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Equilibrium

The theory of equilibrium attempts to predict what happens in a game
when players behave strategically. This is a central concept to this text
as, in mechanism design, we are optimizing over games to find games
with good equilibria. Here, we review the most fundamental notions of
equilibrium. They will all be static notions in that players are assumed
to understand the game and will play once in the game. While such
foreknowledge is certainly questionable, some justification can be derived
from imagining the game in a dynamic setting where players can learn
from past play.

This chapter reviews equilibrium in both complete and incomplete
information games. As games of incomplete information are the most
central to mechanism design, special attention will be paid to them. In
particular, we will characterize equilibrium when the private information
of each agent is single-dimensional and corresponds, for instance, to a
value for receiving a good or service. We will show that auctions with
the same equilibrium outcome have the same expected revenue. Using
this so-called revenue equivalence we will describe how to solve for the
equilibrium strategies of standard auctions in symmetric environments.

Our emphasis will be on demonstrating the central theories of equi-
librium and not on providing the most comprehensive or general results.
For that readers are recommended to consult a game theory textbook.

2.1 Complete Information Games

In games of compete information all players are assumed to know pre-
cisely the payoff structure of all other players for all possible outcomes
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of the game. A classic example of such a game is the prisoner’s dilemma,
the story for which is as follows.

Two prisoners, Bonnie and Clyde, have jointly committed a crime and are
being interrogated in separate quarters. Unfortunately, the interrogators are
unable to prosecute either prisoner without a confession. Bonnie is offered the
following deal: If she confesses and Clyde does not, she will be released and
Clyde will serve the full sentence of ten years in prison. If they both confess,
she will share the sentence and serve five years. If neither confesses, she will be
prosecuted for a minimal offense and receive a year of prison. Clyde is offered
the same deal.

This story can be expressed as the following bimatrix game where entry
(a, b) represents row player’s payoff a and column player’s payoff b.

silent confess

silent (-1,-1) (-10,0)
confess (0,-10) (-5,-5)

A simple thought experiment enables prediction of what will happen
in the prisoners’ dilemma. Suppose the Clyde is silent. What should
Bonnie do? Remaining silent as well results in one year of prison while
confessing results in immediate release. Clearly confessing is better. Now
suppose that Clyde confesses. Now what should Bonnie do? Remaining
silent results in ten years of prison while confessing as well results in only
five. Clearly confessing is better. In other words, no matter what Clyde
does, Bonnie is better of by confessing. The prisoners dilemma is hardly
a dilemma at all: the strategy profile (confess, confess) is a dominant
strategy equilibrium.

Definition 2.1 A dominant strategy equilibrium (DSE) in a complete
information game is a strategy profile in which each player’s strategy is
as least as good as all other strategies regardless of the strategies of all
other players.

Dominant strategy equilibrium is a strong notion of equilibrium and is
therefore unsurprisingly rare. For an equilibrium notion to be complete
it should identify equilibrium in every game. Another well studied game
is chicken.

James Dean and Buzz (in the movie Rebel without a Cause) face off at opposite
ends of the street. On the signal they race their cars on a collision course
towards each other. The options each have are to swerve or to stay their
course. Clearly if they both stay their course they crash. If they both swerve
(opposite directions) they escape with their lives but the match is a draw.
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Finally, if one swerves and the other stays, the one that stays is the victor and
the other the loses.1

A reasonable bimatrix game depicting this story is the following.

stay swerve

stay (-10,-10) (1,-1)
swerve (-1,1) (0,0)

Again, a simple thought experiment enables us to predict how the
players might play. Suppose James Dean is going to stay, what should
Buzz do? If Buzz stays they crash and Buzz’s payoff is −10, but if
Buzz swerves his payoff is only −1. Clearly, of these two options Buzz
prefers to swerve. Suppose now that Buzz is going to swerve, what should
James Dean do? If James Dean stays he wins and his payoff is one, but
if he swerves it is a draw and his payoff is zero. Clearly, of these two
options James Dean prefers to stay. What we have shown is that the
strategy profile (stay, swerve) is a mutual best response, a.k.a., a Nash
equilibrium. Of course, the game is symmetric so the opposite strategy
profile (swerve, stay) is also an equilibrium.

Definition 2.2 A Nash equilibrium in a game of complete information
is a strategy profile where each players strategy is a best response to the
strategies of the other players as given by the strategy profile.

In the examples above, the strategies of the players correspond di-
rectly to actions in the game, a.k.a., pure strategies. In general, Nash
equilibrium strategies can be randomizations over actions in the game,
a.k.a., mixed strategies (see Exercise 2.1).

2.2 Incomplete Information Games

Now we turn to the case where the payoff structure of the game is not
completely known. We will assume that each agent has some private
information and this information affects the payoff of this agent in the
game. We will refer to this information as the agent’s type and denote
it by ti for agent i. The profile of types for the n agents in the game is
t = (t1, . . . , tn).

A strategy in a game of incomplete information is a function that maps

1 The actual chicken game depicted in Rebel without a Cause is slightly different
from the one described here.
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an agent’s type to any of the agent’s possible actions in the game (or a
distribution over actions for mixed strategies). We will denote by si(·)
the strategy of agent i and s = (s1, . . . , sn) a strategy profile.

The auctions described in Chapter 1 were games of incomplete infor-
mation where an agent’s private type was her value for receiving the
item, i.e., ti = vi. As we described, strategies in the ascending-price auc-
tion were si(vi) = “drop out when the price exceeds vi” and strategies
in the second-price auction were si(vi) = “bid bi = vi.” We refer to
this latter strategy as truthtelling. Both of these strategy profiles are in
dominant strategy equilibrium for their respective games.

Definition 2.3 A dominant strategy equilibrium (DSE) is a strategy
profile s such that for all i, ti, and b−i (where b−i generically refers
to the actions of all players but i), agent i’s utility is maximized by
following strategy si(ti).

Notice that aside from strategies being defined as a map from types
to actions, this definition of DSE is identical to the definition of DSE
for games of complete information.

2.3 Bayes-Nash Equilibrium

Naturally, many games of incomplete information do not have dominant
strategy equilibria. Therefore, we will also need to generalize Nash equi-
librium to this setting. Recall that equilibrium is a property of a strategy
profile. It is in equilibrium if each agent does not want to change her
strategy given the other agents’ strategies. For an agent i, we want to the
fix other agent strategies and let i optimize her strategy (meaning: calcu-
late her best response for all possible types ti she may have). This is an
ill specified optimization as just knowing the other agents’ strategies is
not enough to calculate a best response. Additionally, i’s best response
depends on i’s beliefs on the types of the other agents. The standard
economic treatment addresses this by assuming a common prior.

Definition 2.4 Under the common prior assumption, the agent types
t are drawn at random from a prior distribution F (a joint probability
distribution over type profiles) and this prior distribution is common
knowledge.

The distribution F over t may generally be correlated. Which means
that an agent with knowledge of her own type must do Bayesian updating
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to determine the distribution over the types of the remaining bidders.
We denote this conditional distribution as F−i

∣
∣
ti
. Of course, when the

distribution of types is independent, i.e., F is the product distribution
F1 × · · ·× Fn, then F−i

∣
∣
ti

= F−i.
Notice that a prior F and strategies s induces a distribution over the

actions of each of the agents. With such a distribution over actions, the
problem each agent faces of optimizing her own action is fully specified.

Definition 2.5 A Bayes-Nash equilibrium (BNE) for a game G and
common prior F is a strategy profile s such that for all i and ti, si(ti)
is a best response when other agents play s−i(t−i) when t−i ∼ F−i

∣
∣
ti

.

To illustrate Bayes-Nash equilibrium, consider using the first-price
auction to sell a single item to one of two agents, each with valuation
drawn independently and identically from the uniform distribution on
[0, 1], i.e., the common prior distribution is F = F × F with F (z) =
Prv∼F [v < z] = z. Here each agent’s type is her valuation. We will
calculate the BNE of this game by the “guess and verify” technique.
First, we guess that there is a symmetric BNE with si(z) = z/2 for
i ∈ {1, 2}. Second, we calculate agent 1’s expected utility with value v1

and bid b1 under the standard assumption that the agent’s utility ui is
her value less her payment (when she wins). In this calculation v1 and
b1 are fixed and b2 = v2/2 is random. By the definition of the first-price
auction:

E[u1] = (v1 − b1)×Pr[1 wins with bid b1] .

Calculate Pr[1 wins with b1] as

Pr[b2 ≤ b1] = Pr[v2/2 ≤ b1] = Pr[v2 ≤ 2b1] = F (2b1)

= 2b1.

Thus,

E[u1] = (v1 − b1)× 2b1

= 2v1b1 − 2b2
1.

Third, we optimize agent 1’s bid. Agent 1 with value v1 should maximize
2v1b1−2b2

1 as a function of b1, and to do so, can differentiate the function
and set its derivative equal to zero. The result is d

db1
(2v1b1 − 2b2

1) =
2v1 − 4b1 = 0 and we can conclude that the optimal bid is b1 = v1/2.
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This proves that agent 1 should bid as prescribed if agent 2 does; and
vice versa. Thus, we conclude that the guessed strategy profile is in BNE.

In Bayesian games it is useful to distinguish between stages of the
game in terms of the knowledge sets of the agents. The three stages of
a Bayesian game are ex ante, interim, and ex post. The ex ante stage
is before values are drawn from the distribution. Ex ante, the agents
know this distribution but not their own types. The interim stage is
immediately after each agent learns her own type, but before playing
in the game. In the interim, an agent assumes the other agent types
are drawn from the prior distribution conditioned on her own type, i.e.,
via Bayesian updating. In the ex post stage, the game is played and the
actions of all agents are known.

2.4 Single-dimensional Games

We will focus on a conceptually simple class of single-dimensional games
that is relevant to the auction problems we have already discussed. In
a single-dimensional game, each agent’s private type is her value for
receiving an abstract service, i.e., ti = vi. The distribution over types
is independent (i.e., a product distribution). A game has an outcome
x = (x1, . . . , xn) and payments p = (p1, . . . , pn) where xi is an indicator
for whether agent i indeed received their desired service, i.e., xi = 1 if
i is served and 0 otherwise. Price pi will denote the payment i makes
to the mechanism. An agent’s value can be positive or negative and an
agent’s payment can be positive or negative. An agent’s utility is linear
in her value and payment and specified by ui = vixi − pi. Agents are
risk-neutral expected utility maximizers.

Definition 2.6 A single-dimensional linear utility is defined as having
utility u = vx− p for service-payment outcomes (x, p) and private value
v; a single-dimensional linear agent possesses such a utility function.

A game G maps actions b of agents to an outcome and payment.
Formally we will specify these outcomes and payments as:

• xG
i (b) = outcome to i when actions are b, and

• pG
i (b) = payment from i when actions are b.

Given a game G and a strategy profile s we can express the outcome
and payments of the game as a function of the valuation profile. From
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the point of view of analysis this description of the the game outcome is
much more relevant. Define

• xi(v) = xG
i (s(v)), and

• pi(v) = pG
i (s(v)).

We refer to the former as the allocation rule and the latter as the payment
rule for G and s (implicit). Consider an agent i’s interim perspective.
She knows her own value vi and believes the other agents values to be
drawn from the distribution F (conditioned on her value). For G, s,
and F taken implicitly we can specify agent i’s interim allocation and
payment rules as functions of vi.

• xi(vi) = Pr[xi(vi) = 1 | vi] = E[xi(v) | vi], and

• pi(vi) = E[pi(v) | vi].

With linearity of expectation we can combine these with the agent’s
utility function to write

• ui(vi) = vixi(vi)− pi(vi).

Finally, we say that a strategy si(·) is onto if every action bi agent
i could play in the game is prescribed by si for some value vi, i.e.,
∀bi∃vi si(vi) = bi. We say that a strategy profile is onto if the strat-
egy of every agent is onto. For instance, the truthtelling strategy in the
second-price auction is onto. When the strategies of the agents are onto,
the interim allocation and payment rules defined above completely spec-
ify whether the strategies are in equilibrium or not. In particular, BNE
requires that each agent (weakly) prefers playing the action correspond-
ing (via their strategy) to her value than the action corresponding to
any other value.

Proposition 2.1 When values are drawn from a product distribution
F ; single-dimensional game G and strategy profile s is in BNE only if
for all i, vi, and z,

vixi(vi)− pi(vi) ≥ vixi(z)− pi(z).

If the strategy profile is onto then the converse also holds.

Notice that in Proposition 2.1 the distribution F is required to be
a product distribution. If F is not a product distribution, then when
agent i’s value is vi then xi(z) is not generally the probability that
she will win when she follows her designated strategy for value z. This



2.5 Characterization of Bayes-Nash Equilibrium 31

distinction arises because the conditional distribution of the other agents
values need not be the same when i’s value is vi or z.

2.5 Characterization of Bayes-Nash Equilibrium

We now discuss what Bayes-Nash equilibria look like. For instance, when
given G, s, and F we can calculate the interim allocation and payment
rules xi(vi) and pi(vi) of each agent. We want to succinctly describe
properties of these allocation and payment rules that can arise as BNE.

Theorem 2.2 When values are drawn from a continuous product dis-
tribution F ; single dimensional G and strategy profile s are in BNE only
if for all i,

(i) (monotonicity) xi(vi) is monotone non-decreasing, and

(ii) (payment identity) pi(vi) = vixi(vi)−
∫ vi

0 xi(z) dz + pi(0),

where often pi(0) = 0. If the strategy profile is onto then the converse
also holds.

Proof We will prove the theorem in the special case where the support
of each agent i’s distribution is [0,∞]. Focusing on a single agent i, who
we will refer to as Alice, we drop subscripts i from all notations.

We break this proof into three pieces. First, we show, by picture,
that the game is in BNE if the characterization holds and the strategy
profile is onto. Next, we will prove that a game is in BNE only if the
monotonicity condition holds. Finally, we will prove that a game is in
BNE only if the payment identity holds.

Note that if Alice with value v deviates from the equilibrium and takes
action s(v†) instead of s(v) then she will receive outcome and payment
x(v†) and p(v†). This motivates the definition,

u(v, v†) = vx(v†)− p(v†),

which corresponds to Alice utility when she makes this deviation. For
Alice’s strategy to be in equilibrium it must be that for all v, and v†,
u(v, v) ≥ u(v, v†), i.e., Alice derives no increased utility by deviating.
The strategy profile s is in equilibrium if and only if the same condition
holds for all agents. (The “if” direction here follows from the assumption
that strategies map values onto actions. Meaning: for any action in the
game there exists a value v† such that s(v†) is that action.)
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Figure 2.1 The left column shows (shaded) the surplus, payment, and util-
ity of Alice playing action s(v = z2). The right column shows (shaded) the
same for Alice playing action s(v

†
= z1). The final diagram shows (shaded)

the difference between Alice’s utility for these strategies. Monotonicity im-
plies this difference is non-negative.
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(i) G, s, and F are in BNE if s is onto and monotonicity and the payment
identity hold.

We prove this by picture. Though the formulaic proof is simple,
the pictures provide useful intuition. We consider two possible values
z1 and z2 with z1 < z2. Supposing Alice has the high value, v = z2,
we argue that Alice does not benefit by simulating her strategy for
the lower value, v† = z1, i.e., by playing s(v†) to obtain outcome
x(v†) and payment p(v†). We leave the proof of the opposite, that
when v = z1 and Alice is considering simulating the higher strategy
v† = z2, as an exercise for the reader.

To start with this proof, we assume that x(v) is monotone and that
p(v) = vx(v) −

∫ v
0 x(z) dz.

Consider the diagrams in Figure 2.1. The first diagram (top, cen-
ter) shows x(·) which is indeed monotone as per our assumption. The
column on the left shows Alice’s surplus, vx(v); payment, p(v), and
utility, u(v) = vx(v)− p(v), assuming that she follow the BNE strat-
egy s(v = z2). The column on the right shows the analogous quantities
when Alice follows strategy s(v† = z1) but has value v = z2. The final
diagram (bottom, center) shows the difference in the Alice’s utility
for the outcome and payments of these two strategies. Note that as
the picture shows, the monotonicity of the allocation function im-
plies that this difference is always non-negative. Therefore, there is
no incentive for Alice to simulate the strategy of a lower value.

As mentioned, a similar proof shows that Alice has no incentive
to simulate her strategy for a higher value. We conclude that she
(weakly) prefers to play the action given by the BNE s(·) over any
other action in the range of her strategy function; since s(·) is onto
this range includes all actions.

(ii) G, s, and F are in BNE only if the allocation rule is monotone.

If we are in BNE then for all valuations, v and v†, u(v, v) ≥ u(v, v†).
Expanding we require

vx(v) − p(v) ≥ vx(v†)− p(v†).

We now consider z1 and z2 with z1 < z2 and take turns setting
v = z1, v† = z2, and v† = z1, v = z2. This yields the following two
inequalities:

v = z2, v
† = z1 =⇒ z2x(z2)− p(z2) ≥ z2x(z1)− p(z1), and (2.1)

v = z1, v
† = z2 =⇒ z1x(z1)− p(z1) ≥ z1x(z2)− p(z2). (2.2)
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Adding these inequalities and canceling the payment terms we have,

z2x(z2) + z1x(z1) ≥ z2x(z1) + z1x(z2).

Rearranging,

(z2 − z1)(x(z2)− x(z1)) ≥ 0.

For z2−z1 > 0 it must be that x(z2)−x(z1) ≥ 0, i.e., x(·) is monotone
non-decreasing.

(iii) G, s, and F are in BNE only if the payment rule satisfies the payment
identity.

We will give two proofs that payment rule must satisfy p(v) =
vx(v)−

∫ v
0 x(z) dz +p(0); the first is a calculus-based proof under the

assumption that and each of x(·) and p(·) are differentiable and the
second is a picture-based proof that requires no assumption.

Calculus-based proof: Fix v and recall that u(v, z) = vx(z)− p(z).
Let u′(v, z) be the partial derivative of u(v, z) with respect to z. Thus,
u′(v, z) = vx′(z)−p′(z), where x′(·) and p′(·) are the derivatives of p(·)
and x(·), respectively. Since BNE implies that u(v, z) is maximized
at z = v. It must be that

u′(v, v) = vx′(v)− p′(v) = 0.

This formula must hold true for all values of v. For remainder of
the proof, we treat this identity formulaically. To emphasize this,
substitute z = v:

zx′(z)− p′(z) = 0.

Solving for p′(z) and then integrating both sides of the equality from
0 to v we have,

p′(z) = zx′(z), so
∫ v

0
p′(z)dz =

∫ v

0
zx′(z) dz.

Simplifying the left-hand side and adding p(0) to both sides,

p(v) =

∫ v

0
zx′(z) dz + p(0).
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Figure 2.2 Upper (top, left) and lower bounds (top, right) for the differ-
ence in payments for two strategies z1 and z2 imply that the difference in
payments (bottom) must satisfy the payment identity.

Finally, we obtained the desired formula by integrating the right-hand
side by parts,

p(v) =
[

zx(z)
]v

0
−

∫ v

0
x(z) dz + p(0)

= vx(v) −

∫ v

0
x(z) dz + p(0).

Picture-based proof: Consider equations (2.1) and (2.2) and solve
for p(z2)− p(z1) in each:

z2(x(z2)− x(z1)) ≥ p(z2)− p(z1) ≥ z1(x(z2)− x(z1)).

The first inequality gives an upper bound on the difference in pay-
ments for two types z2 and z1 and the second inequality gives a lower
bound. It is easy to see that the only payment rule that satisfies these
upper and lower bounds for all pairs of types z2 and z1 has payment
difference exactly equal to the area to the left of the allocation rule
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between x(z1) and x(z2). See Figure 2.2. The payment identity follows
by taking z1 = 0 and z2 = v.

As we conclude the proof of the BNE characterization theorem, it is
important to note how little we have assumed of the underlying game.
We did not assume it was a single-round, sealed-bid auction. We did not
assume that only a winner will make payments. Therefore, we conclude
for any potentially wacky, multi-round game the outcomes of all Bayes-
Nash equilibria have a nice form.

2.6 Characterization of Dominant Strategy
Equilibrium

Dominant strategy equilibrium is a stronger equilibrium concept than
Bayes-Nash equilibrium. All dominant strategy equilibria are Bayes-
Nash equilibria, but as we have seen, the opposite is not true; for in-
stance, there is no DSE in the first-price auction. Recall that a strategy
profile is in DSE if each agent’s strategy is optimal for her regardless of
what other agents are doing. The DSE characterization theorem below
follows from the BNE characterization theorem.

Theorem 2.3 G and s are in DSE only if for all i and v,

(i) (monotonicity) xi(vi, v−i) is monotone non-decreasing in vi, and

(ii) (payment identity) pi(vi, v−i) = vixi(vi, v−i) −
∫ vi

0 xi(z, v−i) dz +
pi(0, v−i),

where (z, v−i) denotes the valuation profile with the ith coordinate re-
placed with z. If the strategy profile is onto then the converse also holds.

It was important when discussing BNE to explicitly refer to xi(vi)
and pi(vi) as the probability of allocation and the expected payments
because a game played by agents with values drawn from a distribution
will inherently, from agent i’s perspective, have a randomized outcome
and payment. In contrast, for games with DSE we can consider out-
comes and payments in a non-probabilistic sense. A deterministic game,
i.e., one with no internal randomization, will result in deterministic out-
comes and payments. For our single-dimensional game where an agent
is either served or not served we will have xi(v) ∈ {0, 1}. This specifica-
tion along with the monotonicity condition implied by DSE implies that
the function xi(vi, v−i) is a step function in vi. The reader can easily
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verify that the payment required for such a step function is exactly the
critical value, i.e., v̂i at which xi(·, v−i) changes from 0 to 1. This gives
the following corollary.

Corollary 2.4 A deterministic game G and deterministic strategies s

are in DSE only if for all i and v,

(i) (step-function) xi(vi, v−i) steps from 0 to 1 at some v̂i(v−i), and

(ii) (critical value) pi(vi, v−i) =

{

v̂i(v−i) if xi(vi, v−i) = 1

0 otherwise
+ pi(0, v−i).

If the strategy profile is onto then the converse also holds.

Notice that the above theorem deliberately skirts around a subtle
tie-breaking issue. Consider the truthtelling DSE of the second-price
auction on two agents. What happens when v1 = v2? One agent should
win and pay the other’s value. As this results in a utility of zero, from
the perspective of utility maximization, both agents are indifferent as to
which of them it is. One natural tie-breaking rule is the lexicographical
one, i.e., in favor of agent 1 winning. For this rule, agent 1 wins when
v1 ∈ [v2,∞) and agent 2 wins when v2 ∈ (v1,∞). The critical values are
t1 = v2 and t2 = v1. We will usually prefer the randomized tie-breaking
rule because of its symmetry.

2.7 Revenue Equivalence

We are now ready to make one of the most significant observations in
auction theory. Namely, mechanisms with the same outcome in BNE
have the same expected revenue. In fact, not only do they have the same
expected revenue, but each agent has the same expected payment in each
mechanism. This result is in fact a direct corollary of Theorem 2.2. The
payment identity means that the payment rule is precisely determined
by the allocation rule and the payment of the lowest type, i.e., pi(0).

Corollary 2.5 For any two mechanisms where 0-valued agents pay
nothing, if the mechanisms have the same BNE outcome then they have
same expected revenue.

We can now quantitatively compare the second-price and first-price
auctions from a revenue standpoint. Consider the case where the agent’s
values are distributed independently and identically. What is the equi-
librium outcome of the second-price auction? The agent with the highest
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valuation wins. What is the equilibrium outcome of the first-price auc-
tion? This question requires a little more thought. Since the distributions
are identical, it is reasonable to expect that there is a symmetric equilib-
rium, i.e., one where si = si

′ for all i and i′. Furthermore, it is reasonable
to expect that the strategies are monotone, i.e., an agent with a higher
value will out bid an agent with a lower value. Under these assumptions,
the agent with the highest value wins. Of course, in both auctions a 0-
valued agent will pay nothing. Therefore, we can conclude that the two
auctions obtain the same expected revenue.

As an example of revenue equivalence consider first-price and second-
price auctions for selling a single item to two agents with values drawn
from U [0, 1]. The expected revenue of the second-price auction is E

[

v(2)

]

.
In Section 2.3 we saw that the symmetric strategy of the first-price auc-
tion in this environment is for each agent to bid half her value. The ex-
pected revenue of first-price auction is therefore E

[

v(1)/2
]

. An important
fact about uniform random variables is that in expectation they evenly
divide the interval they are over, i.e., E

[

v(1)

]

= 2/3 and E
[

v(2)

]

= 1/3.
How do the revenues of these two auctions compare? Their revenues are
identically 1/3.

Corollary 2.6 When agents’ values are independent and identically
distributed according to a continuous distribution, the second-price and
first-price auction have the same expected revenue.

Of course, much more bizarre auctions are governed by revenue equiv-
alence. As an exercise the reader is encourage to verify that the all-
pay auction; where agents submit bids, the highest bidder wins, and all
agents pay their bids; is revenue equivalent to the first- and second-price
auctions.

2.8 Solving for Bayes-Nash Equilibrium

While it is quite important to know what outcomes are possible in BNE,
it is also often important to be able to solve for the BNE strategies. For
instance, suppose you were a bidder bidding in an auction. How would
you bid? In this section we describe an elegant technique for calculating
BNE strategies in symmetric environments using revenue equivalence.
Actually, we use something a little stronger than revenue equivalence:
interim payment equivalence. This is the fact that if two mechanisms
have the same allocation rule, they must have the same payment rule
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(because the payment rules satisfy the payment identity). As described
previously, the interim payment of agent i with value vi is pi(vi).

Suppose we are to solve for the BNE strategies of mechanism M .
The approach is to express an agent’s payment in M as a function of
the agent’s action, then to calculate the agent’s expected payment in
a strategically-simple mechanism M ′ that is revenue equivalent to M
(usually a “second-price implementation” of M). Setting these terms
equal and solving for the agents action gives the equilibrium strategy.

We give the high level the procedure below. As a running example we
will calculate the equilibrium strategies in the first-price auction with
two U [0, 1] agents, in doing so we will use a calculation of expected
payments in the strategically-simple second-price auction in the same
environment.

(i) Guess what the outcome might be in Bayes-Nash equilibrium.
E.g., in the BNE of the first-price auction with two agents with

values U [0, 1], we expect the agent with the highest value to win.
Thus, guess that the highest-valued agent always wins.

(ii) Calculate the interim payment of an agent in the auction in terms of
the strategy function.

E.g., we calculate below the payment of agent 1 in the first-price
auction when her bid is s1(v1) in expectation when agent 2’s value
v2 is drawn from the uniform distribution.

pFP
1 (v1) = E[pFP

1 (v1, v2) | 1 wins]Pr[1 wins]

+ E[pFP
1 (v1, v2) | 1 loses]Pr[1 loses] .

Calculate each of these components for the first-price auction where
agent 1 follows strategy s1(v1):

E
[

pFP
1 (v1, v2) | 1 wins

]

= s1(v1).

This by the definition of the first-price auction: if you win you pay
your bid.

Pr[1 wins] = Pr[v2 < v1] = v1.

The first equality follows from the guess that the highest-valued agent
wins. The second equality is because v2 is uniform on [0, 1].

E
[

pFP
1 (v1) | 1 loses

]

= 0.
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This is because a loser pays nothing in the first-price auction. This
means that we do not need to calculate Pr[1 loses]. Plug these into
the equation above to obtain:

pFP
1 (v1) = s1(v1) · v1.

(iii) Calculate the interim payment of an agent in a strategically-simple
auction with the same equilibrium outcome.

E.g., recall that it is a dominant strategy equilibrium (a special
case of Bayes-Nash equilibrium) in the second-price auction for each
agent to bid her value. I.e., b1 = v1 and b2 = v2. Thus, in the second-
price auction the agent with the highest value to wins. We calculate
below the payment of agent 1 in the second-price auction when her
value is v1 in expectation when agent 2’s value v2 is drawn from the
uniform distribution.

pSP
1 (v1) = E[pSP

1 (v1, v2) | 1 wins]Pr[1 wins]

+ E[pSP
1 (v1, v2) | 1 loses]Pr[1 loses] .

Calculate each of these components for the second-price auction:

E
[

pSP
1 (v1, v2) | 1 wins

]

= E[v2 | v2 < v1]

= v1/2.

The first equality follows by the definition of the second-price auction
and its dominant strategy equilibrium (i.e., b2 = v2). The second
equality follows because in expectation a uniform random variable
evenly divides the interval it is over, and once we condition on v2 < v1,
v2 is U [0, v1].

Pr[1 wins] = Pr[v2 < v1] = v1.

The first equality follows from the definition of the second-price auc-
tion and its dominant strategy equilibrium. The second equality is
because v2 is uniform on [0, 1].

E[p1(v1) | 1 loses] = 0.

This is because a loser pays nothing in the second-price auction. This
means that we do not need to calculate Pr[1 loses]. Plug these into
the equation above to obtain:

E
[

pSP
1 (v1)

]

= v2
1/2.
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(iv) Solve for bidding strategies from expected payments.
E.g., the interim payments calculated in the previous steps must

be equal, implying:

pFP
1 (v1) = s1(v1) · v1 = v2

1/2 = pSP
1 (v1).

We can solve for s1(v1) and get

s1(v1) = v1/2.

(v) Verify initial guess was correct. If the strategy function derived is not
onto, verify that actions out of the range of the strategy function are
dominated.

E.g., if agents follow symmetric strategies s1(z) = s2(z) = z/2 then
the agent with the highest value wins. With this strategy function,
bids are in [0, 1/2] and any bid above s1(1) = 1/2 is dominated by
bidding s1(1). All such bids win with certainty, but of these the bid
s1(1) = 1/2 gives the lowest payment.

In the above first-price auction example it should be readily apparent
that we did slightly more work than we had to. In this case it would have
been enough to note that in both the first- and second-price auction
a loser pays nothing. We could therefore simply equate the expected
payments conditioned on winning:

E[p1(v1) | 1 wins] = v1/2
︸︷︷︸

second-price

= s1(vi)
︸ ︷︷ ︸

first-price

.

We can also work through the above framework for the all-pay auction
where the agents submit bids, the highest bid wins, but all agents pay
their bid. The all-pay auction is also is revenue equivalent to the second-
price auction. However, now we compare the total expected payment
(regardless of winning) to conclude:

E[p1(v1)] = v2
1/2

︸︷︷︸

second-price

= s1(vi)
︸ ︷︷ ︸

all-pay

.

I.e., the BNE strategies for the all-pay auction are si(z) = z2/2. Remem-
ber, of course, that the equilibrium strategies solved for above are for
single-item auctions and two agents with values uniform on [0, 1]. For
different distributions or numbers of agents the equilibrium strategies
will generally be different.
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We conclude by observing that if we fail to exhibit a Bayes-Nash
equilibrium via this approach then our original guess is contracted and
there is no equilibrium of the given mechanism that corresponds to the
guess. Conversely, if the approach succeeds then the equilibrium found
is the only equilibrium consistent with the guess. As an example, we can
conclude the following for first-price auctions.2

Proposition 2.7 When agents’ values are independent and identically
distributed from a continuous distribution, the first-price auction has a
unique Bayes-Nash equilibrium for which the highest-valued agent always
wins.

2.9 Uniqueness of Equilibria

As equilibrium attempts to make a prediction of what will happen in a
game or mechanism, the uniqueness of equilibrium is important. If there
are multiple equilibria then the prediction is to a set of outcomes not a
single outcome. In terms of mechanism design, some of these outcomes
could be good and some could be bad. There are also questions of how
the players coordinate on an equilibrium.

As an example, in the second-price auction for two agents with values
uniformly distributed on [0, 1] there is the dominant strategy equilibrium
where agents truthfully report their values. This outcome is good from
the perspective of social surplus in that the item is awarded to the
highest-valued agent. There are, however, other Bayes-Nash equilibria.
For instance, it is also a BNE for agent 1 (Alice) to bid one and agent 2
(Bob) to bid zero (regardless of their values). Alice is happy to win and
pay zero (Bob’s bid); Bob with any value v2 ≤ 1 is at least as happy
to lose and pay zero versus winning and paying one (Alice’s bid). Via
examples like this the social surplus of the worst BNE in the second-
price auction can be arbitrarily worse than the social surplus of the best
BNE (Exercise 2.8). This latter equilibrium is not dominant strategy as
if Bob were to bid his value (a dominant strategy), then Alice would no
longer prefer to bid one. Because of this non-robustness of non-DSE in
games that possess DSE, we can assume that agents follow DSE if there
exists one.
2

In the next section we will strengthen Proposition 2.7 and show that for the
first-price auction (with independent, identical, and continuous distributions)
there are no equilibria where the highest-valued agent does not win. Thus, the
equilibrium solved for is the unique Bayes-Nash equilibrium.
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In contrast, the first-price auction for independent and identical prior
distributions does not suffer from multiplicity of Bayes-Nash equilibria.
Specifically, the method described in the previous section for solving for
the symmetric equilibrium in symmetric auction-like games gives the
unique BNE. We describe this result as two parts. First, we exclude
the possibility of multiple symmetric equilibria. Second, we exclude the
existence of asymmetric equilibria.

Lemma 2.8 For agents with values drawn independently and identi-
cally from a continuous distribution, the first-price auction admits ex-
actly one symmetric Bayes-Nash equilibrium.

Proof Consider a symmetric strategy profile s = (s, . . . , s). First, the
common strategy s(·) must be non-decreasing (otherwise BNE is con-
tradicted by Theorem 2.2).

Second, if the strategy is non-strictly increasing then there is a point
mass some bid b in the bid distribution. Symmetry with respect to this
strategy implies that all agents will make a bid equal to this point mass
with some measurable (i.e., strictly positive) probability. All but one
of these bidders must lose (perhaps via random tie-breaking). Winning,
however, must be strictly preferred to losing for some of the values in the
interval (as an agent with value v is only indifferent to winning or losing
when v = b). Such a losing agent has a deviation of bidding b + ε, and
for ε approaching zero this deviation is strictly better than bidding b.
This is a contradiction to the existence of such a non-strictly increasing
equilibrium.

Finally, for a strictly increasing strategy s the highest-valued agent
must always win; therefore, Proposition 2.7 implies that there is only
one such equilibrium.

We now make much the same argument as we did in solving for equi-
librium (Section 2.8) to exclude the possibility of asymmetric equilibria
in the first-price auction. The main idea in this argument is that there
are two formulas for the interim utility of an agent in the first-price auc-
tion in terms of the allocation rule x(·). The first formula is from the
payment identity of Theorem 2.2, the second formula is from the defi-
nition of the first-price auction (i.e., in terms of the agent’s strategy).
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They are,

u(v) =

∫ v

0
x(z) dz, and (2.3)

u(v) = (v − s(v)) · x(v). (2.4)

The uniqueness of the symmetric Bayes-Nash equilibrium in the first-
price auction follows from the following lemma.

Lemma 2.9 For n = 2 agents with values drawn independently and
identically from a continuous distribution F , the first-price auction with
an unknown random reserve from known distribution G admits no asym-
metric Bayes-Nash equilibrium.

Theorem 2.10 For n ≥ 2 agents with values drawn independently and
identically from a continuous distribution F , the first-price auction there
is a unique Bayes-Nash equilibrium that is symmetric.

Proof By Lemma 2.8 there is exactly one symmetric Bayes-Nash equi-
librium of an n-agent first-price auction. If there is an asymmetric equi-
librium there must be two agents whose strategies are distinct. We can
view the n-agent first-price auction in BNE, from the perspective of this
pair of agents, as a two-agent first-price auction with a random reserve
drawn from the distribution of BNE bids of the other n − 2 agents.
Lemma 2.9 then contradicts the distinctness of these two strategies.

Proof of Lemma 2.9 We will prove this lemma for the special case of
strictly-increasing and continuous strategies (for the general argument,
see Exercise 2.12). Agent 1 is Alice and agent 2 is Bob.

If the BNE utilities of the agents are the same at all values, i.e.,
u1(v) = u2(v) for all v in the distribution’s range, then the payment
identity of Theorem 2.2 implies that the strategies are the same at
all values. For a contradiction then, fix a strictly-increasing continuous
strategy profile s = (s1, s2) for which u1(v) > u2(v) at some v. By equa-
tion (2.3) there must be a measurable interval of values I = (a, b), i.e.,
with Pr[v ∈ I] > 0, containing this value v and for which x1(v) ≥ x2(v)
(assume I is the maximal such interval).

A first claim for strictly-increasing continuous strategies is that s1(v) >
s2(v) if any only if x1(v) > x2(v). See Figure 2.3 for a graphical repre-
sentation of the following argument. Since the strategies are continuous
and strictly increasing, the inverses of the strategies are well defined.
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+
s−1
1 (b2)

+
s−1
2 (b1)

+
v

+b1

+b2

s2(·)

s1(·)

Figure 2.3 Graphical depiction of the first claim in the proof of Lemma 2.9
with bi = si(v). Clearly, s

−1
2 (b1) > s

−1
1 (b2). Strict monotonicity of the

distribution function F (·) then implies that F (s−1
2 (b1)) > F (s−1

1 (b2)).

Calculate Alice’s interim allocation probability x1 at value v, for Bob’s
value v2 ∼ F and reserve bid b̂ ∼ G, as:

x1(v) = Pr
[

s1(v) > s2(v2) ∧ s1(v) > b̂
]

= Pr
[

s−1
2 (s1(v)) > v2 ∧ s1(v) > b̂

]

= F (s−1
2 (s1(v))) · G(s1(v)).

Likewise, Bob’s interim allocation probability is

x2(v) = F (s−1
1 (s2(v))) · G(s2(v)).

For s1(v) ≥ s2(v) then the last term in the allocation probabilities sat-
isfies G(s1(v)) ≥ G(s2(v)) (as the distribution function G(·) is non-
decreasing). Similarly, strict monotonicity of the strategy functions and
distribution function imply that for s1(v) ≥ s2(v) the first term in the
allocation probabilities satisfies F (s−1

2 (s1(v))) ≥ F (s−1
1 (s2(v))); more-

over, either both inequalities are strict or both are equality.
A second claim is that the low-bidding Bob on the interval I = (a, b)
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obtains (weakly) at most the utility of high-bidding Alice at the end-
point a and (weakly) at least the utility of the high-bidding Alice at the
endpoint b. We argue the claim for b, the case of a is similar. The key to
this claim is that there are not higher values v > b where s2(v) < s1(b).
This is either because s1(b) = s2(b) (and the strategies are monotoni-
cally increasing) or because b is the maximum value in the support of the
value distribution F . In the first case, by the above claim x1(b) = x2(b)
so by (2.4) the agents’ utilities are equal. In the second case, Bob with
value b could deviate and bid s1(b) and obtain the same allocation prob-
ability as Alice with the same value. By equation (2.4) such a deviation
would give Bob (with value b) the same utility as Alice (with value b).
Existence of such a deviation gives a lower bound on Bob’s utility.

Finally, we complete the lemma by writing the difference in utilities of
each of Alice and Bob with values a and a. By the second claim, above,
this difference is (weakly) greater for Bob than Alice (relative to Alice’s
utility, Bob’s utility is no higher at a and no lower at b).

u1(b)− u1(a) ≤ u2(b)− u2(a)

However, by the first claim and equation (2.3), Alice has a strictly higher
allocation rule on I and therefore strictly higher change in utility.

∫ b

a
x1(z) dz >

∫ b

a
x2(z) dz

These observations give a contradiction.

2.10 The Revelation Principle

We are interested in designing mechanisms and, while the characteri-
zation of Bayes-Nash equilibrium is elegant, solving for equilibrium is
still generally quite challenging. The final piece of the puzzle, and the
one that has enabled much of modern mechanism design is the revela-
tion principle. The revelation principle states, informally, that if we are
searching among mechanisms for one with a desirable equilibrium we
may restrict our search to single-round, sealed-bid mechanisms in which
truthtelling is an equilibrium.

Definition 2.7 A direct revelation mechanism is single-round, sealed
bid, and has action space equal to the type space, (i.e., an agent can bid
any type she might have)
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Definition 2.8 A direct revelation mechanism is Bayesian incentive
compatible (BIC) if truthtelling is a Bayes-Nash equilibrium.

Definition 2.9 A direct revelation mechanism is dominant strategy
incentive compatible (DSIC) if truthtelling is a dominant strategy equi-
librium.

Theorem 2.11 Any mechanism M with good BNE (resp. DSE) can be
converted into a BIC (resp. DSIC) mechanism M′ with the same BNE
(resp. DSE) outcome.

Proof We will prove the BNE variant of the theorem. Let s, F , and M
be in BNE. Define single-round, sealed-bid mechanism M′ as follows:

(i) Accept sealed bids b.

(ii) Simulate s(b) in M.

(iii) Output the outcome of the simulation.

We now claim that s being a BNE of M implies truthtelling is a BNE
of M′ (for distribution F ). Let s

′ denote the truthtelling strategy. In
M′, consider agent i and suppose all other agents are truthtelling. This
means that the actions of the other players in M are distributed as
s−i(s

′
−i(v−i)) = s−i(v−i) for v−i ∼ F−i

∣
∣
vi

. Of course, in M if other

players are playing s−i(v−i) then since s is a BNE, i’s best response is
to play si(vi) as well. Agent i can play this action in the simulation of
M is by playing the truthtelling strategy s′i(vi) = vi in M′.

Notice that we already, in Chapter 1, saw the revelation principle in
action. The second-price auction is the revelation principle applied to
the ascending-price auction.

Because of the revelation principle, for many of the mechanism de-
sign problems we consider, we will look first for Bayesian or dominant-
strategy incentive compatible mechanisms. The revelation principle guar-
antees that, in our search for optimal BNE mechanisms, it suffices to
search only those that are BIC (and likewise for DSE and DSIC). The
following are corollaries of our BNE and DSE characterization theorems.

We defined the allocation and payment rules x(·) and p(·) as func-
tions of the valuation profile for an implicit game G and strategy pro-
file s. When the strategy profile is truthtelling, the allocation and pay-
ment rules are identical the original mappings of the game from actions
to allocations and prices, denoted x

G(·) and p
G(·). Additionally, let
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xG
i (vi) = E

[

xG
i (v) | vi

]

and pG
i (vi) = E

[

pG
i (v) | vi

]

for v ∼ F . Fur-

thermore, the truthtelling strategy profile in a direct-revelation game is
onto.

Corollary 2.12 A direct mechanism M is BIC for distribution F if
and only if for all i,

(i) (monotonicity) xM
i (vi) is monotone non-decreasing, and

(ii) (payment identity) pMi (vi) = vix
M
i (vi)−

∫ vi

0 xM
i (z) dz + pMi (0).

Corollary 2.13 A direct mechanism M is DSIC if and only if for all
i and v,

(i) (monotonicity) xM
i (vi, v−i) is monotone non-decreasing in vi, and

(ii) (payment identity) pMi (vi, v−i) = vix
M
i (vi, v−i)−

∫ vi

0 xM
i (z, v−i) dz+

pMi (0, v−i).

Corollary 2.14 A direct, deterministic mechanism M is DSIC if and
only if for all i and v,

(i) (step-function) xM
i (vi, v−i) steps from 0 to 1 at some v̂i(v−i), and

(ii) (critical value) pMi (vi, v−i) =

{

v̂i(v−i) if xM
i (vi, v−i) = 1

0 otherwise
+ pMi (0, v−i).

When we construct mechanisms we will use the “if” directions of these
theorems. When discussing incentive compatible mechanisms we will
assume that agents follow their equilibrium strategies and, therefore,
each agent’s bid is equal to her valuation.

Between DSIC and BIC clearly DSIC is a stronger incentive constraint
and we should prefer it over BIC if possible. Importantly, DSIC requires
fewer assumptions on the agents. For a DSIC mechanisms, each agent
must only know her own value; while for a BIC mechanism, each agent
must also know the distribution over other agent values. Unfortunately,
there will be some environments where we derive BIC mechanisms where
no analogous DSIC mechanism is known.

The revelation principle fails to hold in some environments of interest.
We will take special care to point these out. Two such environments, for
instance, are where agents only learn their values over time, or where
the designer does not know the prior distribution (and hence cannot
simulate the agent strategies).
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Exercises

2.1 Find a symmetric mixed strategy equilibrium in the chicken game
described in Section 2.1. I.e., find a probability ρ such that if James
Dean stays with probability ρ and swerves with probability 1 − ρ
then Buzz is happy to do the same.

2.2 Give a characterization of Bayes-Nash equilibrium for discrete single-
dimensional type spaces for agents with linear utility. Assume that
T = {v0, . . . , vN} with the probability that an agent’s value is
v ∈ T given by probability mass function f(v). Assume v0 = 0.
You will not get a payment identity; instead characterize for any
BNE allocation rule, the maximum payments.

(a) Give a characterization for the special case where the values are
uniform, i.e., vj = j for all j.

(b) Give a characterization for the special case where the probabil-
ities are uniform, i.e., f(vj) = 1/N for all j.

(c) Give a characterization for the general case.

(Hint: You should end up with a very similar characterization to
that for continuous type spaces.)

2.3 In Section 2.3 we characterized outcomes and payments for BNE
in single-dimensional games. This characterization explains what
happens when agents behave strategically.

Suppose instead of strategic interaction, we care about fairness.
Consider a valuation profile, v = (v1, . . . , vn), an allocation vector,
x = (x1, . . . , xn), and payments, p = (p1, . . . , pn). Here xi is the
probability that i is served and pi is the expected payment of i
regardless of whether i is served or not.

Allocation x and payments p are envy-free for valuation profile
v if no agent wants to unilaterally swap allocation and payment
with another agent. I.e., for all i and j,

vixi − pi ≥ vixj − pj .

Characterize envy-free allocations and payments (and prove your
characterization correct). Unlike the BNE characterization, your
characterization of payments will not be unique. Instead, charac-
terize the minimum payments that are envy-free. Draw a diagram
illustrating your payment characterization. (Hint: You should end
up with a very similar characterization to that of BNE.)

2.4 AdWords is a Google Inc. product in which the company sells the
placement of advertisements along side the search results on its



50 Equilibrium

search results page. Consider the following position auction envi-
ronment which provides a simplified model of AdWords. There are
m advertisement slots that appear along side search results and n
advertisers. Advertiser i has value vi for a click. Slot j has click-
through rate wj , meaning, if an advertiser is assigned slot j the
advertiser will receive a click with probability wj . Each advertiser
can be assigned at most one slot and each slot can be assigned
at most one advertiser. If a slot is left empty, all subsequent slots
must be left empty, i.e., slots cannot be skipped. Assume that the
slots are ordered from highest click-through rate to lowest, i.e.,
wj ≥ wj+1 for all j.

(a) Find the envy-free (see Exercise 2.3) outcome and payments
with the maximum social surplus. Give a description and for-
mula for the envy-free outcome and payments for each adver-
tiser. (Feel free to specify your payment formula with a compre-
hensive picture.)

(b) In the real AdWords problem, advertisers only pay if they re-
ceive a click, whereas the payments calculated, i.e., p, are in
expected over all outcomes, click or no click. If we are going to
charge advertisers only if they are clicked on, give a formula for
calculating these payments p

′ from p.

(c) The real AdWords problem is solved by auction. Design an auc-
tion that maximizes the social surplus in dominant strategy
equilibrium. Give a formula for the payment rule of your auc-
tion (again, a comprehensive picture is fine). Compare your DSE
payment rule to the envy-free payment rule. Draw some infor-
mal conclusions.

2.5 Consider the first-price auction for selling a single item to two
agents whose values are independent but not identical. In each of
the settings below prove or disprove the claim that there is a Bayes-
Nash equilibrium wherein the item is always allocated to the agent
with the highest value.

(a) Agent 1 has value U [0, 1] and agent 2 has value U [0, 1/2].

(b) Agent 1 has value U [0, 1] and agent 2 has value U [1/2, 1].

2.6 Consider the first-price auction for selling k units of an item to n
unit-demand agents. This auction solicits bids and allocates one
unit to each of the k highest-bidding agents. These winners are
charged their bids. This auction is revenue equivalent to the k-unit
“second-price” auction where the winners are charged the (k+1)st
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highest bid, b(k+1). Solve for the symmetric Bayes-Nash equilib-
rium strategies in the first-price auction when the agent values are
i.i.d. U [0, 1].

2.7 Consider the position auction environment with n = m = 2 (see
Exercise 2.4). Consider running the following first-price auction:
The advertisers submit bids b = (b1, b2). The advertisers are as-
signed to slots in order of their bids. Advertisers pay their bid
when clicked. Use revenue equivalence to solve for BNE strategies
s when the values of the advertisers are drawn independent and
identically from U [0, 1].

2.8 Prove that in a two-agent second-price auction for a single-item,
that the best Bayes-Nash equilibrium can have a social surplus
(i.e., the expected value of the winner) that is arbitrarily larger
than the worst Bayes-Nash equilibrium. (Hint: Show that for any
fixed β that there is a value distribution F and two BNE where
the social surplus in one BNE is strictly larger than a β fraction
of the social surplus of the other BNE.)

2.9 Show that with independent, identical, and continuously distributed
values, the two-agent all-pay auction (where agents bid, the highest-
bidder wins, and all agents pay their bids) admits exactly one
strictly continuous Bayes-Nash equilibrium.

2.10 Show that with independent, identical, and continuously distributed
values, the two-agent first-price position auction (cf. Exercise 2.4;
where agents bid, the highest bidder is served with given probabil-
ity w1, the second-highest bidder is served with given probability
w2 ≤ w1, and all agents pay their bids when they are served) ad-
mits exactly one strictly continuous Bayes-Nash equilibrium.

2.11 Consider the following auction with first-price payment semantics.
Agents bid, any agent whose bid is (weakly) higher than all other
bids wins, all winners are charged their bids. Notice that in the case
of a tie in the highest bid, all of the tied agents win. Prove that
there are multiple Bayes-Nash equilibria when agents have values
that are independently, identically, and continuously distributed.

2.12 Prove Lemma 2.9: For two agents with values drawn independently
and identically from a continuous distribution F with support
[0, 1], the first-price auction with an unknown random reserve from
known distribution G admits no asymmetric Bayes-Nash equilib-
rium. I.e., remove the assumption of strictly-increasing and con-
tinuous strategies from the proof given in the text.
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Chapter Notes

The formulation of Bayesian games is due to Harsanyi (1967). The char-
acterization of Bayes-Nash equilibrium, revenue equivalence, and the
revelation principle come from Myerson (1981). Parts of the BNE char-
acterization proof presented here come from Archer and Tardos (2001).
Amann and Leininger (1996), Bajari (2001), Maskin and Riley (2003),
and Lebrun (2006) studied the uniqueness of equilibrium in the first-
price and all-pay auctions. The revenue-equivalence-based uniqueness
proof presented here is from Chawla and Hartline (2013).

The position auction was formulated by Edelman et al. (2007) and
Varian (2007); see Jansen and Mullen (2008) for the history of auctions
for advertisements on search engines. Envy freedom has been considered
in algorithmic (e.g., Guruswami et al., 2005) and economic (e.g., Jack-
son and Kremer, 2007) contexts. Hartline and Yan (2011) characterized
envy-free outcomes for single-dimensional agents.


