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We consider the diffusion of new products in social networks, where consumers who adopt the product can
later “recover” and stop influencing others to adopt the product. We show that the diffusion is not described by the
susceptible-infected-recovered (SIR) model, but rather by a new model, the Bass-SIR model, which combines the
Bass model for diffusion of new products with the SIR model for epidemics. The phase transition of consumers
from nonadopters to adopters is described by a nonstandard Kolmogorov-Johnson-Mehl-Avrami model, in which
clusters growth is limited by adopters’ recovery. Therefore, diffusion in the Bass-SIR model only depends on the
local structure of the social network, but not on the average distance between consumers. Consequently, unlike
the SIR model, a small-worlds structure has a negligible effect on the diffusion. Moreover, unlike the SIR model,
there is no threshold value above which the diffusion will peter out. Surprisingly, diffusion on scale-free networks

is nearly identical to that on Cartesian ones.
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I. INTRODUCTION

Diffusion through social networks concerns the spreading
of “items” ranging from diseases and computer viruses to
rumors, information, opinions, technologies, and innovations,
and it has attracted the attention of researchers in physics,
mathematics, biology, computer science, social sciences,
economics, and management science [1-6]. In marketing,
diffusion of new products is a fundamental problem [7].
Ideally, firms would like to be able to predict future sales of
a new product, its market potential, and the impact of various
promotional strategies, based on sales data from the first few
months.

The first mathematical model of diffusion of new products
was proposed in 1969 by Bass [8]. The Bass model inspired
a huge body of theoretical and empirical research (in 2004 it
was named one of the ten most-cited papers in the 50-year
history of Management Science [9]), in diverse areas such
as retail service, industrial technology, agriculture, and in
educational, pharmaceutical, and consumer-durables markets
[7]. In all these studies, however, it was assumed that once a
consumer adopts the product, he influences other nonadopters
to adopt (or disadopt) the product at all later times. More often
than not, however, adopters “recover” from influencing other
people after some time. For example, it was recently observed
that new installations of solar photovoltaic (PV) systems are
strongly influenced by the presence of nearby previously
installed systems, but the effect of nearby PV systems decays
after several months [10].

In this paper, we study the diffusion of new products
when adopters are allowed to recover. This problem cannot
be analyzed using the SIR model [11], since in this model
all the external adopters, i.e., those who were not influenced
by previous adopters (“patients zero”), exist at + = 0, which
is not the case for new products. Therefore, we introduce a
new model, the Bass-SIR model, which allows for an ongoing
creation of external adopters. We show that this difference in
the generation of external adopters is not a technical issue,
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as it leads to a completely different diffusion dynamics. In
particular, unlike the SIR model, there is no threshold quantity
that determines whether an epidemic occurs or the disease
simply dies out. This does not mean that the entire population
eventually adopts the product, but rather that the Bass-SIR
model only considers the people in the population who will
ultimately adopt the product (the “market potential™) [12].

To understand the effect of the network structure in the
Bass-SIR model, we introduce a nonstandard Kolmogorov-
Johnson-Mehl-Avrami (KIMA) model for phase transitions,
in which clusters growth is limited by adopters’ recovery. The
KJMA model with recovery may also be relevant to other
problems in physics, such as algorithmic self-assembly of
DNA tiles [13], where “recovery” corresponds to an assembly
error.

II. DISCRETE BASS-SIR MODEL

Consider a new product that is introduced at time ¢t = 0 to
a market with M potential consumers. The consumers belong
to a social network that is represented by an undirected graph,
such thatif consumers i and j are connected, they can influence
each other to adopt the product. As in the Bass model [8], if
consumer j did not adopt the product by time #, his probability
to adopt (and thus become a contagious adopter) is [14]

p b(jadoptsin) ( n ij(t))At+ (A1) (1a)
ro =\PT4 e ‘
(t.t + A1) kj

as At — 0, where i;(¢) is the number of contagious adopters
connected to j at time ¢, and k; is the number of social con-
nections (“degree”) of j. The parameters p and g describe the
likelihood of a consumer to adopt the product due to external
influences by mass media or commercials, and due to infernal
influences by contagious adopters to which he is connected
(“word of mouth”), respectively. In physical contexts, such
influences correspond to an external source term and a drift
term, respectively. In epidemics, such influences correspond to
animal to human and human to human infections, respectively.
The magnitude of internal influences increases linearly with
the number i; of contagious adopters connected to j, and is
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normalized by k; so that regardless of the network structure,
the maximal internal influence that j can experience (when all
his social connections are contagious adopters) is g [15].

Unlike previous Bass models, we do not assume that
adopters remain contagious forever. Rather, as in the SIR
model [11], we assume that the probability of an adopter who
was contagious at time ¢ to become noncontagious (“recover’)
in (¢,t + At) is

p Jj recovers in
(t,t + At)

as At — 0, where r is the recovery parameter.

Since Egs. (1a) and (1b) come from the discrete Bass and
SIR models, respectively, we refer to Eqgs. (1) as the discrete
Bass-SIR model.

We denote by S(¢), I(¢), and R(t) the fraction of non-
adopters (“susceptible”), contagious adopters (“infected”’), and
noncontagious adopters (“recovered’) at time ¢, respectively.
The fraction of adopters (contagious and recovered) is denoted
by f =1+ R=1-S. Since the product is new, initially
all consumers are non-adopters, and so S(0) = 1 and f(0) =
1(0) = R(0) = 0.

) =rAt + o(At), (1b)

III. NONSPATIAL (COMPLETE) NETWORKS

When all M consumers are connected to each other,
then i;(t) = M - I(t) is the number of contagious adopters
in the market and k; = M — 1. As M — oo, the aggregate
(macroscopic) diffusion dynamics is governed by [16]

St)y=-S(p+ql), I't)=S(p+ql)—rl, R@)=rl,

(2a)
SO)=1, I1(0)=0, RO =0, (2b)
where’ = <. In the absence of recoveries (- = 0), R = 0 and

i
f=1=1-3S, and so Egs. (2) reduce to the original Bass

model [8]
fO=0-fp+af),  fO)=0.

Solving this equation yields the well-known Bass formula,
1 — e~ (Pta)x
I+ (q/pe @ror
Similarly, when p = 0, Eqgs. (2a) reduce to the SIR model [11],
S't)=—qSI, I'(t)=qSI—rl, R@)=rl, 4

fBass (t) = (3)

which is typically supplemented by the initial conditions,
SO)=1—-1,, 10)=1 >0, R(0O)=0,

where [y is the fraction of contagious adopters at t = 0.
Therefore, we refer to Eq. (2) as the continuous Bass-SIR
model.

Figure 1(a) demonstrates the agreement between the
discrete and continuous Bass-SIR models on a nonspatial
network. Figure 1(b) shows the dependence of f(¢), the
fraction of adopters, on r. When r < g, adopters have
sufficient time to influence their social contacts before they
become noncontagious. Hence, the effect of recovery is small,
and diffusion is only slightly slower than in the absence
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of recovery, i.e., f(t;p,q,r) =~ f(t;p,q.,r =0) = fpass; se€
Eq. (3). As r increases, internal influences persist for shorter
times, hence diffusion becomes slower. Therefore, f is mono-
tonically decreasing in r. In particular, when r > ¢, adopters
have little time to influence their social contacts before
they become noncontagious. Therefore, internal influences
effectively disappear, and diffusion is driven by purely external
adoptions, i.e., f(t;p,q.r)~ f(t;p,q =0 =1—¢7. In
particular, unless r < g, neglecting recovery (i.e., using the
Bass model and not the Bass-SIR model) leads to inaccurate
results.

IV. CARTESIAN NETWORKS

To analyze the effect of a network with a spatial structure
on the diffusion, we first consider periodic D-dimensional
Cartesian networks, where each node (consumer) is connected
to its 2D nearest neighbors. In that case, relation Eq. (1a) reads

Jadopts in) ﬁ
Prob((m 4 At)> = (p +4q D )At +o(At). (5)

Thus, when D = 1 the network is a circle and each consumer
can be influenced by his left and right neighbors, when D = 2
the network is a torus and each consumer can be influenced by
his up, down, left, and right neighbors, etc.

Our simulations reveal that for given values of p, ¢, and r,
diffusion in a 2D network is faster than in a 1D network but
slower than in a 3D network, which, in turn, is slower than
in a nonspatial network (Fig. 2). Note that this result is not
obvious, since as a network gets more connected, the effect
of each connection decreases, so that the maximal internal
influence remains g; see Eq. (1a). The differences among the
four networks decrease with r. This is because a larger r means
shorter internal effects, hence a weaker dependence on the
network structure.

A priori, it may seem that diffusion becomes faster with
D, because for a Cartesian network with M consumers, the
average distance between consumers decreases as M'/P. If
diffusion depends on the average distance between consumers,
however, then increasing the population size should slow
down the fractional adoption, so that limy;_, », f(¢) = 0. This,
however, is not the case, since limy; oo f > 1 — e 7.

1 1 = —————
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FIG. 1. Fraction of adopters in the Bass-SIR model on a nonspa-
tial network, as a function of t* = gt. Here p = 0.01 and g = 0.1. (a)
Agreement between the continuous model Eq. (2) [solid] and a single
simulation of the discrete model Eq. (1) with M = 10000 [dashes].
Here r = 0.1. (b) The continuous model with » = 0, 0.1¢, ¢, and 7q.
Here r = 0is fpass, see Eq. (3),and g = 0is f =1 — e 7.
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V. KOLMOGOROV-JOHNSON-MEHL-AVRAMI
(KJMA) MODEL

To understand the effect of the network structure, it is
useful to visualize the diffusion process as an ongoing random
creation of external adopters (“seeds”). Once created, each
seed expands through internal adoptions into a cluster of
adopters, and expanding clusters can merge into larger clusters.
This is nothing but the KIMA model for phase transitions
[17-19] from nonadopters to adopters. Unlike its standard
applications in physics (but as in algorithmic self-assembly
of DNA tiles [20]), in the Bass-SIR model the evolution of
clusters can be more complex, because of the recoveries. To
see that, in Fig. 3 we simulate the evolution of single cluster
in a 2D network, by placing a single contagious adopter at
t =0, and setting p = 0 in Eq. (la) so that all subsequent
adoptions are purely internal. When r is sufficiently small,
clusters expand as squares/circles, whose radius increases
with time (top row). As r increases, the cluster expands more
slowly, the fraction of recovered adopters (out of all adopters)
increases, and contagious adopters are mostly concentrated
near the cluster surface (second raw). As r further increases
(third row), some adopters on the cluster boundary recover
before they lead to new adoptions. As a result, clusters evolve
into irregular shapes. As r further increases (fourth row), the
cluster ceases to expand after some time, once all of its adopters
became noncontagious.

Since external adoptions are independent of the network
structure, the KIMA model implies that the network structure
affects the diffusion by affecting the average rate at which
clusters expand. We can use this insight to explain the results
of Fig. 2, as follows. The average radius p of clusters of size

N scales as N %, hence their average surface area (i.e., the
number of adopters on the cluster surface which are in direct
contact with nonadopters) scales as p?~! ~ N % Therefore,
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o //// =
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FIG. 2. Fraction of adopters in the Bass-SIR model on 1D (dots),
2D (dash-dot), 3D (solid), and nonspatial (dashes) networks. Here
p=0.01, g =0.1, and M = 10,000. (a) r =0. (b) r =0.1¢q. (c)
r=q.(d)r="7q.
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FIG. 3. Typical evolution of a single cluster on a 2D network.
Here p =0, ¢ = 0.1, and there is a single contagious adopter at
t = 0. Each row corresponds to a different value of r. Contagious
and recovered adopters are marked by orange and black pixels,
respectively.

the cluster expansion rate scales as g N 5 /D; see Eq. (5).
Hence, the higher D is, the faster the cluster expansion is [14].

VI. SMALL-WORLDS NETWORK

The structure of real-life social networks is different from
that of Cartesian networks. Watts and Strogatz [21] suggested
that social networks have a small-worlds structure, whereby
most connections are local, but there are also some random
long-range connections. They showed that even a small
fraction of long-range connections can lead to a dramatic
reduction in the average distance between nodes. As a result,
epidemics spread much faster on networks with a small-worlds
structure.

The acceleration of diffusion by a small-worlds structure
should be maximal in the 1D model, because for a given M,
the average distance is maximal in the 1D model. To induce a
“5% small-worlds structure” in the 1D model, we add a link
between any two nodes with probability 0.05/M, so that the
average graph degree increases from 2 to 2.05. If, as a result, j
is connected to k; > 2 other consumers, we change the internal
effect of each of these consumers on j from g/2 to g/k;, in
accordance with Eq. (1a).

Our simulations reveal that the addition of a small-worlds
structure has a negligible effect on diffusion of new products
[Figs. 4(a)-4(c)]. This is because a small-worlds structure
reduces the average distance between agents. This global
network property has a negligible effect, however, on diffusion
of new products, which depends on the growth rate of a cluster,
which, in turn, depends on local properties of the network (such
as the grid dimension D). Indeed, roughly speaking, if in the
absence of a small-worlds structure a certain cluster reaches
at time ¢ a size of N(¢) = 20, then adding a “5% small-worlds
structure” would increase N(¢) at most to 21.
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FIG. 4. Diffusion on a 1D network with (solid) and without
(dashes) a small-worlds structure. Here ¢ = 0.1 and M = 10,000.
(a)—(c) Fraction of adopters in the discrete Bass-SIR model. Here
p = 0.01, and there are no adopters att = 0. (a) r = 0. (b) r = 0.14.
(c) r = q. (d)—(f) Number of adopters in the discrete SIR model. Here
p =0, and diffusion starts from five randomly chosen contagious
adoptersatt =0.(d)r =0.(e)r =0.1g. ) r =gq.

To show that our results are not inconsistent with Ref. [21],
in Figs. 4(d)—4(f) we repeat these simulations for the SIR
model on the same 1D network with 5% small-worlds
structure, and with the same values of ¢ and r. Thus, the
only differences from Figs. 4(a)—4(c) is that we now set
p =0 in Eq. (1a), and we let five randomly chosen agents
be contagious adopters at + = 0. In this case the small-worlds
structure has a major effect on diffusion, in agreement with
Ref. [21]. Interestingly, while in the absence of recovery a
small-worlds structure always accelerates diffusion, in the
presence of recoveries it may also slow it down [Fig. 4(e)].

VII. SCALE-FREE NETWORKS

Another popular model for social networks is that of a
scale-free network. We constructed scale-free networks using
the Barabdsi-Albert (BA) preferential-attachment algorithm
[22], in which each new node makes m new links with the
existing network nodes, such that the probability of a new
node to connect to node i is k;,/ D, k;, where k; is the degree
of node i. In the resulting scale-free network, if node j is
connected to k; nodes, the effect of each of these nodes on j
is q/k;; see Eq. (1a).

Our simulations of the discrete Bass-SIR model Eq. (1) on
scale-free networks show that, as expected, the larger m is, the
faster the diffusion [Fig. 5(a)]. Surprisingly, the diffusion on a
scale-free network with parameter m is nearly identical to that
on a Cartesian network with D = m [Figs. 5(b)-5(e)]. This
numerical observation is very surprising, since these networks
are different from each other in almost any aspect. Yet, for
some reason, the average growth rate of clusters is nearly
identical in these networks.
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FIG. 5. Fraction of adopters in the Bass-SIR model Eq. (1) on
networks with p = 0.01, ¢ = 0.1, r = 0.5¢, and M = 50,000. (a)
Scale-free networks with m = 1,2,3, and 4. (b)—(e) Scale-free (solid)
and Cartesian (dashes) networks. (b) m = D =1. (c) m = D = 2.
dm=D=3.(eym=D =4.

VIII. SUMMARY

Two fundamental models of diffusion in social networks
are the Bass model for new products and the SIR model for
epidemics [2]. To the best of our knowledge, these models
have not been combined into a single model until now.

The Bass-SIR model is fundamentally different from either
of these models. Indeed, since the Bass model does not allow
for recovery, it cannot be used for products for which recovery
affects the diffusion (e.g., solar PV systems).

The SIR model does allow for recovery. However, in the
SIR model all external adopters exist at ¢+ = 0, whereas in the
Bass-SIR model there is an ongoing generation of new external
adopters. This difference in the generation of external adopters
is not a technical issue, as it leads to a completely different
diffusion dynamics.

The key difference between these models is that in the
SIR model there is a threshold value of r, above which the
epidemics will peter out. In contrast, in the Bass-SIR model ev-
eryone eventually adopts, since f(t; p,q,r) > f(t; p,0,r) =
1 —e 7.

The effect of the social network structure in these two
models is also very different. Thus, in the SIR model, diffusion
occurs through the expansion of a single cluster of internal
adopters around “patient zero.” Therefore, the key determinant
of diffusion speed is the average distance from patient zero
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(or more generally, the average distance between individuals),
which is a global property of the network. In contrast, diffusion
in the Bass-SIR model occurs through the expansion of numer-
ous clusters. Therefore, the diffusion speed is determined by
the growth rate of clusters, which depends on local properties
of the network. It is because of these differences that, e.g., (i)
A small-worlds structure has a large effect on diffusion in the
SIR model, but a negligible one in the Bass-SIR model. (ii)
Doubling the population size roughly doubles the time 7},
for half of the population to adopt in the SIR model, but has a
negligible effect on 77/, in the Bass-SIR model.

The choice between the Bass-SIR model and the SIR model
depends on the initiation of the diffusion process. Diseases and
rumors that start from a “patent zero” call for the SIR model.
External adoptions of new products and external infections
from mosquito bites are ongoing processes, and thus call for
the Bass-SIR model.

PHYSICAL REVIEW E 94, 032305 (2016)

Some remaining open questions concern the effect of the
network structure. For example, is it true that as M — oo,
the diffusion on a scale-free network becomes identical to
that on a Cartesian network with D = m? Can we derive
macroscopic (averaged) equations for diffusion in Cartesian
and scale-free networks? How does recovery affect the phase
transition kinetics in the KIMA model?
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