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Bayesian Approximation

One of the most intriguing conclusions from the preceding chapter is
that for i.i.d. regular single-item environments the second-price auction
with a reservation price is revenue optimal. This result is compelling as
the solution it proposes is quite simple, therefore, making it easy to pre-
scribe. Furthermore, reserve-price-based auctions are often employed in
practice so this theory of optimal auctions is also descriptive. Unfortu-
nately, i.i.d. regular single-item environments are hardly representative
of the scenarios in which we would like to design good mechanisms.
Furthermore, if any of the assumptions are relaxed, reserve-price-based
mechanisms are not optimal.

Another point of contention is that auctions, even simple ones like
the second-price auction, can be a slow and inconvenient way to allocate
resources. In many contexts posted pricings are preferred to auctions. As
we have seen, posted pricings are not optimal unless there is only a single
consumer. In addition to being preferred for their speed and simplicity,
posted pricings also offer robustness to out-of-model phenomena such
as collusion. Therefore, approximation results for posted pricings imply
that good collusion resistant mechanisms exist.

In this chapter we address these deficiencies by showing that while
posted pricings and reserve-price-based mechanisms are not generally op-
timal, they are approximately optimal in a wide range of environments.
Furthermore, these approximately optimal mechanisms are more robust,
less dependent on the details of the distribution, and sometimes provide
more conceptual understanding than their optimal counterparts. The
approximation factor obtained by most of these approximation mech-
anisms is two. Meaning, for the worst distributional assumptions, the
mechanism’s expected performance is within a factor two of the optimal
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mechanism. Of course, in any particular environment these mechanisms
may perform better than this worst-case guarantee.

A number of properties of the environment will be crucial for enabling
good approximation mechanisms. As in Chapter 3 these are: indepen-
dence of the distribution of preferences for the agents, distributional reg-
ularity as implied by the concavity of the price-posting revenue curve,
and downward closure of the designer’s feasibility constraint. In addition,
two new structural restrictions on the environment will be introduced.

A matroid set system is one that is downward closed and satisfies an
additional “augmentation property.” An important characterization of
the matroid property is that the surplus maximizing allocation (subject
to feasibility) is given by the greedy-by-value algorithm: sort the agents
by value, then consider each agent in-turn and serve the agent if doing so
is feasible given the set of agents already being served. The optimality of
greedy-by-value implies that the order of the agents’ values is important
for finding the surplus maximizing outcome, but the relative magnitudes
of their values are not.

The monotone hazard rate condition is a refinement of the regularity
property of a distribution of values. Intuitively, the monotone hazard
rate condition restricts how heavy the tail of the distribution is, i.e., how
much probability mass is on very high values. An important consequence
of the monotone hazard rate assumption is that the optimal revenue and
optimal social surplus are within a factor of e ≈ 2.718 of each other.
This will enable mechanism that optimize social surplus to give good
approximations to revenue.

Mathematical Note Subsequently we will consider using monopoly
reserve prices for distributions where these prices are not unique. For
these distributions we should always assume the worst tie-breaking rule
as it is always possible to perturb the distribution slightly to make that
worst monopoly price unique. For example, recall that a regular distri-
bution can be equivalently specified by its distribution function or its
revenue curve. For instance the equal revenue distribution has constant
revenue curve, REQR(q) = 1, and therefore any price on [1,∞) is op-
timal. A sufficient perturbation to make the price of one the unique
monopoly price is given by revenue curve R(q) = 1 − ε(1 − q) which is
uniquely maximized at monopoly quantile q̂! = 1 with corresponding
monopoly price v̂! = V (1) = R(1) = 1.

In the previous two chapters, with the characterization of Bayes-Nash
equilibrium (Theorem 2.2) and the characterization of profit-optimal
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mechanisms (Corollary 3.21), we assumed that the values of the agents
were drawn from continuous distributions. In this chapter, especially
when describing examples that show that the assumptions of a theorem
are necessary, it will sometimes more expedient to work with discrete
distributions. A discrete distribution is specified by a set of values and
probabilities for these values.

There are two ways to relate these discrete examples to the continuous
environments we have heretofore been considering. First, we could red-
erive Theorem 2.2 and Corollary 3.21 (and their variants) for discrete
distributions (see Exercise 2.2 and Exercise 3.6, respectively). Impor-
tantly, via such a rederivation, it is apparent that discrete and contin-
uous environments are intuitively similar. Second, we could consider a
continuous perturbation of the discrete distribution which will exhibit
the same phenomena with respect to optimization and approximation.
For example, one such perturbation is, for a sufficiently small ε, to re-
place any value v from the discrete distribution with a uniform value
from [v, v + ε].

4.1 Monopoly Reserve Pricing

We start our discussion of simple mechanisms that are approximately
optimal by showing that a natural generalization of the second-price
auction with monopoly reserve continues to be approximately optimal
for regular but asymmetric distributions. Recall that monopoly prices
are a property of virtual value functions which are a property of the dis-
tributions from which agents’ values are drawn (Definition 3.7). When
the agents’ values are drawn from distinct distributions their monopoly
prices are generally distinct. The following definition generalizes the
second-price auction with a single reserve price to one with discrimi-
natory, i.e., agent-specific, reserve prices.

Definition 4.1 The second-price auction with (discriminatory) re-
serves v̂ = (v̂1, . . . , v̂n) is:

(i) reject each agent i with vi < v̂i,

(ii) allocate the item to the highest valued agent remaining (or none if
none exists), and

(iii) charge the winner her critical price.
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With non-identical distributions the optimal single-item auction in-
deed needs the exact marginal revenue functions to determine the opti-
mal allocation (see Example 4.1). This contrasts to the i.i.d. regular case
where all we needed was a single number, the monopoly price for the
distribution, and reserve pricing with this number is optimal. Figure 4.1
compares allocations of the (asymmetric) optimal auction with those of
the second-price auction with (asymmetric) monopoly reserves.

Example 4.1 Consider a two-agent single-item auction where agent 1
(Alice) and agent 2 (Bob) have values distributed uniformly on [0, 2]
and [0, 3], respectively. The virtual value functions are φ1(v1) = 2v1 − 2
and φ2(v2) = 2v2−3. Alice’s monopoly price one; Bob’s monopoly price
is 3/2. Alice has a higher virtual value than Bob when v1 > v2 − 1/2.
The optimal auction is asymmetric. It serves an agent only if one is
above their respective monopoly price. If both are above their respective
monopoly reserves, it serves the highest valued agent with a penalty of
1/2 against Bob (cf. Example 3.11, page 67). In contrast the monopoly-
reserves auction is the same but with no penalty for Bob. See Figure 4.1.

In the remainder of this section we show that if the agents’ values
are drawn from regular distributions then the (single item) monopoly-
reserves auction is a two approximation to the optimal revenue. We will
then show that, except for the consideration of more general feasibility
constraints, this result is tight. The approximation bound of two is tight:
we show by example that there is a non-identical regular distribution
where the ratio of the optimal to monopoly-reserves revenue is two. The
regularity assumption is tight: for irregular distributions the approxima-
tion ratio of monopoly reserves can be as bad as linear (i.e., it grows with
the number of agents). Thus, we conclude that this two-approximation
result for regular distributions in single-item environments is essentially
the right answer. Later in the chapter we will consider the extent to
which this result generalizes beyond single-item environments.

4.1.1 Approximation for Regular Distributions

The main result of this section shows that, though distinct, the monopoly-
reserves auction and the revenue-optimal auction have similar revenues.

Theorem 4.2 For single-item environments and agents with values
drawn independently from (non-identical) regular distributions, the second-
price auction with (asymmetric) monopoly reserve prices obtains at least
half the revenue of the (asymmetric) optimal auction.
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Figure 4.1 In Example 4.1 Agent 1 has value v1 ∼ U [0, 2]; agent 2 has
value v2 ∼ U [0, 3]. In the space of valuation profiles v ∈ [0, 2] × [0, 3], with
agent 1’s value on the horizontal axis and agent 2’s value on the vertical
axis, the allocation x = (x1, x2) for the (asymmetric) optimal auction and
(asymmetric) monopoly-reserves auction are depicted.

The proof of Theorem 4.2 is enabled by the following three properties
of regular distributions and virtual value functions. First, Corollary 3.27
shows that for a regular distribution, a monotone allocation rule, and
virtual value given by the marginal revenue curve, the expected revenue
is equal to the expected virtual surplus. The second and third properties
are given by the two lemmas below.

Lemma 4.3 For any virtual value function, the virtual values corre-
sponding to values that exceed the monopoly price are non-negative.

Proof The lemma follows immediately from the definition of virtual
value functions which requires their monotonicity (Definition 3.6) .

Lemma 4.4 For any distribution, the value of an agent is at least her
virtual value for revenue.

Proof We prove the lemma for regular distributions (as is necessary for
Theorem 4.2) and leave the general proof to Exercise 4.3. For regular
distributions, where the virtual values for revenue are given by the for-
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mula φ(v) = v − 1−F (v)
f(v) , the lemma follows as both 1 − F (v) and f(v)

are non-negative.

Our goal will be to show that the expected revenue of the monopoly-
reserves auction is approximately an upper bound on the expected vir-
tual surplus of the optimal auction (which is equal to its revenue). Con-
sider running both auctions on the same random input. Notice that
conditioned on the event that both auctions serve the same agent, both
auctions obtain the same (conditional) expected virtual surplus. Notice
also that conditioned on the event that the auctions serve distinct agents,
the monopoly-reserves auction has higher expected payments than the
optimal auction. It is not correct to bound revenue by combining condi-
tional virtual values with conditional payments as the amortized analysis
that defines virtual values is only correct under unconditional expecta-
tions. Therefore, for the second case we will instead relate the payment
of monopoly reserves to the virtual value of the winner in the optimal
auction (for which it gives an upper bound).

Proof of Theorem 4.2 Let REF denote the optimal auction and its ex-
pected revenue and APX denote the second-price auction with monopoly
reserves and its expected revenue. Clearly, REF ≥ APX; our goal is to
give an approximate inequality in the opposite direction by showing that
2 APX ≥ REF. Let I be the winner of the optimal auction and J be the
winner of the monopoly reserves auction. I and J are random variables.
Notice that neither auctions sell the item if and only if all virtual values
are negative; in this situation define I = J = 0. With these definitions
and Corollary 3.27, REF = E[φI(vI)] and APX = E[φJ (vJ )].

We start by simply writing out the expected revenue of the optimal
auction as its expected virtual surplus conditioned on I = J and I %= J .

REF = E[φI(vI) | I = J ]Pr[I = J ]
︸ ︷︷ ︸

REF=

+E[φI(vI) | I %= J ]Pr[I %= J ]
︸ ︷︷ ︸

REF !=

.

We will prove the theorem by showing that both the terms on the right-
hand side are bounded from above by APX. Thus, REF ≤ 2 APX. For
the first term:

REF= = E[φI(vI) | I = J ]Pr[I = J ]

= E[φJ (vJ ) | I = J ]Pr[I = J ]

≤ E[φJ (vJ ) | I = J ]Pr[I = J ] + E[φJ (vJ ) | I %= J ]Pr[I %= J ]

= APX .
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The inequality in the above calculation follows from Lemma 4.3 as even
when I %= J the virtual value of J must be non-negative. Therefore, the
term added is non-negative. For the second term:

REF"= = E[φI(vI) | I %= J ]Pr[I %= J ]

≤ E[vI | I %= J ]Pr[I %= J ]

≤ E[pJ(v) | I %= J ]Pr[I %= J ]

≤ E[pJ(v) | I %= J ]Pr[I %= J ] + E[pJ(v) | I = J ]Pr[I = J ]

= APX .

The first inequality in the above calculation follow from values upper
bounding virtual values (Lemma 4.4). The second inequality follows be-
cause, among agents who meet their reserve, J is the highest valued
agent and I is a lower valued agent. Therefore, as APX is a second-price
auction, the winner J ’s payment is at least the loser I’s value. The third
inequality follows because payments are non-negative so the term added
is non-negative.

Theorem 4.2 shows that when agent values are non-identically dis-
tributed at least half of the revenue of the optimal asymmetric auction
which is parameterized by complicated virtual value functions can be
obtained by a simple auction which is parameterized by natural statisti-
cal quantities, namely, each distribution’s monopoly price. The theorem
holds for a broad class of distributions that satisfy the regularity prop-
erty. While for specific distributions the approximation bound may be
better than two, we will see subsequently, by example, that if the only as-
sumption on the distribution is regularity then the approximation factor
of two is tight.

Definition 4.2 The equal-revenue distribution has distribution func-
tion FEQR(z) = 1− 1/z and density function fEQR(z) = 1/z

2 on support
[1,∞).

The equal-revenue distribution is so called because the revenue ob-
tained from posting any price is the same. Consider posting price v̂ > 1.
The expected revenue from such a price is v̂ · (1−FEQR(v̂)) = 1. As the
price-posting revenue curve is the constant function PEQR(q̂) = 1, the
distribution is on the boundary between regularity and irregularity. As
it is the boundary between regularity and irregularity, it often provides
an extremal example for results that hold for regular distributions.

Lemma 4.5 There is an (non-identical) regular two-agent single-item



4.1 Monopoly Reserve Pricing 107

environment where the optimal auction obtains twice the revenue of the
second-price auction with (discriminatory) monopoly reserves.

Proof For any ε > 0 we will give a distribution and show that there
is an auction with expected revenue strictly greater than 2− ε but the
revenue of the monopoly reserves auction is precisely one.

Consider the asymmetric two-agent single-item environment where
agent 1 (Alice) has value (deterministically) one and agent 2 (Bob)
has value distributed according to the equal-revenue distribution. The
monopoly price for the equal-revenue distribution is ill-defined because
every price is optimal, but a slight perturbation of the distribution has a
unique monopoly price of v̂!

2 = 1 (see Mathematical Note on page 101).
Thus the monopoly prices are v̂

! = (1, 1) and the expected revenue of
the second-price auction with monopoly reserves is one.

Of course, for this distribution it is easy to see how we can do much
better. Offer Bob a high price h. If he rejects this price then offer Alice
a price of 1. Notice that by the definition of the equal-revenue distri-
bution, Bob’s expected payment is one, but still Bob rejects the offer
with probability 1− 1/h and the item can be sold to Alice. The expected
revenue of the mechanism is h · 1/h + 1 · (1 − 1/h) = 2 − 1/h. Choosing
h > 1/ε gives the claimed result.

While the monopoly-reserves auction (parameterized by n monopoly
prices) is significantly less complex than the optimal auction (parame-
terized by n virtual value functions), it is not often used in practice. In
practice, even in asymmetric environments, auctions are often parame-
terized by a single anonymous reserve price. For regular, non-identical
distributions anonymous reserve pricing continues to give a good approx-
imation to the optimal auction. This and related results are discussed
in Section 4.4.

4.1.2 Inapproximability Irregular Distributions

The second-price auction with monopoly reserve prices only guarantees
a two approximation for regular distributions. The proof of Theorem 4.2
relied on regularity crucially when it invoked Corollary 3.27 to calculate
revenue in terms of virtual surplus for all monotone allocation rules.
Recall that for irregular distributions, revenue is only equal to virtual
surplus for allocation rules that are constant where the virtual value
functions are constant. For irregular distributions there are two chal-
lenges for that the monopoly-reserves auction must confront. First, even
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Figure 4.2 The revenue curve (thin, solid, black) and price-posting revenue
curve (gray, thick, dashed) for the discrete two-point equal revenue distri-
bution from the proof of Proposition 4.6 with h = 2. As usual for revenue
curves, the horizontal axis is quantile.

if the distributions are identical, the optimal auction is not the second-
price auction with monopoly reserves; it irons (see Section 3.3.3). Sec-
ond, the distributions may not be identical. We show here that even
for i.i.d. irregular distributions this trivial bound cannot be improved
(Proposition 4.6), and that this lower bound is tight as the monopoly-
reserves auction for (non-identical) irregular distributions is, trivially, an
n approximation (Proposition 4.7).

Of course, irregular distributions that are “nearly regular” do not ex-
hibit the above worst case behavior. For example, Exercise 4.6 formal-
izes a notion of near regularity under which reasonable approximation
bounds can be proven.

Proposition 4.6 For (irregular) i.i.d. n-agent single-item environ-
ments, the second-price auction with monopoly reserve is at best an n
approximation.

Proof Consider the discrete equal-revenue distribution on {1, h}, i.e.,
with f(h) = 1/h and f(1) = 1 − 1/h, slightly perturbed so that the
monopoly price is one (see Mathematical Note on page 101). With a
monopoly reserve of v̂! = 1 and all values at least one, the reserve is
irrelevant for the second-price auction.

Consider the expected revenues of the second-price auction APX(h)
and the optimal auction REF(h) as a function of h. We show the follow-
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ing limit result which implies the proposition.

APX = lim
h→∞

APX(h) = 1, and (4.1)

REF = lim
h→∞

REF(h) = n. (4.2)

An agent is high-valued with probability 1/h and low valued with prob-
ability (1 − 1/h). The probability that there are exactly k high valued
agents is:

Pr[exactly k are high valued] =
(
n
k

)

· h−k · (1− 1/h)n−k.

For constant n and k and in the limit as h goes to infinity, the first term
is constant and the last term is one. The middle term goes to zero at a
rate of h−k. Thus,

lim
h→∞

hk ·Pr[exactly k are high valued] =
(
n
k

)

, and (4.3)

lim
h→∞

hk · Pr[at least k are high valued] =
(n

k

)

. (4.4)

For the discrete equal-revenue distribution, φ(1) = 0 and φ(h) =
h (see Figure 4.2 and Exercise 3.6). Now we can calculate REF =
limh→∞ REF(h) as φ(1) times the probability that there are no high-
valued agents plus φ(h) times the probability that there are one or more
high-valued agents. REF = 0 +

(n
1

)

= n.
We can similarly calculate APX = limh→∞ APX(h) as one times the

probability that there are one or fewer high-valued agents plus h times
the probability that there are two or more high-valued agents. By equa-
tion (4.3) with k = 0 and 1, the first term is one; by equation (4.4) with
k = 2, the second term is zero. Thus, APX = 1.

Proposition 4.7 For (non-identical, irregular) n-agent single-item en-
vironments, the second-price auction with monopoly reserve is at worst
an n approximation.

Proof Let REF and APX and denote the monopoly-reserve auction
and the optimal auction and their revenue, respectively, in an n-agent,
single-item environment.

As usual for approximation bounds when the optimal mechanism REF
is complex, we will formulate an upper bound that is simple. Denote by
UB the optimal auction and its revenue for the n-agent, n-unit environ-
ment (a.k.a. a digital good). Clearly, UB ≥ REF as this auction could
discard all but one unit and then simulate the outcome REF (the optimal
single-unit auction). UB is also very simple. As there are n units and n
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agents there is no competition between the agents and the optimization
problem decomposes into n independent monopoly pricing problems.
Denote by R

! = (R!
0, . . . , R

!
n) the profile of monopoly revenues. The

revenue of the optimal n-unit auction is:

UB =
∑

i
R!

i .

We now get a lower bound on the monopoly-reserves revenue APX.
Consider the mechanism LB that chooses, before asking for agent re-
ports, the agent i! with the highest monopoly revenue and offers this
agent her monopoly price v̂!

i
! . LB obtains revenue

LB = maxi R!
i .

Moreover, APX ≥ LB as if i! would accept price her monopoly price v̂!
i
!

then some agent in APX must accept a price of at least v̂!
i
! (either agent

i! or an agent beating out agent i!).
Finally, we make the simple observation that n·LB ≥ UB which proves

the proposition.

4.2 Oblivious Posted Pricings and the Prophet
Inequality

Two problematic aspects of employing auctions to allocate resources is
that (a) they require multiple rounds of communication (i.e., they are
slow) and (b) they require all agents to be present at the time of the
auction. Often both of these requirements are prohibitive. In routing in
computer networks a packet needs to be routed, or not, quickly and, if
the network is like the Internet, without state in the routers. Therefore,
auctions are unrealistic for congestion control. In a supermarket where
you go to buy lettuce, we should not hope to have all the lettuce buyers
in the store at once. Finally, in selling goods on the Internet, eBay has
found empirically that posted pricing via the “buy it now” option is
more appropriate than a slow (days or weeks) ascending auction.

Posted pricings give very robust revenue guarantees. For instance,
their revenue guarantees are impervious to many kinds of collusive be-
havior on the part of the agents. Moreover, the prices (to be posted) can
also be used as reserve prices for the first- and second-price auctions and
this only improves on the revenue from price posting.

In a posted pricing, distinct prices can be posted to the agents with
first-come-first-served and while-supplies-last semantics. In this section
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we show that oblivious posted pricing, where agents arrive and consider
their respective prices in any arbitrary order, gives a two approximation
to the optimal auction. In the next section, we show that sequential
posted pricing, where the mechanism chooses the order in which the
agents are permitted to consider their respective posted prices, gives an
improved approximation of e/e−1 ≈ 1.58. Both results hold for objectives
of revenue and social surplus and for any independent distribution on
agent values (i.e., regularity is not assumed).

There are several challenges to the design and analysis of oblivious
posted pricings. First, for any particular n-agent scenario, an oblivious
posted pricing potentially requires optimization of n distinct prices. In
high dimensions (i.e., large n) this optimization problem is computation-
ally challenging. Moreover, it is not immediately clear that the resulting
optimal prices would perform well in comparison to the optimal auction.
To justify usage of posted pricings over auctions, we must be able to eas-
ily find good prices and these prices should give revenue that compares
favorably to that of the optimal auction. The approach of this section
is to solve both problems at once by identifying a class of easy-to-find
posted pricings that perform well.

4.2.1 The Prophet Inequality

The oblivious posted pricing theorem we present is an application of a
prophet inequality theorem from optimal stopping theory. Consider the
following scenario. A gambler faces a series of n games, one on each
of n days. Game i has prize vi distributed independently according to
distribution Fi. The order of the games and distribution of the prize
values is fully known in advance to the gambler. On day i the gambler
realizes the prize vi ∼ Fi of game i and must decide whether to keep
this prize and stop or to return the prize and continue playing. In other
words, the gambler is only allowed to keep one prize and must decide
whether or not to keep a given prize immediately on realizing the prize
and before any future prizes are realized.

The gambler’s optimal strategy can be calculated by backwards induc-
tion. On day n the gambler should stop with whatever prize is realized.
This results in expected value E[vn]. On day n− 1 the gambler should
stop if the prize has greater value than v̂n−1 = E[vn], the expected value
of the prize from the last day. On day n − 2 the gambler should stop
with if the prize has greater value than v̂n−2, the expected value of the
strategy for the last two days. Proceeding in this manner the gambler



112 Bayesian Approximation

can calculate a threshold v̂i for each day where the optimal strategy is
to stop with prize i if and only if vi ≥ v̂i.

This optimal strategy suffers from many of the drawbacks of optimal
strategies. It is complicated: it takes n numbers to describe it. It is
sensitive to small changes in the game, e.g., changing of the order of
the games or making small changes to distribution i strictly above v̂i.
It does not allow for much intuitive understanding of the properties of
good strategies. Finally, it does not generalize well to give solutions to
other similar kinds of games, e.g., that of our oblivious posted pricing
problem.

Approximation gives a crisper picture. A uniform threshold strategy is
given by a single threshold v̂ and requires the gambler to accept the first
prize i with vi ≥ v̂. Threshold strategies are clearly suboptimal as even
on day n if prize vn < v̂ the gambler will not stop and will, therefore,
receive no prize. We refer to the prize selection procedure when multiple
prizes are above the threshold as the tie-breaking rule. The tie-breaking
rule implicit in the specification of the gambler’s game is lexicographical,
i.e., by “smallest i.”

Theorem 4.8 For any product distribution on prize values F = F1 ×
· · ·×Fn, there exists a uniform threshold strategy such that the expected
prize of the gambler is at least half the expected value of the maximum
prize; moreover, the bound is invariant with respect to the tie-breaking
rule; moreover, for continuous distributions with non-negative support
one such threshold strategy is the one where the probability that the gam-
bler receives no prize is exactly 1/2.

Theorem 4.8 is a prophet inequality: it suggest that even though the
gambler does not know the realizations of the prizes in advance, she can
still do half as well as a prophet who does. While this result implies
that the optimal (backwards induction) strategy satisfies the same per-
formance guarantee, this guarantee was not at all clear from the original
formulation of the optimal strategy.

Unlike the optimal (backwards induction) strategy this prophet in-
equality provides substantial conclusions. Most obviously, it is a very
simple strategy. The result is clearly driven by trading off the prob-
ability of not stopping and receiving no prize with the probability of
stopping early with a suboptimal prize. Notice that the order of the
games makes no difference in the determination of the threshold, and if
the distribution above or below the threshold changes, neither the bound
nor suggested strategy is affected. Moreover, the invariance of the theo-
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rem to the tie-breaking rule suggests the bound can be applied to other
related scenarios. The profit inequality is quite robust.

Proof of Theorem 4.8 Let REF denote prophet and her expected prize,
i.e., the expected maximum prize, E[maxi vi], and APX denote a gambler
with threshold strategy v̂ and her expected prize. Define q̂i = 1−Fi(v̂) =
Pr[vi ≥ v̂] as the probability that prize i is above the threshold v̂ and
χ =

∏

i(1 − q̂i) as the probability that the gambler rejects all prizes.
The proof follows in three steps. In terms of the threshold v̂ and failure
probability χ, we get an upper bound on the expected prophet’s payoff.
Likewise, we get a lower bound on expected gambler’s payoff. Finally,
we choose v̂ so that χ = 1/2 to obtain the bound. If there is no v̂ with
χ = 1/2, which is possible if the distributions F are not continuous, we
give a slightly more sophisticated method for choosing v̂.

In the analysis below, the notation “(vi − v̂)+” is shorthand for “max(vi−
v̂, 0).” The prophet is allowed not to pick any prize, e.g., if all prizes
have negative value, to denote this outcome we add a prize indexed
0 with value deterministically v0 = 0; all summations are over prizes
i ∈ {0, . . . , n}.

(i) An upper bound on REF = E[maxi vi]:

The prophet’s expected payoff is

REF = E[maxi vi] = v̂ + E[maxi(vi − v̂)]

≤ v̂ + E[maxi (vi − v̂)+]

≤ v̂ +
∑

i
E[(vi − v̂)+] . (4.5)

The last inequality follows because (vi − v̂)+ is non-negative.

(ii) A lower bound on APX = E[prize of gambler with threshold v̂]:

We will split the gambler’s payoff into two parts, the contribution
from the first v̂ units of the prize and the contribution, when prize
i is selected, from the remaining vi − v̂ units of the prize. The first
part is APX1 = (1− χ) · v̂. To get a lower bound on the second part
we consider only the contribution from the no-tie case. For any i, let
Ei be the event that all other prizes j are below the threshold v̂ (but
vi is unconstrained). The bound is:

APX2 ≥
∑

i
E[(vi − v̂)+ | Ei]Pr[Ei]

≥ χ ·
∑

i
E[(vi − v̂)+] .
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The second line follows because Pr[Ei] =
∏

j "=i(1−q̂j) ≥
∏

j(1−q̂j) =
χ and because the conditioned variable (vi − v̂)+ is independent from
the conditioning event Ei. Therefore, the gambler’s payoff is at least:

APX ≥ (1− χ) · v̂ + χ ·
∑

i
E[(vi − v̂)+] . (4.6)

(iii) Plug in v̂ with χ = 1/2:

From the upper and lower bounds of equations (4.5) and (4.6), if
there is a non-negative v̂ such that χ = 1/2 then, for this v̂, APX ≥
REF /2.

For discontinuous distributions, e.g., ones with point masses, χ as
a function of v̂, denoted χ(v̂), may be discontinuous. Therefore, there
may be no v̂ with χ(v̂) = 1/2. For distributions that have negative
values in their supports the v̂ with χ(v̂) = 1/2 may be negative. For
these cases there is another method for finding a suitable threshold
v̂. Observe that the two common terms of equations (4.5) and (4.6),
namely v̂ and

∑

i E[(vi − v̂)+] are continuous functions of v̂. The
former is strictly increasing from v̂ = 0, the latter strictly decreases
to zero; therefore they must cross at some non-negative v̂†. For v̂†

satisfying v̂† =
∑

i E[(vi − v̂†)+], regardless of the corresponding χ ∈
[0, 1], the right-hand side of equation (4.5) is exactly twice that of
equation (4.6). For this v̂† the two-approximation bound holds.

The prophet inequality is tight in the sense that a better approxima-
tion bound cannot generally by obtained by a uniform threshold strategy
(Exercise 4.9).

As alluded to above, the invariance to the tie-breaking rule implies
that the prophet inequality gives approximation bounds in scenarios
similar to the gambler’s game. In an oblivious posted pricing agents
arrive in a worst-case order and the first agent who desires to buy the
item at her offered price does so. We now use the prophet inequality to
show that there is are oblivious posted pricings that guarantee half the
optimal surplus and half the optimal auction revenue, respectively.

4.2.2 Oblivious Posted Pricing

Consider attempting to allocate a resource to maximize the social sur-
plus. We know from Corollary 1.4 that the second-price auction obtains
the optimal surplus of maxi vi. Suppose we wish to instead us a sim-
pler posted pricing mechanism. A uniform posted price corresponds to a
uniform threshold in value space. In worst case arrival order, the agent
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with the lowest value above the posted price is the one who buys. This
corresponds to a game like the gambler’s with tie-breaking by smallest
value vi. The invariance of the prophet inequality to the tie-breaking
rule allows the conclusion that posting an uniform (a.k.a. anonymous)
price gives a two-approximation to the optimal social surplus.

Proposition 4.9 In single-item environments there is an anonymous
pricing whose expected social surplus under any order of agent arrival is
at least half of that of the optimal social surplus.

Not consider the objective of revenue. The revenue-optimal single-item
auction select the winner with the highest (positive) virtual value (for
revenue). To draw a connection between the auction problem and the
gambler’s problem, we note that the gambler’s problem in prize space
is similar to the auctioneer’s problem in virtual-value space (with vir-
tual value functions given by the marginal revenue curves of the agents’
distributions). The gambler aims to maximize expected prize while the
auctioneer aims to maximize expected virtual value. A uniform thresh-
old in the gambler’s prize space corresponds to a uniform virtual price in
virtual-value space. Note, however, in value space uniform virtual prices
correspond to non-uniform (a.k.a., discriminatory) prices.

Definition 4.3 A virtual price φ̂ corresponds to uniform virtual pric-
ing v̂ = (v̂1, . . . , v̂n) satisfying φi(v̂i) = φ̂ for all i.

Now compare uniform virtual pricing to the gambler’s threshold strat-
egy in the stopping game. The difference is the tie-breaking rule. For
uniform virtual pricing, we obtain the worst revenue when the agents
arrive in order of increasing price (in value space). Thus, the uniform
virtual pricing revenue implicitly breaks ties by smallest posted price v̂i.
The gambler’s threshold strategy breaks ties by the ordering assumption
on the games (i.e., lexicographically by smallest i). Recall, though, that
irrespective of the tie-breaking rule the bound of the prophet inequality
holds.

Theorem 4.10 In single-item environments there is a uniform virtual
pricing (for virtual values equal to marginal revenues) whose expected
revenue under any order of agent arrival is at least half of that of the
optimal auction.

Proof A uniform virtual price φ̂ corresponds to non-uniform prices (in
value space) v̂ = (v̂1, . . . , v̂n). The outcome of such a posted pricing, for
the worst-case arrival order of agents, is as follows. When there is only
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one agent i with value vi that exceeds her offered price v̂i, the revenue is
precisely v̂i. When there are multiple agents S whose values exceed their
offered prices, the one with the lowest price arrives first and pays her
offered price of mini∈S v̂i. In other words, with respect to the gambler’s
game, the tie-breaking rule is by smallest v̂i.

To derive a bound on the revenue of is uniform virtual pricing with
the worst-case arrival order we will relate its revenue to its virtual sur-
plus. For the aforementioned outcome of a uniform virtual pricing (with
virtual values as the marginal revenue) satisfies the conditions of The-
orem 3.18. In particular, the induced allocation rule for each agent is
constant wherever the marginal revenue is constant. Therefore, the ex-
pected revenue of a uniform virtual pricing is equal to its expected virtual
surplus.

By the prophet inequality (Theorem 4.8), there is a uniform virtual
price that obtains a virtual surplus of at least half the maximum virtual
value (i.e., the optimal virtual surplus for single-item environments).
Thus, the revenue of the corresponding price posting is at least half the
optimal revenue.

In Chapter 1 we saw that that an anonymous posted pricing can be a
e/e−1 ≈ 1.58 approximation to the optimal mechanism for social surplus
for i.i.d. distributions (Theorem 1.5). This approximation factor also
holds for revenue and i.i.d., regular distributions. In the next section
we will give a more general result that shows that if the mechanism is
allowed to order the agents (i.e., in the best-case order instead of the
worst-case order as above) then this better e/e−1 bound can be had even
for asymmetric distributions. In this context of best-case versus worst-
case order, the i.i.d. special case is precisely the one where symmetry
renders the ordering of agents irrelevant.

4.3 Sequential Posted Pricings and Correlation Gap

In this section we consider sequential posted pricings, i.e., where the
mechanism posts prices to the agents in an order that it specifies. See
Section 4.2 for additional motivation for posted pricings.

One of the main challenges in designing and analyzing simple ap-
proximation mechanisms is that the optimal mechanism is complex and,
therefore, difficult to analyze. For single-item auctions, this complexity
arises from virtual values which come from arbitrary monotone func-
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tions. The main approach for confronting this complexity is to derive
a simple upper bound on the optimal auction and then exploit the
structure suggested by this bound to construct an simple approxima-
tion mechanism.

4.3.1 The Ex Ante Relaxation

One method for obtaining a simple upper bound for an optimization
problem is to relax some of the constraints in the problem. For example,
ex post feasibility for a single-item auction requires that, in the outcome
selected by the auction, at most a single agent is served. In other words,
the feasibility constraint binds ex post. For Bayesian mechanism design
problems, we can relax the feasibility constraint to bind ex ante. The
corresponding ex ante constraint for a single-item environment is that
the expected (over randomization in the mechanism and the agent types)
number of agents served is at most one.

Definition 4.4 The ex ante relaxation of mechanism design problem is
the optimization problem with the ex post feasibility constraint replaced
with a constraint that holds in expectation over randomization of the
mechanism and the agents’ types. The solution to the ex ante relaxation
is the optimal ex ante mechanism.

Proposition 4.11 The optimal ex ante mechanism’s performance up-
per bounds the optimal (ex post) mechanism’s performance.

To see what the optimal ex ante mechanism is, consider any mecha-
nism and denote by q̂ = (q̂1, . . . , q̂n) the ex ante probabilities that each
of the agents is served by this mechanism. By linearity of expectation
the expected number of agents served is

∑

i q̂i. For a single-item envi-
ronment the ex ante feasibility constraint then requires that

∑

i q̂i ≤ 1.
Notice that as far as the ex ante constraint is concerned, the agents only
impose externalities on each other via their ex ante allocation probabil-
ity. If we fix attention to mechanisms for which agent i is allocated with
ex ante probability q̂i then the remaining allocation probability for the
other agents is fixed to at most 1 − q̂i. Any method of serving agent i
with probability q̂i can be combined with any other method for serving
an expected 1 − q̂i number of the remaining agents. Thus, the relaxed
optimization problem with an ex ante feasibility constraint decomposes
across the agents.

Considering an agent i, one way to serve the agent with ex ante prob-
ability q̂i is to use the ex ante optimal lottery pricing (Definition 3.12).
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The expected payment of the agent is given by her revenue curve as
Ri(q̂i). Thus, for ex ante allocation probabilities q̂ the optimal revenue
is

∑

i Ri(q̂i). Recall that for regular distributions, this optimal pricing
is simply to post the price Vi(q̂i) which has probability q̂i of being ac-
cepted by the agent. Therefore, for regular distributions the optimal ex
ante mechanism is a posted pricing.

The optimal ex ante mechanism design problem is identical to the clas-
sical microeconomic problem of optimizing the amount of a unit supply
of a good (e.g., grain) to fractionally allocate across each of several mar-
kets. Each market i has a concave revenue curve as a function of the
faction of the supply allocated to it. Both of these optimization problem
are given by the following convex program:

max
q̂

∑

i
R(q̂i) (4.7)

s.t.
∑

i
q̂i ≤ 1.

As described previously, the marginal revenue interpretation provides a
simple method for solving this program. The optimal solution equates
marginal revenues, i.e., R′

i(q̂i) = R′
j(q̂j) for i and j with q̂i and q̂j strictly

larger than zero. We conclude with the following proposition.

Proposition 4.12 The optimal ex ante mechanism is a uniform virtual
pricing (with virtual values defined as marginal revenues).

Because, at least for regular distributions, the optimal ex ante mech-
anism is a price posting, it provides a convenient upper bound for deter-
mining the extent to which price posting (with the ex post constraint)
approximates the optimal (ex post) auction. In particular, if we post the
exact same prices then the difference between the ex ante and ex post
posted pricing is in how violations of the ex post feasibility constraint
are resolved. In the former, violations are ignored, in the latter they
must be addressed. In the terminology of the previous section, we must
address how ties, i.e., multiple agents desiring to buy at their respective
prices, are to be resolved to respect the ex post feasibility constraint.
Unlike the previous section where the oblivious ordering assumption re-
quired breaking ties in worst-case order, in this section we break ties in
the mechanisms favor.

Consider the special-case where the distribution is regular and that
the optimal ex ante revenue of Ri(q̂i) = q̂iv̂i from agent i is obtained by
posting price v̂i = Vi(q̂i). The best order to break ties is in favor of higher
prices, i.e., by larger v̂i. For general (possibly irregular distributions) this
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corresponds to ordering the agents by Ri(q̂i)/q̂i, i.e., the agent’s bang-
per-buck. The goal of this section is to prove an approximation bound
on this sequential price posting.

4.3.2 The Correlation Gap

The sequential posted pricing theorem we present is an application of a
correlation gap theorem from stochastic optimization. Consider a non-
negative real-valued set function g over subsets S of an n element ground
set N = {1, . . . , n} and a distribution over subsets given by D. Let q̂i

be the ex ante1 probability that element i is in the random set S ∼ D
and let DI be the distribution over subsets induced by independently
adding each element i to the set with probability equal to its ex ante
probability q̂i. The correlation gap is then the ratio of the expected value
of the set function for the (correlated) distribution D, i.e., ES∼D[g(S)],
to the expected value of the set function for the independent distribution
DI , i.e., E

S∼DI [g(S)] A typical analysis of correlation gap will consider
specific families of set functions g in worst case over distributions D.

We show below that for any values v̂ the maximum-weight-element
set function gMWE(S) = maxi∈S v̂i has a correlation gap of e/e−1.

Lemma 4.13 The correlation gap for any maximum-weight-element
set function and any distribution over sets is e/e−1.

Proof This proof proceeds in three steps. First, we argue that it is
without loss to consider distributions D over singleton sets. Second, we
argue that it is without loss to consider set functions where the weights
are uniform, i.e., the one-or-more set function. Third, we show that for
distributions over singleton sets, the one-or-more set function has a cor-
relation gap of e/e−1.

(i) We have a set function gMWE(S) = maxi∈S v̂i. Add a dummy element
0 with weight v̂0 = 0; if S = ∅ then changing it to {0} affects neither
the correlated value nor the independent value. Moreover, the corre-

lated value ES∼D

[

gMWE(S)
]

is unaffected by changing the set to only

ever include its highest weight element. This change to the distribu-
tion only (weakly) decreases the ex ante probabilities q̂ = (q̂1, . . . , q̂n)

1
In probability theory, this probability is also known as the marginal probability
of i ∈ S; however to avoid confusion with usage of the term “marginal” in
economics, we will refer to it via its economic interpretation as an ex ante
probability as if S was the feasible set output by a mechanism.
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and the independent value E
S∼DI

[

gMWE(S)
]

is monotone increasing

in the ex ante probabilities. Therefore, this transformation only makes
the correlation gap larger. We conclude that it is sufficient to bound
the correlation gap for distributions D over singleton sets for which
the ex ante probabilities sum to one, i.e.,

∑

i q̂i = 1.
(ii) With set distribution D over singletons and a maximum-weight-element

set function gMWE(S) = maxi∈S v̂i, the correlated value simplifies to

ES∼D

[

gMWE(S)
]

=
∑

i q̂iv̂i. Scaling the weights v̂ = (v̂1, . . . , v̂n) by

the same factor has no effect on the correlation gap; therefore, it is
without loss to normalize so that the correlated value is

∑

i q̂iv̂i = 1.
We now argue that among all such normalized weights v̂, the ones
that give the largest correlation gap are the uniform weights v̂i = 1
for all i. This special case of the maximum-weight-element set func-
tion is the one-or-more set function, gOOM(S) = 1 if |S| ≥ 1 and
otherwise gOOM(S) = 0.

Sort the elements by v̂i and let ci =
∏

j<i(1− q̂j) denote the proba-
bility that no element with higher weight than i is in S and, therefore,
i’s contribution to the independent value is ciq̂iv̂i. Let δi = q̂i ·(v̂i−1)
be the additional contribution in excess of one to the correlated value
of i with value v̂i. Importantly, by our normalization assumption
that

∑

i q̂iv̂i = 1, the sum of these excess contributions is zero, i.e.,
∑

i δi = 0. The expected independent value for the maximum-weight-
element set function is

∑

i
ciq̂iv̂i =

∑

i
ci · (q̂i + δi) ≥

∑

i
ciq̂i. (4.8)

where the inequality follows from monotonicity of ci and the fact that
∑

i δi = 0. The right-hand side of (4.8) is the expected independent
value of the one-or-more set function. The correlated value is one for
both (normalized) general weights and uniform weights, so uniform
weights give no lower correlation gap.

(iii) The correlation gap of the one-or-more set function gOOM on any
distribution D over singletons can be bounded as follows. First, the
expected correlated value is one. Second, the expected independent
value is, for S ∼ DI ,

E
[

gOOM(S)
]

= Pr[|S| ≥ 1] = 1−Pr[|S| = 0] = 1−
∏

i
(1− q̂i)

≥ 1− (1− 1/n)n ≥ 1− 1/e,

where the first inequality follows because
∑

i q̂i = 1 and because the
product of a set of positive numbers with a fixed sum is maximized
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when the numbers are equal. The last inequality follows as (1− 1/n)n

is monotonically increasing in n and it is 1/e in the limit as n goes to
infinity.2

4.3.3 Sequential Posted Pricings

The correlation gap is central to the theory of approximation for se-
quential posted pricings. Contrast the revenue of the optimal ex ante
mechanism (a price posting) with the revenue from sequentially post-
ing the same prices. The optimal ex ante mechanism has total ex ante
service probability

∑

i q̂i ≤ 1 (by definition). If we could coordinate the
randomization (by adding correlation to the randomization of agents’
types and the mechanism) then we could obtain this optimal revenue
and satisfy ex post feasibility. In a sequential posted pricing, of course,
no such coordination is permitted. Instead, ex post feasibility is satisfied
by serving the agent that arrives first in the specified sequence.

Given any q̂ with
∑

i q̂i ≤ 1, consider the correlated distribution D
that selects the singleton set {i} with probability q̂i and the empty set
∅ with probability 1 −

∑

i q̂i. The induced ex ante probabilities of this
correlated distribution are exactly q̂i for each agent i. Assume for now
that the distribution is regular and that the revenue of Ri(q̂i) = q̂iv̂i is
obtained by posting price v̂i = Vi(q̂i). For the maximum-weight-element
set function, i.e., gMWE(S) = maxi∈S v̂i. For S ∼ D the expected value
of this set function is precisely the optimal ex ante revenue

∑

i v̂iq̂i.
On the other hand, consider sequentially posting prices v̂ = (v̂1, . . . , v̂n)

to agents ordered by largest v̂i. Let S denote the set of agents whose
values are at least their prices, i.e., S = {i : vi ≥ v̂i}. Each agent i is
in S independently with probability q̂i. Importantly, S may have cardi-
nality larger than one, but when it does, the ordering of agents by price
implies that the agent i ∈ S with the highest price wins. The revenue
of the sequential posted pricing is given by the expected value of the
maximum-weight-element set function gMWE(S) on S ∼ DI .

For regular distributions, the translation from the solution to the op-
timal ex ante mechanism which is given by q̂ to a sequential pricing is
direct. As described above, the prices v̂i = Vi(q̂i) are posted to agents in
decreasing order of v̂i. For irregular distributions the q̂i optimal lottery

2
The last part of this analysis is identical to the proof of Theorem 1.5. Again,
(1 − 1/n)n ≤ 1/e is a standard observation that can be had by taking the natural
logarithm and then applying L’Hopital’s rule for evaluating the limit.
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for agent i is not necessary a posted pricing. It may be, via Theorem 3.28,
a lottery over two prices. These lottery pricings arise when q̂i is in an
interval where the revenue curve has been ironed and is therefore lo-
cally linear. The marginal revenue (i.e., virtual value) is constant on
this interval. If we break ties in the optimization of program (4.7) lexi-
cographically, then for the optimal ex ante probabilities q̂ at most one
is contained strictly within an ironed interval. Recall that the marginal
revenues of any agents who have non-zero ex ante allocation probability
are equal. At this marginal revenue, the lexicographical tie breaking rule
requires that we increase the allocation probability to the early agents
before later agents. We stop when we run out of ex ante allocation prob-
ability and at this stopping point the ex ante allocation probabilities can
be within at most one agents ironed interval.

By the above discussion, the suggested sequential pricing potentially
has one agent receiving a lottery over two prices. The expected rev-
enue of this pricing satisfies the approximation bound guaranteed by
the correlation gap theorem. Of course, it cannot be the case that both
the pricings in the support of the randomized pricing have revenue be-
low the expected revenue of the lottery pricing. Therefore, the pricing
with the higher revenue gives the desired approximation. Notice that
the lexicographical ordering and derandomization steps may result in
prices (in value space) that are discriminatory even in the case that the
environment is symmetric (i.e., for i.i.d. distributions).

Theorem 4.14 For any single-item environment, there is sequential
posted pricing (ordered by price) with uniform virtual prices that obtains
a revenue that is an e/e−1 ≈ 1.58 approximation to the optimal auction
revenue (and the optimal ex ante mechanism revenue).

Proof By Proposition 4.11 the optimal ex ante revenue upper bounds
the optimal auction revenue. The upper bound on the approximation
ratio then follows directly from the correspondence between the revenues
of the optimal ex ante mechanism and the sequential posted pricing
revenue and the correlated and independent values for the maximum
weight element set system (Lemma 4.13). The prices correspond to a
uniform virtual pricing by the characterization of the optimal ex ante
mechanism (Proposition 4.12).

The construction and analysis of Theorem 4.14 can similarly be ap-
plied to the objective of social surplus (see Exercise 4.10) to obtain an
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e/e−1 by a sequential posted pricing that generalizes Theorem 1.5 to
non-identical distributions.

4.4 Anonymous Reserves and Pricings

Thus far we have shown that simple posted pricings and reserve-price-
based auctions approximate the optimal auction. Unfortunately, these
prices are generally discriminatory and, thus, may be impractical for
many scenarios, especially ones where agents could reasonably expect
some degree of fairness of the auction protocol. We therefore consider
the extent to which an anonymous posted price or an auction with an
anonymous reserve price, i.e., the same for each agent, can approximate
the revenue of the optimal, perhaps discriminatory, auction.

For instance, in the eBay auction the buyers are not identical. Some
buyers have higher ratings and these ratings are public knowledge. The
value distributions for agents with different ratings may generally be
distinct and, therefore, the eBay auction may be suboptimal. Surely
though, if the eBay auction was very far from optimal, eBay would have
switched to a better auction. The theorem below gives some justification
for eBay sticking with the second-price auction with anonymous reserve.

Our approach to approximation for (first- or second-price) auctions
with anonymous reserve will be to show that anonymous price post-
ing gives a good approximation and then to argue via the following
proposition, that the auction revenue pointwise dominates the pricing
revenue. While there is not a succinct close-form expression for the
best anonymous reserve price for the second-price auction; the best
anonymous posted price is precisely the monopoly price for the distri-
bution of the maximum value. Notice that with distribution functions
F1, . . . , Fn, the distribution of the maximum value has distribution func-
tion Fmax(z) =

∏

i Fi(z). From this formula, the monopoly price can be
directly calculated.

Proposition 4.15 In any single-item environment, the revenues from
the first- and second-price auctions with an anonymous reserve price is
at least the revenue from the anonymous posted pricing with the same
price.

Proof Recall that a posted pricing of v̂ obtains revenue v̂ if and only
if there is an agent with value at least v̂. For the auction, the utility
an agent receives for bidding strictly below v̂ is zero, while individual
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regular auction regular pricing irregular
identical 1 ≈ e/e−1 2

non-identical [2, 4] [2, 4] n

Figure 4.3 Approximation bounds are given for the second-price auction
with anonymous reserve and for anonymous posted pricing. If a number is
given, then the bound is tight in worst case, if a range is given then the
bound is not known to be tight. For irregular distributions, the auction and
pricing bounds are the same. For i.i.d. regular distributions, the approxi-
mation ratio of anonymous pricing is upper bounded by e/e−1 for all n;
for small n the bound can be improved, e.g., for n = 1 pricing is optimal,
for n = 2 it is a 4/3 approximation. A nearly matching lower bound is the
subject of Exercise 4.12.

rationality implies that an agent with value v ≥ v̂ will have a non-
negative utility from bidding on [v̂, v]. Thus, the auction sells at a price
of at least v̂ if and only if there is an agent with value at least v̂.

4.4.1 Identical Distributions

We start with results for anonymous posted pricing and identical distri-
butions; these bounds are summarized by the first row of Figure 4.3. For
i.i.d. regular distributions the second-price auction with an anonymous
reserve is optimal (Corollary 3.12). For anonymous posted pricing, The-
orem 4.14 implies a e/e−1 ≈ 1.58 approximation for regular distributions
and Theorem 4.10 implies a two approximation for irregular distribu-
tions. Notice that while Theorem 4.14 holds for irregular distributions,
for identical irregular distributions the prices for which the result holds
may not be anonymous (due to the derandomization step).

Corollary 4.16 For i.i.d. regular single-item environments, anony-
mous posted pricing is an e/e−1 approximation to the optimal auction;
this bound is nearly tight.

Proof For i.i.d. distributions, the optimization problem of program
(4.7) is symmetric and convex and, therefore, always admits a symmet-
ric optimal solution. For regular distributions, this symmetric optimal
solution corresponds to an anonymous posted pricing. Theorem 4.14
shows that this anonymous posted pricing is a e/e−1 approximation. For
tightness, see Exercise 4.12.

Corollary 4.17 For i.i.d. (irregular) single-item environments, both
anonymous posted pricing and the second-price auction with anonymous



4.4 Anonymous Reserves and Pricings 125

reserve are two approximations to the optimal auction revenue; these
bounds are tight.

Proof For any (possibly irregular) distribution, Theorem 4.10 shows
that posting a uniform virtual price gives a two approximation to the
revenue of the optimal auction. For i.i.d. distributions where the virtual
value functions are identical, uniform virtual prices are anonymous. The
price-posting result follows. By Proposition 4.15, using this anonymous
price as a reserve price in the second-price auction only improves the
revenue.

To see that this bound of two is tight, we give an i.i.d. irregular distri-
bution for which the approximation ratio of anonymous reserve pricing
for n agents is 2 − 1/n. Consider the discrete distribution and h + n
where

v =

{

h (high valued) w.p. 1/h, and

n (low valued) otherwise.

We then analyze the optimal auction revenue, REF, and the second-
price auction with any reserve, APX, for n agents and in the limit as
h goes to ∞. We show that REF = 2n − 1 and APX = n; the result
follows. For any given value of h, the probability that there are k high-
valued agents and n − k low valued agents is the same as in the proof
of Proposition 4.6; the analysis below makes use of equations (4.3) and
(4.4) from its proof.

We start by analyzing REF. The virtual values are φ(h) = h and, as h
goes to ∞, φ(n) = n− 1. The optimal auction has virtual surplus n− 1
if there are no high-valued agents and virtual surplus h if there is one or
more high-valued agents. The former case happens with probability that
goes to one and so the expected virtual surplus is n−1; and in the limit,
h times the probability of the latter case goes to n. Thus, REF = 2n−1.

We now analyze APX. We show that both a reserve of n and a reserve
of h give the same revenue of n in the limit. For the first case: a reserve
of n is never binding. The second-price auction has revenue h if there
are two or more high-valued agents and a revenue of n if there are one or
fewer. In the limit (as h goes to infinity) the contribution to the expected
revenue of the first term is zero and that of the second term is n. For
the second case: a reserve of h gives revenue of h when there is one or
more high-valued agent, and otherwise zero. As above, the product of h
and this probability is n in the limit. Thus, APX = n.
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4.4.2 Non-identical Distributions

We now turn to asymmetric distributions. For asymmetric distributions,
the challenge with anonymous pricing comes from the asymmetry in
the environment. For non-identical regular distributions, an anonymous
posted pricing gives a constant approximation (implying the same for
anonymous reserve pricing). For non-identical irregular distributions,
anonymous posted and reserve pricing are n approximations. We begin
with lower and upper bounds for regular distributions.

Lemma 4.18 Anonymous reserve or posted pricing is at best a two
approximation to the optimal revenue.

Proof This lower bound is exhibited by an n = 2 agent example where
agent 1’s value is a point-mass at one and agent 2’s value is drawn from
the equal revenue distribution (Definition 4.2) on [1,∞), i.e., F2(z) =
1− 1/z. Recall that, for the equal revenue distribution, posting any price
v̂ ≥ 1 gives an expected revenue of one. For this asymmetric setting
the revenue of the second-price auction with any anonymous reserve is
exactly one. On the other hand, an auction could first offer the item to
agent 2 at a very high price (for expected revenue of one), and if (with
very high probability) agent 2 declines, then it could offer the item to
agent 1 at a price of one. The expected revenue of this mechanism in
the limit is two.

Theorem 4.19 For single-item environments and agents with values
drawn independently from regular distributions, anonymous reserve and
posted pricings give a four approximation to the revenue of the opti-
mal auction. One such anonymous price is the monopoly price for the
distribution of the maximum value.

Proof This proof combines elements from the proof of the prophet in-
equality (Section 4.2.1, page 111) theorem with the upper bound on the
optimal auction given by the ex ante relaxation (Section 4.3.1, page 117).
Let REF =

∑

i v̂iq̂i denote the optimal ex ante mechanism which posts
prices v̂i = Vi(q̂i) and, with out loss of generality, satisfies

∑

i q̂i = 1.
Let APX denote the revenue from posting an anonymous price v̂. A key
part of the proof is to use regularity (i.e., convexity of the price-posting
revenue curve) to derive a lower bound on the probability that an agent
i with v̂i (from the optimal ex ante mechanism, above) has value at least
the anonymous price v̂. The full proof is left to Exercise 4.13.

We now give a tight inapproximation bound for anonymous reserves
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and pricings with irregular distributions. Recall the proof of Proposition 4.7
which implies that, for (non-identical) irregular distributions, posting an
anonymous price that corresponds to the monopoly reserve price of the
agent with the highest monopoly revenue gives an n approximation to
the optimal auction. This is, in fact, the best bound guaranteed by the
second-price auction with an anonymous reserve or an anonymous posted
pricing.

Theorem 4.20 For (non-identical, irregular) n-agent single-item envi-
ronments the second-price auction with anonymous reserve and anony-
mous posted pricing are n approximations to the optimal auction rev-
enue; these bounds are tight.

Proof The upper bound can be seen by adapting the proof of Proposition 4.7
as per the above discussion. The lower bound can be seen by analyzing
the optimal revenue and the revenue of the second-price auction with
any anonymous reserve on the following discrete distribution in the limit
as parameter h approaches infinity. Agent i’s value is drawn as:

vi =

{

hi w.p. h−i, and

0 otherwise.

The details of this analysis are left to Exercise 4.15.

4.5 Multi-unit Environments

The simplest environment we could consider generalizing approxima-
tion results to are multi-unit environments. In a multi-unit environment,
there are multiple units of a single item for sale and each agent desires
a single unit. Denote by k the number of units. For k-unit environments
the surplus maximization mechanism is simply the (k + 1)st-price auc-
tion where the k agents with the highest bids win and are required to
pay the (k+1)st bid. Except for the anonymous reserve pricing result for
non-identical regular distributions, all of the single-item results extend
to multi-unit environments.

Consider extending the results for monopoly reserve pricing to multi-
unit environments. For regular (non-identical) k-unit environments, the
(k + 1)st-price auction with monopoly reserves continues to be a two
approximation to the revenue optimal auction. We defer the statement
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and proof this result to Section 4.6 where it is a special case of Theo-
rem 4.28. For irregular distributions the tight approximation bound for
single-unit environments of Proposition 4.6 and Proposition 4.7 general-
ize to k-unit environments where the approximation ratio of monopoly
reserve pricing is n/k (see Exercise 4.16).

It is possible to generalize and improve the prophet inequality to show
that a gambler who is able to select k prizes can, with a uniform thresh-
old, obtain a (1 +

√
8/k ln k) approximation to the prophet (i.e., the ex-

pected maximum value of k prizes) for sufficiently large k. From this gen-
eralized prophet inequality, the same bound holds for oblivious posted
pricing.

Proposition 4.21 For k-unit environments with sufficiently large k,
there is an oblivious posted pricing that is a (1+

√
8/k ln k) approximation

to the optimal auction.

Sequential posted pricing bounds generalize to multi-unit environ-
ments and the bound obtained improves with k and asymptotically ap-
proach one, i.e., optimal. The proof of this generalization follows from
considering the correlation gap of the k-maximum-weight-elements set
function, reducing its correlation gap to that of the k-capped-cardinality
set function g(S) = min(k, |S|) (the one-or-more set function is the 1-
capped-cardinality), and showing that this set function’s correlation gap
in the limit as n approaches infinity is (1− (k/e)k· 1/k!)−1 which, by Stir-
ling’s approximation3 is (1− 1/

√
2πk)−1 (see Exercise 4.17).

Proposition 4.22 For k-unit environments, there is a sequential posted
pricing that is a (1− 1/

√
2πk)−1 approximation to the optimal auction.

An anonymous reserve price continues to be revenue optimal for i.i.d.
regular multi-unit environments. For i.i.d. regular multi-unit environ-
ments the correlation-gap-based sequential posted pricing result (Proposition 4.22,
above) implies the same bound is attained by an anonymous pricing
because for i.i.d. regular distributions, a uniform virtual pricing is an
anonymous pricing (in value space). For i.i.d. irregular multi-unit en-
vironments the prophet-inequality-based oblivious posted pricing result
(Proposition 4.21, above) implies the same bound by an anonymous
pricing (and consequently for the (k +1)st price auction with an anony-

3
Stirling’s approximation is k! = (k/e)

k√
2πk. This approximation is obtained by

approximating the natural logarithm as ln(k!) = ln(1) + . . . + ln(k) by an integral
instead of a sum.
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mous reserve), because for i.i.d. distributions the uniform virtual pricing
identified corresponds to an anonymous pricing (in value space).

The one result that does not generalize from single-item environments
to multi-unit environments is the anonymous posted and reserve pric-
ing for non-identical distributions. In fact, this lower bound holds more
generally for any set system where where it is possible to serve k agents
(see Lemma 4.23, below). For irregular, non-identical distributions the
n-approximation bound of Theorem 4.20 for single-item environments
generalizes and is tight.

Lemma 4.23 For any (non-identical) regular environment where it
is feasible to simultaneously serve k agents, anonymous pricing and
anonymous reserve pricing are at best an Hk ≈ ln k approximation to
the optimal mechanism revenue, where Hk is the kth harmonic number
Hk =

∑k
i=1

1/i.

Proof Fix a set of k agents that are feasible to simultaneously serve
and reindex them without loss of generality to be {1, . . . , k}. The value
distribution that gives this bound is the one where Fi is a pointmass at
1/i for agents i ∈ {1, . . . , k} and a pointmass at zero for agents i > k. For
such a distribution, competition does not increase the price above the
reserve, therefore anonymous reserve pricing is identical to anonymous
posted pricing. For any i ∈ {1, . . . , k}, anonymous pricing of 1/i to all
agents obtains revenue i · 1/i = 1 as there are i agents with values that
exceed 1/i. On the other hand, the optimal auction posts a discriminatory
price to the top k agents of 1/i for agent i; its revenue is the kth harmonic
number

∑k
i=1

1/i = Hk. The kth harmonic number can be approximated

by the integral
∫ k
1

1/i di and satisfies ln k − 1 ≤ Hk ≤ ln k.

To summarize the generalization of the single-item results to multi-
unit environments: all approximation and inapproximation results gen-
eralize (and some improve) except for the anonymous pricing result for
non-identical, regular distributions.

4.6 Ordinal Environments and Matroids

In Chapter 3 we saw that the second-price auction with the monopoly
reserve was optimal for i.i.d. regular single-item environments. In the
first section of this chapter we showed that the second-price auction
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with monopoly reserves is a two approximation for (non-identical) reg-
ular single-item environments. We now investigate to what extent the
constraint on the environment to single-item feasibility can be relaxed
while still preserving these approximation results. In this section we give
equivalent algorithmic and combinatorial answers to this question. The
algorithmic answer is “when the greedy-by-value algorithm works;” the
combinatorial answer is “when the set system satisfies a augmentation
property (i.e., matroids).”

Definition 4.5 The greedy-by-value algorithm is

(i) Sort the agents in decreasing order of value (and discard all agents
with negative value).

(ii) x← 0 (the null assignment).

(iii) For each agent i (in sorted order),

if (1, x−i) is feasible, xi ← 1.

(I.e., serve i if i can be served alongside previously served agents.)

(iv) Output x.

Notice that the greedy-by-value algorithm is optimal for single-item
environments. To optimize surplus in a single-item environment we wish
to serve the agent with the highest value (when it is non-negative, and
none otherwise). The greedy-by-value algorithm does just that. Notice
also that the optimality of the greedy-by-value algorithm for all profiles
of values implies that, for the purpose of selecting the optimal outcome,
the relative magnitudes of the agents’ values do not matter, only the
order of the of the values (and zero) matters.

Definition 4.6 An environment is ordinal if for all valuation profiles,
the greedy-by-value algorithm optimizes social surplus.

Recall the argument for i.i.d. regular single-item environments that
showed that the optimal auction is the second-price auction with the
monopoly reserve price (Corollary 3.12). An agent, Alice, had to satisfy
two properties to win. She must have the highest virtual value and her
virtual value must be non-negative. Having a non-negative virtual value
is equivalent having a value of at least the monopoly price. Having the
highest virtual value, by regularity and symmetry, is equivalent to having
the highest value. Thus, Alice wins when she has the highest value and
is at least the monopoly price. This auction is precisely the second-price
auction with the monopoly reserve price. For general environments, the
non-negativity of virtual value again suggests any agents who do not



4.6 Ordinal Environments and Matroids 131

have values at least the monopoly reserve price should be rejected. For an
ordinal environment with values drawn i.i.d. from a regular distribution,
maximization of virtual surplus for the remaining agents gives the same
outcome as maximizing the surplus of the remaining agents as symmetry
and strictly increasing virtual value functions imply that the relative
order values is identical to that of virtual values. We conclude with the
following proposition.

Proposition 4.24 For i.i.d. regular ordinal environments, surplus
maximization with the monopoly reserve price optimizes expected rev-
enue.

We will see in the remainder of this section that ordinality is a suffi-
cient condition on the feasibility constraint of the environment to per-
mit the extension of several of the single-item results from the preceding
sections. In particular, for regular (non-identical) distributions, surplus
maximization with (discriminatory) monopoly reserves continues to be
a two approximation. For general distributions a sequential posted pric-
ing continues to be an e/e−1 approximation. Neither anonymous posted
prices or reserve prices generalize (as they do not generalize even for the
special case of multi-unit environments, see Section 4.5).

Definition 4.7 The surplus maximization mechanism with reserves v̂

is:

(i) filter out agents who do not meet their reserve price, v† ← {agents with vi ≥ v̂i}
(ii) simulate the surplus maximization mechanism on the remaining agents,

and

(x, p†)← SM(v†)

(iii) set prices p from critical values as:

pi ←

{

max(v̂i, p
†
i ) if xi = 1, and

0 otherwise,

where SM is the surplus maximization mechanism with no reserves.

4.6.1 Matroid Set Systems

As ordinal environments enable good approximation mechanisms, it is
important to be able to understand and identify environments that are
ordinal. For general feasibility environments (Definition 3.1) subsets of
agents that can be simultaneously served are given by a set system.
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We will see shortly, that set systems that correspond to ordinal environ-
ments, i.e., where the greedy-by-value algorithm optimizes social surplus,
are matroid set systems. Checking ordinality of the environment then is
equivalent to checking whether the matroid conditions hold.

Definition 4.8 A set system is (N, I) where N is the ground set of
elements and I is a set of feasible subsets of N .4 A set system is a
matroid if it satisfies:

• downward closure: subsets of feasible sets are feasible.
• augmentation: given two feasible sets, there is always an element from

the larger whose union with the smaller is feasible.

∀I, J ∈ I, |J | < |I|⇒ ∃i ∈ I \ J, {i} ∪ J ∈ I.

The augmentation property trivially implies that all maximal feasible
sets of a matroid have the same cardinality. These maximal feasible
sets are referred to as bases of the matroid; the cardinality of the bases
is the rank of the matroid. To get some more intuition for the role of
the augmentation property, the following lemma shows that if the set
system is not a matroid then the greedy-by-value algorithm is not always
optimal.

Lemma 4.25 The greedy-by-value algorithm selects the feasible set
with largest surplus for all valuation profiles only if feasible sets are a
matroid.

Proof The lemma follows from showing for any non-matroid set system
that there is a valuation profile v that gives a counterexample. First, we
show that downward closure is necessary and then, for downward-closed
set systems, that the augmentation property is necessary.

If the set system is not downward closed there are subsets J ⊂ I with
I ∈ I and J %∈ I. Consider the valuation profile v with

vi =











2 if i ∈ J ,

1 if i ∈ I \ J , and

0 otherwise.

The optimal outcome is to select set I which is feasible and contains
all the elements with positive value. The greedy-by-value algorithm will

4
For matroid set systems the feasible sets are often referred to as independent
sets. To avoid confusion with independent distributions and to promote the
connection between the set system and a designer’s feasibility constraint, we will
prefer the former term.
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start adding elements i ∈ J . As J is not feasible, it must fail to add at
least one of these elements. This element is permanently discarded and,
therefore, the set selected by greedy is not equal to I and, therefore, not
optimal.

Now, assume that the set system is downward-closed but does not
satisfy the augmentation property. In particular there exists sets J, I ∈ I
with |J | < |I| but there is no i ∈ I \ J that can be added to J , i.e., such
that J ∪ {i} ∈ I. Consider the valuation profile v with (for a ground set
N of size n)

vi =











n + 1 if i ∈ J ,

n if i ∈ I \ J , and

0 otherwise.

The greedy-by-value algorithm first attempts to and succeeds at adding
all the elements of J . As there are no elements in I \ J that are feasible
when added to J , the algorithm terminates selecting exactly the set J .
Because I has at least one more element than J , the value of I exceeds
the value of J , and the optimality of the algorithm is contradicted.

The following matroids will be of interest.

• In a k-uniform matroid all subsets of cardinality at most k are feasible.
The 1-uniform matroid corresponds to a single-item auction; the k-
uniform matroid corresponds to a k-unit auction.

• In a transversal matroid the ground set is the set of vertices of part A
of the bipartite graph G = (A, B, E) (where vertices A are adjacent to
vertices B via edges E) and feasible sets are the subsets of A that can
be simultaneously matched. E.g., if A is people, B is houses, and an
edge from a ∈ A to b ∈ B suggests that b is acceptable to a; then the
feasible sets are subsets of people that can simultaneously be assigned
acceptable houses with no two people assigned the same house. Notice
that k-uniform matroids are the special case where |B| = k and all
houses are acceptable to each person. Therefore, transversal matroids
represent a generalization of k-unit auctions to a market environment
where not all units are acceptable to every agent.

• In a graphical matroid the ground set is the set of edges E in graph
G = (V, E) and feasible sets are acyclic subgraphs (i.e., a forest). Max-
imal feasible sets in a connected graph are spanning trees. The greedy-
by-value algorithm for graphical matroids is known as Kruskal’s algo-
rithm.
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The matroid properties characterize the set systems for which the
greedy-by-value algorithm optimizes social surplus. Typically the most
succinct method for arguing that matroid/ordinal environments have
good properties is by using the fact that the greedy-by-value algorithm
is optimal. Typically the most succinct method for arguing that an en-
vironment is matroid/ordinal is by showing that it satisfies the augmen-
tation property (and is downward closed).

Theorem 4.26 The greedy-by-value algorithm selects the feasible set
with largest surplus for all valuation profiles if and only if feasible sets
are a matroid.

Proof The “only if” direction was shown above by Lemma 4.25. The
“if” direction is as follows. Let r be the rank of the matroid. Let I =
{i1, . . . , ir} be the set of agents selected in the surplus maximizing as-
signment, and let J = {j1, . . . , jr} be the set of agents selected by greedy-
by-value. The surplus from serving a subset S of the agents is

∑

i∈S vi.
Assume for a contradiction that the surplus of set I is strictly more

than the surplus of set J , i.e., greedy-by-value is not optimal. Index the
agents of I and J in decreasing order of value. With respect to this
ordering, there must exist a first index k such that vik

> vjk
. Let Ik =

{i1, . . . , ik} and let Jk−1 = {j1, . . . , jk−1}. Applying the augmentation
property to sets Ik and Jk−1 we see that there must exist some agent
i ∈ Ik \Jk−1 such that Jk−1∪{i} is feasible. Of course, by the ordering of
Ik, vi ≥ vik

> vjk
which means that agent i was considered by greedy-by-

value before it selected jk. By downward closure and feasibility of Jk−1∪
{i}, when agent i was considered by greedy-by-value it was feasible. By
definition of the algorithm, agent i should have been added; this is a
contradiction.

To verify that an environment is ordinal/matroid the most direct ap-
proach is to verify the augmentation property. As an example we show
that constrained matching markets (a.k.a., the transversal matroid) are
indeed a matroid.

Lemma 4.27 For matching agents N = {1, . . . , n} to items K =
{1, . . . , k} via bipartite graph G = (N, K, E) where an agent i ∈ N can
be matched to an item j ∈ K if edge (i, j) ∈ E, the subsets of agents N
that correspond to matchings in G are the feasible sets of a matroid on
ground set N .

Proof Consider any two subsets N † and N ‡ of N that are feasible, i.e.,



4.6 Ordinal Environments and Matroids 135

that correspond to matching in G, with |N †| < |N ‡|. We argue that
there exists an i ∈ N ‡ \ N † such that N † ∪ {i} is feasible.

A matching M corresponds to a subset of edges E such each vertex (ei-
ther an agent in N or an item in K) in the induced subgraph (N, K, M)
has degree (i.e., number of adjacent edges in M) at most one. Denote the
matching that witnesses the feasibility of N † by M †, and likewise, M ‡

for N ‡. Consider the induced subgraph (N, K, M † ∪M ‡). The vertices
in this subgraph have degree at most two. A graph of degree at most
two is a collection of paths and cycles.

There must be a path that starts at a vertex corresponding to an agent
i ∈ N ‡ \ N † and ends with a vertex corresponding to an item j ∈ K.
This is because paths that start with agents i ∈ N ‡ \ N † can only end
at items or at agents i ∈ N † \N ‡. By the assumption |N †| < |N ‡|, there
are more agents in N ‡ \ N † than N † \ N ‡ and so a path ending in an
item must exist.

This path that ends at an item must alternate between edges in M ‡

and M †. This path has an odd number of edges as it starts with an
agent and ends with an item. As it starts with an agent matched by M ‡.
It has one more edge from M ‡ than M †. In matching theory and with
respect to matching M † this path is an augmenting path as swapping the
edges between the matchings results in a new matching for M † with one
more matched edge, and consequently one more agent is matched. This
additional matched agent is i. The existence of this new matching implies
that N † ∪ {i} is feasible. Thus, the matroid augmentation property is
satisfied.

4.6.2 Monopoly Reserve Pricing

In matroid environments that are inherently asymmetric, the i.i.d. as-
sumption is unnatural and therefore restrictive. As in single-item envi-
ronments, the surplus maximization mechanism with (discriminatory)
monopoly reserves continues to be a good approximation even when the
agents’ values are non-identically distributed.

Theorem 4.28 In regular, matroid environments the revenue of the
surplus maximization mechanism with monopoly reserves is a two ap-
proximation to the optimal mechanism revenue.

There are two very useful facts about the surplus maximization mech-
anism in ordinal environments that enable the proof of Theorem 4.28.
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The first shows that the critical value (which determine an agent’s pay-
ment) for an agent is the value of the agent’s “best replacement.” The
second shows that the surplus maximization mechanism is pointwise
revenue monotone, i.e., if the values of any subset of agents increases
the revenue of the mechanism does not decrease. These properties are
summarized by Lemma 4.29 and Theorem 4.30, below. We will prove
Lemma 4.29 and leave the formal proofs of Theorem 4.28 and Theo-
rem 4.30 for Exercise 4.19 and Exercise 4.20, respectively.

Definition 4.9 If I ∪ {i} ∈ I is surplus maximizing set containing i
then the best replacement for i is j = argmax{k : I∪{k}∈I} vk.

Definition 4.10 A mechanism is revenue monotone if for all valuation
profiles v ≥ v

† (i.e., for all i, vi ≥ v†i ), the revenue of the mechanism on
v is at least its revenue on v

†.

Lemma 4.29 In matroid environments, the surplus maximization mech-
anism on valuation profile v has the critical values v̂ satisfying, for each
agent i, v̂i = vj where j is the best replacement for i.

Proof The greedy-by-value algorithm is ordinal, therefore we can as-
sume without loss of generality that the cumulative values of all subsets
of agents are distinct. To see this, add a U [0, ε] random perturbation to
each agent value, the event where two subsets sum to the same value
has measure zero, and as ε → 0 the critical values for the perturbation
approach the critical values for the original valuation profile, i.e., from
equation (4.9) below.

To proceed with the proof, consider two alternative calculations of the
critical value for player i. The first is from the proof of Lemma 3.1 where
OPT(0, v−i) and OPT−i(∞, v−i) are optimal surplus from agents other
than i with i is not served and served, respectively.

v̂i = OPT(0, v−i)−OPT−i(∞, v−i). (4.9)

The second is from the greedy algorithm. Sort all agents except i by
value, then consider placing agent i at any position in this ordering.
Clearly, i is served when placed first. Let j be the first agent after which
i would not be served. Then,

v̂i = vj . (4.10)

Now we compare these the two formulations of critical values given by
equations (4.9) and (4.10). Consider i ordered immediately before and
immediately after j and suppose that i is served in former order and not
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served in the later order. In the latter order, it must be that j is served
as this is the only possible difference between the outcomes of the greedy
algorithm for these two orderings up to the point that both i and j have
been considered. Therefore, agent j must be served in the calculation
of OPT(0, v−i). Let J ∪ {j} be the agents served in OPT(0, v−i) and
let I ∪ {i} be the agents served in OPT(∞, v−i). We can deduce from
equations (4.9) and (4.10) that,

vj = v̂i

= OPT(0, v−i)−OPT−i(∞, v−i)

= vj + v(J)− v(I),

where v(S) denotes
∑

k∈S vk. We conclude that v(I) = v(J) which, by
the assumption that the cumulative values of distinct subsets are dis-
tinct, implies that I = J . Meaning: j is a replacement for i; furthermore,
by optimality of J∪{j} for OPT(0, v−i), j must be the best, i.e., highest
valued, replacement.

Theorem 4.30 In matroid environments, the surplus maximization
mechanism is revenue monotone.

4.6.3 Oblivious and Adaptive Posted Pricings

Recall that an oblivious posted pricing predetermines prices to offer each
agent and its revenue must be guaranteed in worst case over the order
that the agents arrive. It is conjectured that oblivious posted pricing is
a constant approximation for any matroid environment. In contrast, an
adaptive posted pricing is one that, for any arrival order of the agents,
calculates the price to offer each agent when she arrives. The calculated
price can be a function of the agents identity, the agents that have pre-
viously arrived and the agents that are currently being served by the
mechanism. The proof of the following theorem is based on a matroid
prophet inequality (that we will not cover in this text).

Theorem 4.31 For (non-identical, irregular) matroid environments,
there is an adaptive posted pricing that is a two approximation to the
optimal mechanism revenue.

4.6.4 Sequential Posted Pricings

The e/e−1 approximation for single-item sequential posted pricing and its
proof via correlation gap extends to matroid environments. To present
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this extension, we first extend the definition of the optimal ex ante mech-
anism to matroids. We then relate the sequential posted pricing question
to the optimal ex ante mechanism via the correlation gap. Finally, we
conclude with a necessary extra step for adapting the pricing to irregular
distributions.

Consider a matroid set system (N, I). Previously we defined the rank
of a matroid as the maximum cardinality of any feasible set. We can
similarly define the rank of a not-necessarily-feasible subset S of the
ground set N as the maximum cardinality of any feasible subset of it. In
other words, it is the rank of the induced matroid on (S, I). Let rank(S)
denote this matroid rank function.

A profile of ex ante probabilities q̂ = (q̂1, . . . , q̂n) is ex ante feasi-
ble, if there exists a distribution D over feasible sets I of the matroid
that induces these ex ante probabilities. This definition is cumbersome;
however, it is simplified by the following characterization. For any dis-
tribution D over feasible sets and any not-necessarily-feasible set S it
must be that the expected number of agents served by D is at most the
rank of that set. I.e., for all S ⊂ N ,

∑

i∈S
q̂i ≤ rank(S). (4.11)

This inequality follows as the left-hand side is the expected number
of agents in S that are served and the right hand side is the maximum
number of agents in S that can be simultaneously served. It is impossible
for this expected number to be higher than this maximum possible. In
fact, this necessary condition is also sufficient.

Proposition 4.32 For a matroid set system (N, I), a profile of ex
ante probabilities q̂ is ex ante feasible (i.e., there is a distribution D
over feasible sets I that induces ex ante probabilities q̂) if and only if
∑

i∈S q̂i ≤ rank(S) holds for all subsets S of N .

From the above characterization of ex ante feasibility, we can write
the optimal ex ante pricing program as follows.

max
q̂

∑

i
R(q̂i) (4.12)

s.t.
∑

i∈S
q̂i ≤ rank(S), ∀S ⊂ N.

If the objective were given by linear weights instead of concave revenue
curves, this program would be optimized easily by the greedy-by-value
algorithm (with values equal to weights).5 With convex revenue curves,

5
Readers familiar with convex optimization will note that the matroid rank
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the marginal revenue approach enables this program to be optimized via
a simple greedy-by-value based algorithm.6

Suppose for now that the distribution over agent values is regular.
The revenue curve for an agent with inverse demand curve V (·) is con-
sequently given by R(q̂) = q̂ · v̂ for v̂ = V (q̂) since, for a regular distri-
bution, the q̂ optimal ex ante pricing posts price v̂. The optimal ex ante
revenue from program (4.12) is thus

∑

i q̂iv̂i.

The ex ante optimal revenue can be interpreted as the correlated value
of a set function as follows. Consider the matroid weighted rank function
rankv̂(·) for weights v̂ defined for a feasible set S ∈ I as

∑

i∈S v̂i and
in general for not-necessarily-feasible set S ⊂ N as that maximum over
feasible subsets of S of the weighted rank of that subset. As q̂ is ex ante
feasible, there exists a correlated distribution D over feasible sets which
induces ex ante probabilities q̂. The correlated value of this distribution
for the matroid weighted rank set function is exactly the optimal ex ante
revenue.

Now consider the sequential posted pricing that orders the agents by
decreasing price v̂i. When an agent i arrives in this order, if it is feasible
to serve the agent along with the set of agents who have been previously
served, then offer her price v̂i; otherwise, offer her a price of infinity (i.e.,
reject her). Consider the outcome of this process for valuation profile
v where the set of agents willing to buy at their respective price is
S = {i : vi ≥ v̂i} (which may not be feasible). The revenue from this
sequential posted pricing is given by the matroid weighted rank function
as rankv̂(S).

We conclude that the approximation factor of sequential posted pric-
ing with respect to the optimal ex ante revenue (which upper bounds
the optimal revenue for ex post feasibility) is given by the correlation
gap of the matroid weighted rank set function. Thus, it remains to an-
alyze the correlation gap of the matroid weighted rank set function. An
approach, which we will discuss here to analyze the correlation gap of
the matroid weighted rank set functions, is to observe that the matroid

function is submodular and therefore the constraint imposed by ex ante
feasibility is that of a polymatroid.

6 Discretize quantile space [0, 1] into Q evenly sized pieces. Consider the Q-wise
union of the matroid set system (the class of matroid set systems is closed under
union). Calculate marginal revenues of each discretized quantile of each agent.
Run the greedy-by-marginal-revenue algorithm. Calculate q̂i as the total quantile
of agent i that is served by algorithm, i.e., 1/Q times the number of i’s
discretized pieces that are served.
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weighted rank function is submodular and that the correlation gap of
any submodular function is e/e−1.

For ground set N , consider a real valued set function g : 2N → R.
Intuitively, submodularity corresponds to diminishing returns. Adding
an element i to a large set increases the value of the set function less
than it would for adding it to a smaller subset.

Definition 4.11 A set function g is submodular if for S† ⊂ S‡ and
i %∈ S‡,

g(S† ∪ {i})− g(S†) ≥ g(S‡ ∪ {i})− g(S‡).

Importantly, the matroid rank and weighted-rank functions are sub-
modular (Definition 4.11). Therefore, the matroid structure imposes di-
minishing returns.

Theorem 4.33 The matroid rank function is submodular; for any real
valued weights, the matroid weighted-rank function is submodular.

Proof We prove the special case of uniform weights (equivalently: that
the matroid rank function is submodular; for the general case, see Ex-
ercise 4.21). Consider S† ⊂ S‡ and i %∈ S‡ and the weights v−i as

vj =










4 if j ∈ S†,

2 if j ∈ S‡ \ S†,

0 otherwise.

Consider the case that vi = 1 and vi = 3. If i is added by greedy-by-value
when vi = 1 then i is certainly added by greedy-by-value when vi = 3:
moving i earlier in the greedy ordering only makes it more plausible that
it is feasible to add i at the time i is considered. Therefore, difference
in rank of S† with and without i is at least the difference in rank of S‡

with and without i. Hence, the defining equation (Definition 4.11) for
submodularity holds.

We omit the proof of the following theorem and instead refer readers
to the simpler proof that the maximum value element set function has
correlation gap e/e−1 (see Lemma 4.13, Section 4.3).

Theorem 4.34 The correlation gap for a submodular set function and
any distribution over sets is e/e−1.

For regular distributions and by the above discussion, the ex ante
service probabilities from the ex ante program (4.12) corresponds to a
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sequential posted pricing that has approximation factor bounded by the
correlation gap. The same bound can be obtained for irregular distribu-
tions as well (see Section 4.3 and Exercise 4.22).

Theorem 4.35 For matroid environments, there is a sequential posted
pricing with revenue that is a e/e−1 approximation to the optimal auction
revenue.

4.6.5 Anonymous Reserves

While Proposition 4.24 showed that anonymous reserves are optimal for
i.i.d. regular matroid environments, this is the extent to which anony-
mous reserves give good approximation for matroid environments. Of
course, all lower bounds for multi-unit environments extend to matroids
(where the k-unit auction result generalizes to rank k matroids). In addi-
tion there two new lower bounds. For i.i.d. regular matroid environments,
anonymous posted pricing does not give a constant approximation. For
(irregular) i.i.d. matroid environments, neither anonymous reserve nor
posted pricing gives a constant approximation (Exercise 4.23).

4.6.6 Beyond Ordinal Environments

Generalizing reserve and posted pricing approximation beyond ordinal
environments is difficult because in general environments (even downward-
closed ones) the optimal mechanism may choose to serve one agent over
a set of other agents, or vice versa. For example, this would happen when
the first agents virtual value exceeds the sum of the other agents’ virtual
values. Recall that the matroid property discussed previously guarantees
that tradeoffs between serving agents is always done one for one (e.g., via
Lemma 4.29). There are two, in fact opposite, effects we should be wor-
ried about when proceeding to general environments. First, in a general
downward-closed environment one agent could potentially block many
agents with each with comparable payments. Second, many agents with
minimal payments could potentially block a few agents who would have
made significant payments.

We illustrate the first effect with an impossibility result for posted
pricing mechanisms.

Lemma 4.36 For (i.i.d., regular) downward-closed environments the
approximation ratio of posted pricing (oblivious or sequential) is at best
Ω(log n/ log log n).
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Proof Fix an integer h, set n = hh+1, and partition the n agents into hh

parts of size h each. Consider the one-part-only feasibility constraint that
forbids simultaneously serving agents in distinct parts, but allows and
number of agents in the same part to be served. The agents’ values are
i.i.d. from the equal revenue distribution on [1, h], i.e., with F (z) = 1−1/z

and a pointmass of 1/h at value h. Call an agent high-valued if her
value is h and, otherwise, low-valued. We show that the approximation
factor is at least h/2 · e−1/e and conclude that the approximation factor
is Ω(h) = Ω(log n/log log n).7

To get a lower bound on the optimal revenue, REF, consider the mech-
anism that serves a part only if all agents in the part are high valued,
charges each of the agents in the part h, and obtains a total revenue
of h2. As there are hh parts and each part has probability h−h of be-
ing all high valued, the probability that one or more of these parts is
all high valued is given by the correlation gap of the one-or-more set
function as e−1/e (Lemma 4.13). Thus, the optimal revenue is at least
REF ≥ h2 · e−1/e.

To get an upper bound on the revenue of any posted pricing, notice
that once one agent accepts a price, only agents in that same part as
this agent can be simultaneously served. Since the distribution is equal
revenue, the revenue from serving these remaining agents totals exactly
h− 1 (one from each of h− 1 agents). The best revenue we can get from
the first agent in the part is h. Thus, any posted pricing mechanism’s
revenue is upper bounded by 2h− 1, and so APX ≤ 2h.

Before we illustrate the second effect (many low-paying agents block-
ing a few high-paying agents), notice that the tradeoffs of optimizing
virtual values (for revenue) can be much different from the tradeoffs of
optimizing values (for social surplus). Therefore, the outcome from sur-
plus maximization could be much different from that of virtual surplus
maximization.

Example 4.37 The expected value the equal revenue distribution
on [1, h] is ln h − 1 (for the unbounded equal revenue distribution it
is infinite). This can be calculated from the formula E[v] =

∫ ∞
0 (1 −

FEQR(z)) dz with FEQR(z) = 1− 1/z. On the other hand, the monopoly
revenue for the equal revenue distribution is one. Therefore, the optimal

7
To see the asymptotic behavior of the approximation ratio in terms of n, notice
that by definition log n = (h + 1) log h, so (a) rearranging h = log n/log h − 1 and
(b) taking the logarithm log log n > log(h + 1) + log log h. From (b),
log log n = Θ(log h) and plugging this into (a) h = Θ(log n/log log n).
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social surplus and optimal revenue for a regular single-agent environment
can be arbitrarily separated.

Because of the difference between social surplus and potential revenue
(i.e., virtual surplus) can be large, there may be a set of agents with high
social surplus that collectively block another set of agents from whom a
large revenue could be obtained. In the surplus maximization mechanism
with reserves, the payment an agent makes is either her reserve price or
the externality she imposes on the other agents. In the scenario under
consideration it may be that none of the agents in the first set is indi-
vidually responsible for other agents being rejected, consequently none
impose any externality. Therefore, the revenue they contribute need not
exceed the revenue that could have been obtained by serving the second
set. We illustrate this phenomenon with an impossibility result for sur-
plus maximization with monopoly reserves in regular downward-closed
environments.

Lemma 4.38 For (regular) downward-closed environments the approx-
imation factor of the second-price auction with monopoly reserves is
Ω(log n).

Proof Consider a one-versus-many set system on n + 1 agents where it
is feasible to serve agent 1 (Alice) or any subset of the remaining agents
2, . . . , n + 1 (the Bobs). This set system is downward closed.

A sketch of the argument is as follows. The Bobs’ values are dis-
tributed i.i.d. from an equal revenue distribution. If we decide to sell to
the Bobs the best we can get is a revenue of n total (one from each). Of
course, the social surplus of the Bobs is much bigger than the revenue
that selling to them would generate (see Example 4.37, above). We then
set Alice’s value deterministically to a large value that is Θ(n logn) but
with high probability below the social surplus of the Bobs. The opti-
mal auction could always sell to Alice at her high value; thus, REF is
Θ(n log n). Unfortunately, the monopoly reserves for the Bobs are one
and, therefore, not binding. Surplus maximization with monopoly re-
serves will with high probability not serve Alice, and therefore derive
most of its revenue from the Bobs. The maximum expected revenue ob-
tainable from the Bobs is n; thus, APX = Θ(n). See Exercise 4.24 for
the details.

In the next section we show; for a large class of important distributions
that, intuitively, do not have tails that are too heavy; that virtual values
and values are close. Consequently, maximizing surplus is similar enough
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to maximizing virtual surplus that monopoly reserve pricing gives a good
approximation to the optimal mechanism.

4.7 Monotone-hazard-rate Distributions

An important property of electronic devices, such as light bulbs or com-
puter chips, is how long they will operate before failing. If we model
the lifetime of such a device as a random variable then the failure rate,
a.k.a., hazard rate, for the distribution at a certain point in time is the
conditional probability (actually: density) that the device will fail in
the next instant given that it has survived thus far. Device failure is
naturally modeled by a distribution with a monotone (non-decreasing)
hazard rate, i.e., the longer the device has been running the more likely
it is to fail in the next instant. The uniform, normal, and exponential
distributions all have monotone hazard rate. The equal-revenue distri-
bution (Definition 4.2) does not.

Definition 4.12 The hazard rate of distribution F (with density f)
is h(z) = f(z)

1−F (z) . The distribution has monotone hazard rate (MHR) if
h(z) is monotone non-decreasing.

Intuitively distributions with monotone hazard rate are not heavy
tailed. In fact, the exponential distribution, with FEXP(z) = 1 − e−z,
fEXP(z) = e−z, and hEXP(z) = 1 is the boundary between monotone
hazard rate and non; its hazard rate is constant. Hazard rates are clearly
important for revenue-optimal auctions as the definition of virtual valu-
ations (for revenue), expressed in terms of the hazard rate, is

φ(v) = v − 1/h(v). (4.13)

It is immediately clear from equation (4.13) that monotone hazard rate
implies regularity (i.e., monotonicity of virtual value; Definition 3.4).

An important property of monotone hazard rate distributions that
will enable approximation by the surplus maximization mechanism with
monopoly reserves is that the optimal revenue is within a factor of
e ≈ 2.718 of the optimal surplus. We illustrate this bound with the expo-
nential distribution (Example 4.39), prove it for the case of a single-agent
environments, and defer general downward-closed environments to Ex-
ercise 4.25. Contrast these results to Example 4.37, above, which shows
that for non-monotone-hazard-rate distributions, the ratio of surplus to
revenue can be unbounded.
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0 v̂! 1
0

1

H(v̂!)

Figure 4.4 The cumulative hazard rate function (solid, black) for the uni-
form distribution is H(v) = − ln(1 − v) and it is lower bounded by its
tangent (dashed, gray) at v̂

!
= 1/2.

Example 4.39 The expected value the exponential distribution (with
rate one) is one. This can be calculated from the formula E[v] =

∫ ∞
0 (1−

FEXP(z)) dz with FEXP(z) = 1 − e−z. Since the exponential distribu-
tion has hazard rate hEXP(z) = 1, the virtual valuation formula for
the exponential distribution is φEXP(v) = v − 1. The monopoly price
is one. The probability that the agent accepts the monopoly price is
1 − FEXP(1) = 1/e so its expected revenue is 1/e. The ratio of the ex-
pected surplus to expected revenue is e.

Theorem 4.40 For any downward-closed, monotone-hazard-rate en-
vironment, the optimal expected revenue is an e ≈ 2.718 approximation
to the optimal expected surplus.

Lemma 4.41 For any monotone-hazard-rate distribution its expected
value is at most e times more than the expected monopoly revenue.

Proof Let REF = E[v] be the expected value and APX = v̂! · (1 −
F (v̂!)) be the expected monopoly revenue. Let H(v) =

∫ v
0 h(z) dz be

the cumulative hazard rate of the distribution F . We can write

1− F (v) = e−H(v), (4.14)

an identity that can be easily verified by differentiating the natural loga-
rithm of both sides of the equation.8 Recall of course that the expectation

8
We have d

dv
ln(1 − F (v)) = −f(v)

1−F (v) and d
dv

ln
“

e
−H(v)

”

= −h(v).
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of v ∼ F is
∫ ∞
0 (1−F (z)) dz. To get an upper bound on this expectation

we need to upper bound e−H(v) or equivalently lower bound H(v).
The main difficulty is that the lower bound must be tight for the ex-

ponential distribution where optimal expected value is exactly e times
more than the expected monopoly revenue. Notice that for the exponen-
tial distribution the hazard rate is constant; therefore, the cumulative
hazard rate is linear. This observation suggests that perhaps we can get
a good lower bound on the cumulative hazard rate with a linear function.

Let v̂! = φ−1(0) be the monopoly price. Since H(v) is a convex func-
tion (it is the integral of a monotone function), we can get a lower bound
H(v) by the line tangent to it at v̂!. See Figure 4.4. I.e.,

H(v) ≥ H(v̂!) + h(v̂!)(v − v̂!)

= H(v̂!) + v−v̂
!

v̂
! . (4.15)

The second part follows because v̂! = 1/h(v̂!) by the choice of monopoly
price v̂! and equation (4.13). Now we use this bound to calculate a bound
on the expectation.

REF =

∫ ∞

0
(1− F (z)) dz =

∫ ∞

0
e−H(z) dz

≤

∫ ∞

0
e−H(v̂

!
)−z/v̂

!+1 dz = e · e−H(v̂
!
) ·

∫ ∞

0
e−

z/v̂
!

dz

= e · e−H(v̂
!
) · v̂! = e · (1 − F (v̂!)) · v̂! = e · APX .

The first and last lines follow from equation (4.14); the inequality follows
from equation (4.15).

Shortly we will show that the surplus maximization mechanism with
monopoly reserve prices is a two approximation to the optimal mech-
anism for monotone-hazard-rate downward-closed environments. This
result is derived from the intuition that revenue and surplus are close.
For revenue and surplus to be close, it must be that virtual values and
values are close. Notice that the monotone-hazard-rate condition, via
equation (4.13), implies that for higher values (which are more impor-
tant for optimization) virtual value is even closer to value than for lower
values (see Figure 4.5). The following lemma reformulates this intuition.

Lemma 4.42 For any monotone-hazard-rate distribution F and v ≥
v̂!, φ(v) + v̂! ≥ v.

Proof Since v̂! = φ−1(0) it solves v̂! = 1/h(v̂
!
). By MHR, v ≥ v̂! implies
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Figure 4.5 The virtual value for the uniform distribution is depicted. For
v ≥ v̂

!
the virtual value φ(v) (solid, black) is sandwiched between the value

v (dashed, gray) and value less the monopoly price v − v̂! (dashed, gray).

h(v) ≥ h(v̂!). Therefore,

φ(v) + v̂! = v − 1/h(v) + 1/h(v̂
!
) ≥ v.

Theorem 4.43 For any monotone-hazard-rate downward-closed en-
vironment, the revenue of the surplus maximization mechanism with
monopoly reserves is a two approximation to the optimal mechanism
revenue.

Proof Let APX denote the surplus maximization mechanism with monopoly
reserves (and its expected revenue) and let REF denote the revenue-
optimal mechanism (and its expected revenue). We start with two bounds
on APX and then add them.

APX = E[APX’s virtual surplus] , and

APX ≥ E[APX’s winners’ reserve prices] .

Sum these two equations and let x(v) denote the allocation rule of APX,

2 · APX ≥ E[APX’s winners’ virtual values + reserve prices]

= E
[∑

i
(φi(vi) + v̂!

i ) · xi(v)
]

≥ E
[∑

i
vi · xi(v)

]

= E[APX’s surplus]

≥ E[REF’s surplus] ≥ E[REF’s revenue] = REF .

The second inequality follows from Lemma 4.42. By downward closure,
neither REF nor APX sells to agents with negative virtual values. Of
course, APX maximizes the surplus subject to not selling to agents with
negative virtual values. Hence, the third inequality. The final inequality
follows because the revenue of any mechanism is never more than its
surplus.
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We have seen in this section that, for monotone-hazard-rate distribu-
tions in downward closed environments, the optimal social surplus and
optimal revenue are close. We then used this fact to show that a the
monopoly-reserves auction is a good approximation to the optimal auc-
tion. Because surplus and revenue are close, the optimal surplus can be
used as an upper bound on the optimal revenue. Finally, we showed that
the monopoly-reserves auction has a revenue that approximates the opti-
mal surplus. This approach of comparing revenue to surplus is somewhat
brute-force, and there is thus a sense that these approximation bounds
could be considered trivial.

Exercises

4.1 In Chapter 1 we saw that a lottery (Definition 1.2) was an n ap-
proximation to the optimal social surplus. At the time we claimed
that this approximation guarantee was the best possible by a mech-
anism without transfers. Prove this claim.

4.2 Consider a two-agent single-item auction where agent 1 and agent 2
have values distributed uniformly on [0, 2] and [0, 3], respectively.
Calculate and compare the expected revenue of the (asymmetric)
revenue-optimal auction and the second-price auction with (asym-
metric) monopoly reserves. In other words, calculate the expected
revenues for the allocation rules of Example 3.11 which are depicted
in Figure 4.1.

4.3 Finish the proof of Lemma 4.4 by showing that for any irregular
distribution, the value of an agent is at least her virtual value for
revenue. Hint: start by observing that with respect to the price-
posting revenue curve P (q) = q ·V (q), V (q) is the slope of the line
from the origin to the point (q, P (q)) on the curve, and that the
lemma for the regular case implies that lines from the origin cross
the curve only once.

4.4 Define a distribution to be prepeak monotone if its revenue curve
is monotone non-decreasing on [0, q̂!], i.e., at values above the
monopoly price. Notice that prepeak monotonicity is a weaker con-
dition than regularity. First, it requires nothing of the distribution
below the monopoly price. Second, above the monopoly price the
price-posting revenue curve does not need to be concave. Reprove
Theorem 4.2 with a weaker assumption that the agents’ distribu-
tions are prepeak monotone.
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4.5 Calculate the expected revenue of the optimal auction in an n-agent
k-unit environment with values drawn i.i.d. from the equal revenue
distribution (Definition 4.2; distribution function FEQR(z) = 1 −
1/z). Express your answer in terms of n and k.

4.6 Show that the revenue from the single-item monopoly-reserves auc-
tion smoothly degrades as the distribution becomes more irregular.
To show this you will need to formally define near regularity. One
reasonable definition is as follows. A distribution F is α-nearly reg-
ular if there is a regular distribution F † such that price-posting rev-
enue curves of these distributions satisfy P (q) ≥ P †(q) ≥ 1/αP (q)
for all q.

(a) Explain why the definition above is a good definition for near
regularity.

(b) Prove an approximation bound the second-price auction with
monopoly reserves in α-nearly regular environments.

4.7 Generalize the prophet inequality theorem to the case where both
the prophet and the gambler face an ex ante constraint q̂ on the
probability that they accept any prize.

4.8 Show that another method for choosing the threshold in the prophet
inequality is to set v̂ = 1/2 · E[maxi vi]. Hint: for this choice of v̂,
prove that v̂ ≤

∑

i E[(vi − v̂)+].

4.9 Show that the prophet inequality is tight in two senses.

(a) Show that there is a distribution over prizes such that the ex-
pected prize of the optimal backwards induction strategy is half
of the prophet’s.

(b) Show that there is a distribution over prizes such that the ex-
pected prize of any uniform threshold strategy is at most half
of the optimal backwards induction strategy.

4.10 Adapt the statement and proof of Theorem 4.14 to the objective of
social surplus. Be explicit about the prices and ordering of agents
in the sequential posted pricing of your construction.

4.11 For two agents with values drawn from the uniform distribution,
calculate and compare the price postings from:

(a) the prophet inequality based oblivious posted pricing,

(b) the correlation gap based sequential posted pricing, and

(c) the optimal anonymous price posting.

4.12 For i.i.d. regular single-item environments, give a lower bound
lower bound for the approximation ratio of anonymous pricing that
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that nearly matches the upper bound. Hint: consider the regular
distribution with revenue curve R(q) = (1− 1/n)q + 1//n.

4.13 Prove Theorem 4.19 by adapting the analysis of the prophet in-
equality (Theorem 4.8) to show, for any (non-identical) regular
single-item environment, that there exists an anonymous price (i.e.,
the same for each agent) such that price-posting obtains four ap-
proximation to the optimal ex ante mechanism revenue.

4.14 Show that there exists an i.i.d. distribution and a matroid for which
the surplus maximization mechanism with an anonymous reserve is
no better than an Ω(log n/ log log n) approximation to the optimal
mechanism revenue.

4.15 Show that for (non-identical, irregular) n-agent single-item envi-
ronments the second-price auction with anonymous reserve and
anonymous posted pricing are at best n approximations to the
optimal auction revenue (i.e., prove the lower bound of Theo-
rem 4.20). To do so, analyze the revenue of the optimal auction
and the second-price auction with any anonymous reserve when
the agents values distributed as:

vi =

{

hi w.p. h−i, and

0 otherwise.

and parameter h approaches infinity. Hint: the analysis of Proposition 4.6
is similar.

(a) Show that the optimal auction has an expected revenue of n in
the limit of h.

(b) Show that posting anonymous price hi (for i ∈ {1, . . . , n}) has
an expected revenue of one in the limit of h.

(c) Show that for the second-price auction and anonymous reserve
price hi (for i ∈ {1, . . . , n}) has an expected revenue of one in the
limit of h. Hint: notice that conditioned on their being exactly
one agent with a positive value, anonymous reserve pricing and
anonymous posted pricing give the same revenue.

(d) Combine the above three steps to prove the theorem.

4.16 Generalize Proposition 4.7 and Proposition 4.6 to show that for
n-agent k-unit irregular environments the (k + 1)st-price auction
with monopoly reserves is a n/k approximation and give a matching
lower bound, respectively.

4.17 Prove Proposition 4.22, i.e., for k-unit environments that there is
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a sequential posted pricing that is a (1− 1/
√

2πk)−1 approximation
to the optimal auction, by completing the following steps.

(a) Reduce the correlation gap of the k-maximum-weight-elements
set function, i.e., for weights v̂ = (v̂1, . . . , v̂n) the value of gkMWE(S)
for subset S is the sum of the k largest weight elements of S,
and arbitrary correlated distributions to correlated distributions
over sets of cardinality exactly k.

(b) Reduce the correlation gap of the k-maximum-weight-elements
set function on correlated distributions over sets of cardinality
k to the correlation gap of the k-capped-cardinality set function
gkCC(S) = min(k, |S|) (over the same class of distributions).

(c) Show that the correlation gap of the k-capped-cardinality set
function on correlated distributions over sets of cardinality k is
(1 − k/e)k · 1/k!)−1.

(d) Apply the correlation gap to obtain a bound on the approx-
imation ratio of the revenue of a uniform virtual pricing for
(non-identical, irregular) k-unit environments with respect to
the optimal auction revenue. Explain exactly how to find an
appropriate pricing.

4.18 Recall that a feasible set of a matroid is maximal if there is no
element that can be added to it such that the union is feasible. It
is easy to see that the augmentation property implies that all max-
imal feasible sets of a matroid have the same cardinality. Rederive
this result directly from the fact that greedy-by-value is optimal.

4.19 Show that in regular, matroid environments the surplus maximiza-
tion mechanism with monopoly reserves gives a two approximation
to the optimal mechanism revenue, i.e., prove Theorem 4.28. Hint:
This result can be proved using Lemma 4.29 and Theorem 4.30
and a similar argument to the proof of Theorem 4.2.

4.20 A mechanism M is revenue monotone if for all pairs of valuation
profiles v and v

† such that for all i, vi ≥ v†i , the revenue of M on v

is at least its revenue on v
†. It is easy to see that the second-price

auction is revenue monotone.

(a) For single-dimensional linear agents, give a downward-closed
environment for which the surplus maximization mechanism
(Mechanism 3.3) is not revenue monotone.

(b) Prove that the surplus maximization mechanism is revenue mono-
tone in matroid environments.

4.21 Prove, directly from the fact that greedy-by-value is optimal for
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matroid set systems, that the matroid rank function is submodular.
I.e., complete the proof of Theorem 4.33.

4.22 Consider sequential posted pricings for irregular matroid environ-
ments.

(a) Show that there is a sequential posted pricing that is an e/e−1

approximation to the revenue optimal auction.

(b) Give an algorithm for finding such a sequential posted pricing.
Assume you are given the ex ante service probabilities q̂ that
optimizes program (4.12). Assume you are given oracle access to
the single-agent optimal ex ante pricing problems for each agent,
i.e., for any agent i and service probability q̂i the oracle will tell
you the revenue-optimal lottery pricing that this agent with ex
ante probability q̂i. Finally, assume you have blackbox access
to a procedure that for any sequential posted pricing v̂ will tell
you the sequential posted pricing’s expected revenue (assuming
prices are offered to agents in decreasing order). Your algorithm
should run in linear time in the number n of agents, i.e., it should
have at most a linear number of basic computational steps and
calls to any of the above oracles.

4.23 Show the following inapproximability results for anonymous re-
serve and posted pricing in i.i.d. matroid environments.

(a) For i.i.d. regular matroid environments, anonymous posted pric-
ing does not give a constant approximation.

(b) For (irregular) i.i.d. matroid environments, neither anonymous
reserve nor posted pricing gives a constant approximation.

4.24 Complete the proof of Lemma 4.38 by showing that there is a
family of regular downward-closed environments that demonstrates
that the surplus maximization mechanism with monopoly reserves
is an Ω(log n) approximation to the optimal revenue. Hint: to set
the value of Alice such that with high probability the social sur-
plus of the Bobs exceeds Alice’s value you can truncate the equal
revenue distribution to a finite value h and then employ a stan-
dard Chernoff-Hoeffding concentration bound that shows that the
sum of i.i.d. random variables on [0, h] is concentrated around its
expectation. For a sum S of i.i.d. random variables on [0, h]:

Pr[|S −E[S]| ≥ δ] ≤ 2e
−2δ

2
/nh

2

.

4.25 Consider the following surplus maximization mechanism with lazy
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monopoly reserves where, intuitively, we run the surplus maximiza-
tion mechanism SM and then reject any winner i whose value is
below her monopoly price v̂!

i :

(a) (x†, p†)← SM(v),

(b) xi =

{

x†
i if vi ≥ v̂!

i

0 otherwise, and

(c) pi = max(v̂!
i , p†i ).

Prove that the revenue of this mechanism is an e approximation
to the optimal social surplus in any downward-closed, monotone-
hazard-rate environment. Conclude Theorem 4.40 as a corollary.

Chapter Notes

For non-identical, regular, single-item environments, the proof that the
second-price auction with monopoly reserves is a two approximation is
from Chawla et al. (2007). The generalization of monopoly reserve pric-
ing to general environments is from Hartline and Roughgarden (2009).
They showed that it is a two approximation for regular matroid envi-
ronments and for monotone-hazard-rate downward-closed environments.
For single-item environments, the second-price auction with an anony-
mous reserve was shown to be between and two and four approximation
by Hartline and Roughgarden (2009).

The prophet inequality theorem was proven by Samuel-Cahn (1984)
and the connection between prophet inequalities and mechanism design
was first made by Taghi-Hajiaghayi et al. (2007). Chawla et al. (2010)
studied approximation of the optimal mechanism via oblivious and se-
quential posted pricings. They showed, via the prophet inequality, that
a uniform virtual pricing is a two approximation for single-item environ-
ments. For k-unit environments, Taghi-Hajiaghayi et al. (2007) give a
generalized prophet inequality with an upper bound of (1+

√
8/k ln k) for

sufficiently large k; an analogous approximation bound for uniform vir-
tual pricing holds. Beyond single- and multi-unit environments, Chawla
et al. (2010) showed that oblivious posted pricings give a three approxi-
mation for graphical matroid environments and upper bounded the ap-
proximation factor for general matroids of rank k as logarithmic in k.
As of this writing, it is unknown whether there is an oblivious posted
pricing give constant approximations for general matroids. On the other
hand, Kleinberg and Weinberg (2012) show that there is an adaptive
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posted pricing that obtains a two approximation for any arrival order of
the agents. This adaptive posted pricing determines the price to offer an
agent when it arrives and this price can be based on the set of agents who
have previously arrived and potentially been served.9 See Alaei (2011)
for a general framework for adaptive posted pricing.

The usage of the optimal ex ante mechanism as an upper bound on the
optimal mechanism is from Chawla et al. (2007) and Alaei (2011). The
approximation factor of sequential posted pricings were first studied by
Chawla et al. (2010) they proved the e/e−1 approximation for single-item
environments, a two approximation for matroid environments, and con-
stant approximations for several other environments. The connection to
correlation gap and the e/e−1 approximation for matroid environments
was observed by Yan (2011) by way of the correlation gap theorem of
Agrawal et al. (2010) for submodular set functions. Yan also gave the im-
proved analysis for multi-unit auctions which shows that as the number
k of available units increases the approximation factor from sequential
posted pricing converges to one.

The non-game-theoretic analysis of the optimality of the greedy-by-
value algorithm under matroid feasibility was initiated by Joseph Kruskal
(1956) and there are books written solely on the structural properties
of matroids, see e.g., Oxley (2006) or Welsh (2010). Mechanisms based
on the greedy-by-value algorithm were first studied by Lehmann et al.
(2002) who showed that even when these algorithms are not optimal,
mechanisms derived from them are incentive compatible (cf. Chapter 8).
The first comprehensive study of the revenue of the surplus maximizing
mechanism in matroid environments was given by Talwar (2003); for
instance, he proved critical values for matroid environments are given
by the best replacement. The revenue monotonicity for matroid environ-
ments and non-monotonicity for non-matroids is discussed by Ausubel
and Milgrom (2006), Day and Milgrom (2007), and Dughmi et al. (2009).

The amenability to approximation of environments with value distri-
butions satisfying the monotone hazard rate as been observed several
times, e.g., by Hartline et al. (2008), Hartline and Roughgarden (2009),
and Bhattacharya et al. (2010). The structural comparison that shows
that the optimal revenue is an e ≈ 2.718 approximation to the optimal
social surplus for for downward-closed, monotone-hazard-rate environ-
ments was given by Dhangwatnotai et al. (2010).

9
Note that both the sequential posted pricings and oblivious posted pricings
considered in this chapter fix the prices that each agent will receive before the
mechanism is run.


