Appendix A that shows the worst known price of anarchy of 1.15.
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Lemma 7 (Virtual Value Covering). In any BNE of the FPAr, for any bidder i with value
vi ≥ ri, φi(vi) ≥ 0 and alternate allocation x′,

φi(vi)xi(vi) + Ti[xi(vi), x
′] ≥ e−1

e φi(vi)x
′. (10)

Proof. This follows directly from value covering (Lemma 4) — see Figure 3b for an illustration.
Combining 0 ≤ φi(vi) ≤ v with (12) gives

1
φi(vi)x′

(

φi(vi)xi(vi) + Ti[xi(vi), x
′]
)

≥ 1
vix′

(

vixi(vi) + Ti[xi(vi), x
′]
)

≥ e−1
e .

Multiplying through by φi(vi)x
′ gives our desired result.

Proof of Theorem 6. As no agents with negative virtual values are served, the revenue is larger
than both terms on the left side of (10) when summed over all agents and values, so

Rev(FPAr) +Rev(FPAr) ≥
∑

i
Evi [Ti[xi, x

∗
i (vi)]] +

∑

i
Evi [φi(vi)xi(vi)]

≥ e−1
e

∑

i
Evi [φi(vi)x

∗
i (vi)]

= e−1
e Rev(Opt) (11)

Thus Rev(FPAr) is at least a
2e
e−1 approximation to Rev(Opt).

4 Framework

In equilibria of the single-item first price auction, we observed that agents with low expected
utility had high expected threshold bids. Because high thresholds were connected to high pay-
ments, we could conclude that the first price auction is both approximately welfare- and revenue-
optimal. The goal for this section is to build up a framework for making this same argument for
mechanisms with different payment semantics, such as all-pay auctions. In particular, we seek to
prove results about behavior in Bayes-Nash equilibrium while ignoring the particular payment
semantics of each auction. We begin by defining equivalent bids, which connect the optimization
problem a bidder faces to the problem they would face in a first-price auction. This allows us
to reuse machinery and construct a framework to understand how single-dimensional agents act
in BNE for any mechanism.

4.1 Equivalent Bids

Utility-maximizing agents must balance two objectives: getting allocated frequently, and getting
allocated cheaply. In a first-price auction, agents bid to explicitly specify the tradeoff they are
willing to make: their bid is the price they pay per unit of allocation. In general mechanisms,
for any agent i and any action ai, define the equivalent bid for an action ai to be βi(ai) =
p̃i(ai)/x̃i(ai); this can be thought of as the price per unit of allocation for that action. For
first-price auctions, this is exactly the bid. For mechanisms with different payment semantics,
βi(ai) can still be thought of as an equivalent first-price bid for action ai.
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Equivalent Threshold Bid In proving Theorem 3, we noted that b is the minimum pay-
ment necessary to get the allocation probability x̃i(b). We used this property to bound the
distribution of other agents’ bids. For auctions where this relationship is less clear, we think of
agents partitioning the actions in their choice set by interim allocation probability, then for each
probability consider only the cheapest such action in terms of price per unit of allocation. For
each allocation probability z, define αi(z) to be the action which minimizes βi(αi(z)) subject to
xi(αi(z)) ≥ z, and the equivalent threshold bid τi(z) to be the value of βi(αi(z)).

3 This captures
exactly what we need: τi(z) is the minimum price per unit needed to get allocation probability at
least z - exactly the notion that the inverse CDF of the first-price bid allocation rule satisfied in
the proof of Theorem 3. Note that τi(z) depends on s. For notational convenience, we suppress
the strategy profile as an argument.

Cumulative Equivalent Threshold Bid We can now use τi(z) to track the expense an
agent faces from increasing their allocation. Specifically, assume an agent is playing some action
ai and seeks to increase their allocation probability to x′. The barrier to i doing so is the
collection of equivalent threshold bids in [x̃i(ai), x

′]. We can use this notion to measure i’s
expense for additional allocation. Define the expected equivalent threshold bid as Ti[x̃i(ai), x

′] =
∫ x′

x̃i(ai)
τi(z) dz.

If x′ ≤ x̃i(ai), then define Ti[x̃i(ai), x
′] = 0. This quantity will function identically to its

counterpart in Section 3, trading off against i’s surplus as in Lemma 4, and translating into
revenue Lemma 5. Note that because τi(z) is nondecreasing in z, Ti[x̃i(ai), x

′] is convex in x′.

4.2 Covering Conditions and the Price of Anarchy

With our machinery developed, we can now quantify the tradeoff between an agent’s surplus
and price of allocation just as we did in Lemma 4:

Lemma 8 (Value Covering). Consider a mechanism M in BNE with induced allocation and
payment rules (x,p), and an agent i with value vi. For any x′ ∈ [0, 1],

vixi(vi) + Ti[xi(vi), x
′] ≥ e−1

e vix
′. (12)

The proof can now be done by reduction to the single-item first-price auction (Lemma 4)
because bidders now face effectively the same optimization problem as in a single-item first-
price auction. The proof is left to the full version of the paper. To prove an approximation
result for welfare or revenue, the only mechanism-specific detail which remains is specifying the
relationship between Ti and the mechanism’s revenue.

Intuitively, we saw in Section 3 that if there is a relationship between revenue and the
difficulty an agent faces in increasing their allocation once they have chosen to participate in the
mechanism, then value covering allows us to show a welfare bound. To make this relationship
concrete, we extend the definition of Lemma 5

Definition 9. A mechanism M is µ-revenue covered if for any (implicit) strategy profile s,
feasible allocation x′, and action profile a, µRev(M) ≥

∑

i Ti[x̃i(ai), x
′
i].

Note that Definition 9 makes no mention of BNE. It must hold for any strategy profile. This
is a stronger condition than Lemma 5, as it is not restricted to bidders with values above a set
of reserves or bidders playing only participatory strategies.

3This minimization problem has a solution in the mechanisms this paper treats.
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As we already saw, revenue covering has a number of important consequences. First is a
welfare bound.

Theorem 10. If a mechanism is µ-revenue covered, then in any BNE, it is a (1+µ) e
e−1−approximation

to the welfare of the optimal mechanism.

Proof. Let x∗ be the welfare-optimal allocation rule, and consider some value profile v. Lemma 8
with x′ = x∗i (v) yields that for each x and value vi,

vixi(vi) + Ti[xi(vi), x
∗
i (v)] ≥

e−1
e vix

∗
i (v).

Summing over agents and using revenue covering yields
∑

i vixi(vi)+µRev(M) ≥ e−1
e

∑

i vix
∗
i (v).

Taking expectation with respect to v, we get Welfare(M)+µRev(M) ≥ e−1
e Welfare(Opt)

and hence (1 + µ) e
e−1Rev(M) ≥ e

e−1Welfare(Opt).

4.3 Restricted Revenue Covering

Smoothness approaches hinge on proving price of anarchy bounds in a restricted way. The
restricted proofs imply extensions to broader environments. Our framework operates in this
spirit, and to obtain a reserves extension, we impose similar restrictions.

Restrictions for Reserves Revenue covering is useful for bounding revenue and welfare
because it allows the mechanism to make up in revenue for the fact that in BNE, agents might
find it too expensive increase their allocation probability to that which they would receive
from an optimal allocation rule. That is, the agents for whom revenue covering matters are
specifically those being served by the optimal mechanism. It therefore makes sense that if
we seek to approximate the welfare or revenue of a mechanism that restricts those it serves,
for example, with reserves, we only need revenue covering to pertain to agents served by the
benchmark mechanism.

Reserves pose one additional problem for arguing about revenue covering. As we saw in
Section 3, adding reserves to an auction changes the threshold bids an agent faces. Whereas
with no reserves a threshold corresponded directly to revenue, a threshold in a mechanism with
reserves may also correspond to the reserve itself and hence not revenue. We need a way of
discerning which thresholds are useful for revenue and which are not.

We thus introduce revenue covering restricted to certain agents. This will allow us to prove
approximation results for only a certain set of bidders — for example, the set of bidders with
values above their reserves. We will use a function S(v) to specify which such bidders are
revenue covered. In the case of individual reserves r = (r1, . . . , rn), S(v) = {vi | vi ≥ ri}. It is
these agents whose optimal welfare or virtual welfare we seek to approximate, and so they are
the ones for whom we would like revenue covering to hold.

So long as such agents are bidding above their reserves if they have any chance of winning,
revenue covering will hold. We call such actions participatory. Given a strategy profile s and
value profile v, define an action ai to be participatory for s and v if βi(ai) ≤ vi and either
x̃i(ai) > 0 or there’s no a′i such that x̃i(a

′
i) > 0 and βi(a

′
i) ≤ vi.

Definition 11. A mechanism M is µ-revenue covered with respect to S if for all alternate
allocations x′, value profiles v, and profiles of participatory actions a,

µRev(M) ≥
∑

i∈S(v)
Ti[x̃i(ai), x

′
i].
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Using our restriction to reserves, we can compare the welfare of a revenue-covered mechanism
to that of the optimal mechanism with reserves. In Section 5, we show how to use these welfare
results with reserves to bound revenue as well. The welfare theorem below, stated for general S,
is most intuitive when S selects the agents in v who are above vector of reserves r = (r1, . . . , rn).

Theorem 12. For any S mapping value profiles to sets of agents, if a mechanism M is µ-
revenue covered with respect to S, then the welfare of M is a (1 + µ)e/(e− 1)-approximation to
the welfare of the optimal mechanism which only serves agents in S(v) for every v.

Proof. Let x∗ be the welfare-optimal allocation rule, and consider some value profile v. Lemma 8
with x′ = x∗i (v) yields that for each x and value vi,

vixi(vi) + Ti[xi(vi), x
∗
i (v)] ≥

e−1
e vix

∗
i (v).

Note that in BNE, agents always play participatory actions. It follows that summing over
all agents in S(v) and using revenue covering yields:

∑

i∈S(v)
vixi(vi) + µRev(M) ≥ e−1

e

∑

i∈S(v)
vix

∗
i (v).

Taking expectation with respect to v and noting that x∗ doesn’t serve agents not in S(v),
we get Welfare(M) + µRev(M) ≥ e−1

e Welfare(Opt) and hence (1 + µ) e
e−1Rev(M) ≥

e
e−1Welfare(Opt).

Covering-Preserving Reserves In many environments, it is possible to add reserves to a
revenue covered mechanism and preserve revenue covering in the sense of Definition 11. As
a result, the BNE welfare of the reserves mechanism approximates the welfare of the optimal
mechanism with the same reserves. In Appendix C, we provide a general set of conditions under
which reserves preserve revenue covering in this manner. These conditions hold, for example,
in first-price matroid and position auctions, as well as under simultaneous composition. These
mechanisms with reserves consequently meet the conditions of Lemma 12, yielding a welfare
approximation, and as we show in the next section, a revenue approximation.

5 Revenue Approximation

Recall that by Myerson’s characterization of Bayes-Nash equilibrium (Lemma 2), the expected
revenue can be viewed as the expected virtual welfare of agents served. We will consider the
task of approximating the revenue of the optimal auction in two parts: showing that the virtual
welfare from positive virtual-valued agents approximates the optimal revenue, and demonstrating
a few methods to ensure that the virtual welfare from agents with negative virtual values does
not hurt revenue too much.

5.1 Positive Virtual Value Approximation

In Theorem 6 of Section 3, we showed that the first-price auction with monopoly reserves had
approximately optimal revenue, via a reduction to the welfare approximation result. We show in
this section that the same approach suffices to show that for any µ-revenue covered mechanism,
the revenue accounted for by positive virtual valued agents approximates the optimal revenue.
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Definition 13. Let the positive and negative virtual values for an agent be φ+
i (vi) = max(φi(vi), 0)

and φ−
i (vi) = min(φi(vi), 0) respectively. Define the positive and negative virtual welfare of a

mechanism to be Rev
+(M) =

∑

i Evi [φ
+
i (vi)xi(vi)] and Rev

−(M) = −
∑

iEvi [φ
−
i (vi)xi(vi)].

By Theorem 1, Rev(M) = Rev
+(M) − Rev

−(M). Our primary result in this section is
that Rev

+(M) is a constant approximation to the revenue of the optimal mechanism if M is
µ-revenue covered. Thus, bounding the loss from Rev

− as a fraction of Rev
+ is sufficient to

show approximately optimal revenue.

Theorem 14. In any BNE of a µ-revenue covered, single-parameter mechanism M , the positive
virtual welfare Rev

+(M) is a (µ+1) e
e−1 approximation to the revenue of the optimal mechanism.

More precisely, Rev
+(M) + µRev(M) ≥ e−1

e Rev(Opt).

Recall that the approximation bound for µ-revenue covered auctions (Theorem 10) relied on
showing that the surplus from any agent in any alternate allocation was approximated by that
player’s contribution to BNE surplus and a fraction of the additional threshold.

We begin by showing virtual-value covering, an analogue of value covering for virtual welfare,
holds in BNE directly via a reduction to value-covering (Lemma 8).

Lemma 15 (Virtual-Value Covering). Consider a mechanism M in BNE and an agent i with
value vi. For any x′ ∈ [0, 1],

φ+
i (vi)xi(vi) + Ti[xi(vi), x

′] ≥ e−1
e φi(vi)x

′. (13)

The proofs of Lemma 15 and Theorem 14 follow precisely as in Lemma 7 via a reduction to
value-covering (Lemma 8), so the details are omitted.

Now that the positive virtual welfare of a mechanism approximates the optimal, the only
thing left is to bound the loss due to serving bidders wiht negative virtual values. The subsequent
sections discuss methods for mitigating the virtual welfare lost from to serving negative virtual
valued agents.

5.2 Reserve Prices

The standard approach to prevent service to agents with negative virtual values is to set reserves
such that no negative virtual valued agent is served. As long as the virtual value φi(vi) is non-
decreasing in vi — equivalently, the distribution is regular — setting monopoly reserves r∗

s.t. r∗i = φ−1
i (0) in a first-price auction for every agent will eliminate all negative virtual valued

agents. If a (general) mechanism can implement such reserves and serve no agent with φi(vi) < 0,
then it too will approximate the revenue of the optimal mechanism:

Lemma 16. In any BNE of a µ-revenue covered mechanism Mr∗ with monopoly reserves r∗ in
a regular environment, the revenue of Mr∗ is a (µ + 1)e/(e − 1) approximation to the revenue
of the optimal mechanism.

The proof is straightforward — as Mr∗ serves no agent with φi(vi) < 0, Rev
−(Mr∗) = 0. By

Theorem 14, Mr∗ is then a (µ + 1)e/(e − 1) approximation to the revenue optimal mechanism.
Thus if it is possible to add monopoly reserves to a mechanism, doing so gives approximately
optimal revenue.

In a first price auction it is always feasible to implement reserves by restricting the bid-space.
In an all-pay auction however, we cannot reliably implement value space monopoly reserves. The
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willingness of a player to outbid an all-pay reserve depends on the allocation probability as well
as the reserve, and as such there is no easy correspondence between all-pay and value space
reserves.

5.3 Duplicate bidders

Another approach to mitigating the impact of negative virtual-valued agents is to ensure each
agent faces adequate competition. Bulow and Klemperer [2] show that this intuition guarantees
approximately optimal revenue in regular, symmetric, single-item settings.

We show the same intuition holds for µ-revenue covered mechanisms: if each bidder must
compete with at least k − 1 other bidders with values drawn from her same distribution and
bidders play by identical strategies, revenue is approximately optimal compared to the rev-
enue optimal mechanism (including the duplicate bidders). We say such an auction satisfies
k-duplicates, and show in Appendix D that both the first-price and all-pay auctions with at
least k bidders from each distribution satisfy it.

Lemma 17. In any BNE of a mechanism M with k-duplicates behaving by identical strategies
and values drawn from regular distributions, the virtual surplus lost due to serving agents with
negative virtual values is at most 1/k the virtual surplus from positive virtual valued agents.

The proof is included in Appendix D. Two such auctions are the first-price and all-pay
auctions.

6 Revenue Covering

In this section we prove that several commonly-used and well-studied mechanisms are revenue
covered, implying new revenue results for each. All proofs are included in Appendix E.

6.1 First Price Matroid Auctions

In our discussion of the single-item case (Section 3), we saw that when an agent has trouble
getting allocated in a first price auction (that is, Ti is high), it is because other agents submit
high bids. These competing bids translate into revenue, implying that the first-price auction
is 1-revenue covered. With one extra step, this reasoning extends to first-price auctions where
the feasible allocations form a matroid. An agent’s threshold bid doesn’t precisely correspond
to a competing bid, but matroid properties provide a sufficiently close analog, implying revenue
covering revenue covering.

Lemma 18. The first-price auction is 1-revenue covered in any matroid feasibility environment.

Theorem 10 and Lemma 16 respectively imply welfare and revenue approximations of 2e/(e−
1) with reserves.

6.2 Position Auctions

In first-price position auctions (ie generalized first-price auction, or GFP), arguments similar to
those in the matroid case yield analogous welfare and revenue guarantees.

Formally, a position auction is an auction in which agents can be allocated one of m positions;
each of which is valued by an agent at αjvi. In advertising auctions, these are slots on a webpage
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to fill, each of which sees worse and worse click-through rates. Order the positions such that
{αj} is decreasing in j (hence slot 1 is best).

In the GFP, agents submit bids bi, and positions are allocated in order of bid. Each agent
pays their bid scaled by the quality of the slot: αjbi. Equivalently, they pay their bid when they
are served, which occurs with probability αj for position j.

Theorem 19. The generalized first price (GFP) auction is 1-revenue covered.

As in the matroid case, Theorem 10 and Lemma 16 respectively imply welfare and revenue
approximations of 2e/(e − 1) with reserves.

6.3 All-Pay Auctions

By translating the all-pay auction into first-price semantics, the covering framework can be
applied to yield welfare and revenue results. The welfare result is weaker than that in Syrgkanis
and Tardos [16], but illustrates the applicability of the framework beyond first-price auctions.
The revenue results we derive are new.

Lemma 20. The all-pay matroid auction is 2-revenue covered.

Theorem 10 implies a welfare bound of 3e/(e − 1). It is not feasible to add reserves to
an all-pay auction, but if every bidder must compete against at least one duplicate bidder (as
discussed briefly in Section 5), the all-pay auction is a 4e/(e− 1)-approximation to the optimal
auction.

6.4 The Second-Price Auction

Finally, we illustrate a mechanism which is not revenue-covered. The second-price auction
solicits sealed bids and charges the highest bidder the second-highest bid. Consider the two-
agent setting with deterministic value distribution where v1 = 1 and v2 = ǫ. Assume agent 1
bids 1 and agent 2 bids ǫ. The revenue is ǫ, but T2[0, 1] is 1, so the second-price auction can’t
be revenue covered. Intuitively, the problem comes from a disconnect between payments and
allocations: agent 2 is losing not because agent 1 is making large payments to the mechanism to
win, as in revenue covered mechanisms. In fact, almost the opposite holds - agent 2’s low bids
are both the reason she doesn’t get allocated and the reason 1 pays so little.

7 Extension: Simultaneous Composition

In this section we prove that if a mechanism satisfies a stronger version of revenue covering when
operated in isolation, then it is similarly covered when many instances of the mechanism are
simultaneously being run. Specifically, we assume agents are unit-demand and single-valued. In
this setting, we define simultaneous composition as:

Definition 21. Let mechanisms M1, . . . ,Mm have allocation and payment rules (xj ,pj) and
individual action spaces spaces A1

i , . . . , A
m
i for each agent i. Let Si be a non-empty subset of

{1, . . . ,m} for each i. The simultaneous composition of M1, . . . ,Mm is defined to have:

• Action space
∏

j A
j
i for each agent. That is, each agent participates in the global mechanism

by participating in each composed mechanism individually.
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• Allocation rule x̃i(a) = maxj∈Si
x̃ji (a

j). In other words, each agent choose their best allo-
cation from among the composed mechanisms that interest them.

• Payment rule p̃i(a) =
∑

j p̃
j
i (a

j). That is, agents make payments to every composed mech-
anism.

Given a strategy s in the composed mechanism, let sj denote the strategy profile in mecha-
nism j defined by the element of each agent’s strategy profile corresponding to Mj . Given sj ,

define τ ji , and T j
i to be the analogous values of τi, and Ti in Mj under sj . In the composed

mechanism, let Aj
i be the set of actions comprised of an arbitrary action in mechanism j and

withdrawing from all other mechanisms. Further let A′
i =

⋃

j A
j
i , and A′ =

∏

i A
′
i.

With this notation defined, we present the main theorem - revenue covered mechanisms are
closed under simultaneous composition.

Lemma 22. Let M be the simultaneous composition mechanisms Mj for j = 1, . . . ,m, and let
the individual mechanisms be µ-revenue covered. Then M is µ-revenue covered with respect to
A′.

The proof is included in Appendix F. This immediately yields a revenue approximation result
and when combined with restrictions to handle reserves yields a revenue approximation result.

8 Conclusion

We have shown a framework for proving price of anarchy results for welfare and revenue in
Bayes-Nash Equilibrium. This framework enabled us to prove both welfare and new revenue
approximation results for non-truthful auctions in asymmetric settings, including first price and
all-pay auctions in broad environments.

We split this framework in two very distinct parts that isolate the contribution of the mech-
anism and the contribution of Bayes-Nash Equilibrium. The first part, value covering, depends
only on Bayes-Nash Equilibrium and relates an agents surplus and expected threshold price for
allocation with her optimal surplus.

The second, revenue-covering, depends only on properties of a mechanism over individually
rational strategy profiles and feasible allocations. This is especially helpful when equilibria are
hard to characterize or understand analytically, as is the case with the first-price auction in
asymmetric settings. This has been a barrier in the past to proving results about the behavior
of non-truthful auctions in asymmetric settings: we hope this framework will aid broadly in
understanding properties of equilibria in auctions well beyond the confines of symmetric settings.

Extensions. We used the characterization of Bayes-Nash equilibrium in a few very specific
places in our proofs. For value-covering and virtual-value covering, it is only important that an
agent be best responding to the expected actions of other bidders. For the revenue approximation
results, we do rely on the characterization of equilibrium by [13] to account for revenue via virtual
values. This is the crucial part that allows us to relate the allocation a bidder receives to their
contribution to revenue. Extensions beyond single-parameter, risk-neutral, private-valued agents
will likely need at least an approximate virtual-value equivalent.
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A Examples of FPA Equilibria

A.1 Single-item FPA PoA ≥ 1.15

Consider a setting with one high bidder with a fixed value of 10, and n small bidders with values
drawn from some distribution with value always less than 10. Serving the high valued agent is
always the welfare-optimal allocation. We parameterize the expected utility of the high bidder
as uH .Assume the low bidders will bid such that the highest of their bids is distributed according
to the CDF FL(b) =

uH

10−b . With this distribution, player H achieves utility uh for any bid in the
range [0, 10 − uh].

The high player plays a mixed strategy according to the bid CDF BH(b) =
√

b/(10 − uH).
The competing bid CDF for each low bidder is Fc(b) = BH(b) ·BL(b)

(n−1/n).
With uH = 5.7, solving for the first order conditions in the first price auction tells us

that for any low player bidding b, v = b + Fc(b)/F
′
c(b); solved numerically it is approximately

v(b) = 15b−0.5b2

5+0.5b . Solving numerically gives welfare of 8.69; thus the price of anarchy for welfare
is approximately 1.15.

This example is almost be tight against the expected cumulative threshold lowerbound T
used in the proof of the value covering lemma (Lemma 8). However, the e

e−1 price of anarchy
proof ignores the bid from the agent allocated in the optimal allocation and the utility of the
agents allocated in FPAbut not Opt. Both of these quantities are non-zero, which leads to the
1.15 figure being reasonably far from the e

e−1 . Bounding these quantities is a likely required
step for improving the e

e−1 bound for single-item settings.

B Framework Proofs

Lemma 8 (Restatement). Consider a mechanism M in BNE with induced allocation and
payment rules (x,p), and an agent i with value vi. If xi(vi) ≥ xi, then for any x′ ∈ [0, 1],

vixi(vi) + Ti[xi, x
′] ≥

e− 1

e
vix

′. (12)

Proof of Lemma 8. By the definition of BNE, i chooses an action which maximizes utility. It
follows that

ui(vi) ≥ vixi(αi(z)) − pi(αi(z)) =

(

vi −
pi(αi(z))

xi(αi(z))

)

xi(αi(z)) ≥

(

vi −
pi(αi(z))

xi(αi(z))

)

z. (14)

Rearranging (14) yields

vi −
ui(vi)

z
≤

pi(αi(z))

xi(αi(z))
= τi(z). (15)

This bound is meaningful as long as vi −
ui(vi)

z ≥ 0, or alternatively z ≥ ui(vi)/vi. It follows
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that

vixi(vi) + Ti[xi, x
′] ≥ vixi(vi) +

∫ x′

xi

max

(

0, vi −
ui(vi)

z

)

dz

≥ vixi(vi) +

∫ x′

ui(vi)/vi

vi −
ui(vi)

z
dz

= vix
′ + ui(vi) ln

ui(vi)

x′vi
. (16)

Holding x′vi fixed and minimizing this quantity as a function of ui(vi) yields a minimum at
ui(vi) =

x′vi
e , and at that point assumes value (1− 1/e)x′vi. This is precisely the righthand side

of (12), implying the lemma.

C Reserves Extension

We require an additional, further restricted version of revenue covering to obtain results in
complicated settings such as simultaneous compositions of mechanisms. Using this restriction,
we derive a definition of reserves which holds for first price matroid auctions, position auctions,
and composed first-price auctions, as well as possibly other mechanisms.

Action Restrictions A mechanism is revenue covered if its revenue approximates a portion
of its expected equivalent threshold bids. Each threshold bid solves an optimization problem:
the agent seeks allocation probability at least z, and selects the lowest equivalent bid among
actions which attain this allocation probability. Further restricting the feasible actions in this
optimization problem can only produce a higher threshold. It follows that if a mechanism’s
revenue approximates expected equivalent threshold bids derived from a restricted action set,
then it also approximates those from the unrestricted action set. This suggests a strengthening
of revenue covering. We first refine the framework to incorporate restricted action sets. The
following are analogous to the original definitions, but with a restricted action set:

Definition 23. The equivalent threshold bid with respect to a restricted action set A′
i ⊆ Ai,

denoted τ
A′

i

i (z), is defined as minai∈A′

i
βi(ai) subject to x̃i(ai) ≥ z.

Definition 24. Given an action ai, the expected equivalent threshold bid with respect to a re-

stricted action set A′
i ⊆ Ai, denoted T

A′

i

i [x̃i(ai), x
′
i], is defined as

∫ x′

x̃i(ai)
τ
A′

i

i (z) dz.

Note that the lower limit of the integral is xi, still defined with respect to the full action set
Ai.

Definition 25. A mechanism M is µ-revenue covered with respect to action set restrictions
A′

1 ⊆ A1, . . . , A
′
n ⊆ An (with product space A′) if for every strategy profile s, alternate feasible

allocation x′, and profile of general actions a, µRev(M) ≥
∑

i T
A′

i

i [x̃i(ai), x
′
i].

A mechanism which is revenue covered in the original sense is revenue covered in the sense
of Definition 25 with respect to the full action set A. Moreover, a mechanism which is revenue
covered with respect to the restricted action set A′ is also revenue covered in the original sense.

This follows from the fact that τ
A′

i

i (z) is the objective value to the same minimization problem as
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τi(z), but on a smaller feasible region, so τ
A′

i

i (z) ≥ τi(z) for all i and z. Integrating, we see that

T
A′

i

i [x̃i(ai), x
′
i] ≥ Ti[x̃i(ai), x

′
i] for all i and x′, soRev(M) ≥

∑

i T
A′

i

i [x̃i(ai), x
′
i] ≥

∑

i Ti[x̃i(ai), x
′
i].

These definitions can be further adapted to handle restricted action sets which depend on the
strategy profile, i.e. A′(s) = A′

1(s), . . . , A
′
n(s).

We can combine the above modification to revenue covering with Definition 11 in the obvious
way to yield the following definition:

Definition 26. Let S be a function which takes a value profile v and outputs a set of agents, and
action set restrictions A′

1(s) ⊆ A1, . . . , A
′
n(s) ⊆ An (with product space A′(s)). A mechanism M

is µ-revenue covered with respect to S and A′(s) if for all alternate allocations x′, value profiles
v, and profiles of participatory actions a,

µRev(M) ≥
∑

i∈S(v)
T
A′

i

i [x̃i(ai), x
′
i].

Revenue covering in the sense of Definition 26 implies that in the sense of Definition 11.

C.1 Covering-Preserving Reserves

Consider adding arbitrary bidspace reserves r to a first-price auction. Deriving a revenue result
with our framework required two properties: (1) reserves prevented profitable allocation to low-
valued agents and (2) we preserved the structure of the auction for bids above the reserve (and
therefore preserved revenue covering). Property (1), along with regularity, implied virtual value
covering, which combined with the revenue covering from (2) to produce a revenue bound. We
seek to capture these two properties when defining reserves for general mechanisms.

Definition 27. For a mechanism M , let Mr be M restricted to an action space Ar. We say
Mr implements M with covering-preserving reserves r = (r1, . . . , rn) if the following hold:

1. For any strategy profile s, and any bidder i,

(a) Every action ai ∈ Ar

i has βi(ai) ≥ ri.

(b) Either there is a reserve action arii ∈ Ar

i with βi(a
ri
i ) = ri or there is no action with

positive probability of winning and equivalent bid at most ri in M .

2. There exists a set A′ such that M is µ-revenue covered restricted to the action sets Ar∩A′

for bidders with values v ≥ r. We say the reserves respect A′

Note that this definition does not naturally capture the addition of reserves in such mech-
anisms as the second-price auction. In particular, for that auction, the addition of reserves
increases expected payments for agents, so condition revenue covering isn’t obviously preserved
in the reserves mechanism. Second-price auctions are not revenue covered, as we show in Sec-
tion 6.4, so this is less concerning. The definition does, however, capture the addition of reserves
in auctions with first-price payment semantics.

Adding arbitrary reserves r to a µ-revenue covered mechanism in the manner of Definition 27
preserves revenue covering. Formally:

Lemma 28. Let Mr implement a mechanism M with covering-preserving reserves r which
respect restricted actions A′, and let Sr map value profiles to agents for which vi ≥ ri. If M is
µ-revenue covered with respect to A′, then Mr is µ-revenue covered with respect to Sr.
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Lemma 28 implies that revenue covered mechanisms with reserves added are still revenue
covered. We can therefore use Theorem 12 to bound the welfare of the reserves mechanism.

Theorem 29. Let Mr implement a mechanism M with individual reserves r. If M is µ-revenue
covered, then in any BNE of Mr, the welfare of Mr is a (1+µ) e

e−1 -approximation to the welfare
of any other mechanism which only serves agents with vi ≥ ri.

In particular, we have that the first-price auction with reserves r in bidspace approximates
the welfare of the optimal mechanism which only serves agents with vi ≥ ri, which is VCG with
reserves r. Furthermore, we show in Section 7 that the simultaneous composition of several
first-price auctions is revenue covered.

D Revenue Extension Proofs

D.1 Duplicates Environment

We first formally define the k-duplicates environment.

Definition 30 (k-duplicates). An auction has k-duplicates if there is a partition of bidders into
groups {B1, . . . , Bp} each of size nj ≥ k such that:

• the value of every bidder in each group is drawn from the same distribution Fj ,

• at most one bidder from any group can feasibly be served, and

• each bidder in a group is treated identically by the auction.

This is the same as the duplicates environment of Hartline and Roughgarden [5]; however,
our approximation results will hold with respect to the optimal mechanism in the duplicates
environment, which is always better than the optimal auction in the same environment without
duplicates. If duplicates play by identical strategies in BNE, this guarantees that a bidder can
only be served if she has the highest value among her duplicates.

Additionally, we assume pointwise monotonicity in the allocation rule. Note that this is
lightly stronger than the monotonicity given by the BNE characterization of Myerson [13], but
will be satisfied by any bid-based mechanism like the first-price or all-pay auctions.

We assume for this proof that the allocation rule is pointwise monotonic for any bidder. This
is stronger than the monotonicity assumption of the BNE characterization, but is satisfied in
any bid-based mechanism (first-price, all-pay, etc.) with monotonicity of bids. A slightly more
intricate analysis of the revenue curves of the duplicates as a group extends the argument here
to the weaker monotonicity assumption.

We first relate the revenue from each group of bidders to the revenue from a symmetric second
price auction with reserves among only the bidders within the group of duplicates, allowing us
to use the symmetric auction approximation results of Bulow and Klemperer [2].

Let SPAR(B) be a second price auction run among agents in group B with a random reserve
drawn according to R.

Lemma 31. There exist reserve value distributions R1, R2 . . . Rp such that in any mechanism
M with k-duplicates,

Rev(M) =
∑

j
Rev(SPARj

(Bj)), (17)

Rev
+(M) =

∑

j
Rev

+(SPARj
(Bj)). (18)
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Proof. By the pointwise monotonicity of the allocation rule, fixing the values and actions of
bidders outside a group j results in a threshold value for the top ranking member of a group.
Let the distribution of such thresholds be Rj; then a second price auction among the group
members with reserve drawn precisely from Rj will induce exactly the same allocation rule for
all members of the group. By revenue equivalence (Part 3 of Theorem 1), the revenue from the
group in mechanism M will be the same as Rev(SPARj

(Bj)). The same argument holds for
Rev

+(M) and Rev
+(SPARj

(Bj)).

Proof of Lemma 17. A second-price auction within a group is now a symmetric setting, and
thus we can now use the work of Bulow and Klemperer [2] to relate (17) and (18). By Bulow
and Klemperer [2], if k ≥ 2, Rev(SPARj

(Bj)) ≥
k−1
k Rev

+(SPARj
(Bj)) and hence:

Rev(M) =
∑

j
Rev(SPARj

(Bj))

≥
∑

j

k − 1

k
Rev

+(SPARj
(Bj))

=
k − 1

k
Rev

+(M).

Thus Rev
− ≤ 1

kRev
+(M), exactly our desired result.

Combining Lemma 17 with Theorem 14 thus ensures approximately optimal revenue:

Corollary 32. In any BNE of a µ-revenue covered auction in a regular environment with k-

duplicates behaving by identical strategies, the revenue is a
(

k
k−1 + µ

)

e
e−1-approximation to the

revenue of the optimal mechanism.

In both first price and all-pay auctions, duplicates will play by identical strategies and thus
each will give approximately optimal revenue. Chawla and Hartline [3] show that in a single-item
setting, all bidders in a class that includes first-price and all-pay auctions (rank-and-bid based
allocation rules, and bid-based payments) will behave symmetrically in BNE. If a mechanism has
k-duplicates with such a payment rule, then for any group of duplicates, competing for allocation
appears like a single-item auction, since at most one bidder of the group can be served. Thus,
Theorem 3.1 of Chawla and Hartline [3] will imply that agents in the same group behave by
identical strategies:

Corollary 33 (of Theorem 3.1, Chawla and Hartline [3] ). In any BNE of an auction with
k-duplicates, rank-and-bid based allocation and bid-based payment, for any group Bj of agents,
all agents in the group play by identical strategies everywhere except on a measure zero set of
values.

Thus Corollary 32 will hold for first-price and all-pay auctions, after proving they are revenue
covered.

E Revenue Covering Proofs

E.1 First Price Matroid Auctions

To prove revenue covering for matroids, we first make note of the following lemma, due to Talwar
[17], which holds for any auction which selects a basis maximizing the sum of bids, regardless of
the payment semantics.
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Lemma 34. Let M = (x,p) be a mechanism which allocates to the basis which maximizes the
sum of the bids of the allocated agents. For each agent i, let s̄i(v−i) be the threshold bid for i
in the realized value profile v in the (implicit) strategy profile s, and let si(vi) be i’s bid in that
same strategy profile, and let x′ be any feasible allocation. Then

∑

i
si(vi)xi(v) ≥

∑

i
s̄i(v−i)x

′
i

To prove the lemma, we require the following property of matroids:

Lemma 35 (Replacement Property). Let S1 and S2 be independent sets of size k in a matroid
M. Then there is a bijective function f : S2 \ S1 → S1 \ S2 such that, for every i ∈ S2 \ S1, the
set (S1 \ {f(i)}) ∪ {i} is independent in M.

Proof of Lemma 34. Because subsets of feasible allocations are feasible, threshold bids are non-
negative, so we only need consider allocations x′ which are bases. Let S and S′ be sets served
by x and x′, respectively. Since bids are nonnegative, it follows that S and S′ are the same size.
By Lemma 35, there exists a bijection f from S′ \ S to S \ S′ with the replacement property in
the lemma.

For each i ∈ S′ \ S, bf(i)(vf(i)) ≥ s̄i(v−i), as if i bids above bf(i), then (S \ {f(i)}) ∪ {i}
would be optimal and therefore i would be allocated in BNE. For each i ∈ S′ ∩ S, i was served
in x(v), it must be that bi(vi) ≥ s̄i(v−i). The result follows by summing over i.

With a relationship between threshold bids and revenue established, it remains to connect
the threshold bids to Ti. We already saw in the proof of Lemma 5 that this is simple. With
first-price semantics, τi(z) is simply the z-quantile of threshold bids. It follows that Ti[0, 1] is
i’s expected threshold bid. Using this relationship, we get:

Lemma 18 (Restatement). The first-price auction is 1-revenue covered in any matroid
feasibility environment.

Proof. Consider some alternate allocation x′. By the mechanism’s payment scheme and Lemma 34,

Rev(M) = Ev

[

∑

i
si(vi)xi(v)

]

≥ Ev

[

∑

i
s̄i(v−i)x

′
i

]

=
∑

i
Ev [s̄i(v−i)]x

′
i.

For the first-price matroid auction with no reserves, xi = 0. It follows that Ev[s̄i(v−i)] =
Ti[xi, 1]. Using this fact, we get Rev(M) ≥

∑

i Ti[xi, 1]x
′
i. Finally, the convexity of Ti yields

that
∑

i Ti[xi, 1]x
′
i ≥

∑

i Ti[xi, x
′
i], which proves the lemma.

Combining Lemma 18 with Theorem 10 and yields

Corollary 36. For the first price matroid auction with arbitrary reserves, the welfare of any
BNE is a 2e/(e − 1)-approximation to that of any other mechanism with those same reserves.

Moreover, using Lemma 16 and Lemma 17, we get

Corollary 37. For the first price matroid auction with monopoly reserves and regular bidders,
the revenue of any BNE is a 2e/(e − 1)-approximation to that of any other mechanism.

Corollary 38. For the first price matroid auction with regular bidders and at least 2 duplicates,
the revenue of any BNE is a 3e/(e − 1)-approximation to that of any other mechanism.
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E.2 All-pay

As a warm-up, consider the single-item case. For any agent i, a conservative lower bound on the
mechanism’s revenue is i’s highest competing bid. In the first-price auction, we simply noted that
the expected competing bid was exactly Ti[0, 1]. In the all-pay auction, however, this translation
isn’t so simple. In particular, we need to relate the expected competing bid Ev[s̄i(v−i)] to the
expected equivalent threshold bid Ti[0, 1] - that is, we need to go from payments to payments
divided by allocation. As we show momentarily, we only lose a factor of two in making this
switch. Consequently:

Rev(M) ≥ Ev [s̄i(v−i)] ≥
1

2
Ti[0, 1].

Noting that any alternate allocation simply selects an agent i, and that xi = 0 for all-pay auctions
without reserves yields 2-revenue covering. If we formalize and generalize this argument, we get:

Lemma 20 (Restatement). The all-pay matroid auction is 2-revenue covered.

Proof. The proof follows the structure of the informal argument above - we first relate revenue
to threshold bids, using Lemma 34. We then translate threshold bids to equivalent threshold
bids, losing a factor of two in the process. As above, these two steps prove the result.

Revenue to Threshold Bids By the payment semantics of the mechanism,

Rev(M) = Ev

[

∑

i
si(vi)

]

≥ Ev

[

∑

i
si(vi)xi(v)

]

.

Now let s̄i(v−i) be the threshold bid for i in realized value profile v−i under strategy profile
s (without index i). Because the served agents are the basis which maximizes the sum of bids,
Lemma 34 implies that

Ev

[

∑

i
si(vi)xi(v)

]

≥ Ev

[

∑

i
s̄i(v−i)x

′
i

]

=
∑

i
Ev [s̄i(v−i)] x

′
i. (19)

Threshold Bids to Equivalent Threshold Bids We have bounded M ’s revenue in terms
of Ev−i

[s̄i(v−i)], i’s expected threshold bid. To prove revenue covering, we need to bound
Ev−i

[s̄i(v−i)] in terms of i’s expected equivalent threshold bid - the lowest equivalent first-price
bid required to get allocated with probability z. We do so by comparing τi(z) to the the z-
quantile i’s threshold bids.

To this end, let ai(z) be the z-quantile of i’s competing bids. That is, ai(z) = argminai
p̃i(ai) subject to x̃i(ai) ≥ z. By the definition of τi,

p̃i(ai(z))

x̃i(ai(z))
≥ τi(z).

Rearranging and noting that in an all-pay auction, p̃i(ai(z)) = ai(z), we obtain

ai(z) ≥ τi(z)x̃i(ai(z)) ≥ τi(z)z. (20)

This yields the following sequence of inequalities:

Ev−i
[s̄i(v−i)] =

∫ 1

0
ai(z) dz ≥

∫ 1

0
τi(z)z dz ≥

1

2

∫ 1

0
τi(z) dz = Ti[0, 1], (21)
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where the first equality follows from noting that expected value can bee computed by integrating
over quantiles, the first inequality from (20), and the second inequality from the fact that τi
is an increasing function and basic calculus. Substituting (21) into the lower bound (19) on
revenue yields

2Rev(M) ≥
∑

i
Ti[0, 1]x

′
i. (22)

By the convexity of Ti, Ti[0, 1]x
′
i ≥ Ti[0, x

′
i]. In the all-pay matroid auction without reserves,

xi = 0. This implies that the all-pay auction is 2-revenue covered.

E.3 GFP

In deterministic mechanisms, we used the pointwise equivalent bid threshold for allocation
τi(v−i), or the required bid to be allocated when other agents have values v−i. In a randomized
mechanism like a position auction, fixing the actions of other results not in a single threshold
but a number of thresholds — the actions of others induce an allocation rule that in the case of
position auctions, is piecewise constant (a “stair” function).

We will make use of the threshold that is induced by this action profile in proving that GFP
is revenue-covered. Let τ

a−i

i (z) = βi(αi(z,a−i),a−i) be the smallest equivalent bid of an action
for bidder i which achieves at least allocation of z when other bidders play actions a−i. Let

T a

i [xi(a), x
′] =

∫ x′

xi(a)
τai (z) dz denote the expected additional threshold for agent i when other

bidders play a−i.
To prove GFP is revenue covered for all strategy profiles, we will show first that GFP satisfies

a pointwise variant of revenue covering; then, that pointwise revenue covering implies revenue
covering.

Definition 39. A mechanism M is pointwise µ-revenue covered if for any participatory actions
a and alternate feasible allocation x′,

µREV (M(a)) ≥
∑

i

T a

i [xi(a), x
′
i]. (23)

Lemma 40. GFP is pointwise 1-revenue covered.

Proof. Consider the bid-based allocation rule of an agent in GFP, x̃i(bi, b−i). For any bid bi,
x̃i(bi, b−i) is the position weight of the best slot such that the current resident of the slot is bidding
less than bi. So, x̃i(bi) will be a stair function, with a stair corresponding to each position. The
area above the curve between allocation probabilities x̃i(bi, b−i) and x′

i, T
a

i [x̃i(bi, b−i), x
′], is a

lower bound on the actual payment made by the bidder in the slot, because it assumes that the
current winner is paying his bid only for the extra marginal clicks, not the clicks across all the
slots. Denote by bj the winning bid for each position j; then

T a

i [x̃i(bi, b−i), αj ] =

m
∑

i=j

(αi − αi+1)b
j . (24)

The revenue in GFP given a set of bids is
∑

j αjb
j. For any slot j, the threshold amount

for the bidder allocated j in the alternate allocation is less than payment of the bidder who
won the slot j: αjb

j ≥
∑m

i=j(αi − αi+1)b
j . Summing over all bidders gives that REV (a) ≥

∑

i T
a

i [x̃i(bi, b−i), x
′
i], our desired result.
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We now prove (general) revenue covering for the generalize first price auction:

Theorem 19 (Restatement). The generalized first price (GFP) auction is 1-revenue cov-
ered.

Proof. Let x′ be a feasible allocation. We begin by applying pointwise revenue covering for every
set of realized actions; thus

REV (GFP ) ≥ Ev

[

∑

i

T
s(v)
i [xi(a), x

′
i]

]

. (25)

We now have expectation with a fixed allocation probability, but this means a different action
for every specific set of actions played by the other bidders. To translate this to a fixed action
and a varying allocation probability across the actions played by other bidders, we will use
properties of T [xi, ]. By the convexity of T s(v)[xi, x

′
i] in x′i and because τi(x

′
i) = Ev−i

[x̃i(τi(x
′
i))],

Ev

[

∑

i

T
s(v)
i [xi(s(v)), x

′
i]

]

≥ Ev

[

∑

i

T
s(v)
i [xi(s(v)), x̃i(τi(x

′
i))]

]

=
∑

i

Ti[xi(s(v)), x
′
i]. (26)

Chaining with (25) gives our desired result, REV (GFP ) ≥
∑

i Ti[xi(vi), x
′
i].

F Simultaneous Composition Proofs

Proof of Lemma 22. Let x′ be a feasible allocation for the global mechanism. By the way we
defined composition, x′ is feasible only if we can construct a matching between agents and
mechanisms such that for any j, there is a feasible allocation for Mj that allocates each i
matched to j according to x′i. Define x′i,j be x′i if i and j are matched, and 0 otherwise. Note
that for each agent i, x′i,j > 0 for at most one j, with x′i,j = 0 for all j if x′i = 0. By downward
closure, x′

·,j is feasible for Mj .
Now by the definition of the composed mechanism, µRev(M) = µ

∑

j Rev(Mj), where

Rev(Mj) is taken with respect to sj for each j. Because each Mj is µ-revenue covered, it follows

that µ
∑

j Rev(Mj) ≥
∑

j

∑

i T
j
i [x

j
i , x

′
i,j ]. Moreover, for all j, T j

i [x
j
i , x

′
i,j] = T

Aj
i

i [xi, x
′
i,j] ≥

T
A′

i

i [xi, x
′
i,j ]. But for each agent i, x′i,j > 0 for at most one j, so T j

i [x
j
i , x

′
i,j] > 0 for at most one

j as well, again with T j
i [x

j
i , x

′
i,j] = 0 for all j if x′i = 0. The same also holds for T

A′

i

i [xi, x
′
i,j ]. It

follows that
∑

j

∑

i T
j
i [x

j
i , x

′
i,j ] ≥

∑

i T
A′

i

i [xi, x
′
i], which implies the result.
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