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The standard method for computing the equilibrium strategies of asymmetric first-price
auctions is the backward-shooting method. In this study we show that the backward-
shooting method is inherently unstable, and that this instability cannot be eliminated by
changing the numerical methodology of the backward solver. Moreover, this instability
becomes more severe as the number of players increases. We then present a novel
boundary-value method for computing the equilibrium strategies of asymmetric first-
price auctions. We demonstrate the robustness and stability of this method for auctions
with any number of players, and for players with mixed types of distributions, including
distributions with more than one crossing. Finally, we use the boundary-value method
to study large auctions with hundreds of players, to compute the asymptotic rate at
which large first-price and second-price auctions become revenue equivalent, and to study
auctions in which the distributions cannot be ordered according to first-order stochastic
dominance.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The theory of auctions has mostly dealt with symmetric auctions, in which the valuations of all bidders are drawn
according to the same distribution function. In practice, however, it often happens that bidders are asymmetric, i.e., their
valuations are drawn according to different distribution functions. In such cases, the mathematical model is considerably
more complex. As a result, relatively little is known at present on asymmetric auctions.

Numerical simulations can play an important role in the study of asymmetric auctions. A pioneering contribution was
made by Marshall et al. (1994), who developed the first numerical method capable of computing the equilibrium bids in
asymmetric first-price auctions, which is based on backward shooting. The backward-shooting method was used in numer-
ous subsequent studies (e.g., Fibich and Gavious, 2003; Fibich et al., 2002, 2004; Gayle and Richard, 2008; Li and Riley, 2007;
Maskin and Riley, 2000), and has become the standard method for computing the equilibrium bids in asymmetric first-price
auctions. Nevertheless, the backward-shooting method is far from optimal. Indeed, Marshall et al. (1994) observed that
“backward solutions are well behaved except in neighborhoods of the origin where they become (highly) unstable”. Simi-
larly, Li and Riley (1997) noted that “because the differential equations which define the equilibrium bid functions are very
poorly behaved at the lower end-point, there are some quite complex technical issues which had to be dealt with before
we could develop such a program.”

In this work we show that the instability of the backward-shooting method is not a “technical issue”, but rather an in-
herent analytic property of backward solutions. Therefore, it cannot be eliminated by changing the numerical methodology
for the backward integration. Moreover, this inherent instability becomes more severe as the number of players increases.
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Therefore, a robust numerical solver of the equilibrium bids in asymmetric first-price auctions requires a completely differ-
ent approach.

In this study we develop a novel method, the boundary-value method, for computing the equilibrium bids in asymmetric
first-price auctions. In this method, the system of nonlinear ordinary differential equations for the equilibrium strategies is
solved as a boundary-value problem, rather than with backward shooting. A priori, this approach is problematic, since the
location of the right boundary is unknown. However, we eliminate this problem by changing the independent variable, so
that the transformed system of ordinary differential equations resides on a fixed known domain. Therefore, the transformed
nonlinear system can be solved using standard methods, such as fixed-point iterations or Newton’s iterations.

Our simulations show that the boundary-value method is considerably more robust than backward shooting. In particular,
unlike backward shooting, it performs well even when the number of players is large, and for mixed types of distributions,
including all common distributions (Weibull, truncated normal, beta distributions, etc.), as well as distributions with more
than one crossing. We note, however, that the evidence for the performance of the boundary-value method is purely nu-
merical. In particular, we do not prove that the iterative solution exists and is well defined, or that the iterations converge.

The paper is organized as follows. In Section 2 we present the model of asymmetric first-price auctions. In Section 3
we show that the backward-shooting method is inherently unstable, and that this instability increases with the number of
players. The new boundary-value method is presented in Section 4 for two players, and in Section 5 for any number of
players.

In Section 6 we use the boundary-value method to study several problems which could not be studied numerically using
backward shooting.

1. In Section 6.1 we take advantage of the fact that the boundary-value method does not become unstable as the number
of players increases, and study large auctions with as many as 450 players and with as many as nine different types of players.

2. In Section 6.2 we study the revenue difference between large first-price and second-price auctions. Bali and Jackson
(2002) showed that this revenue difference goes to zero as the number of players goes to infinity. That study, how-
ever, did not consider the rate at which first-price and second-price auctions become revenue equivalent. Using the
boundary-value method, we show numerically that the revenue difference between the first-price and second-price auction
decays as 1/n3 or even faster, where n is the number of players. This numerical observation suggests that the problem of
revenue ranking in large asymmetric auctions may be more of academic interest than of practical value.

3. In Section 6.3 we take advantage of the fact that the boundary-value method is not restricted to certain distribution
functions. We first relax the common assumption of stochastic dominance, and show numerically that analytic results
that were proved under this assumption do not necessarily extend to the general case. We then use the boundary-value
method to provide the first numerical example of bidding strategies which cross each other more than once.

Final remarks are given in Section 7. Matlab codes are provided in the on-line supplement.

2. Model formulation

Consider n risk-neutral players bidding for a single object in a first-price auction. The value vi of the object for the
ith player (i = 1, . . . ,n) is private information to i, and is drawn independently from the interval [0,1] according to a
distribution function Fi(v), such that Fi(0) = 0 and Fi(1) = 1. The functions {Fi(v)} are common knowledge and have a
continuous density f i(v) = F ′

i (v) > 0 in (0,1]. Each bidder submits a sealed bid of bi = bi(vi). The highest bidder wins the
object and pays his bid. All other bidders do not pay anything.

We denote by vi(bi) the inverse of the equilibrium bidding strategy bi(vi). Then, the equations for {vi}n
i=1 are given by

Maskin and Riley (2000):

v ′
i(b) = Fi(vi(b))

f i(vi(b))

[(
1

n − 1

n∑
j=1

1

v j(b) − b

)
− 1

vi(b) − b

]
, i = 1, . . . ,n. (1a)

The initial conditions for the system (1a) are

vi(0) = 0, i = 1, . . . ,n. (1b)

The initial value problem (1a), (1b) does not have a unique solution. Indeed, one cannot apply the standard local existence
and uniqueness theorem, since the right-hand side of (1), (1b) is of the form 0

0 . The equilibrium strategies, however, satisfy
the additional condition that the maximal bid of all bidders is the same (Maskin and Riley, 2000). In other words, there
exists some 0 < b̄ < 1, such that

vi(b̄) = 1, i = 1, . . . ,n. (1c)

The existence and uniqueness of solutions to (1a), (1b), (1c) was proved by Lebrun (1996, 1999, 2006).
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3. Instability of the backward-shooting method

3.1. The backward-shooting method

The ODE system (1) is a nonlinear boundary-value problem, in which the location of the right boundary b̄ is unknown.
Therefore, from a numerical point of view, it is natural to solve (1) using a forward-marching approach, i.e., search for the
solution of the initial value problem (1a), (1b) that satisfies (1c). Since the right-hand side of (1a) at b = 0 is of the form 0

0 ,
a special treatment is required at b = 0 in order to solve (1a), (1b) numerically. For example, Marshall et al. (1994) obtained
an analytic approximation vi(b = h) ≈ vi,h of the solution at 0 < h � 1, and then solved (1a) for b � h with the initial
condition

vi(b = h) = vi,h. (2)

Marshall et al. observed, however, that the resulting solution of (1a), (1b) does not satisfy the boundary condition (1c).
Therefore, they decided to solve the boundary-value problem (1) using a backward-shooting approach. In this approach, one
finds the value of b̄ by solving Eq. (1a) backwards in b for b � b̄ε , subject to the “initial” conditions

vi(b̄ε) = 1, i = 1, . . . ,n, (3)

and searching for the value of b̄ε for which vi(0) = 0 for i = 1, . . . ,n.
The backward-shooting method was used to solve Eq. (1) by Marshall et al. (1994), as well as in numerous subsequent

studies (e.g., Fibich and Gavious, 2003; Fibich et al., 2002, 2004; Gayle and Richard, 2008; Li and Riley, 2007; Maskin
and Riley, 2000), and it is currently the standard method for computing the equilibrium bids in asymmetric first-price
auctions. Various variants of the backward-shooting method have been proposed in the literature. Of particular interest
is the program BIDCOMP2 by Li and Riley (2007), which is freely available on-line. This implementation uses an adaptive
step size for the numerical backward integration to allow better control of the error. More recently, Gayle and Richard
(2008) implemented the backward-shooting method using local Taylor series expansions of the solution, as well as of the
distributions {Fi}.

Although backward shooting is the standard approach for solving (1), it is far from optimal. Indeed, as noted in the
Introduction, this method becomes unstable near the left boundary (Marshall et al., 1994; Li and Riley, 2007). In what
follows, we analyze the instability of the backward-shooting method in the case when all players are symmetric. This case
is much easier to analyze, since the system of Eqs. (1) reduces to a single ordinary differential equation, which can be
solved explicitly. As we shall see, this simple model captures all the instability characteristics of backward solutions in the
asymmetric case.

3.2. The symmetric model

Let us consider the symmetric case when Fi(v) ≡ F (v) for i = 1, . . . ,n, and all bidders have the same equilibrium
strategy bi(v) = b(v). In this case, the system (1) reduces to

v ′(b) = 1

n − 1

F (v(b))

f (v(b))

1

v(b) − b
, (4a)

with the initial condition

v(0) = 0. (4b)

Eq. (4) can be solved explicitly as follows. The equation for b = v−1 is given by

b′(v) = (n − 1)
f (v)

F (v)

(
v − b(v)

)
, (5a)

with the initial condition

b(0) = 0. (5b)

In order to solve this first-order ordinary differential equation we multiply Eq. (5a) by e
∫ v

(n−1)
f (s)
F (s) ds = F n−1(v), which

gives [
F n−1(v)b(v)

]′ = [F n−1(v)
]′

v. (6)

Integration of this equation between 0 and v , and using the initial condition (5b) gives the explicit solution

b(v) = v −
∫ v

0 F n−1(s)ds
n−1

. (7)

F (v)
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Therefore, in particular, the maximal bid in a symmetric first-price auction is given explicitly by

b̄ = b(1) = 1 −
1∫

0

F n−1(s)ds. (8)

3.3. Instability of backward solutions of symmetric auctions

Although the solution of (4) is known, see Eq. (7), in order to analyze the backward-shooting method for Eq. (1), we now
“solve” Eq. (4) using backward shooting. Let vε(b) be the solution of (4a) for b � b̄ε , with the “initial” condition

vε(b̄ε) = 1, b̄ε = b̄ + ε, (9)

where b̄ is given by (8). The inverse function bε = v−1
ε is the solution of Eq. (5a) for v � 1, with the “initial” condition

bε(1) = b̄ε, b̄ε = b̄ + ε. (10)

The solution of (5a), (10) can be calculated explicitly:

Lemma 3.1. Let bε(v) be a solution of (5a) for v � 1 with the initial condition (10). Then,

bε(v) = b(v) + ε

F n−1(v)
, (11)

where b(v), the solution of (5), is given by (7).

Proof. Integration of (6) between 1 and v and using b(1) = b̄ gives

b(v) = b̄ + 1 − v F n−1(v) − ∫ 1
v F n−1(s)ds

F n−1(v)
. (12)

Similarly,

bε(v) = b̄ + ε + 1 − v F n−1(v) − ∫ 1
v F n−1(s)ds

F n−1(v)
. (13)

Substraction of (13) from (12) proves the result. �
Lemma 3.1 shows that the error |bε(v) − b(v)| increases monotonically as v decreases from |bε(1) − b(1)| = ε to

limv→0 |bε(v) − b(v)| = ∞. We now show that there are two types of backward solutions. Indeed, by (7) and (11),

b′
ε(v) = (n − 1)

(
∫ v

0 F n−1(s)ds − ε) f (v)

F n(v)
.

Therefore,

1. When ε < 0, b′
ε(v) > 0 for 0 < v � 1. Hence, as v goes down from 1 to 0, bε(v) decreases monotonically from b̄ε to −∞,

see Fig. 1A. In particular, there exists a point 0 < vmin < 1 such that bε(vmin) = 0. Following Lebrun (1996, 1999), this
solution is called a type-I backward solution.

2. When ε > 0, b′
ε(v) = 0 when

∫ v
0 F n−1(s)ds = ε. Therefore, there exists a point 0 < vmin < 1 such that b′

ε(vmin) = 0.
Hence, by Eq. (5a),

bε(vmin) = vmin. (14)

Thus, as v goes down from 1 to 0, bε(v) decreases from bε(1) = b̄ε to bε(vmin) = vmin , and then increases to +∞
as v → 0, see Fig. 1B. Following Lebrun (1996, 1999), this solution is called a type-II backward solution.

The solution of (5) is bounded by 0 � b(v) � v . Indeed, the bids in first-price auctions (symmetric, as well as asymmetric)
have to be nonnegative and below the bidder’s value. The maximal interval of bε(v) over which

0 � bε(v) � v (15)

is [vmin,1]. Indeed, for 0 � v < vmin , type-I backward solutions become negative, and type-II backward solutions sat-
isfy bε(v) > v .
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Fig. 1. Analytic solution b(v) of (5) (solid curve) and analytic solution bε(v) of (5a), (10) (dashed curve) with n = 5 players and F = v . A: ε = −0.005
(type-I). Thick dot denotes the value at which bε(vmin) = 0. B: ε = 0.005 (type-II). Thick dot denotes the value at which b′

ε(vmin) = 0.

Lemma 3.2. Let ε 	= 0, let bε(v) be a solution of (5a), (10) for v � 1, and let [vmin,1] be the maximal interval of bε(v) on which (15)
holds. Then,

vmin � F −1( n−1
√|ε| )> 0. (16)

Proof. When ε < 0, the condition bε(v) � 0 implies that

bε(v) = b(v) − |ε|
F n−1(v)

� 0.

Hence,

|ε| � b(vmin)F n−1(vmin).

Since b(vmin) � vmin � 1, it follows that |ε| � F n−1(vmin). Hence, vmin > F −1( n−1
√|ε|).

When ε > 0, the condition bε(v) � v implies that

bε(v) = b(v) + ε

F n−1(v)
= v + ε − ∫ v

0 F n−1(s)ds

F n−1(v)
� v.

Hence, ε �
∫ vmin

0 F n−1(s)ds. Since F (v) increases monotonically, it follows that

vmin∫
0

F n−1(s)ds < vmin F n−1(vmin) < F n−1(vmin).

Hence, F n−1(vmin) > ε and vmin > F −1( n−1
√

ε). �
From Lemma 3.2 it follows that the interval [vmin,1] shrinks to zero as n → ∞:

Corrolary 3.1. Under the conditions of Lemma 3.2, limn→∞ vmin = 1.

Proof. This follows immediately from (16). �
Lemma 3.2 and Corollary 3.1 show that

Corrolary 3.2. Backward solutions become more sensitive to the initial error b̄ε − b̄ as the number of players increases.

To illustrate this point, we set ε = ±10−15, and solve (5a), (10) with F = v for n = 10, 20, and 100 players:

1. When ε = −10−15 then b(vmin) = 0 (type-I backward solution) and vmin increases from 0.033 for n = 10 to vmin = 0.17
for n = 20 players to vmin = 0.70 for n = 100 players, see Fig. 2.

2. When ε = +10−15 then b′
ε(vmin) = 0 (type-II backward solution). In this case vmin increases from 0.039 for n = 10

to vmin = 0.20 for n = 20 players to vmin = 0.74 for n = 100 players, see Fig. 3.

Since the error in b̄ is of the order of the machine roundoff error, we conclude that even in the symmetric case, it is impossible to
solve (1) using backward shooting when the number of players is large (where n = 20 is already “large”). Note that in Figs. 2 and 3
we plotted bε(v) by using the explicit expression (6). Therefore, the backward-shooting error is analytic, i.e., a property of
the ordinary differential equation solution, rather than of the numerical solution.



484 G. Fibich, N. Gavish / Games and Economic Behavior 73 (2011) 479–495
Fig. 2. Solution b(v) of (5) with F = v (solid curve) analytic and solution bε(v) of (5a), (10) with F = v and ε = −10−15 (dashed curve). Dotted curve is
the line b ≡ 0. Here, vmin denotes the value at which bε(vmin) = 0. A: n = 10. B: n = 20. C: n = 100.

Fig. 3. Same as Fig. 2 with ε = +10−15. vmin denotes the value at which b′
ε(vmin) = 0 and bε(vmin) = vmin .

Fig. 4. Analytic solution v(b) of (4) (solid curve) and analytic solution vε(b) of (4a), (9) (dashed curve) with n = 5 players and F = v . A: ε = −0.005
(type-I). B: ε = 0.005 (type-II). The additional dash-dotted curve in A and B is vε = b−1

ε , where bε is taken from Figs. 1A and 1B, respectively.

In the asymmetric case, the equilibrium bid functions are computed by solving (1) for the inverse bid functions. Therefore,
in analogy with the asymmetric case, we now consider the analytic error of |vε − v| when we solve (4a), (9) for vε backwards
from b = b̄ε down to b = 0. Since the error |bε − b| increases monotonically as v decreases, the error |vε − v| also increases
monotonically as b decreases from b = b̄ towards b = 0. In Fig. 4 we plot vε and v for the same data as in Fig. 1, i.e., n = 5,
F = v and ε = ±0.005:

1. As b decreases from b = b̄ to b = 0, the type-I backward solution vε(b) goes down from vε(b̄ε) = 1 to vε(0) = vmin ≈
0.16, see Fig. 4A. Comparison of vε from Fig. 4A with vε = b−1

ε , where bε is taken from Fig. 1A shows that the two
solutions are identical for vmin � b � b̄. For 0 � b < vmin , however, b−1

ε becomes negative, but vε from Fig. 4A is not
defined, since it was computed only for 0 � b � bε .1

2. The type-II backward solution vε(b) is defined for vmin � b � b̄, but not for 0 � b � vmin , see Fig. 4B. A comparison of vε

from Fig. 4B with vε = b−1
ε , where bε is taken from Fig. 1B, reveals why vε is not defined for 0 � b < vmin . Indeed,

as b decreases from b̄ to vmin , vε = b−1
ε decreases along the upper branch. Then, at b = vmin , the trend reverses and b

increases as vε = b−1
ε decreases along the lower branch from vmin to 0. Therefore, vε(b) is defined only for b � vmin .

So far we only considered the analytic error of backward solutions. We now consider an additional numerical error that
may occur for type-II inverse solutions. As noted, these solutions are defined only for vmin � b � b̄ε . At b = vmin , v ′

ε(b)

becomes infinite. However, depending on the way the numerical ordinary differential equation solver handles the infinite
derivative of vε at b = vmin , vε(b) may be (incorrectly) computed for b < vmin . For example, in Fig. 5A we solve (4a), (9)
with ε = 0.005 using Matlab’s ODE45 subroutine.2 In this case, the computed vε(b) agrees with the analytic solution in
the region vmin � b � b̄. However, ODE45 does not stop at b = vmin (as it should, see Fig. 4B), but rather continues into the

1 Of course, if we continue to solve (4a), (9) for b < 0, then the two solutions would also agree in this region.
2 In what follows, we use the default parameters of Matlab’s solvers.
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Fig. 5. Numerical solution vε(b) of (4a), (9) with n = 5 players, F = v , and ε = 0.005 (type-II), computed using A: Matlab’s ODE45 subroutine. B: Matlab’s
ODE15s subroutine.

Fig. 6. Backward solution vi
ε(b) of (1a) with the initial condition (17) (dashed curve), and the solution v(b) of (1) (solid curve) for n = 2, F1 = v and F2 = v2.

A: ε = −0.005. B: ε = 0.005. Note the similarity to Figs. 4A and 4B. C: Error (18) of solution in A. D: Error (18) of solution in B.

region b < vmin , where the computed values are a numerical artifact. In Fig. 5B we solve the same problem using Matlab’s
ODE15s subroutine. In this case, the numerical integration does terminate at b = vmin .3

3.4. Instability of backward solutions of asymmetric auctions

In Section 3.3 we saw that the backward-shooting method for solving symmetric auctions is unstable, and that the
instability increases with (b̄ − b) and with n. Moreover, in the case of type-II solutions we saw that an additional numerical
error may occur due to the infinite derivative of the solution at vmin . We now show numerically that the same instability
characteristics exist in asymmetric auctions.

Let us consider backward solutions of (1a) for b � b̄ε with the “initial” condition

vi
ε(b̄ε) = 1, b̄ε = b̄ + ε. (17)

Lebrun (1996, 1999) proved that asymmetric backward solutions can be classified into type-I and type-II solutions, such
that

1. When ε < 0 (type-I), for each solution vi
ε(0) > 0. We denote the value of the solution at b = 0 as vi

min := vi
ε(0). Note

that it is possible that vi
min 	= v j

min .
2. When ε > 0 (type-II), for each solution vi

ε(b) there exists a point vi
min > 0 such that vε(vi

min) = vi
min . In this case, vi

min
is equal for all players, except possibly for one player.

This classification can be seen numerically in Figs. 6A and 6B, where we solve (1a) for b � b̄ε with n = 2 players with Fi =
{v, v2}, and the “initial” condition (17) with ε = ±0.005. Note the similarity to Figs. 4A and 4B of the symmetric case.

In the symmetric case we showed that the error |vε(b)− v(b)| increases monotonically in b̄ − b. While such a result was
not proved for asymmetric auctions, Figs. 6C and 6D show numerically that the error

∥∥vε(b) − v(b)
∥∥=

√√√√ n∑
i=1

(
vi
ε(b) − vi(b)

)2
(18)

of backward solutions in the asymmetric case also increases monotonically in b̄ − b.

3 ODE15s does not always stop at vmin , see Fig. 8B below.
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Fig. 7. Same as Fig. 6 for n = 4 players with Fi = {v, v, v2, v2}.

Fig. 8. Numerical solution vε(b) of (4a), (9) with n = 5 players, F = v , and ε = 0.005 (type-II) computed using A: Matlab’s ODE45 subroutine. B: Matlab’s
ODE15s subroutine. Note the similarity to Fig. 5.

In the symmetric case we showed that the instability of backward solutions increases with n. We now numerical re-
sults that suggests that our conclusion that the instability of backward solutions increases with n, remains valid in the asymmetric
case. To see that, in Fig. 7 we solve (1a) with n = 4 players with Fi = {v, v, v2, v2} for b � b̄ε with the “initial” condi-
tion’ (17), and observe that vi

min is considerably larger than in the case of two players.4 Indeed, maxi vi
min < 0.2 for n = 2,

while mini vi
min > 0.35 for n = 4.

In conclusion, the instability of the backward solutions of asymmetric auctions is essentially the same as for symmet-
ric auctions. The source of the instability is analytic, hence independent of the numerical method used to integrate (1a)
backwards. In particular, it is not possible to overcome the instability by changing the numerical method for the backward
integration. Moreover, the instability increases as b decreases and as the number of players increases.

As in the symmetric case, an additional numerical error may occur for type-II inverse functions vε(b). These solutions
are defined only for vmin � b � b̄ε . At b = vmin , the derivatives dvi

ε/db become infinite. However, depending on the way nu-
merical ordinary differential equation solvers handle infinite derivatives, vi

ε(b) may be (incorrectly) computed for b < vmin .
For example, in Fig. 8A we solve (1a), (17) with ε = 0.005 using Matlab’s ODE45 subroutine. In this case, the numerical
integration does not stop at b = vmin ≈ 0.16 (as it should), but rather continues down to b ≈ 0.14. Although the solutions
appear to be “smooth” in the region 0.14 < b � vmin , the computed values are a numerical artifact.5 Recall that in the sym-
metric case, we avoided such numerical artifacts by using ODE15s, see Fig. 5B. In the asymmetric case, however, ODE15s
also fails to stop at b = vmin ≈ 0.14, see Fig. 8B, and rather continues down to b ≈ 0.11.6

4. The boundary-value method (n = 2)

In Section 3 we saw that the backward-shooting method for solving the boundary-value problem (1) is unstable, espe-
cially when the number of players is large. We now present an alternative numerical method, in which (1) is solved using
a boundary-value approach. For simplicity, we first present the method for the case of two players. The general case will be
considered in Section 5.

In the case of two players, Eq. (1a) reduces to

dv1

db
= F1(v1(b))

f1(v1(b))

1

v2(b) − b
,

dv2

db
= F2(v2(b))

f2(v2(b))

1

v1(b) − b
, 0 � b � b̄, (19a)

4 In Fig. 7, b1 = b2 and b3 = b4. Therefore, only two strategies are plotted.
5 Indeed, the computed solution loses its monotonicity at b = vmin .
6 The difference between the computed values of vε in the region b < vmin in Fig. 8A provides further support that the computed values in these region

are a numerical artifact.
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with the boundary conditions

v1(b = 0) = v2(0) = 0, v1(b = b̄) = v2(b̄) = 1. (19b)

The main difficulty in solving this nonlinear boundary-value problem is due to the fact that the location b̄ of the right
boundary is unknown. In order to overcome this difficulty, we recast (19) as a function of v2 rather than of b.7,8 The
resulting equations are⎧⎪⎪⎨

⎪⎪⎩
dv1

dv2
= F1(v1(v2))

f1(v1(v2))

f2(v2)

F2(v2)

v1(v2) − b(v2)

v2 − b(v2)
,

db

dv2
= f2(v2)

F2(v2)
[v1(v2) − b(v2)],

0 � v2 � 1, (20a)

with the boundary conditions

v1(v2 = 0) = b(0) = 0, v1(v2 = 1) = 1. (20b)

Unlike (19), the boundary-value problem (20) is defined on a fixed domain v2 ∈ [0,1]. The values of v1 are given at both
boundaries, whereas the value of b is only given in the left boundary.9 This nonstandard system has a unique solution, since
it is equivalent to (19) which has a unique solution (Lebrun, 1996, 1999, 2006).

4.1. Fixed-point iterations

Since (20) is a nonlinear boundary-value system, it has to be solved using a nonlinear solver, such as fixed-point itera-
tions. We note that there are numerous ways to solve (20) using fixed-point iterations. Our specific choice is based on trial
and error, and is given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
d

dv2
− F1(v(k)

1 )

f1(v(k)
1 )

f2(v2)

F2(v2)

1

v2 − b(k)

]
v(k+1)

1 = − F1(v(k)
1 )

f1(v(k)
1 )

f2(v2)

F2(v2)

b(k)

v2 − b(k)
,

[
d

dv2
+ v(k+1)

1 − b(k)

v2 − b(k)

f2(v2)

F2(v2)

]
b(k+1) = f2(v2)

F2(v2)

v(k+1)
1 − b(k)

v2 − b(k)
v2,

(21a)

with the boundary conditions

v(k+1)
1 (0) = b(k+1)(0) = 0, v(k+1)

1 (1) = 1, (21b)

where k = 0,1, . . . is the iteration number. In the numerical examples presented in this paper, we used the initial guess

v(0)
1 (v2) = v2, b(0)(v2) = v2

2
. (22)

Eq. (21a) for v(k+1)
1 is a linear first-order equation. Therefore, it is not a priori clear why its solution can satisfy the two

boundary conditions in (21b). Note that a similar situation occurs in Eq. (20a) for v1(v2). In that case, it follows from the
rigorous studies of Lebrun (1996, 1999, 2006) that Eq. (19), hence also Eq. (20), has a unique solution.10 Intuitively, this
is because the right-hand side of (20a) is of the form 0/0 at v2 = 0, and therefore v1(v2) has nonuniqueness at v2 = 0.
In Fibich and Gavish (2010b), we provide some informal arguments that suggest that since the right-hand side of (21a) is
also of the form 0/0 at v2 = 0, v(k+1)

1 is nonunique at v2 = 0, which “enables” it to satisfy both boundary conditions.
At present, there is no proof that the iterative solution of the boundary-value method, with either the fixed-point itera-

tions (21) or with Newton’s iterations to be presented in Section 4.2, exists, or that the iterations converge. In Section 4.3
we test these two iterative approaches numerically, and observe that they converge at the expected linear and quadratic
rates, respectively.

Remark 4.1. Matlab codes for the boundary-value method with the fixed-point iterations (21), and with Newton’s itera-
tions (24) are provided in the on-line supplement.

7 The choice of v2 and not v1 as the independent variable is ad-hoc. In some cases, we observed numerically that a wrong choice of the independent
variable may lead to divergence (see Section 7).

8 Amann and Leininger (1996) used the same change of variables in the analysis of all-pay auctions. Lebrun (1999) and, under a slightly different
presentation, Lebrun (2009) used the same change of variables to study first-price asymmetric auctions.

9 Note that b̄ does not appear in (20). Its value can be recovered from the solution of (20) using the relation b̄ = b(v2 = 1).
10 A different proof is provided by Fibich and Gavish (2010a) for the special case of power-law distributions.
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4.2. Newton’s iterations

We can also solve the nonlinear boundary-value problem (20) using Newton’s method, which generically has a quadratic
convergence rate. To do that, denote the residual as

R v1

[
v ′

1, v1,b, v2
]= v ′

1(v2) − F1(v1)

f1(v1)

f2(v2)

F2(v2)

v1 − b

v2 − b
,

Rb
[
b′, v1,b, v2

]= b′(v2) − f2(v2)

F2(v2)
(v1 − b).

We would like to find a variation δ(v2) = (δv1 (v2), δb(v2)) such that (v1 + δv1 ,b + δb) is the solution of (20), i.e.,

R v1

[
v ′

1 + δ′
v1

, v1 + δv1 ,b + δb, v2
]= 0, Rb

[
b′ + δ′

b, v1 + δv1 ,b + δb, v2
]= 0.

Since

R v1

[
v ′

1 + δ′
v1

, v1 + δv1 ,b + δb, v2
]= R v1

[
v ′

1, v1,b, v2
]+ δ′

v1
+ d

dv1
R v1δv1 + d

db
R v1δb + O

(‖δ‖2),
Rb
[
b′ + δ′

b, v1 + δv1 ,b + δb, v2
] = Rb

[
v ′

1, v1,b, v2
]+ δ′

b + d

dv1
Rbδv1 + d

db
Rbδb + O

(‖δ‖2),
the linearized equation for δ is given by

d

dv2

(
δv1

δb

)
+
( d

dv1
R v1

d
db R v1

d
dv1

Rb
d

db Rb

)(
δv1

δb

)
= −

(
R v1

Rb

)
, (23a)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dv1
R v1 =

[
F1(v1) f ′

1(v1)

f 2
1 (v1)

− 1

]
f2(v2)

F2(v2)

v1 − b

v2 − b
− F1(v1)

f1(v1)

f2(v2)

F2(v2)

1

v2 − b
,

d

db
R v1 = F1(v1)

f1(v1)

f2(v2)

F2(v2)

v1 − v2

(v2 − b)2
,

d

dv1
Rb = − f2(v2)

F2(v2)
,

d

db
Rb = f2(v2)

F2(v2)
,

(23b)

with the boundary conditions

δv1(0) = δb(0) = 0, δv1(1) = 0. (23c)

Therefore, Newton’s iterations are

v(k+1)
1 = v(k)

1 + δ
(k)
v1 , b(k+1) = b(k) + δ

(k)

b , k = 0,1,2, . . . , (24)

where δ(k) = (δ
(k)
v1 , δ

(k)

b ) is the solution of (23) where R(k)
v1 = R v1 [(v ′

1)
(k), v(k)

1 ,b(k), v2], and R(k)

b = Rb[(v ′
1)

(k), v(k)
1 ,b(k), v2].

Note that the boundary-conditions (23c) were determined such that (v1 +δv1 ,b+δb) satisfies the boundary-conditions (20b).
As in the case of the fixed-point iterations (21), since Eq. (23a) is a system of two linear first-order equations, it is

not clear why its solution can satisfy the three boundary conditions (23c). In Fibich and Gavish (2010b), we provide some
informal arguments that suggest that the nonuniqueness at v2 = 0 “enables” the solution to satisfy the three boundary
conditions (23c).

4.3. Simulations

We solve the boundary-value problem (19) with F1(v) = v and F2(v) = v2. In this case, the maximal bid b̄ can be
calculated analytically (Marshall et al., 1994) and is given by b̄ = 37/64. Hence, we can monitor the error E(k) = |b(k)(1)− b̄|,
as a function of the iteration number k.

We first solve this problem using the boundary-value formulation (20) with the fixed-point iterations (21). As expected,
the error E(k) decreases linearly, going down from E(0) ≈ 0.1 to E(25) ≈ 8.5 × 10−10 in 25 iterations, see Fig. 9A. We then
solve the same problem using the boundary-value formulation (25) with Newton’s method (24). As expected, the observed
convergence rate is quadratic, going down from E(0) ≈ 0.1 to E(5) ≈ 8.5 · 10−10 in 5 iterations, see Fig. 9A.

In both cases, the limiting error stabilizes at E(∞) := limk→∞ E(k) ≈ 8.5 × 10−10. The limiting error does not go down to
zero, because of the discretization error of the finite-difference approximation of the differentiation operator d in (20). In
dv2
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Fig. 9. A: The error E(k) = |b(k)(1)− b̄| as function of the iteration number k, for the boundary-value method with the fixed-point iterations (21) (◦) and with
Newton’s iterations (24) (×). B: The limiting error E(∞) = limk→∞ E(k) as a function of the mesh size h (◦). Solid line is the fitted curve E(∞) ∼ 36.95h3.94.

other words, the numerical solution converges to the solution of the discrete approximation of (20), which is not identical
to the (continuous) solution of (20). Indeed, E(∞) is the same for both the fixed-point iterations (21) and for Newton’s
method (24), since we used the same discretization scheme in both cases. Moreover, in the simulations of Fig. 9A we used a
uniform grid with mesh-size h and a fourth-order finite-difference approximation of d

dv2
. Therefore E(∞) should scale as h4,

as we indeed confirm in Fig. 9B.

5. The boundary-value method (general n)

In Section 4 we presented a numerical method for solving the system (1) with 2 players using a boundary-value formu-
lation. We now generalize this approach for any number of players. As in the two-player case, in order to solve this problem
on the fixed interval [0,1], we recast (1) as a function of vn rather than of b. The resulting equations are given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dvi

dvn
= Fi(vi) fn(vn)

f i(vi)Fn(vn)

( 1
n−1

∑n
j=1

1
v j−b

)− 1
vi−b( 1

n−1

∑n
j=1

1
v j−b

)− 1
vn−b

, i = 1, . . . ,n − 1,

db

dvn
= fn(vn)

Fn(vn)

1( 1
n−1

∑n
j=1

1
v j−b

)− 1
vn−b

.

(25a)

These equations are solved on the fixed domain 0 � vn � 1, subject to the boundary conditions

vi(0) = b(0) = 0, vi(1) = 1, i = 1, . . . ,n − 1. (25b)

In order to generalize the fixed-point iterations (21) to n-players, we first simplify (25a) by multiplying the denominator
and enumerator of each equation by (n − 1)

∏n
l=1(vl − b) to obtain⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dvi

dvn
= Fi(vi) fn(vn)

f i(vi)Fn(vn)

∑n
j=1

[∏
l 	= j(vl − b)

]− (n − 1)
∏

l 	=i(vl − b)∑n
j=1

[∏
l 	= j(vl − b)

]− (n − 1)
∏

l 	=n(vl − b)
, i = 1, . . . ,n − 1,

db

dvn
= fn(vn)

Fn(vn)

(n − 1)
∏n

l=1(vl − b)∑n
j=1

[∏
l 	= j(vl − b)

]− (n − 1)
∏

l 	=n(vl − b)
.

(26)

The fixed-point iterations that generalize (21) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv(k+1)
i

dvn
= Fi(v(k)

i ) fn(vn)

f i(v(k)
i )Fn(vn)

×
∑n

j=1

[∏
l�i,l 	= j(v(k+1)

l − b(k))
∏

l>i,l 	= j(v(k)

l − b(k))
]− (n − 1)

∏
l<i(v(k+1)

l − b(k))
∏

l>i(v(k)

l − b(k))∑n
j=1

[∏
l<i,l 	= j(v(k+1)

l − b(k))
∏

l�i,l 	= j(v(k)

l − b(k))
]− (n − 1)

∏
l<i(v(k+1)

l − b(k))
∏

l>i(v(k)

l − b(k))
,

i = 1, . . . ,n − 1,

db

dvn
= fn(vn)

Fn(vn)

(n − 1)(vn − b(k+1))
∏

l 	=n(v(k+1)

l − b(k))∑n
j=1

[∏
l 	= j(v(k+1)

l − b(k))
]− (n − 1)

∏
l 	=n(v(k+1)

l − b(k))
,

(27a)

with the boundary conditions

v(k+1)
i (0) = b(k+1)(0) = 0, v(k+1)

i (1) = 1. (27b)

Newton’s method that generalizes (24) is

δ′ + Jδ = −R, (28a)
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Fig. 10. Difference �b(k) = |b̄(k) − b̄(k−1)| as a function of the iteration number k (◦), for the boundary-value method (25) with the fixed-point iterations (27).
Simulations of A: Fig. 11, and B: Fig. 12 (see below).

Fig. 11. Solution of (1) with three players with distribution Fi = {v, v2, v3} computed with A: the boundary-value method (25) with the fixed-point
iterations (27), and B: backward shooting (BIDCOMP2

). C: The difference ‖vBVM(b) − vBIDCOMP(b)‖.

where J is the Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎢⎣

∂
∂v1

R v1
∂

∂v2
R v1 · · · ∂

∂vn−1
R v1

∂
∂b R v1

...
...

∂
∂v1

R vn−1
∂

∂v2
R vn−1 · · · ∂

∂vn−1
R vn−1

∂
∂b R vn−1

∂
∂v1

Rb
∂

∂v2
Rb · · · ∂

∂vn−1
Rb

∂
∂b Rb

⎤
⎥⎥⎥⎥⎥⎦ , (28b)

R = (R v1 , R v2 , . . . , R vn−1 , Rb)
T is the residual vector, and

R vi = dvi

dvn
− Fi(vi) fn(vn)

f i(vi)Fn(vn)

( 1
n−1

∑n
j=1

1
v j−b

)− 1
vi−b( 1

n−1

∑n
j=1

1
(v j−b)

)− 1
vn−b

,

Rb = db

dvn
− fn(vn)

Fn(vn)

1( 1
n−1

∑n
j=1

1
v j−b

)− 1
vn−b

. (28c)

These equations are solved with the boundary conditions

δ(0) = 0, δvi (1) = 0, i = 1, . . . ,n − 1. (28d)

As in the case of two types of players, we do not provide a proof for the existence of the iterative solutions, or for their
convergence. In Section 5.1 we test the Newton’s iterations numerically, and observe that they converge in a quadratic rate.

5.1. Simulations

We first solve Eq. (1) with n = 3 players with distributions Fi = {v, v2, v3}, using the boundary-value formulation (25)
and the fixed-point iterations (27). Since an explicit expression for b̄ is not available in this case, we monitor the value of
�b(k) = |b(k)(1)−b(k−1)(1)|. Fig. 10A shows that the convergence rate is linear, and that �b(k) goes down from �b(0) ≈ 10−2

to �b(40) ≈ 10−15 in ≈ 40 iterations.
In order to confirm that the fixed-point iterations converged to the unique solution of (1), we compare the solu-

tion vBVM = (vBVM
1 , . . . , vBVM

n ) that the fixed-point iterations (27) converged to, see Fig. 11A, with the solution vBIDCOMP =
(vBIDCOMP

1 , . . . , vBIDCOMP
n ) computed using the freely available BIDCOMP2 backward-shooting program, see Fig. 11B. In this

case, BIDCOMP2 calculates the solution only down to b = bmin ≈ 0.1. At bmin ≈ 0.1 the BIDCOMP2 solution breaks down, and
sharply increases towards v = 1, demonstrating the inherent numerical instability of type-II backward solutions beyond vmin ,
see Section 3.4. In contrast, the boundary-value method does not suffer from this instability. Rather, the solution vBVM is
computed for 0 � b � b̄, and in particular satisfies the left boundary condition (1b), see Fig. 11A.
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Fig. 12. Same as Fig. 11 with n = 6 and the distributions Fi = {v, v3/2, v2, v5/2, v3, v7/2}. Inset in A is a zoom-in on the region 0.88 � b � b̄.

The difference in the value of b̄ computed by the two methods is |b̄BVM − b̄BIDCOMP| = 1.08 · 10−5, confirming that the
two methods converged to the same solution of (1). As b decreases from b̄, the difference between the two solutions

∥∥vBVM(b) − vBIDCOMP(b)
∥∥=

√√√√ n∑
i=1

(
vBVM

i (b) − vBIDCOMP
i (b)

)2
(29)

increases from 1.08 · 10−5 at b = b̄ ≈ 0.787 to 0.012 at b = vmin + 0.01 ≈ 0.11. Then at vmin ≈ 0.1 it jumps to 0.9, see
Fig. 11C. We attribute the increase in the difference (29) in the region vmin < b < 1 to the growth of the analytic error of
backward as b decreases from b̄, and the sudden jump in the difference (29) at b = vmin to the numerical error of type-II
backward solutions, see Section 3.4.

We next solve Eq. (1a) with 6 players with distributions Fi = {v, v3/2, v2, v5/2, v3, v7/2}, using the boundary-value
method (25) with the fixed-point iterations (27). As in the case of three players, the convergence rate is linear, and �b(k)

goes down by 13 orders of magnitude in ≈ 50 iterations, see Fig. 10B.
In Fig. 12A we plot the solution vBVM that the iterations (27) converged to. Although the six curves {vBVM

i }6
i=1 are nearly

indistinguishable, they are different and well resolved, see inset graph of Fig. 12A. In this case, BIDCOMP2 calculates the
solution only down to b = vmin ≈ 0.41, see Fig. 12B, at which point it breaks down, and sharply increases towards v = 1.
As expected, with six players, vmin is significantly larger with three players, see Fig. 11B, confirming that the analytic
instability of the backward solutions becomes more severe as the number of players increases. In contrast, the solution vBVM

is computed for 0 � b � b̄, and in particular satisfies the boundary condition (1b), see Fig. 12A.
As in the three-player case, the difference in the values of b̄ computed by the two methods is |b̄BVM − b̄BIDCOMP| =

4.6 × 10−6, showing that the two methods converged to the same solution of (1). As b decreases from b̄, the difference
between the solutions ‖vBVM(b) − vBIDCOMP(b)‖ increases from 4.6 × 10−6 at b = b̄ ≈ 0.9162 to 0.033 at b = vmin + 0.01 ≈
0.42. Then at vmin ≈ 0.41 it jumps to 0.6, see Fig. 12C. As before, we attribute the increase in the difference (29) in the
region vmin < b < 1 to the growth of the analytic error of backward solutions as b decreases from b̄, and the jump in the
difference (29) at b = vmin to the numerical error of type-II backward solutions.

The convergence of the fixed-point iterations (27) does not slow down as the number of players increases. Indeed,
both simulations converged (i.e., �b(k) went down by 10−13) in 40–50 iterations, see Fig. 10. Moreover, the simulations in
Section 6.1 with up to 450 players also converged in 25–50 iterations. Therefore, unlike backward shooting, the boundary-value
method does not become less efficient as the number of players increases.

6. Applications

In this section we apply the boundary-value method to several problems that could not been solved using backward
shooting.

6.1. Large auctions

In Section 3 we saw that the instability of backward solutions becomes more severe as the number of players increases.
Therefore, the study numerically large asymmetric first-price auctions with backward shooting is limited. We now use the
boundary-value method to study large asymmetric first-price auctions, namely we solve Eq. (1) using the boundary-value
formulation (25) with the fixed-point iterations (27).

We begin with the case of n = 9 players with the nine distributions

Fk = ck · erf

(
αk

αk + 1

v√
2

)
, αk = 1,2,3 (truncated normal distribution)

Fk = ck · vβk , βk = 1,2,3 (power)

Fk = ck ·
[

1 − exp

(
v
)]

, γk = 1,2,3 (Weibull), (30)

γk
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Fig. 13. Solution of (1) with n players (dashed curves) divided into nine equal groups. The players of the ith group draw their value according to the
distribution Fi from (30). Solid line is v = b. A: n = 9, B: n = 18, C: n = 450.

Fig. 14. Zoom-in on the data of Fig. 13 for b near b̄ and vi(b) near 1.

where erf(x) = 2√
π

∫ x
0 e−t2

dt , and {ck} are set such that Fk(1) = 1. The nine curves {vi(b)}9
i=1 are nearly indistinguishable,

see Fig. 13A. In order to show that these nine curves are different and well resolved, we plot them near b = b̄ and vi = 1,
see Fig. 14A.

Next, we solve Eq. (1) with n = 18 players, when the players are divided into nine groups, each group has two players,
and the players of the ith group draw their value according to the distributions {F1, F2, . . . , F9} given by (30). In this
case, b1(v) = b2(v), b3(v) = b4(v), . . . ,b17(v) = b18(v). Therefore, only nine curves are plotted in Fig. 13B. The nine curves
in Fig. 13B are closer to each other and to v = b than in the n = 9 case in Fig. 13A, suggesting that

lim
n→∞ bi(v) = v, 1 � i � n. (31)

These nine curves are different and well resolved, see Fig. 14B.
Finally, we solve Eq. (1) with n = 450 players which are divided into nine groups of 50 players, and the players of the

ith group draw their value according to the distribution Fi given by (30). The nine curves are indistinguishable from each
other and from the curve v = b, see Fig. 13C, in agreement with (31). These nine curves are different and well resolved, see
Fig. 14C.

6.2. Asymptotic revenue equivalence

One of the most fundamental results in auction theory is the Revenue Equivalence Theorem, which states that the ex-
pected revenue of the seller in equilibrium is independent of the auction mechanism, so long as the equilibrium has the
properties that the buyer with the highest value wins, and any buyer with the lowest possible value has zero expected
surplus. This condition holds for symmetric auctions, but not for asymmetric auctions. Hence, asymmetric auctions are
generally not revenue equivalent (see, e.g., Maskin and Riley, 2000). Nevertheless, since asymmetric auctions “become sym-
metric” as n → ∞, see Section 6.1, asymmetric auctions become revenue equivalent as n → ∞ (Bali and Jackson, 2002).

We now use the boundary-value method to compute the rate at which large asymmetric auctions become revenue equiv-
alent. Consider two groups of players, n/2 players with distribution F1(v), and n/2 players with distribution F2(v). Since
the bidding strategy of all bidders within the same group is the same, the system (1) reduces to

v ′
1(b) = F1(v1(b))

f1(v1(b))

1

2(n − 1)

[
n

v2(b) − b
− n − 2

v1(b) − b

]
,

v ′
2(b) = F2(v2(b))

f2(v2(b))

1

2(n − 1)

[
n

v1(b) − b
− n − 2

v2(b) − b

]
, (32a)

with the boundary conditions

v1(0) = v2(0) = 0, v1(b̄) = v2(b̄) = 1. (32b)
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Fig. 15. Revenue difference between first- and second-price auctions when the players are divided into two groups, each with n/2 players (dashed curve).
Data is plotted on a logarithmic scale. A: F1 and F2 are given by (33). Solid curve is the numerical fitted curve 0.04n−3. B: F1 = v and F2 = v2. Solid curve
is the numerical fitted curve 0.035n−4.

We solve (32) using the boundary-value method (25) with Newton’s iterations (28), for n = 2,4, . . . ,400 play-
ers. Then, we calculate the seller’s expected revenue, which is given by the one-dimensional integral R1st(n) = b̄ −∫ b̄

0

∏n
i=1 Fi(vi(b))db.11 In the case of an asymmetric second-price auction, the seller’s expected revenue is given explic-

itly by R2nd(n) = 1 − ∫ 1
0 [(1 − n)

∏n
i=0 Fi(v) +∑n

i=1
∏

j 	=i F j(v)]dv.

In Fig. 15A we plot the revenue difference between first- and second-price asymmetric auctions as a function of n for
the case of two groups, each with n/2 players, with the distributions

F1 =
[

1 − exp

(
v

2

)]/[
1 − exp

(
1

2

)]
(Weibull), F2 = √

v. (33)

In this case, the revenue difference behaves as

R1st(n) − R2nd(n) ∼ 0.04

n3
. (34)

In Fig. 15B we repeat this procedure with F1 = v and F2 = v2, for n = 2,4, . . . ,280 players. In this case, the revenue
difference behaves as

R1st(n) − R2nd(n) ∼ 0.035

n4
. (35)

The most noticeable feature in Fig. 15 is that the revenue differences between first-price auctions and second-price auc-
tions decay very rapidly with the number of players. For example, already with 6 players the revenue differences are 0.02%
or less. The rate at which the revenue differences go to zero is not the same in the two examples. Nevertheless, in these
two examples, as well as in additional examples that we checked (data not shown), the decay rate of the revenue difference
was always at least O(1/n3). This numerical observation is relevant to the open problem of revenue ranking of first and
second asymmetric auctions, as it suggests that:

1. In the case of large auctions, the revenue differences are so small that the problem of revenue ranking is more of
academic interest than of practical value.

2. Already with six players, the revenue differences are typically in the fourth or fifth digit.

6.3. Relaxing the assumption of stochastic dominance

Kirkegaard (2009) noted that the standard assumption in the existing analytic studies of asymmetric first-price auctions
is that the distributions {Fi} can be ordered according to first-order conditional stochastic dominance, i.e.,

F1 � F2 � · · · � Fn, (36)

where Fi � F j if d(Fi(v)/F j(v))/dv < 0. Because Fk(1) = 1 for k = 1, . . . ,n, relation (36) implies that

F1(v) > F2(v) > · · · > Fn(v), 0 < v < 1.

Therefore, the distribution {Fi} do not cross each other in (0,1).
A natural question is whether the analytic results proved under the assumption of stochastic dominance remain true

when this assumption is removed. For example, Maskin and Riley (2000) proved the following result:

Lemma 6.1. Consider a first-price auction with two players with distributions F1 and F2 . If F1 ≺ F2 , then μ1 � b̄ � μ2 , where

11 In this approach one can compute the expected revenue much more efficiently and accurately than with the commonly used Monte Carlo approach
(Fibich and Gavious, 2003).
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Fig. 16. Solution of (1) with the distributions given by (38), calculated using the boundary-value method with the fixed-point iterations (21).

μi =
1∫

0

v fi(v)dv, (37)

is bidder’s i expected value.

We now use the boundary-value method to show that Lemma 6.1 does not hold when F1 and F2 cannot be ordered
according to first-order conditional stochastic dominance. To do that, we solve (1) for two players with

F1(v) = erf

(
v

2
√

2

)/
erf

(
1

2
√

2

)
, F2(v) = F1(v) + 3v(1 − v)

(
1

2
− v

)
, (38)

where erf(x) = 2√
π

∫ x
0 e−t2

dt . Since F1 and F2 cross at v = 1/2, they cannot be ordered according to first-order conditional

stochastic dominance. Moreover, for the distributions (38), μ1 = μ2 ≈ 0.36. Therefore, if Lemma 6.1 remains valid without
the stochastic dominance assumption, then b̄ = μ1 ≈ 0.36. Our simulation shows that b̄ ≈ 0.48, see Fig. 16.12 Hence, we
conclude that Lemma 6.1 does not hold in the general case.

Kirkegaard (2009) stated that “all existing classes of numerical examples share the common feature that the number of
times the bid strategies cross is at most one”. Therefore, although “it is straightforward to construct examples with several
crossings, [. . .] with the current specifications, the numerical literature will be unable to provide examples with several
crossings”.

We now use the boundary-value method to provide a numerical example of bidding strategies with more than one
crossing. Specifically, we solve Eq. (1) with three players with the distributions

F1 = v, F2 = v + 2v2(1 − v2)(0.25 − v2)(0.75 − v2),
F3 = v − 3v2(1 − v2)(0.25 − v2)(0.75 − v2). (39)

These distributions cross each other twice in the interval (0,1) at v = √
0.25 and v = √

0.75, see Fig. 17A. Therefore, by
Kirkegaard (2009, Proposition 3), the bidding strategies in this case should cross each other twice in the interval (0,1), as
indeed can be observed in Fig. 17B.

7. Discussion

In this study, we showed that the standard backward-shooting method for computing the equilibrium strategies of asym-
metric first-price auctions is inherently unstable. This instability becomes more severe as the number of players increases,
and cannot be eliminated by changing the numerical methodology of the backward solver. Then, we proposed a novel
boundary-value method for computing the equilibrium strategies of asymmetric first-price auctions. Unlike backward shoot-
ing, the boundary-value method is stable.

Our simulations show that the boundary-value method is considerably more robust than the backward-shooting method.
In particular, it can compute the equilibrium strategies even when the number of players is large. The boundary-value
method is also not restricted to certain distributions and it can accommodate distributions of mixed types. In contrast, the
current backward-shooting programs are restricted to several common types of distributions, and do not allow distributions
with mixed types.

A key element in the boundary-value method is the change of the independent variable from b to vn , which fixes the
domain over which the system of ordinary differential equations is solved. Our simulations show that the convergence of

12 At first glance, it seems that special numerical treatment is required to handle the sharp variation of v2(b) near b = 0, see Fig. 16. However, in Fig. 16
we solve Eq. (20b) numerically for v1(v2) and b(v2), which do not have an infinite derivative at the left boundary.
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Fig. 17. A: Distributions F1 (dash-dotted), F2 (dashed) and F3 (solid) given by (39). B: Solution of (1) with the distributions (39).

the fixed-point iterations can depend on the choice of the independent variable. For example, in Section 4.3 we computed
the equilibrium strategies with F1(v) = v and F2(v) = v2 by changing the independent variable from b to v2 and solving
the transformed nonlinear system using the fixed-point iterations. The same fixed-point iterations, however, would diverge
if we choose v1 as the independent variable. Further research is needed in order to eliminate the ad-hoc choice of the
independent variable.

In the boundary-value method, the transformed nonlinear boundary-value problem is solved using either fixed-point or
Newton iterations. There is a trade-off between efficiency and ease of implementation between these two methods: The
fixed-point iterations are simpler to implement (especially in the case of many different players), but converge slower than
Newton’s iterations. Therefore, we chose to use the fixed-point iterations for auctions with more than two different players,
and Newton’s iterations for auctions with two large groups of players. Performance and implementation details are further
discussed in Fibich and Gavish (2010b).

In this work we did not study the sensitivity of the fixed-point iterations and Newton’s iterations to the initial guess.
However, the fact that all the simulations in this study converged with the same initial guess, see (22), strongly suggests
that both the fixed-point iterations and Newton’s iterations are insensitive to the initial guess.

In this study, we showed analytically and numerically that the backward-shooting method becomes unstable as the num-
ber of players increases. In contrast, no such problem arises with the boundary-value method. In addition, the convergence
rate of the fixed-point iterations with 9–450 players is the same as with 3–6 players. This shows that the boundary-value
method does not become less efficient as the number of players increases. Therefore, in contrast to the backward shooting
method, the boundary-value method is well suited for studying large auctions.
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