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LARGE ASYMMETRIC FIRST-PRICE AUCTIONS—
A BOUNDARY-LAYER APPROACH∗

GADI FIBICH† AND NIR GAVISH‡

Abstract. The inverse equilibrium bidding strategies {vi(b)}ni=1 in a first-price auction with
n asymmetric bidders, where vi is the value of bidder i and b is the bid, are solutions of a system
of n first-order ordinary differential equations, with 2n boundary conditions and a free boundary on
the right. In this study we show that when the number of bidders is large (n � 1), this problem
has a boundary-layer structure with several nonstandard features: (1) The small parameter does
not multiply the highest-order derivative. (2) The number of equations goes to infinity as the small
parameter goes to zero. (3) The boundary-layer structure is for the derivatives {v′i(b)}ni=1 but not
for {vi(b)}ni=1. (4) In the boundary-layer region, the solution is the sum of an outer solution in
the original variable and an inner solution in the rescaled boundary-layer variable. Using boundary-
layer theory, we compute an O(1/n3) uniform approximation for {vi(b)}ni=1. The accuracy of the
boundary-layer approximation is confirmed numerically, for both moderate and large values of n.
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1. Introduction. Auction is an important economic mechanism, which is cen-
tral to the modern economy. For example, in 2013 the US treasury auctioned securities
in a total sum of 7.9 trillion dollars. Google makes most of its profits by selling spon-
sored links via online auctions. The first systematic analysis of auctions was done in
1961 by Vickrey [15]. Since then, auctions have been the subject of an intense study.
For an introduction to auction theory, see, e.g., [8, 9].

In this study we analyze a boundary value problem that arises in the study of
asymmetric first-price private-value auctions, in which n risk-neutral bidders compete
for a single object. Each of the bidders submits his bid in a closed envelope; the highest
bidder wins the object and pays his bid, while all other bidders pay nothing. In this
case, the inverse equilibrium bidding strategies {vi(b)}ni=1 are the solutions of [10, 12]

(1.1a) v′i(b) =
Fi(vi(b))

fi(vi(b))

⎡
⎣
⎛
⎝ 1

n− 1

n∑
j=1

1

vj(b)− b

⎞
⎠− 1

vi(b)− b

⎤
⎦ , i = 1, . . . , n,

for 0 < b < b̄, subject to the n left boundary conditions

(1.1b) vi(0) = 0, i = 1, . . . , n,

and the n right boundary conditions

(1.1c) vi(b) = 1, i = 1, . . . , n.

∗Received by the editors May 29, 2014; accepted for publication (in revised form) December 9,
2014; published electronically February 18, 2015.

http://www.siam.org/journals/siap/75-1/96881.html
†Department of Applied Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel

(fibich@tau.ac.il).
‡Department of Mathematics, Technion, 923 Amado Bldg., Haifa 32000, Israel (ngavish@tx.

technion.ac.il).

229

http://www.siam.org/journals/siap/75-1/96881.html
mailto:fibich@tau.ac.il
mailto:ngavish@tx.technion.ac.il
mailto:ngavish@tx.technion.ac.il


230 GADI FIBICH AND NIR GAVISH

Here Fi(vi), the cumulative distribution function (CDF) of the private value of bid-
der i, is a twice differentiable function that satisfies

(1.2) Fi(0) = 0, Fi(1) = 1, fi(vi) := F ′
i (vi) ≥ 0.

Equation (1.1) is a free boundary value problem, since the location b̄ of the right
boundary is unknown. This problem is nonstandard, because

1. the n first-order ODEs are subject to 2n boundary conditions;
2. by (1.1b) and (1.2), the right-hand side of (1.1a) at b = 0 is of the form

“0/0.” Hence, one cannot apply the standard local existence and uniqueness
theorem to the initial value problem (1.1a)–(1.1b).

Consequently, there is little understanding of (1.1). This is in contrast with the
symmetric case of identical bidders (Fi = F for i = 1, . . . , n), where the equation
for vi = vsym(b) can be solved explicitly (see section 2.1) and so “everything” is
known. Indeed, most of auction theory concerns the symmetric case not because
bidders are believed to be symmetric, but simply because the analysis of asymmetric
auctions is much harder.

Existence and uniqueness of solutions of (1.1) were proved by Maskin and Ri-
ley [12] and by Lebrun [10]. In [1], Fibich and Gavious analyzed (1.1) in the case
of a weak asymmetry (Fi = F + εHi, where ε � 1), by using perturbation analysis
to expand vi(b) in a power series in ε about the known symmetric solution vsym(b).
In [5], Fibich and Gavious considered the special case where Fi = vαi for i = 1, . . . , n,
since in that case (1.1) can be transformed into an autonomous dynamical system
(section 7). This transformation revealed that the nonuniqueness at b = 0 is “equiva-
lent” to a saddle point with an (n−1)-dimensional unstable manifold, and the original
solution corresponds to a trajectory that exits from the saddle point. Over the years,
asymmetric first-price auctions were also studied numerically (section 8). Neverthe-
less, despite all the research effort, the present understanding of the solutions of (1.1)
is limited, and so the effect of bidders’ asymmetry remains unclear.

In [16], Wilson showed that limn→∞ vi(b) = b under quite general conditions. In
this study we show that when the number of asymmetric bidders is large (n � 1),
we can exploit the presence of the small parameter 1/(n− 1) in (1.1a) to go beyond
this limiting result. Specifically, we obtain O(1/n3) explicit approximations of the
solutions of (1.1). Since our approximations are already valid when n is moderately
large, and not only in the limit as n → ∞, they are relevant to real-life first-price
auctions.

1.1. Nonstandard boundary-layer problem. The paper is organized as fol-
lows. In section 2 we present the mathematical model for asymmetric first-price
auctions. In section 2.1 we review the symmetric case, where explicit solutions are
available. In section 3 we derive some technical results that will be used later on.

In section 4 we use regular perturbations to compute a solution of (1.1) of the
form

vi(b) = vouteri (b) +O

(
1

n3

)
, vouteri (b) = b+

1

n− 1
ui(b) +

1

(n− 1)2
wi(b).

This computation yields ui = FG/fG and wi = (FG/fG)
2 fi
Fi

−FG/fG, where FG is the
geometric average of {Fi}ni=1 and fG = F ′

G. Therefore, we conclude that (1) the asym-
metry among {vi}ni=1 is only O(n−2), (2) the correct averaging of asymmetric bidders
is the geometric one, and (3) under this averaging, one can “replace” asymmetric
bidders with symmetric ones with O(n−2) accuracy.
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Since the approximate solution vouteri satisfies the ODEs (1.1a), the boundary
conditions (1.1b), and the boundary conditions (1.1c), all to O(n−2), it seems that
the problem is “solved.” Surprisingly, however, if one first substitutes the boundary
conditions (1.1c) into the ODEs (1.1a) and then substitutes v = vouteri , then vouteri

does not satisfy these equations at b̄, even to leading order! In section 5.1 we resolve
this “anomaly” by showing that there is a narrow boundary layer near the right
boundary b̄, in which vi “bifurcates” from vouteri . A priori, this suggests that, as is
the case in boundary-layer theory, the solution in the boundary-layer is of the form
vi ∼ vbli (ξ), where ξ = (b̄ − b)/δ is the rescaled boundary-layer variable and δ is the
width of the boundary layer. It turns out, however, that this is not the case. Rather,
the solution in the boundary layer has the nonstandard form of being the sum of
an outer solution in the original variable and a small inner solution in the rescaled
variable; i.e.,

vbli = vouteri (b) + δ · vinneri (ξ) , ξ =
b̄− b

δ
.

Therefore, vbli − vouteri = O(δ) but (vbli )′ − (vouteri )′ = O(1), thus resolving the
“anomaly” observed earlier. In other words, the boundary layer is for v′i and not
for vi. Another difference from standard boundary-layer problems is that the small
parameter 1/(n − 1) does not multiply the highest-order derivative. Therefore, it is
not a priori clear why there should be a boundary layer.

Further analysis shows that the boundary layer width is δ = 1/(n − 1)2. The
inner solution satisfies a constant-coefficient eigenvalue problem (section 5.2), and its
coefficients are determined from the boundary conditions at the right boundary and
from matching of the boundary-layer solution vbli with the solution vouteri outside the
boundary layer (section 5.3). Summarizing the results, we obtain explicit O(1/n3)
approximations for {vi(b)}ni=1 and for b̄ (section 5.4).

The O(1/n3) accuracy of these approximations is confirmed numerically in sec-
tion 6, even for moderate levels of n. In section 7 we view the boundary-layer analysis
from a dynamical systems perspective. In particular, we show that the outer so-
lution is equivalent to the saddle-point trajectory, and the boundary-layer solution
corresponds to the trajectory that leaves the saddle point. In section 8 we consider
numerical methods for solving (1.1). In particular, we utilize the boundary-layer
analysis to gain further insight on the instability of the popular backward shooting
method. Section 9 concludes with some final remarks.

1.2. Level of rigor. For lack of a better terminology, the asymptotic analy-
sis results in this paper are referred to as “lemmas” and “propositions,” and their
derivations are referred to as “proofs.” We stress, however, that these results are not
rigorous, since we did not prove that the order of magnitude of the error terms is the
one which we obtained using formal asymptotic analysis. Nevertheless, the agreement
between the asymptotic results and the numerical simulations provides strong support
for the correctness of these results.

2. Model formulation. Consider n risk-neutral bidders (players) that compete
in a first-price auction, in which the highest bidder wins the object and pays his bid
while all other bidders pay nothing. Let us denote by vi the valuation of the ith bidder
for the object (roughly speaking, this is the maximal price that a rational bidder is
willing to pay for the object). We assume that vi is private information to bidder i,
and that vi is drawn independently according to a twice continuously differentiable
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CDF Fi(vi), whose support [0, 1] is common to all bidders; see (1.2). We also denote
by fi = F ′

i the corresponding density function.
Let bi = bi(vi) be the bid function of bidder i in equilibrium. Since the equilibrium

bids are strictly monotonic [12], we can define the inverse equilibrium bid functions
vi = vi(bi). The first-order condition for equilibrium yields (1.1a).1 Since a bidder
with zero valuation will not submit a positive bid, we have (1.1b). In addition,
in equilibrium all bidders with the highest valuation (i.e., vi = 1) place the same
(unknown) maximal bid, denoted by b; see [10, 12].2 Therefore, we have (1.1c).

2.1. Symmetric bidders. When bidders are symmetric (i.e., Fi = F for i =
1, . . . , n), the inverse bid functions are identical; i.e., vi(b) = vsym(b) for all i. Since
the right boundary condition (1.1c) is automatically satisfied, the boundary value
problem (1.1) reduces to the initial value problem

v′sym(b) =
[F (vsym(b))]

(n− 1)f(vsym(b))

1

vsym(b)− b
, vsym(0) = 0.

This equation can be easily solved [15], yielding

(2.1) bsym(v) = v − 1

Fn−1(v)

∫ v

0

Fn−1(s) ds.

3. Notation and preliminary technical lemmas. Two matrices play an im-
portant role in the analysis of (1.1). The first is

(3.1) B0 :=
1

n− 1

⎡
⎢⎢⎢⎣

n− 1 −1 · · · −1
−1 n− 1 · · · −1
... −1

. . .
...

−1 · · · 1 n− 1

⎤
⎥⎥⎥⎦ .

Lemma 3.1. The matrix B0 has the positive eigenvalue λi = n/(n− 1) with
multiplicity n − 1, whose corresponding eigenvectors ui are spanned by the (n − 1)-
dimensional space of vectors u = (u1, u2, . . . , un) for which

∑
ui = 0 and by the eigen-

value λn = 0 with the corresponding eigenvector un = 1/‖1‖, where 1 := (1, . . . , 1)T .
Lemma 3.2. Consider the equation

(3.2) B0w = d,

where w := (w1, . . . , wn)
T and d := (d1, . . . , dn)

T . If
∑n

i=1 di = 0, the general
solution of (3.2) is

(3.3) w =
n− 1

n
d+ c1,

where c is an arbitrary constant.
Proof. By Lemma 3.1, d is an eigenvector of B0 with eigenvalue λ = n/(n− 1),

and 1 spans the null space of B0.
The second matrix which is central to the analysis is

(3.4) B := B0 − 1

n− 1
I =

1

n− 1

⎡
⎢⎢⎢⎣

n− 2 −1 · · · −1
−1 n− 2 · · · −1
... −1

. . .
...

−1 · · · −1 n− 2

⎤
⎥⎥⎥⎦ .

1See, e.g., [1] for a derivation.
2An elementary proof of this condition is given in [6, 13].
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Lemma 3.3. The matrix B has the positive eigenvalue λ = 1 with multiplicity
n−1, whose corresponding eigenvectors ui are spanned by the (n−1)-dimensional space
of vectors u = (u1, u2, . . . , un) for which

∑
ui = 0 and the negative eigenvalue λn =

− 1
n−1 with the corresponding eigenvector un = 1/‖1‖.
Proof. This follows directly from Lemma 3.1.
An important role will be played by the geometric mean of the CDFs, as follows.
Lemma 3.4. Let

(3.5a) FG(v) :=

(
n∏

i=1

Fi(v)

)1/n

, fG(v) := F ′
G(v).

Then
(3.5b)

fG(v) =
1

n
FG

n∑
i=1

fi(v)

Fi(v)
, f ′

G(v) =
f2
G(v)

FG(v)
+

1

n
FG(v)

n∑
i=1

(
f ′
i(v)

Fi(v)
− f2

i (v)

F 2
i (v)

)
.

In particular,

(3.5c) fG(1) =
1

n

n∑
i=1

fi(1), f ′
G(1) = f2

G(1) +
1

n

n∑
i=1

(
f ′
i(1)− f2

i (1)
)
.

4. Analysis of large auctions—Näıve (outer) solution. As the number
of bidders increases, the competition between bidders becomes more intense, and
therefore they have to increase their bids in order to maintain their chances of winning
the object. Consequently limn→∞ vi(b) = b; see [16]. Motivated by the asymptotic
expansion in the symmetric case (see [2]), we look for a solution of (1.1a) in a power
series in 1

n−1 , i.e.,

(4.1) vi = b+
1

n− 1
ui(b) +

1

(n− 1)2
wi(b) +O

(
1

n3

)
, i = 1, . . . , n.

Proposition 4.1. Let {vi}ni=1 be a solution of (1.1a) of the form (4.1). Then
vi = vouteri +O

(
1
n3

)
, where

(4.2) vouteri (b) = b+
u(b)

n− 1
+

wi(b)

(n− 1)2
, u =

FG

fG
, wi = u2 fi

Fi
− u.

Proof. Substituting (4.1) into the large brackets expression in (1.1a) gives

⎡
⎣
⎛
⎝ 1

n− 1

n∑
j=1

1

vj(b)− b

⎞
⎠− 1

vi(b)− b

⎤
⎦

=
1

n− 1

n∑
j=1

[
n− 1

uj
− wj

u2
j

+O

(
1

n

)]
−
[
n− 1

ui
− wi

u2
i

+O

(
1

n

)]

= (n− 1)

⎡
⎣ 1

n− 1

n∑
j=1

1

uj
− 1

ui

⎤
⎦−

⎡
⎣ 1

n− 1

n∑
j=1

wj

u2
j

− wi

u2
i

⎤
⎦+O

(
1

n

)
.
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Therefore, substitution of (4.1) into (1.1a) gives

1 +O

(
1

n

)
=(4.3)

[
Fi(b)

fi(b)
+O

(
1

n

)]⎡⎣(n− 1)

⎡
⎣ 1

n− 1

n∑
j=1

1

uj
− 1

ui

⎤
⎦−

⎡
⎣ 1

n− 1

n∑
j=1

wj

u2
j

− wi

u2
i

⎤
⎦+O

(
1

n

)⎤⎦.
A priori, to leading order the left-hand side is O(1), whereas the right-hand side

is O(n). Therefore, we first impose the condition that the right-hand side also be
O(1). This implies that

(4.4)
1

n− 1

n∑
j=1

1

uj
− 1

ui
= O

(
1

n

)
, i = 1, . . . , n,

or

1

ui(b)
=

1

n− 1

n∑
j=1

1

uj(b)
+O

(
1

n

)
.

The O
(
1
n

)
difference among {ui}ni=1 can be absorbed in {wi}ni=1. Therefore,

ui(b) = u(b), i = 1, . . . , n.

Substituting this into (4.3) gives

(4.5) 1 =
Fi(b)

fi(b)

⎛
⎝ 1

u(b)
− 1

u2(b)

⎡
⎣ 1

n− 1

n∑
j=1

wj − wi

⎤
⎦
⎞
⎠+O

(
1

n

)
, i = 1, . . . , n.

Summing (4.5) over i gives

n∑
i=1

fi(b)

Fi(b)
=

n

u(b)
+O(1).

Hence, by (3.5b),

(4.6)
1

u
=

1

n

n∑
i=1

fi(b)

Fi(b)
=

fG(b)

FG(b)
.

Furthermore, (4.5) and (4.6) imply that

wi − 1

n− 1

n∑
j=1

wj = u2 fi
Fi

− u+O

(
1

n

)
.

The O
(
1
n

)
error can be absorbed into the next-order terms in the expansion. There-

fore, the equations for {wi}ni=1 read

(4.7) B0w = d, di = u2 fi
Fi

− u.



FIRST-PRICE AUCTIONS—A BOUNDARY-LAYER APPROACH 235

Since
∑n

i=1 di = 0 (see (3.5b) and (4.2)), the general solution of (4.7) is (see Lemma 3.2)

w =
n− 1

n
d+ w̄(b)1,

where w̄(b) is an arbitrary function. Hence,

(4.8) wi = u2 fi
Fi

− u(b) + w̄(b) +O

(
1

n

)
.

Carrying the expansion to the next order yields w̄(b) ≡ 0 (see the supplementary
materials for this paper). Therefore, the result follows.

We now compute b̄ by imposing the right boundary condition, as follows.
Corollary 4.2. Assume that vi = vouteri +O

(
1
n3

)
; see (4.2). Then

(4.9) b̄ = 1− 1

n− 1

1

fG(1)
+O

(
1

n2

)
.

Proof. Substituting vouteri (b̄) = 1 gives 1 = b̄ + 1
n−1

FG(b̄)

fG(b̄)
+ O
(

1
n2

)
. Therefore,

b̄ = 1 +O
(
1
n

)
. Hence, FG(b̄)

fG(b̄)
= 1

fG(1)

(
1 +O

(
1
n

))
, from which the result follows.

4.1. Inconsistencies. If we carry the expansion of vouteri (b̄) = 1+O
(

1
n3

)
to the

next order, we get

1 = vi(b̄) = b̄+
1

n− 1
u(b̄) +

1

(n− 1)2
wi(b̄) +O

(
1

n3

)
.

This yields

(4.10) b̄ = 1− 1

n− 1

1

fG(1)
− 1

(n− 1)2

[
fi(1)

f2
G(1)

− 1

fG(1)

]
+O

(
1

n3

)
.

Since b̄ depends on i, vouteri does not satisfy the right boundary condition (1.1c). Note,
however, that this inconsistency comes only from the O

(
1
n2

)
terms. This suggests,

therefore, that the accuracy of vouteri is O
(

1
n2

)
. In fact, the situation is “much worse,”

since the approximation v ≈ vouteri leads to O(1) inconsistencies at b̄, as shown next.
Lemma 4.3. If there exist 1 ≤ i, j ≤ n such that fi(1) �= fj(1), then vouteri does

not satisfy (1.1) at b = b̄, even to leading order.
Proof. Substituting b = b̄ into (1.1a) gives

(4.11) v′i(b̄) =
Fi(vi(b̄))

fi(vi(b̄))

⎡
⎣
⎛
⎝ 1

n− 1

n∑
j=1

1

vj(b̄)− b̄

⎞
⎠− 1

vi(b̄)− b̄

⎤
⎦ , i = 1, . . . , n.

Substituting vi(b̄) = 1, one obtains

(4.12) v′i(b̄) =
c

fi(1)
, c =

1

(n− 1)

1

1− b̄
.

On the other hand, by (4.2),

(4.13) (vouteri )′(b̄) = 1 +O

(
1

n

)
.



236 GADI FIBICH AND NIR GAVISH

Therefore, if vouteri satisfies (1.1) at b = b̄ to leading order, then by (4.12) and (4.13),

fi(1)

(
1 +O

(
1

n

))
=

1

(n− 1)(1− b̄)
.

Hence, fi(1)− fj(1) = O
(
1
n

)
(fi(1)− fj(1)), which is impossible.

This result is surprising, since vouteri does satisfy (1.1a) to leading order. Note,
however, that the inconsistency arises only after we impose the boundary condition
at b̄; i.e., vouteri satisfies (4.11) to leading order, but it does not satisfy (4.12) to leading
order.3

5. A nonstandard boundary-layer solution. We thus have a nonstandard
situation, where a straightforward expansion leads to the approximate solution vouteri

(see (4.2)), which satisfies the equation and each of the boundary conditions by itself
to O

(
1
n2

)
. However, surprisingly, if one first substitutes the boundary conditions (1.1c)

into the ODEs (1.1a) and then substitutes v = vouteri , then vouteri does not satisfy these
equations at b̄, even to leading order. Since the inconsistencies arise only at b̄, this
suggests that v′i has a boundary layer near b̄ where it undergoes fast changes from

v′i(b) ≈ 1 (see (4.2)) to v′i(b̄) =
1

(n−1)
1

fi(1)
1

1−b̄
≈ fG(1)

fi(1)
(see (4.9) and (4.12)).

In standard boundary-layer problems, there is a small parameter that multiplies
the highest-order derivative in the equation, and the outer solution is found by setting
this parameter to zero. This is not the case in (1.1), where the small parameter 1

n−1
does not multiply the highest-order derivative in (1.1a). Indeed, it is not obvious
at all from inspection of (1.1a) that the solution should have a boundary layer! In
addition, in standard boundary-layer problems, the outer solution satisfies the ODE
and one boundary condition but does not satisfy the second boundary condition even
to leading order, which is not the case here.

5.1. Boundary-layer thickness. The solution in the boundary-layer region is
usually found by rescaling the independent variable by the boundary-layer thickness.
In the case of (1.1), this means looking for a solution of the form vi ∼ vinneri

(
b̄−b
δ

)
,

where δ = δ(n) is the boundary-layer thickness. Because of the nonstandard form
of (1.1), however, substitution of this form does not lead to a consistent solution
of (1.1). Indeed, the most difficult part of this research has been to find the solution
form in the boundary layer. It turns out that the solution in the boundary layer is the
sum of the outer solution in the original variable and a boundary-layer component in
the rescaled variable, i.e.,

(5.1) vi(b) = vbli (b) +O

(
1

n3

)
, vbli (b) = vouteri (b) + γ(n)vinneri (ξ) , ξ =

b̄− b

δ(n)
,

where vouteri is given by (4.2), δ is the boundary-layer thickness, and γ is the magnitude
of the boundary-layer component.

Lemma 5.1. δ(n) = γ(n) = 1
(n−1)2 .

Proof. By (4.9) and (4.12),4

v′i(b̄) =
1

(n− 1)

1

fi(1)

1

1− b̄
=

fG(1)

fi(1)
+O

(
1

n

)
.

3These inconsistencies will be resolved in section 5.1.
4Here we assume that we can use estimate (4.9) for b̄, which was derived by approximating vi

with vouteri . An a posteriori justification for this approximation is that because δ(n) = (n − 1)−2,
the effect of the boundary-layer component on b̄ is only O(n−2).
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On the other hand, by (4.2) and (5.1),

v′i(b̄) =
d

db
vouteri

∣∣∣∣
b=b̄

− γ(n)

δ(n)

d

dξ
vinneri

∣∣∣∣
ξ=0

= 1− γ(n)

δ(n)

d

dξ
vinneri

∣∣∣∣
ξ=0

+O

(
1

n

)
.

Therefore,

(5.2) 1− fG(1)

fi(1)
=

γ(n)

δ(n)

d

dξ
vinneri

∣∣∣∣
ξ=0

+O

(
1

n

)
.

Since 1− fG(1)
fi(1)

and d
dξv

inner
i

∣∣
ξ=0

are both O(1), it follows that γ(n) = δ(n).

Substituting this into (5.1) gives

vbli (b) = vouteri (b) + δ(n)vinneri (ξ) , ξ =
b̄− b

δ(n)
.

We now show that δ(n) = (n− 1)−2 by ruling out all other possibilities.
• Assume that δ(n) � 1

(n−1)2 . Then vi = vouteri (b)+O
(

1
n2

)
. Therefore, b̄ depends

on i; see (4.10). This is a contradiction.
• Assume that 1

(n−1)2 � δ(n) � 1. By (4.2),

(5.3) vi(b)− b =
u(b)

n− 1
+ δ(n)vinneri (ξ) +

wi

n2
+ o

(
1

n2

)
.

Therefore, as in the derivation of (4.3), substituting (5.3) into (1.1a) yields

1− d

dξ
vinneri +O

(
1

n

)

=
Fi(b)

fi(b)

⎡
⎣(n− 1)

⎡
⎣ 1

n− 1

n∑
j=1

1

u+ δ(n)
n−1v

inner
j (ξ) +

wj

n

− 1

u+ δ(n)
n−1v

inner
i + wi

n

⎤
⎦+O(1)

⎤
⎦.

As in the proof of Proposition 4.1, the requirement that both sides be of O(1) yields

1

u+ (n− 1)δ(n)vinneri + wi

n2

− 1

n− 1

n∑
j=1

1

u+ (n− 1)δ(n)vinnerj (ξ) + wi

n

= O

(
1

n

)
.

Thus, for j �= i,

1

u+ (n− 1)δ(n)vinnerj + wi

n

− 1

u+ (n− 1)δ(n)vinneri + wi

n

= O

(
1

n

)
.

Now, since (n− 1)δ(n) � 1/n,

1

u+ (n− 1)δ(n)vinnerj + wi

n

− 1

u+ (n− 1)δ(n)vinneri + wi

n

∼ 1

u+ (n− 1)δ(n)vinnerj

− 1

u+ (n− 1)δ(n)vinneri

=
(n− 1)δ(n)[vinneri − vinnerj ]

(u+ (n− 1)δ(n)vinneri )(u+ (n− 1)δ(n)vinnerj )
= O

(
1

n

)
.
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Since vinneri − vinnerj = O(1) in the boundary layer,5 we have that

(n− 1)δ(n)

1 + (n− 1)2δ2(n)
= O

(
1

n

)
.

This equation is satisfied only for δ(n) = 1 or δ(n) = 1
(n−1)2 , a contradiction.

By Lemma 5.1, the solution of (1.1) is of the form

(5.4a) vi(b) = vbli (b) +O

(
1

n3

)
,

where

(5.4b) vbli (b) = vouteri (b) +
vinneri (ξ)

(n− 1)2
= b+

1

n− 1
u(b) +

wi(b) + vinneri (ξ)

(n− 1)2
,

u = FG/fG, wi = u2 fi
Fi

− u, and ξ = (n − 1)2(b̄ − b) is the boundary-layer variable.

Note that b̄ = b̄(n).
Expression (5.4) resolves the inconsistencies encountered in section 4.1. Indeed,

since

vbli (b)− vouteri (b) ∼ vinneri (ξ)

(n− 1)2
, (vbli )′(b)− (vouteri )′(b) ∼ − d

dξ
vinneri ,

in the boundary-layer region (i.e., for ξ = O(1) or 0 ≤ b̄− b = O(n−2)), we have that

vi − vouteri = O

(
1

n2

)
, v′i − (vouteri )′ = O(1).

5.2. Computing the inner solution. We now compute vinneri by requiring
that vbli (see (5.4)) satisfies (1.1) to leading order at and near b̄, as given next.

Lemma 5.2. Let vinner := [vinner1 , . . . , vinnern ]T . Then

(5.5) vinner(ξ) = D 1√
fi

n∑
j=1

cje
λjξuj(ξ),

where

D 1√
fi

:= diag

(
1√
f1(1)

, . . . ,
1√
fn(1)

)
,

{cj}nj=1 are constants, and {λj}nj=1 and {uj}nj=1 are the eigenvalues and normalized
eigenvectors of the symmetric matrix S; i.e.,

(5.6) Suj = λjuj , 〈uj ,uj〉 = 1, j = 1, . . . , n,

where

(5.7) S := D 1√
fi

(−f2
G(1)B

)
D 1√

fi

,

5Since γ = δ, from (5.2) we have that 1 − fG(1)
fi(1)

= d
dξ

vinneri (ξ = 0) + O
(
1
n

)
. Consequently, if

fi(1) �= fj(1), then
dvinner

i
dξ

(0)− dvinner
j

dξ
(0) = O(1). Hence, vinneri (ξ)− vinnerj (ξ) = O(1) for ξ = O(1).
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and B is given by (3.4).
Proof. Substitution of (5.4) into (1.1a) gives (4.5) plus new terms due to vinneri :

1− d

dξ
vinneri =

Fi(b)

fi(b)

⎛
⎝ 1

u(b)
− 1

u2(b)

⎡
⎣ 1

n− 1

n∑
j=1

(wj + vinnerj )− (wi + vinneri )

⎤
⎦
⎞
⎠+O

(
1

n

)
.

Taking the difference of this equation and (4.5) yields

d

dξ
vinneri =

Fi(b)

fi(b)

1

u2(b)

⎡
⎣ 1

n− 1

n∑
j=1

vinnerj − vinneri

⎤
⎦+O

(
1

n

)
.

Since in the boundary-layer region b = b̄+O
(

1
n2

)
= 1 +O

(
1
n

)
, then

Fi(b)

fi(b)

1

u2(b)
=

f2
G(1)

fi(1)

(
1 +O

(
1

n

))
.

Hence, to leading order, vinneri (ξ) satisfies

d

dξ
vinneri =

f2
G(1)

fi(1)

⎡
⎣ 1

n− 1

n∑
j=1

vinnerj − vinneri

⎤
⎦ , i = 1, . . . , n.

These equations can be written in matrix form as
(5.8)

d

dξ
vinner = Avinner, A = D 1

fi

(−f2
G(1)B

)
, D 1

fi

:= diag

(
1

f1(1)
, . . . ,

1

fn(1)

)
.

In order to work with a symmetric matrix, let

(5.9) uinner := D√
fiv

inner, D√
fi := diag

(√
f1(1), . . . ,

√
fn(1)

)
.

Then

(5.10)
d

dξ
uinner = Suinner.

Since S is symmetric, it has n real eigenvalues and corresponding orthonormal eigen-
vectors. Therefore, the general solution of (5.10) is uinner =

∑n
j=1 cje

λjξuj . Hence,

by (5.9), vinner is given by (5.5).

5.3. Matching. Expression (5.5) for vinner contains the n undetermined coeffi-
cient {cj}nj=1. These coefficients will be determined from the requirements that the

boundary-layer solution vbli (b) (see (5.4)) satisfy the right boundary conditions (1.1c),
and that it match with vouteri . Since vbli (b) is the sum of the outer and inner solutions,
the appropriate matching condition is that vbli (b) reduces to vouteri (b) as ξ → ∞.6

In order to perform the matching, we first prove the following.
Lemma 5.3. The matrix S (see (5.7)) has n − 1 negative eigenvalues {λi}n−1

i=1

and one positive eigenvalue λn > 0.

6This is different from the standard matching condition limξ→∞ vinneri (ξ) = limb→b̄ v
outer
i (b) in

boundary-layer theory.
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Proof. By Lemma 3.3, the matrix B has n − 1 positive eigenvalues and one
negative eigenvalue. Since B is symmetric and

(5.11) S = PT (−B)P, P := fG(1)D 1√
fi

,

it follows from Sylvester’s law of inertia that S and −B have the same number of
positive and negative eigenvalues.

Lemma 5.4. The matching condition yields cn = 0.
Proof. Since λn > 0 and λj < 0 for j = 1, . . . , n− 1, limξ→∞ vbli (b, ξ) = vouteri (b)

if and only if cn = 0.
Therefore,

(5.12) vinner = D 1√
fi

n−1∑
j=1

cje
λjξuj .

To find {cj}n−1
j=1 , we impose the boundary conditions (1.1c), as follows.

Lemma 5.5. Let vi be given by (5.4). Then

(5.13a) b̄ = 1− 1

n− 1

1

fG(1)
+

b̄2
(n− 1)2

+O

(
1

n3

)
,

where

(5.13b) b̄2 =
1

fG(1)
− f ′

G(1)

f3
G(1)

− wi(1)− vinneri (0), i = 1, . . . , n.

Proof. Substituting vi(b̄) = 1 into (5.4) gives

(5.14) 1 = b̄+
1

n− 1

FG(b̄)

fG(b̄)
+

wi(b̄) + vinneri (0)

(n− 1)2
+O

(
1

n3

)
.

Let b̄ = 1 + b̄1
n−1 + b̄2

(n−1)2 + O(n−3). As in Corollary 4.2, the balance of the O(n−1)

terms yields b1 = −1/fG(1). Since

FG(b̄) = FG(1) + (b̄ − 1)fG(1) +O((b̄ − 1)2) = 1 +
b̄1

n− 1
fG(1) +O

(
1

n2

)

= 1− 1

n− 1
+O

(
1

n2

)

and

fG(b̄) = fG(1) + (b̄ − 1)f ′
G(1) +O((b̄ − 1)2) = fG(1) +

b̄1
n− 1

f ′
G(1) +O

(
1

n2

)

= fG(1)

(
1− 1

n− 1

f ′
G(1)

f2
G(1)

+O

(
1

n2

))
,

then

FG(b̄)

fG(b̄)
=

1

fG(1)

(
1− 1

n− 1
+

1

n− 1

f ′
G(1)

f2
G(1)

)
+O

(
1

n2

)
.

The balance of the O((n− 1)−2) terms in (5.14) gives (5.13b).
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Before we proceed, we prove an auxiliary result.
Lemma 5.6. Let un be the eigenvector of S that corresponds to the positive

eigenvalue λn. Then

(5.15) un =

√
fi

‖√fi‖
(
1 +O

(
1

n

))
,

√
fi := (

√
fi(1), . . . ,

√
fn(1))

T ,

and λn = fG(1)/n+O(n−2) > 0.
Proof. It is easy to see that the matrix S0 := PT (−B0)P has the eigenvalue

λn = 0 with normalized eigenvector u0
n =

√
fi/‖

√
fi‖. Let

Sε := PT (−(B0 − εI))P = S0 + εE, E := PTP = f2
G(1)D 1

fi

.

By Rellich’s theory for perturbation of eigenvalues of Hermitian matrices [14], the
eigenvalue λε

n and eigenvector uε
n of Sε are analytic in ε. Therefore,

λε
n = ελ1

n +O(ε2), un(ε) = u0
n + εu1

n +O(ε2).

Substituting this expansion into Sεun(ε) = λn(ε)un(ε) and balancing the O(ε) terms
gives S0u

1
n+Eu0

n = λ1
nu

0
n. Taking the inner product with u0

n, recalling that S0u
0
n = 0,

and rearranging gives

λ1
n = 〈u0

n,Eu0
n〉 =

f2
G(1)

‖√fi‖2
〈
√
fi,D 1

fi

√
fi〉 = fG(1) > 0.

Since S = Sε= 1
n
, the result follows.

Lemma 5.7. Let f
3/2
i := (f

3/2
1 (1), . . . , f

3/2
n (1))T . Then

cj = − 1

f2
G(1)

〈f3/2i ,uj〉, j = 1, . . . , n− 1.

Proof. By (4.2),

wi(1) =
fi(1)

f2
G(1)

− 1

fG(1)
.

Since b̄ is independent of i, so is wi(1) + vinneri (0); see (5.13b). Therefore,

(5.16a) vinneri (0) = − fi(1)

f2
G(1)

+ κ, i = 1, . . . , n.

Multiplying this equation by
√
fi(1) and using (5.12), one obtains

∑n−1
j=1 cj(uj)i =

− f
3/2
i (1)

f2
G(1)

+ κ
√
fi(1), or in vectorial form,

n−1∑
j=1

cjuj = − f
3/2
i

f2
G(1)

+ κu√
fi .

Taking the inner product with un and using (5.15) gives

(5.16b) κ :=
1

f3
G(1)

1

n

n∑
i=1

f2
i (1).
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Taking the inner product with uj and using (5.15) gives cj.
Lemma 5.8.

b̄2 =
2

fG(1)
− f ′

G(1)

f3
G(1)

− 1

f3
G(1)

1

n

n∑
i=1

f2
i (1) =

2

fG(1)
− 1

f3
G(1)

1

n

n∑
i=1

f ′
i(1).

Proof. By Lemma 5.5,

b̄2 =
1

fG(1)
− f ′

G(1)

f3
G(1)

− 1

n

n∑
i=1

vinneri (0).

In addition, by (5.16),

1

n

n∑
i=1

vinneri (0) = − 1

fG(1)
+ κ = − 1

fG(1)
+

1

f3
G(1)

1

n

n∑
i=1

f2
i (1).

The second expression for b̄2 follows from (3.5c).

5.4. Summary. The results of Proposition 4.1 and section 5 are summarized in
the following proposition.

Proposition 5.9. Let n � 1. Then the solution of (1.1) is given by

(5.17a) vi(b) = vbli (b) +O

(
1

n3

)
, 0 ≤ b ≤ b̄,

where

vbli (b) = vouteri (b) +
1

(n− 1)2
vinneri (ξ) ,(5.17b)

vouteri (b) = b+
1

n− 1

FG(b)

fG(b)
+

1

(n− 1)2

(
F 2
G(b)

f2
G(b)

fi(b)

Fi(b)
− FG(b)

fG(b)

)
;(5.17c)

ξ = (n− 1)2(b̄ − b); the maximal bid is given by

b̄ = 1− 1

n− 1

1

fG(1)
+

1

(n− 1)2

(
2

fG(1)
− 1

f3
G(1)

1

n

n∑
i=1

f ′
i(1)

)
+O

(
1

n3

)
,(5.17d)

vinneri (ξ) =
1

f
1/2
i (1)

n−1∑
j=1

cje
λjξ(uj)i;(5.17e)

{λj}n−1
j=1 and {uj}n−1

j=1 are the positive eigenvalues and corresponding eigenvectors of S
(see (5.7)); and

(5.17f) cj = − 1

f2
G(1)

〈f3/2i ,uj〉, j = 1, . . . , n− 1.

As noted, the boundary value problem (1.1) consists of n first-order ODEs, 2n
boundary conditions, and a free boundary. The n ODEs, coupled with the n bound-
ary conditions at b = 0, determine a unique outer solution. This suggests that the
inner solution is overdetermined, since it has n + 1 degrees of freedom (n from the
n first-order ODEs and one from the free boundary) and 2n constraints (n matching
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conditions and n boundary conditions at b̄). The boundary-layer analysis reveals,
however, that the n matching conditions reduce to a single condition (cn = 0).7

6. Simulations. We compute solutions of (1.1) using the boundary value method
(section 8.2). We first consider the power-law distributions

(6.1) Fi = vαi , αi =
1

2
+ 3

i− 1

n− 1
, i = 1, . . . , n.

For example, when n = 5, then {Fi}5i=1 = {v1/2, v5/4, v2, v11/4, v7/2} (see Figure 1(A)),
and when n = 10, then {Fi}10i=1 = {v1/2, v5/6, . . . , v19/6, v7/2}. Since αi are equidis-
tributed in [0.5, 3.5], then ᾱ := 1

n

∑n
j=1 αj = 2. Hence, the CDFs vary with n, but

their geometric average FG = vᾱ = v2 does not.

0 0.5 1
0

0.5

1

v

F
i

A

0 0.5 1
0

0.5

1

v

B

Fig. 1. (A) The distributions (6.1) for n = 5. (B) The distributions (6.3).
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1
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Fig. 2. Solution of (1.1), where {Fi} are given by (6.1). The dashed line is vi = b. (A) n = 5.
(B) n = 10. (C) n = 20. Inserts: Zoom-in near b = b̄ and vi = 1.

In the case of n = 5 players, the five computed curves {vi(b)}5i=1 are nearly
indistinguishable (Figure 2(A)). Indeed, by (5.17),

(6.2a) vi(b)− vk(b) = O

(
1

n2

)
, 0 ≤ b ≤ b̄.

The five curves are closer to each other than to limn→∞ vi(b) = b. Indeed, by (5.17),

(6.2b) vi(b)− b = O

(
1

n

)
.

7A similar conclusion follows from the dynamical systems analysis in [5]; see section 7. Indeed, a
priori, matching the trajectory that ends at the diagonal (which corresponds to the inner solution)
with the saddle-point solution (which corresponds to the outer solution) amounts to n matching
conditions. Since the dimension of the unstable manifold at the saddle point is n − 1, however, the
n matching conditions reduce to a single condition.
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Fig. 3. {v′i} for the solution of Figure 2.
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b̄− 2/n 2 b̄b
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Fig. 4. The curves v1 (solid, bottom) and vn (solid, top) from Figure 2. Also shown are the
approximations vouteri (dots; see (4.2)) and vbli (dashes; see (5.17)), where i = 1, n.

In the inner graph of Figure 2(A) we zoom in near b = b̄ and vi = 1 and observe that
the five curves are different and well resolved. As we increase the number of bidders
to n = 10 and then to n = 20, the curves get closer to each other, and to a lesser
extent to vi = b (Figure 2(B) and (C)), in agreement with (6.2). The ten (or twenty)
curves are well resolved; see the inner graphs of Figure 2(B) and (C).

Figure 2 may give the false impression that “all” the differences among {vi}ni=1

disappear as n → ∞. To see that this is true everywhere but near b̄, in Figure 3
we plot the derivatives of the solutions plotted in Figure 2. In all three cases, except
near b̄, {v′i}ni=1 are nearly indistinguishable from each other and approach 1 as n → ∞.
The {v′i} have a boundary layer near b̄; i.e., they undergo fast changes in a narrow
region near b̄, whose width decreases to zero as n → ∞. In the inner graphs of
Figure 3 we zoom in on an O(n−2) region near b̄. In all three simulations, {v′i} are
still close to each other and to v′i ≈ 1 for b = b̄ − 2

n2 , but they have O(1) differences
among themselves for b = b̄− 1

2n2 . This confirms that the boundary-layer width scales
as n−2.8

In order to confirm numerically the validity of the boundary-layer approxima-
tion vbli (see (5.17)), in Figure 4 we plot v1 and vn from Figure 2 and observe that in
the boundary-layer region, vbli provides a considerably more accurate approximation
than vouteri (see (4.2)). The advantage of vbli over vouteri in the boundary-layer region
is even more dramatic when we compare v′i with (vbli )′ and (vouteri )′ in Figure 5.

8Figures 2 and 3 show that vouteri is a uniform asymptotic approximation of vi, but (vouteri )′ is
not a uniform asymptotic approximation of v′i. See Figures 8 and 9 for a systematic study of this
issue.
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Fig. 5. Same as Figure 4 for v′1 (solid, top) and v′n (solid, bottom). Also shown are (vouteri )′

(dots) and (vbli )′ (dashes).

10
1

10
2

10
−8

10
−6

10
−4

10
−2

n

|b−basymptotic|          

A

10
0

10
1

10
−6

10
−4

10
−2

10
0

n

|b−basymptotic|          

B

Fig. 6. The difference between the asymptotic approximation (5.17d) and the computed value
of b̄ (◦). (A) {Fi} given by (6.1), and n = 5, 10, 20, 40, and 60. Solid line is 0.0475/n3. (B) {Fi}
given by (6.3), and n = 4, 12, 20, and 32. Solid line is 2/n3.

In Figure 6(A) we plot the difference between b̄asymptotic (see (5.17d)) and the
computed value of b̄. This difference scales as |b̄ − b̄asymptotic| ∼ 0.0475/n3, thus
confirming the O(n−3) accuracy of b̄asymptotic (see (5.17d)).

Power-law distributions have some unique properties, such as stochastic domi-
nance and zero crossings. In addition, for the specific choice (6.1) we have that FG =

v2. Therefore, the high-order derivatives, F
(n)
G , which might affect the high-order

terms in the asymptotic expansion, vanish identically. To repeat the simulations with
CDFs that do not have these properties, we consider players that are divided into
four groups such that each group has n/4 players, and each player in the ith group
independently draws his value according to the distribution

(6.3) Fi = v + (−1)i+1v(v − 1)(v − ai), a = [0.38, 0.42, 0.58, 0.62],

where i = 1, . . . , 4. These distributions have multiple crossings (see Figure 1(B)), and

their geometric average is FG = (F1F2F3F4)
1/4 for all n.

In Figure 7(A) we plot {vi(b)}ni=1 for the case of n = 4 players. As predicted by
Kirkegaard [7], since the CDFs cross each other, so do the four bidding strategies.
As the number of players increases to n = 12 and n = 20, {vi(b)}ni=1 get closer to
each other and to a lesser extent to limn→∞ vi(b) = b (see Figure 7(B) and (C)), in
agreement with (6.2).

Comparison of {vi}ni=1 from Figure 7 with vbli and vouteri yields results similar to
those in Figures 4 and 5 (data not shown). To further consider the approximation
error, in Figure 8(A) we plot the difference v1(b)−vbl1 (b) and observe that it decreases
with n. To confirm that vi − vbli = O(n−3) uniformly in [0, b̄] (see (5.17a)), we plot
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Fig. 7. Solution of (1.1) with n players that are divided into four equal groups such that the
CDFs of players in each group are given by (6.3). The dashed line is vi = b. (A) n = 4. (B) n = 12.
(C) n = 20.
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Fig. 8. Solution of (1.1) with n players that are divided into four equal groups such that the
CDFs of players in each group are given by (6.3) and n = 12, 24, and 48. (A) The error |v1 − vbl1 |.
(B) The scaled error (n− 1)3|v1 − (v1)bl| in the outer region 0 ≤ b ≤ 0.7. (C) The scaled error (n−
1)3|v1 − (v1)bl| in the boundary layer region 0 ≤ ξ ≤ 6 (b̄− 6(n− 1)−2 ≤ b ≤ b̄).

(n − 1)3|v1 − vbl1 | as a function of b and observe that the scaled difference is almost
independent of n, both in the outer region (Figure 8(B)), and in the boundary layer
region (Figure 8(C)). In Figure 9 we repeat this procedure for v′1 − (vbl1 )′ and observe
that v′i − (vbli )′ = O(n−3) in the outer region (Figure 9(B)), but v′i − (vbli )′ = O(1/n)
in the boundary-layer region (Figure 9(C)). Indeed, vinneri is computed so that vbli
satisfies (1.1) to leading order at and near b̄. Therefore, the error of (v′i)

bl is expected
to be O(1/n) in the boundary-layer region (see proof of Lemma 5.2). In the outer
region, however, the inner solution component becomes exponentially small, and so
v′i−(vbli )′ ∼ v′i−(vouteri )′ = O(n−3). Finally, Figure 6(B) shows that |b̄− b̄asymptotic| ∼
2/n3, thus confirming the O(n−3) accuracy of b̄asymptotic.

7. Dynamical systems perspective. In [5], we considered the special case of
power-law distributions,

(7.1) Fi = vαi , i = 1, . . . , n.
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Fig. 9. Same as Figure 8 for |v′1 − (v′1)
bl|. In C, the scaled error is (n− 1) |v′1 − (v′1)

bl|.

In this case, the substitutions vi(b) = b Vi(b) and b = ew transform (1.1a) into the
autonomous dynamical system

(7.2a) V ′
i (w) =

Vi

αi

⎡
⎣
⎛
⎝ 1

n− 1

n∑
j=1

1

Vj − 1

⎞
⎠− 1

Vi − 1

⎤
⎦− Vi, i = 1, . . . , n;

the left boundary condition (1.1b) transforms into

(7.2b) Vi(w = −∞) = V saddle
i , i = 1, . . . , n,

where V saddle
i := 1 + 1

nᾱ−αi
and ᾱ := 1

n

∑n
j=1 αj , and the right boundary condi-

tion (1.1c) transforms into

(7.2c) Vi(w̄) = V̄ , i = 1, . . . , n,

where w̄ = log b̄ and V̄ = e−w̄ = 1/b̄.
Equations (7.2a) have a fixed point at Vsaddle := (V saddle

1 , . . . , V saddle
n ), which is

a saddle point. The solution of (7.2) is thus a trajectory that starts at Vsaddle and
intersects with the diagonal V1 = · · · = Vn at V̄ := (V̄ , . . . , V̄ ).

We now relate the dynamical systems description to the boundary-layer analysis.
Lemma 7.1. Let {Fi} be given by (7.1). Then vouteri (b) = bV saddle

i .
Proof. Transforming back the saddle-point trajectory V(w) ≡ Vsaddle shows that

vi = bV saddle
i is a solution of the initial value problem (1.1a)–(1.1b). This solution

can be expanded as vi = b + 1
n−1ui(b) +

1
(n−1)2wi(b) + O

(
1
n3

)
. Since vouteri is the

unique solution of (1.1a)–(1.1b) that has this expansion (Proposition 4.1), the result
follows.

Thus, in the case of power-law distributions we have vouteri exactly, and not only
to O(n−3).

In [5] we showed that linearization of the solution of (7.2a) about Vsaddle gives

(7.3) V(w) ∼ Vsaddle +

n−1∑
j=1

c̃jŨj e
λ̃jw, w → −∞,

where {λ̃j}n−1
j=1 and {Ũj}n−1

j=1 are the positive eigenvalues and corresponding eigenvec-
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tors of the Jacobian matrix J of (7.2a) at Vsaddle, where

J = n2ᾱ2BD 1
α i
, D 1

α
= diag

(
1

α1
, . . . ,

1

αn

)
,

and B is defined in (3.4). In terms of the original variables, (7.3) reads

(7.4) v(b) ∼ Vsaddleb+

n−1∑
j=1

c̃jŨjb
1+λ̃j , 0 ≤ b � 1.

We now show that (7.4) agrees with the boundary-layer approximation

(7.5) v ∼ vouter(b) +
vinner(ξ)

(n− 1)2
, vinner = D 1√

fi

n−1∑
j=1

cje
λjξuj , b− b̄ = O

(
1

n2

)
;

see Proposition 5.9. Since vouter = Vsaddleb (Lemma 7.1), we need to show that b1+λ̃j

identifies with eλjξ, and Ũj identifies with uj . Indeed, substituting b = b̄ − ξ
(n−1)2 ,

expanding for n � 1, and using b̄ = 1 + O(1/n) gives b = b̄(1 − ξ
(n−1)2 b̄

) ∼ e
− ξ

(n−1)2 .

Hence, for b1+λ̃j to identify with eλjξ, we should have that 1+λ̃i

n2 ∼ λi, where λi

is a positive eigenvalue of A := −ᾱ2D 1
α
B; see (5.8). This is indeed the case, since

J = −n2
[
AT +O

(
1
n

)]
, and so λ̃i ∼ −n2λi. This argument also shows that uj ∼ cŨj .

The dynamical systems expansion (7.4) is about b = 0 (or V = Vsaddle), whereas
the boundary-layer expansion (7.5) is about b = b̄ (or V = V̄). The above results
indicate that these approximations overlap. Thus, the (n − 1)-dimensional unstable
manifold at b = 0 identifies with the (n− 1)-dimensional inner solution vinner near b̄.
Intuitively, this is because V(b̄)−V(b = 0) = V̄ −Vsaddle = O

(
1
n2

)
.9

Finally, we note that the dynamical systems formulation may give the false im-
pression that “all the dynamics” occurs as the solution moves from the saddle point to
the diagonal. In fact, the boundary-layer analysis reveals that “most of the dynamics”
occurs near the saddle point, and that the transition from Vsaddle to V̄ corresponds
to the narrow boundary layer near b̄.

7.1. Nonsmoothness at b = 0. The dynamical systems analysis showed that
the solution can be approximated by (7.4). Since generically λ̃i is not an integer,
the solution of (1.1) is generically not in C∞ at b = 0. Since, however, λ̃i ∼ −n2λi,
the smoothness at b = 0 increases with the number of players; i.e., vi ∈ Ck, where
k = O(n2).

The boundary-layer analysis does not reveal the nonsmoothness at b = 0. This is
because vinner is expanded about b̄, whereas the nonsmoothness occurs at b = 0.

8. Numerical methods. Because of the lack of explicit solutions, numerical
simulations play an important role in the study of asymmetric auctions. Computing
solutions of (1.1), however, cannot be done using standard numerical methods for
boundary value problems, because of the nonuniqueness at b = 0 and because the
location of the right boundary is unknown.

9Indeed, V̄ = 1
b̄
= 1 + 1

n
1
ᾱ
+O

(
1
n2

)
= V saddle

i .
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8.1. Backward shooting. The first numerical method for solving (1.1) was
developed in 1994 by Marshall et al. [11]. They used a backward shooting approach, in
which they searched for the value of b̄ for which the backward solution of (1.1a) subject
to (1.1c) satisfies (1.1b). The backward shooting method became the standard method
for asymmetric first-price auctions and was used in numerous studies. Nevertheless,
its performance was far from optimal, and it quickly deteriorated as the number of
bidders was increased. In fact, it could not even handle auctions with more than six
players. Therefore, this method is ill-suited to studying large asymmetric auctions.10

8.2. Boundary value method. In [4] we developed a different method, the
boundary value method, for computing solutions of (1.1). To overcome the difficulty
that the location of the right boundary is unknown, we change the independent vari-
able from b to vn. As a result, the transformed system of ODEs resides on a fixed
known domain and can thus be solved using standard methods such as fixed-point
iterations or Newton’s iterations. The boundary value method has proved to be much
more robust than backward shooting, and it performs well even with hundreds of play-
ers. The method has no inherent bound on accuracy and can reach machine accuracy
at reasonably large grids [4, section 4.3].

We briefly mention some implementation details. Because of the boundary-layer
structure of the solution, we use a nonuniform grid that concentrates more grid points
in the boundary layer. In addition, when implementing Newton’s method, we used an
appropriate staggered grid that leads to narrow-banded linear systems, which can be
solved significantly faster than the linear systems that arise in näıve implementations.
See [3] for more details, and [4, online supplement] for MATLAB codes.

8.3. Instability of backward shooting. In [4] we pointed out that the back-
ward shooting method is inherently unstable. Because of the lack of explicit solu-
tions in the asymmetric case, we used the explicit solution in the symmetric case
(section 2.1) to show analytically that in the symmetric case the backward shooting
method is unstable and that this instability increases with n. Then we showed numer-
ically that the instability in the asymmetric case is “similar” to that in the symmetric
case.

We can use boundary-layer analysis to gain further insight into the instability of
the backward shooting method, as follows. Consider the backward solutions {vεi (b)}
of (1.1a) for b ≤ b̄ε := b̄ε, with the “initial” conditions

(8.1) vεi (b̄ε) = 1, i = 1, . . . , n.

We first show (informally) the following claim.
Lemma 8.1. Backward solutions “always” have a boundary layer near b̄ε.
Proof. Assume that {vεi (b)}ni=1 does not have a boundary layer near b̄ε. In that

case, since {vεi }ni=1 is a solution of (1.1a), then by Proposition 4.1,

(8.2) vεi (b) = vouteri (b) +O
(

1

n3

)
.

If (8.2) holds, however, then from Lemma 4.3 with b̄ replaced by b̄ε it follows that vεi
cannot satisfy the right boundary condition (8.1).

To show that the instability of backward solutions increases with n, we now show
that an O(ε) error in b̄ leads to an O(nε) error in the derivatives at the right boundary.

Lemma 8.2. v′i(b̄)− (vεi )
′(b̄ε) ∼ ε(n− 1)

f2
G(1)
fi(1)

.

10None of the simulations presented in this study could have been done using backward shooting.
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Proof. By (1.1a) and (8.1),

(vεi )
′(b̄ε) =

1

n− 1

1

fi(1)

1

1− b̄ε
.

Hence,

v′i(b̄)− (vεi )
′(b̄ε) =

1

n− 1

1

fi(1)

[
1

1− b̄
− 1

1− (b̄+ ε)

]
∼ 1

n− 1

1

fi(1)

ε

(1− b̄)2
.

Substituting b̄ (see (4.9)) into the above expression yields the result.
The instability of backward solutions is illustrated numerically in Figure 10(A),

where an ε = −0.01 error in b̄ leads to an O(1) difference between vεi and vi. The
existence of a boundary layer of width n−2 for the backward solution can be seen in
Figure 10(B) and (C). Figure 10(A) and (B) also show that vεi does not identify with
vouteri outside of the boundary layer. Repeating this simulation with a larger n shows
similar results and that the instability becomes more pronounced (data not shown).
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Fig. 10. (A) Solutions {vεi (b)}ni=1 of (1.1a), (8.1) with ε = −0.01 for {Fi}ni=1 given by (6.1)
and n = 5 (solid curves). Also plotted are the solutions {vi(b)}ni=1 for the case ε = 0 (dashed
curves). (B) Derivatives of the solutions presented in (A). (C) Zoom-in on (vεi )

′ from (B).

9. Concluding remarks. In this study we used boundary-layer theory to ana-
lyze asymmetric first-price auctions. While this methodology is standard in applied
mathematics, to the best of our knowledge it has not been previously used in auction
theory.

Asymmetric bidders have O(1/n) differences in the competitions they face, since
bidders i and k face the same n − 2 bidders, but bidder i faces k whereas bidder k
faces i. Consequently, one would expect to have O(1/n) differences among their
equilibrium strategies. Our analysis reveals, however, that vi(b) − vk(b) = O(n−2),
i.e., that these differences are much smaller. As n → ∞, the O(n−2) differences
among {vi}ni=1 vanish, and the boundary-layer thickness goes to zero. The boundary
layer, however, does not disappear. In particular, the O(1) differences among the
derivatives {v′i(b̄)}ni=1 persist as n → ∞.

The analysis in this paper reveals that when n is large, the “correct” averaging
of the CDFs is the geometric one. In the case of weakly asymmetric auctions, Fibich
and Gavious used the arithmetic average of the asymmetric CDFs in their analysis [1].
Their results, however, did not imply that the correct averaging of the CDFs is the
arithmetic one, since when the asymmetry among the CDFs is O(ε), the arithmetic
and geometric averages are O(ε2) equivalent. In contrast, as n → ∞, the difference
between the arithmetic and geometric averages does not go to zero. Therefore, it
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seems that the correct averaging in asymmetric first-price auctions is the geometric
one.11

As n increases, the number of ODEs in (1.1) increases. This is different from
standard boundary-layer problems, where the system itself does not change as the
small parameter goes to zero. Therefore, we need to clarify what we mean by “letting
n go to infinity.” One possibility is to have ci = βin bidders with CDF Fi(v), where i =
1, . . . ,K.12

Since the number of equations is fixed, it is clear what we mean by letting n go to
infinity. A second approach is based on the observation that the geometrical average
of the CDFs plays a key role in the limit. Therefore, we can consider a sequence

of families of CDFs {F (n)
1 , . . . , F

(n)
n } whose geometrical average (

∏n
i=1 F

(n)
i )1/n does

not change with n.13 Note that under this approach, some, or even all, of the CDFs
change as n increases.
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