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BOUNDARY EFFECTS IN THE DISCRETE BASS MODEL\ast 

GADI FIBICH\dagger , TOMER LEVIN\dagger , AND OREN YAKIR\dagger 

Abstract. To study the effect of boundaries on diffusion of new products, we introduce two
novel analytic tools: The indifference principle, which enables us to explicitly compute the aggregate
diffusion on various networks, and the dominance principle, which enables us to rank the diffusion
on different networks. Using these principles, we prove our main result that on a finite line, one-sided
diffusion (i.e., when each consumer can only be influenced by her left neighbor) is strictly slower than
two-sided diffusion (i.e., when each consumer can be influenced by her left and right neighbors). This
is different from the periodic case of diffusion on a circle, where one-sided and two-sided diffusion
are identical. We observe numerically similar results in higher dimensions.
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1. Introduction. Diffusion of new products is a fundamental problem in mar-
keting [16]. More generally, diffusion in social networks has attracted the attention of
researchers in physics, mathematics, biology, computer science, social sciences, eco-
nomics, and management science, as it concerns the spreading of ``items"" ranging from
diseases and computer viruses to rumors, information, opinions, technologies, and in-
novations [1, 2, 15, 17, 18, 19]. The first mathematical model of diffusion of new
products was proposed in 1969 by Bass [3]. In the Bass model, an individual adopts a
new product because of external influences by mass media and internal influences by
individuals who have already adopted the product. Bass wrote a single ODE for the
number of adopters in the market as a function of time and showed that its solution
has an S-shape. This classical paper inspired a huge body of theoretical and empirical
research [20]. Most of these studies also used ODEs to model the adoption level of
the whole market. More recently, diffusion of new products has been studied using
discrete, agent-based models (ABMs) [8, 10, 11, 12, 13]. This kinetic-theory approach
has the advantage that it reveals the relation between the behavior of individual con-
sumers and the aggregate market diffusion. In particular, discrete models can allow
for a social network structure, whereby individuals are only influenced by their peers.
Most studies that used a discrete Bass model with a spatial structure were numerical
(e.g., [5, 9, 12]). To the best of our knowledge, an analysis of the effect of the network
structure on the diffusion of new products was only done in [8] for the discrete Bass
model and in [7] for the discrete Bass-SIR model. Thus, at present there is limited
understanding of the effect of the social network structure on the diffusion.

In this paper we present the first study of boundary effects in the discrete Bass
model. Our motivation comes from products that diffuse predominantly through
internal influences by geographical neighbors, such as residential rooftop solar sys-
tems [4, 14]. For such products, it is reasonable to approximate the social network
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BOUNDARY EFFECTS IN THE DISCRETE BASS MODEL 915

by a two-dimensional grid, in which each node represents a residential unit. Previous
studies of the discrete Bass model on two-dimensional networks avoided boundary
effects by imposing periodic boundary conditions [6, 7, 8]. In that case, all nodes are
interior and are influenced from all sides by the adjacent nodes. In practice, however,
some residential units (nodes) lie at the boundary of the municipality. In addition,
some interior residential units are separated by a physical barrier (river, highway)
from adjacent units. Therefore, real two-dimensional networks are not periodic but
rather have exterior and possibly also interior boundaries.

The goal of this paper is to study the role such boundaries play in the diffusion of
new products. The paper is organized as follows. Section 2 reviews the discrete Bass
model. Section 3 introduces several analytic tools that are used in the subsequent
analysis. As in [8], translation invariance (section 3.1) simplifies the analysis on
periodic networks. The methodological contribution of this paper consists of two
novel principles: (i) The dominance principle (section 3.2) identifies pairs of networks
for which the adoption in the first network is slower than in the second network,
and (ii) the indifference principle (section 3.3) enables the explicit calculation of the
adoption curve on various networks by identifying edges which have no effect on the
adoption probabilities of certain sets of nodes.

In section 4.1 we use the indifference principle to simplify the explicit calculations
of one-sided and two-sided diffusion on the circle, which were first done in [8]. In
particular, we recover the result that on the circle, one-sided and two-sided diffusion
coincide. In sections 4.2 and 4.3 we use the indifference principle to obtain new
results, namely, the explicit calculation of one-sided and two-sided diffusion on a line,
and on a hybrid network of a circle with a ray. In section 4.4 we prove our main
result that on the line, one-sided diffusion is strictly slower than two-sided diffusion.
Since one-sided and two-sided diffusion on the circle coincide, the difference between
one-sided and two-sided diffusion on the line is purely a boundary effect. This insight
explains a previous finding [7] that when adopters are allowed to recover (i.e., to
become noncontagious), one-sided diffusion on the circle is slower than two-sided
diffusion. Indeed, once consumers begin to recover, the circle is broken into several
disjoint lines. Since one-sided diffusion on each of these lines is slower than two-sided
diffusion, so is the overall diffusion.

In higher dimensions, the explicit calculation of the aggregate diffusion is an open
problem. Numerical simulations suggest that the behavior is similar to that in the
one-dimensional case, namely, one-sided and two-sided diffusion are identical when
the network is periodic, but that one-sided diffusion is strictly slower than two-sided
diffusion when the network is nonperiodic (section 4.5).

2. Discrete Bass model. We now review the discrete Bass model for diffusion
of new products [3, 8]. A new product is introduced at time t = 0 to a market with
M potential consumers. Initially all consumers are nonadopters. If consumer j adopts
the product, she remains an adopter at all later times. Let Xj(t) denote the state of
consumer j at time t, so that

Xj(t) =

\biggl\{ 
1 if j adopted by time t,
0 otherwise.

The consumers belong to a social network which is described by an undirected or
directed graph, such that node j has a positive weight pj , and the directed edge i
\rightarrow j has a positive weight qi,j .

1 If j did not adopt the product by time t, her

1If the graph is undirected, then qi,j = qj,i.
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916 GADI FIBICH, TOMER LEVIN, AND OREN YAKIR

probability to adopt it in the interval (t, t+\Delta t) is

(2.1) Prob

\biggl( 
j adopts in

(t, t+\Delta t)

\biggr) 
=

\Bigl( 
pj +

\sum 
i \not =j

qi,jXi(t)
\Bigr) 
\Delta t, \Delta t\rightarrow 0.

The parameter pj describes the likelihood of j to adopt the product due to external
influences by mass media or commercials. Similarly, the parameter qi,j describes
the likelihood of j adopting the product due to internal influences (word of mouth,
peers' effect) by i, provided that i had already adopted the product and that j can
be influenced by i.2 The level of internal influences experienced by j is the sum
of the individual influences of the adopters connected to j. Typically, we assume
that

\sum 
i \not =j qi,j = q for all j; i.e., the maximal internal effect experienced by j is q [6].

2.1. Cartesian networks and boundary conditions. In this study we mainly
consider diffusion on D-dimensional Cartesian grids. The two-dimensional case is rele-
vant for products that spread predominantly through internal influences by geograph-
ical neighbors, such as residential rooftop solar systems [4, 14]. The one-dimensional
case has the advantage that it can be solved explicitly and is conjectured to serve as
a lower bound for all other networks [8].

We consider the homogeneous case where all nodes and all edges have the same
weights, and the adoption probability reads

(2.2) Prob

\biggl( 
j adopts in

(t, t+\Delta t)

\biggr) 
=

\Biggl\{ \Bigl( 
p+ q

nj(t)
kD

\Bigr) 
\Delta t+ o(\Delta t), kD > 0,

p\Delta t+ o(\Delta t), kD = 0,

as \Delta t\rightarrow 0, where nj(t) is the number of adopters connected to j at time t, and kD is
the number of consumers connected to j (the degree or in-degree of node j).

We consider both two-sided diffusion, where each node can be influenced by its
kD = 2D nearest neighbors, and one-sided diffusion, where each node can be influ-
enced by its kD = D nearest neighbors. The internal influence of each adopter on a
connected potential adopter is q/2D in the two-sided case and q/D in the one-sided
case. In the latter case, the diffusion is one-sided in each of the D coordinates.

For each of these two cases, we consider two types of boundary conditions:
Periodic BC. When we want to avoid boundary effects, we assume periodicity in

each of the D coordinates (i.e., the domain is a D-dimensional torus). In this
case, all nodes have the same degree.

Nonperiodic BC. When we allow for boundary effects, the domain is aD-dimensional
box BD. We can visualize this case as though we embed the box BD in a
larger domain and set Xj(t) \equiv 0 for all nodes outside BD. Therefore, we
effectively have a Dirichlet boundary condition at \partial BD.3

Since the degree of the boundary nodes can be smaller than that of the
interior ones, and all edges have the same weight of q/2D in the two-sided
case and q/D in the one-sided case (see (2.2)), the maximal internal influence
experienced by boundary nodes can be smaller than that of the interior ones.

2.2. 1D networks. We describe the four network types in the one-dimensional
case with M nodes.

2qi,j = 0 if there is no edge from i to j.
3See, e.g., (2.5b) and (2.6b).
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BOUNDARY EFFECTS IN THE DISCRETE BASS MODEL 917

Fig. 1. (A) One-sided diffusion on a circle. (B) Two-sided diffusion on a circle. (C) One-sided
diffusion on a line. (D) Two-sided diffusion on a line.

One-sided circle. Each consumer can only be influenced by her left neighbor
(Figure 1(A)). Therefore, if j \in \{ 1, . . . ,M\} has not yet adopted at time t,
then

Prob

\biggl( 
j adopts in

(t, t+\Delta t)

\biggr) 
= (p+ qXj - 1(t))\Delta t+ o(\Delta t), \Delta t\rightarrow 0,(2.3a)

where by periodicity

X0(t) := XM (t).(2.3b)

Two-sided circle. Each consumer can be influenced by her left and right neighbors
(Figure 1(B)). Therefore, if j \in \{ 1, . . . ,M\} has not yet adopted at time t,
then

Prob

\biggl( 
j adopts in

(t, t+\Delta t)

\biggr) 
=

\Bigl( 
p+

q

2
(Xj - 1(t) +Xj+1(t))

\Bigr) 
\Delta t+ o(\Delta t), \Delta t\rightarrow 0,

(2.4a)

where by periodicity

X0(t) := XM (t), XM+1(t) := X1(t).(2.4b)

One-sided line. Each consumer can only be influenced by her left neighbor (Fig-
ure 1(C)). Therefore, if j \in \{ 1, . . . ,M\} has not yet adopted by time t, then

Prob

\biggl( 
j adopts in

(t, t+\Delta t)

\biggr) 
= (p+ qXj - 1(t))\Delta t+ o(\Delta t), \Delta t\rightarrow 0,(2.5a)

where

X0(t) \equiv 0.(2.5b)

Two-sided line. Each consumer can be influenced by her left and right neighbors
(Figure 1(D)). Therefore, if j \in \{ 1, . . . ,M\} has not yet adopted at time t,
then

Prob

\biggl( 
j adopts in

(t, t+\Delta t)

\biggr) 
=

\Bigl( 
p+

q

2
(Xj - 1(t) +Xj+1(t))

\Bigr) 
\Delta t+ o(\Delta t), \Delta t\rightarrow 0,

(2.6a)

where

X0(t) \equiv 0, XM+1(t) \equiv 0.(2.6b)
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918 GADI FIBICH, TOMER LEVIN, AND OREN YAKIR

3. Analytic tools. Let us denote by \Omega \subset \{ 1, . . . ,M\} a subset of the M nodes,
by n(t) the number of adopters at time t, and by f(t) = 1

M\BbbE [n(t)] the expected
fraction of adopters. Then
(3.1)

f(t) =
1

M

M\sum 
j=1

Prob(Xj(t) = 1) =
1

M

M\sum 
j=1

\BbbE [Xj(t)] =
1

M

M\sum 
j=1

(1 - Prob(Xj(t) = 0)) .

3.1. Translation invariance. We can simplify the analysis on periodic Carte-
sian domains by utilizing translation invariance.

Lemma 3.1 (translation invariance [8]). Let M = mD. Consider the homoge-
neous discrete Bass model (2.2) with one-sided or two-sided diffusion on a periodic
hypercube [1, 2, . . . ,m]D. Then the probability for adoption is the same for all nodes;
i.e., Prob(Xj(t) = 1) is independent of j. Therefore, for any j,

f(t) = Prob(Xj(t) = 1) = \BbbE [Xj(t)].

More generally, the adoption probabilities of a set of nodes are invariant under

translation. For example, let us denote by S
one/two-sided
k (t;M) the probabilities that

nodes j+1, j+2, . . . , j+k did not adopt by time t in one-sided and two-sided circular

networks with M nodes, respectively. By translation invariance, S
one/two-sided
k are

independent of j. Therefore,

(3.2) S
one/two-sided
k (t;M) = Prob (Xj+1(t) = 0, Xj+2(t) = 0, . . . , Xj+k(t) = 0) .

Obviously, translation invariance is lost in the nonperiodic case.
Since Sone-sided

k (t,M) \equiv Stwo-sided
k (t,M) (see [8]), we sometimes drop the super-

scripts and denote

(3.3a) Sone-sided
k = Stwo-sided

k = Sk.

For k = 1, we sometimes also drop the subscript and denote

(3.3b) Sone-sided
1 = Stwo-sided

1 = S1 = S.

Since S is the probability to be a nonadopter by time t on (one-sided or two-sided)
circular networks, it follows from Lemma 3.1 that

(3.3c) S = 1 - fcircle,

where fcircle is the expected fraction of adopters in (one-sided or two-sided) circular
networks.4

3.2. Dominance principle.

Definition 3.2. Consider the heterogeneous Bass model (2.1) on networks A
and B with M nodes, with external parameters \{ pAi \} and \{ pBi \} , and with internal
parameters \{ qAi,j\} and \{ qBi,j\} , respectively. We say that A \preceq B if

pAj \leq pBj for all j and qAi,j \leq qBi,j for all i \not = j.

We say that A \prec B if at least one of these M2 inequalities is strict.

4The expected fractions of adopters in one-sided and two-sided circular networks coincide; see [8]
and also (4.14).
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BOUNDARY EFFECTS IN THE DISCRETE BASS MODEL 919

Lemma 3.3 (dominance principle). If A \preceq B, then fA(t) \leq fB(t) for t > 0. If
A \prec B, then fA(t) < fB(t) for t > 0.

Proof. Assume first that A \preceq B. Let tn = n\Delta t. For node j in network A, define
the random variable

XA
j (tn) =

\Biggl\{ 
1 if j adopted by time tn,

0 else,
j = 1, . . . ,M, n = 0, 1, . . . .

Let us define a specific realization \widetilde XA
j (tn) of X

A
j (tn) as follows:

\bullet \widetilde XA
j (0) = 0 for j = 1, . . . ,M

\bullet for n = 1, 2, . . .
\bullet sample a random vector \bfitomega n = (\omega n

1 , . . . , \omega 
n
M ) from the uniform distribu-

tion on [0, 1]M

\bullet for j = 1, . . . ,M
\bullet if \widetilde XA

j (tn) = 1, then \widetilde XA
j (tn+1) = 1

\bullet if \widetilde XA
j (tn) = 0, then

\bullet if \omega n
j \leq (pAj +

\sum 
i \not =j q

A
i,j

\widetilde XA
i (tn))\Delta t, then \widetilde XA

j (tn+1) = 1

\bullet else \widetilde XA
j (tn+1) = 0

\bullet end
\bullet end

Define XB
j (tn) and \widetilde XB

j (tn) in the same manner. We claim that if we use the same

sequence \{ \bfitomega n\} \infty n=1 for \widetilde XA
j and \widetilde XB

j , then

(3.4) \widetilde XA
j (tn) \leq \widetilde XB

j (tn), j = 1, . . . ,M, n = 0, 1, . . . .

The result will follow from (3.4) because

\BbbE 
\bigl[ 
XA

j (tn)
\bigr] 
=

\int 
[0,1]M\times n

\widetilde XA
j

\bigl( 
tn;\bfitomega 

1, . . . ,\bfitomega n
\bigr) 
d\bfitomega 1 \cdot \cdot \cdot d\bfitomega n

\leq 
\int 
[0,1]M\times n

\widetilde XB
j

\bigl( 
tn;\bfitomega 

1, . . . ,\bfitomega n
\bigr) 
d\bfitomega 1 \cdot \cdot \cdot d\bfitomega n = \BbbE 

\bigl[ 
XB

j (tn)
\bigr] 
,

and so fA(tn) =
1
M

\sum M
j=1 \BbbE 

\bigl[ 
XA

j (tn)
\bigr] 
\leq 1

M

\sum M
j=1 \BbbE 

\bigl[ 
XB

j (tn)
\bigr] 
= fB(tn).

We prove (3.4) by induction on n. For n = 0, (3.4) holds since \widetilde XA
j (0) = \widetilde XB

j (0) =

0. To prove the induction step, we only need to consider the case \widetilde XA
j (tn) = \widetilde XB

j (tn) =
0. Now\biggl( 
pAj +

\sum 
i \not =j

qAi,j \widetilde XA
i (tn)

\biggr) 
\Delta t \leq 

\biggl( 
pAj +

\sum 
i \not =j

qAi,j \widetilde XB
i (tn)

\biggr) 
\Delta t \leq 

\biggl( 
pBj +

\sum 
i \not =j

qBi,j \widetilde XB
i (tn)

\biggr) 
\Delta t,

where the first inequality follows from the induction assumption. Hence if \widetilde XA
j (tn+1) =

1, then \omega n
j \leq (pAj +

\sum 
i \not =j q

A
i,j

\widetilde XA
i (tn))\Delta t \leq (pBj +

\sum 
i \not =j q

B
i,j

\widetilde XB
i (tn))\Delta t, and so \widetilde XB

j (tn+1)
= 1 as well.

The extension of the proof for the case where A \prec B goes as follows. It is easy
to verify that for some sequences \{ \bfitomega n\} \infty n=1, nodes j in B and in A adopt at the same
time, while for other sequences (that have a positive measure), node j in B adopts
strictly before node j in A. There are, however, no sequences \{ \bfitomega n\} \infty n=1 for which
node j in A adopts before node j in B.
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920 GADI FIBICH, TOMER LEVIN, AND OREN YAKIR

An immediate consequence of the dominance principle is the following.

Corollary 3.4. If network B is obtained from network A by adding links with
positive weights, then fA(t) < fB(t) for t > 0.

We can generalize the dominance principle to subsets of the nodes.

Lemma 3.5 (generalized dominance principle). Let SA,B
\Omega (t) denote the probabili-

ties that none of the nodes in \Omega have adopted by time t in networks A and B, respec-
tively, where \Omega \subset \{ 1, . . . ,M\} . If A \preceq B, then SA

\Omega (t) \geq SB
\Omega (t) for t > 0.

Proof. Let t\Omega = t\Omega (\{ \bfitomega n\} \infty n=1) denote the time of the first adoption in \Omega under
sequence \{ \bfitomega n\} \infty n=1. Then

(3.5) S\Omega (tn) =

\int 
[0,1]M\times n

\bigl[ 
1\{ t\Omega >tn\} 

\bigr] 
d\bfitomega 1 \cdot \cdot \cdot d\bfitomega n, 1\{ t\Omega >tn\} :=

\Biggl\{ 
1 if t\Omega > tn,

0 otherwise.

By (3.4), tA\Omega \geq tB\Omega . Therefore, the result follows.

It is not true, however, that if A \prec B, then SA
\Omega (t) > SB

\Omega (t) for t > 0. Indeed,
if we only change the weights of noninfluential edges to \Omega (see section 3.3), this will
have no effect on S\Omega . We can prove a strict inequality, however, if we increase the
weights of influential edges. For example, we have the following.

Lemma 3.6. Let Sk be given by (3.2). Then

S
one/two-sided
k (t; p, q2,M) < S

one/two-sided
k (t; p, q1,M), q2 > q1, t > 0.

Proof. The proof is similar to that of Lemmas 3.3 and 3.5.

3.3. Indifference principle.

Definition 3.7 (influential and noninfluential edges). Consider a directed net-
work with M nodes (if the network is undirected, replace each undirected edge by
two directed edges). Let \Omega \subsetneqq \{ 1, . . . ,M\} be a subset of the nodes, and let \Omega c =
\{ 1, . . . ,M\} \setminus \Omega be its complement. A directed edge a \rightarrow b is called ``noninfluential
to \Omega "" if

1. a \in \Omega , or
2. a \in \Omega c, b \in \Omega c, and there is no sequence of directed edges from b to \Omega , or
3. a \in \Omega c, b \in \Omega c, and all sequences of directed edges from b to \Omega go through the

node a.
An edge which is not noninfluential to \Omega is called ``influential to \Omega .""5

An illustration of influential and noninfluential edges is shown in Figure 2.

Lemma 3.8 (indifference principle). Let S\Omega (t) denote the probability that all the
nodes in \Omega did not adopt by time t in the discrete Bass model (2.1). Then S\Omega (t)
remains unchanged if we remove or add noninfluential edges to \Omega .

Proof. We start with two identical networks A and B that have the same nodes
\{ 1, . . . ,M\} , the same external parameters \{ pi\} , and the same internal parameters
\{ qi,j\} . Then we add and remove edges in network B that are noninfluentials to \Omega .

5Thus, a directed edge a \rightarrow b is influential to \Omega if
1. a \in \Omega c, and
2. either b \in \Omega , or there is a sequence of directed edges from b to a node u \in \Omega which does

not go thorough the node a.
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BOUNDARY EFFECTS IN THE DISCRETE BASS MODEL 921

Fig. 2. Illustrations of influential and noninfluential edges. The nodes are divided into two
separate sets: \Omega and \Omega c. Influential and noninfluential edges to \Omega are denoted by solid red and
dashed blue arrows, respectively. The noninfluential edges x \rightarrow y , w \rightarrow z , and u \rightarrow v in

(A) correspond to cases 1, 2, and 3 in Definition 3.7, respectively.

As in the proof of the dominance principle, we consider two specific realizations\widetilde XA
j (tn) and \widetilde XB

j (tn) which are produced from the same sequence \{ \bfitomega n\} \infty n=1. Let jA

and jB denote the first node in \Omega that adopts in networks A and B, respectively, and
let tA and tB be the times at which these adoptions occur. We claim that

(3.6) jA = jB , tA = tB .

The result will follow from (3.5) and (3.6).
We prove (3.6) by contradiction. Assume by negation that tB < tA. Then the

external influence on node jB at time tB - \Delta t in B is greater than in A. Let t1 < tB be
the earliest time where the external influence on jB was greater in B than in A. Then
at t1 - := t1  - \Delta t, some node jB1 in B which has an influence over node jB decided
to adopt. Since until tB all of the nodes in \Omega are nonadopters in B, we have that

jB1 \in \Omega c. Since edge jB1 \rightarrow jB is influential in B, and no influential edges were

added, we conclude that in A, node jB1 also has an influence over node jB . Hence, at
time t1 - node jB1 in A remains a nonadopter.

We now consider the scenario that at time t1 - , node jB1 decided to adopt in B,
but remained a nonadopter in A. By repeating the arguments of the previous stage,
we deduce that this is possible only if at some time t2 - < t1 - , some node jB2 in B
which has an influence over jB1 decided to adopt. We recall that until time tB all of
the nodes in \Omega are nonadopters in B. In addition, until time t1 - node jB1 in B is also
a nonadopter. This implies that

jB2 \in \{ \Omega 1\} c, \Omega 1 := \Omega \cup jB1 .

By construction, nodes jB , jB1 , and jB2 are all distinct from one another. Combining

the facts that for network B we have that jB2 \in \Omega c, that the path jB2 \rightarrow jB1 \rightarrow 
jB consists of distinct nodes only, and that no influential edges were added to B,

we get that in A, node jB2 also has an influence over node jB1 . Hence, at time t2 - 

node jB2 in A remains a nonadopter.
By repeating the above argument, we obtain sequences of nodes \{ jBk \} , sets \{ \Omega k\} ,

and times \{ tk - \} for k = 1, 2, . . . . Since k is arbitrarily large, and the sequence of
sets \Omega 1 \subsetneqq \Omega 2 \subsetneqq \cdot \cdot \cdot \subsetneqq \Omega k is strictly increasing, but the number of nodes M is finite,
we get a contradiction. In the case of an infinite network, the contradiction can be
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922 GADI FIBICH, TOMER LEVIN, AND OREN YAKIR

obtained by observing that tB is reached after a finite number of discrete time steps,
but t1 - > t2 - > t3 - > \cdot \cdot \cdot > tk - , and so tk - becomes negative for k sufficiently
large.

An immediate consequence of the indifference principle is the following.

Corollary 3.9. S\Omega (t) remains unchanged if nodes in \Omega change their influences
on other nodes (both inside and outside of \Omega ).

Proof. Any directed edge that starts from a node in \Omega is noninfluential to \Omega .
Therefore, the result follows from Lemma 3.8.

To motivate condition 3 in Definition 3.7 for a noninfluential edge, we first note
that the sequence of influential edges in the proof of the indifference principle does
not go through the same node more than once. To further motivate this condition,
consider the edge u \rightarrow v in Figure 2(A). This edge is noninfluential to \Omega , because
for it to influence \Omega , u should be an adopter in order to influence v. But then, for v to
influence \Omega , v should influence u. But u is already an adopter, so the edge u \rightarrow v
cannot influence \Omega . A second example is Figure 2(B), where \Omega is node M . All the
left-going edges k+1 \rightarrow k are noninfluentials, because if k + 1 adopted, then its
influence on k has no effect on the future adoption of M , since to get back from k to
M , one has to go through k + 1, but k + 1 is already an adopter.

We now present two applications of the indifference principle. Additional appli-
cations are given in Lemmas 4.4, 4.6, 4.8, and 4.9 and in Appendix B.1.

Lemma 3.10. Consider the Bass model (2.3) on a one-sided circle. Then

(3.7) Sone - sided
k (t;M) = Sone - sided

1 (t;M  - (k  - 1))e - (k - 1)pt, k = 2, . . . ,M,

where Sone - sided
k is given by (3.2).6

Proof. By translation invariance, Sone - sided
k is independent of j. By the indiffer-

ence principle, we can calculate Sone - sided
k from the network illustrated in Figure 3(B).

In that network, the states of j + 1, . . . , j + k are independent, and so

Sone - sided
k (t;M) =

j+k\prod 
m=j+1

Prob (Xm(t) = 0) .

For m = j + 1 we have that Prob (Xm(t) = 0) = Sone - sided(t;M  - k + 1). For
j+2 \leq m \leq j+k, since m is not influenced by other individuals, Prob (Xm(t) = 0) =
S(t;M = 1).

The equation for S(t;M = 1) reads d
dtS(t;M = 1) =  - pS(t;M = 1) (see [8,

eq. (16)]) subject to S(t = 0;M = 1) = 1. Therefore,

(3.8) S(t;M = 1) = e - pt.

Hence, the result follows.

Lemma 3.11. Consider the Bass model (2.4) on a two-sided circle. Then

(3.9) Stwo - sided
k (t;M) = Stwo - sided

2 (t;M  - (k  - 2))e - (k - 2)pt, k = 3, . . . ,M,

where Stwo - sided
k is given by (3.2).

6Sone - sided
1 (t; \widetilde M) is the probability that a given node in a one-sided circle with \widetilde M nodes will

remain a nonadopter by time t.
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BOUNDARY EFFECTS IN THE DISCRETE BASS MODEL 923

Fig. 3. Equivalent networks for the calculation of Sone - sided
k (t;M) which are used in the proof

of Lemma 3.10. Solid red and dashed blue arrows correspond to influential and noninfluential edges
to \Omega = \{ j + 1, j + 2, . . . , j + k\} , respectively. (A) One-sided circle. (B) The k  - 1 noninfluential

edges j + 1 \rightarrow \cdot \cdot \cdot \rightarrow j + k are deleted. The noninfluential edge j + 1 \rightarrow j + k + 1 is added.

Proof. By translation invariance, Stwo - sided
k is independent of j. By the indif-

ference principle, we can calculate Stwo - sided
k (t;M) from the network illustrated in

Figure 4(B). In that network, the states of the two-node set \{ j + 1, j + k\} and the
single-node sets \{ j + 2\} , . . . , \{ j + k  - 1\} are independent, and so

Stwo - sided
k (t) = Prob (Xj+1(t) = 0, Xj+k(t) = 0)

j+k - 1\prod 
m=j+2

Prob (Xm(t) = 0) .

Since Prob (Xj+1(t) = 0, Xj+k(t) = 0) = Stwo - sided
2 (t;M - k+2) and Prob (Xm(t) = 0)

= e - pt for m = j + 2, . . . , j + k  - 1 (see (3.8)), the result follows.

Fig. 4. Equivalent networks for the calculation of Stwo - sided
k (t;M), which are used in the proof

of Lemma 3.11. Solid red and dashed blue arrows correspond to influential and noninfluential edges
to \Omega = \{ j + 1, j + 2, . . . , j + k\} , respectively. (A) Two-sided circle. (B) The k  - 1 noninfluential

edges j + 1 \updownarrow \cdot \cdot \cdot \updownarrow j + k are deleted. The noninfluential edge j + 1 \updownarrow j + k is added.

Remark. By Lemma 3.10, Sone - sided
2 (t;M  - (k  - 2)) = Sone - sided

1 (t;M  - (k  - 
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924 GADI FIBICH, TOMER LEVIN, AND OREN YAKIR

1))e - pt, and so

Sone - sided
k (t;M) = Sone - sided

2 (t;M  - (k  - 2))e - (k - 2)pt.

This relation is also satisfied by Stwo - sided
k ; see (3.9). Indeed, in [8], Fibich and

Gibori showed that Sone - sided
k (t;M) \equiv Stwo - sided

k (t;M) for 1 \leq k \leq M . Therefore,

we sometimes drop the superscripts one-sided and two-sided and denote Sone - sided
k

and Stwo - sided
k by Sk; see (3.3a).

4. Diffusion in 1D networks. In this section we use the indifference principle
to explicitly calculate the diffusion in one-dimensional networks.

4.1. Periodic case (circle). We begin with the one-sided circle.

Lemma 4.1 (see [8]). Let q \not = p, 2p, . . . , (M  - 1)p. Then the expected fraction of
adopters on the one-sided circle with M nodes (see (2.3)) is
(4.1a)

fone - sided
circle (t; p, q,M) = 1 - 

M - 1\sum 
k=1

ck
( - q)k - 1

pk - 1(k  - 1)!
e( - kp - q)t  - ( - q)M - 1\prod M - 1

j=1 (jp - q)
e - Mpt,

where

(4.1b) cM - k = 1 - qk\prod k
j=1(q  - jp)

 - 
k - 1\sum 
j=1

pj - k( - q) - j+k

(k  - j)!
cM - j , k = 1, . . . ,M  - 1.

Proof. This result was originally proved in [8]. Here we provide a simpler proof
which illustrates the power and beauty of the indifference principle. Let Sk(t;M)
denote the probability that k adjacent nodes remained nonadopters by time t in a
circle with M nodes; see (3.2) and (3.3a). In [8], it was shown that f = 1 - S1, where
S1 satisfies

(4.2) S\prime 
1(t;M) =  - (p+ q)S1(t;M) + qS2(t;M), S1(0) = 1.

Thus, S\prime 
1 depends on S2. Similarly, S\prime 

2 depends on S3, etc. Therefore, to close the sys-
tem in [8], Fibich and Gibori derived the following system of ODEs for \{ Sk(t;M)\} Mk=1:

7

S\prime 
k(t;M) = ( - kp - q)Sk(t;M) + qSk+1(t;M), Sk(0) = 1, k = 1, . . . ,M  - 1,

(4.3a)

S\prime 
M (t;M) = - MpSM (t;M), SM (0) = 1.(4.3b)

Here we take a different approach and close (4.2) using the relation

(4.4) S2(t;M) = S(t;M  - 1)e - pt

(see (3.7) and (3.3b)), which was derived using the indifference principle. Combining
(4.2) and (4.4) gives
(4.5)
S\prime (t;M) + (p+ q)S(t;M) = qe - ptS(t;M  - 1), S(0;M) = 1, M = 2, 3, . . . .

7This system holds for both one-sided and two-sided diffusion [8].
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BOUNDARY EFFECTS IN THE DISCRETE BASS MODEL 925

The solution of this first-order linear ODE reads

(4.6) S(t;M) = e - (p+q)t + qe - (p+q)t

\int t

0

[eq\tau S(\tau ;M  - 1)] d\tau , M = 2, 3, . . . .

This recursion relation expresses S(t;M) in terms of S(t;M  - 1). For example, sub-
stituting S(t;M = 1) = e - pt (see (3.8)) in (4.6) yields for q \not = p that S(t;M = 2) =
(1  - q

q - p )e
 - (p+q)t + q

q - pe
 - 2pt. This, in turn, can be substituted into (4.6), yielding

for q \not = p, 2p that S(t;M = 3) = (1  - q
q - p  - q2

(q - p)(q - 2p) )e
 - (p+q)t + q

q - pe
 - (2p+q)t +

q2

(q - p)(q - 2p)e
 - 3pt. More generally, it follows by induction from (4.6) that for q \not =

p, 2p, . . . , (M  - 1)p,

(4.7) S(t;M) =

M - 1\sum 
k=1

Ak,Me
 - (kp+q)t +BMe

 - Mpt, M = 1, 2, . . . ,

where \{ Ak,M\} M - 1
k=1 and BM are constants that depend on p, q, and M . Substitut-

ing (4.7) into both sides of (4.6), integrating the right-hand side terms, and equating
the coefficients of the exponentials on both sides gives the result (see online Ap-
pendix SM1).

The explicit expression (4.1) for the adoption curve simplifies as M \rightarrow \infty .

Lemma 4.2 (see [8]).
(4.8)

lim
M\rightarrow \infty 

fone - sided
circle (t; p, q,M) = f1D(t; p, q), f1D(t; p, q) := 1 - e - (p+q)t+ q

p (1 - e - pt).

Proof. This result was originally proved in [8]. Here we use the indifference prin-
ciple to provide a simpler proof. Letting M \rightarrow \infty in (4.5) gives

S\prime (t;M = \infty ) + (p+ q)S(t;M = \infty ) = qe - ptS(t;M = \infty ), S(0;M = \infty ) = 1.

Solving this linear first-order ODE and substituting f = 1 - S gives (4.8).

Next, we consider the two-sided circle case.

Lemma 4.3 (see [8]). The expected fraction of adopters on the two-sided circle
with M nodes (see (2.4)) is identical to that on the one-sided circle, i.e.,

(4.9) f two - sided
circle (t; p, q,M) = fone - sided

circle (t; p, q,M),

where fone - sided
circle is given by (4.1). In particular,

(4.10) lim
M\rightarrow \infty 

f two - sided
circle (t; p, q,M) = f1D(t; p, q).

Proof. This result was originally proved in [8]. Here we again provide a different
proof which makes use of the indifference principle. We recall that in [8] it was shown
(for both the one-sided and two-sided cases) that S\prime (t;M) is given by (4.2), and that

(4.11) S\prime 
2(t;M) =  - (2p+ q)S2(t;M) + qS3(t;M).

To close the ODE system in the two-sided case, we use the indifference principle to
get S3(t;M) = S2(t;M  - 1)e - pt; see (3.9). Plugging this into (4.11) yields

(4.12) S\prime 
2(t;M) =  - (2p+ q)S2(t;M) + qS2(t;M  - 1)e - pt, S2(0;M) = 1,
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926 GADI FIBICH, TOMER LEVIN, AND OREN YAKIR

for M \geq 3. In addition, the equation for S2(t;M = 2) reads d
dtS2(t;M = 2) =

 - 2pS2(t;M = 2), subject to S2(0,M = 2) = 1, and so

S2(t;M = 2) = e - 2pt.

Therefore, if we substitute S2(t;M) = e - ptg(t;M  - 1) into (4.12), we get that g(t;M)
satisfies the same recursion relation as Sone - sided(t;M); see (4.5). In addition,

g(t;M = 1) = eptS2(t;M = 2) = e - pt = Sone - sided(t;M = 1).

Therefore, it follows that g(t;M) = Sone - sided(t;M). Hence,
(4.13)
Stwo - sided
2 (t;M) = e - ptg(t;M  - 1) = e - ptSone - sided(t;M  - 1) = Sone - sided

2 (t;M),

where in the last equality we used (3.7). Since for both the one-sided and two-
sided cases, S\prime (t;M) is given by (4.2), it follows from (4.13) that Stwo - sided(t;M) =
Sone - sided(t;M), and so (4.9) follows. The limit (4.10) follows from (4.9) and (4.8).

Thus, the aggregate diffusions on the one-sided and two-sided circles are identical,
as is confirmed numerically in Figure 5(A). Therefore, from now on we drop the
superscripts and denote

(4.14) fone - sided
circle = f two - sided

circle = fcircle.

0 2 4 6 8 10

t* = qt

0

0.5

1

f  
A

two-sided
one-sided

0 2 4 6 8 10

t* = qt

0

0.5

1

f  
B

Fig. 5. Fractional adoption on a one-dimensional network with M = 6 nodes, averaged
over 4000 simulations, under two-sided (dashed blue line) and one-sided (solid red line) diffusion.
Here p = 0.01 and q = 0.1. (A) Periodic boundary conditions (circle). (B) Nonperiodic boundary
conditions (line).

4.2. Nonperiodic case (line). We now use the indifference principle to derive
an explicit expression for the adoption curve on the one-sided line.

Lemma 4.4. The expected fraction of adopters on the one-sided line withM nodes
(see (2.5)) is given by

fone - sided
line (t; p, q,M) :=

1

M

M\sum 
j=1

fone - sided
j (t; p, q,M) =

1

M

M\sum 
j=1

fcircle(t; p, q, j),

where fone - sided
j (t; p, q,M) is the adoption probability of node j in a one-sided line

with M nodes, and fcircle(t; p, q, j) is given by (4.1) with M = j.

Proof. By the indifference principle, the probability that node j did not adopt by
time t is the same in the two networks shown in Figure 6. By Figure 6(B),

Prob(Xj(t) = 0) = Sone - sided(t; p, q,M = j),
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BOUNDARY EFFECTS IN THE DISCRETE BASS MODEL 927

or equivalently

Prob(Xj(t) = 1) = 1 - Sone-sided(t; p, q,M = j) = fcircle(t; p, q, j).

Hence, the result follows from (3.1).

Fig. 6. Equivalent networks for the calculation of Prob(Xj(t) = 0) on the one-sided line;
see proof of Lemma 4.4. Solid red and dashed blue arrows are influential and noninfluential edges
to \Omega = \{ j\} , respectively. (A) One-sided line. (B) The noninfluential edge j \rightarrow j + 1 is ``replaced""

with the noninfluential edge j \rightarrow 1 .

One-sided diffusion on a line is slower than on a circle. This difference, however,
disappears as M \rightarrow \infty .

Lemma 4.5. For t, p, q,M > 0,

(4.15) fone - sided
line (t; p, q,M) < fcircle(t; p, q,M),

but

(4.16) lim
M\rightarrow \infty 

fone - sided
line (t; p, q,M) = lim

M\rightarrow \infty 
fcircle(t; p, q,M) = f1D(t).

Proof. Relation (4.15) is a consequence of the dominance principle; see Corol-
lary 3.4. We note that if a\infty := limn\rightarrow \infty an then limn\rightarrow \infty 

1
n

\sum n
k=1 ak = a\infty . Therefore,

relation (4.16) follows from Lemmas 4.2 and 4.4.

Finally, we consider the two-sided line case.

Lemma 4.6. The expected fraction of adopters on a two-sided line with M nodes
(see (2.6)) is given by

f two - sided
line (t; p, q,M) :=

1

M

M\sum 
j=1

f two - sided
j (t; p, q,M),(4.17a)

where

f two - sided
j (t; p, q,M) =

\Biggl\{ 
fcircle

\bigl( 
t; p, q2 ,M

\bigr) 
, j = 1,M,

1 - e - (p+q)t
\bigl( 
1 + q

2Aj(t)
\bigr) 
, 2 \leq j \leq M  - 1,

(4.17b)

is the adoption probability of node j in a two-sided line with M nodes, fcircle is given
by (4.1),

(4.17c)
Aj (t) =

\int t

0

e(p+q)\tau 
\Bigl[ 
S
\Bigl( 
\tau ; p,

q

2
, j
\Bigr) 
S
\Bigl( 
\tau ; p,

q

2
,M  - j

\Bigr) 
+ S

\Bigl( 
\tau ; p,

q

2
, j  - 1

\Bigr) 
S
\Bigl( 
\tau ; p,

q

2
,M  - j + 1

\Bigr) \Bigr] 
d\tau ,

and S = 1 - fcircle; see (3.3c).
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Proof. We first consider the boundary nodes j = 1,M . By the indifference prin-
ciple, we can calculate the probability that the right boundary node did not adopt by
time t using the equivalent network in Figure 7(B). Therefore, Prob (XM (t) = 0) =
S
\bigl( 
t; p, q2 ,M

\bigr) 
. By symmetry, Prob (XM (t) = 0) = Prob (X1(t) = 0). Therefore,

(4.18) Prob (X1(t) = 1) = Prob (XM (t) = 1) = fcircle

\Bigl( 
t; p,

q

2
,M

\Bigr) 
.

Fig. 7. Equivalent networks for the calculation of Prob (XM (t) = 0) on the two-sided line.
Solid red and dashed blue arrows are influential and noninfluential edges to \Omega = \{ M\} , respectively.
(A) Two-sided line. (B) The M  - 1 noninfluential edges M \rightarrow M  - 1 \rightarrow \cdot \cdot \cdot \rightarrow 1 which ``point

away"" from \Omega are deleted. The noninfluential edge M \rightarrow 1 is added.

Next, we consider the interior nodes j = 2, . . . ,M  - 1. The evolution equation
for Prob (Xj(t) = 0) is (see online Appendix SM2)

(4.19)

d

dt
Prob (Xj(t) = 0) =  - (p+ q) Prob (Xj(t) = 0)

+
q

2

\bigl[ 
Prob (Xj - 1(t) = 0, Xj(t) = 0) + Prob (Xj(t) = 0, Xj+1(t) = 0)

\bigr] 
.

By the indifference principle, we can calculate Prob (Xj - 1(t) = 0, Xj(t) = 0) from
Figure 8(B). In that network, the states of j - 1 and j are independent, j - 1 belongs
to a one-sided circle with j - 1 nodes, and j belongs to a one-sided circle withM - j+1
nodes. Therefore,

(4.20) Prob (Xj - 1(t) = 0, Xj(t) = 0) = S
\Bigl( 
t; p,

q

2
, j  - 1

\Bigr) 
S
\Bigl( 
t; p,

q

2
,M  - j + 1

\Bigr) 
for j = 2, . . . ,M . Plugging this into (4.19) and solving the ODE for Prob (Xj(t) = 0)
yields

(4.21) Prob (Xj(t) = 0) = e - (p+q)t +
q

2
e - (p+q)tAj(t), 2 \leq j \leq M  - 1,

where Aj(t) is as defined in (4.17c). The desired result follows from (3.1), (4.18),
and (4.21).

Two-sided diffusion is (also) slower on a line than on a circle.

Lemma 4.7. For t, p, q > 0,

(4.22) f two - sided
line (t; p, q,M) < fcircle(t; p, q,M).

Proof. This is a consequence of the dominance principle; see Corollary 3.4.

4.3. Hybrid network (circle with a ray). We can use the indifference prin-
ciple to compute the adoption curve on hybrid networks. For example, consider a
one-sided circle with M  - K nodes, from which issues a one-sided ray with K nodes
(Figure 9). All nodes and edges have the external and internal parameters of p and q,
respectively.
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Fig. 8. Equivalent networks for the calculation of Prob (Xj - 1(t) = 0, Xj(t) = 0). Solid red
and dashed blue arrows are influential and noninfluential edges to \Omega = \{ j  - 1, j\} , respectively. (A)
Two-sided line. (B) All noninfluential edges are deleted. The two noninfluential edges j  - 1 \rightarrow 
1 and j \rightarrow M are added.

Fig. 9. A one-sided circle with M  - K nodes, from which issues a one-sided ray with K nodes.

Lemma 4.8. The expected fraction of adopters in the hybrid circle-line network is

fhybrid(t) =
1

M

\Biggl[ 
(M  - K) fcircle(t; p, q,M  - K) +

K\sum 
k=1

fcircle(t; p, q,M  - K + k)

\Biggr] 
,

where fcircle is given by (4.1).

Proof. See online Appendix SM3.

4.4. \bfitf \bfo \bfn \bfe  - \bfs \bfi \bfd \bfe \bfd 
\bfl \bfi \bfn \bfe < \bfitf \bft \bfw \bfo  - \bfs \bfi \bfd \bfe \bfd 

\bfl \bfi \bfn \bfe . In Lemma 4.3 we proved that the one-sided and
two-sided diffusion on the circle coincide. This equivalence was confirmed numerically
in Figure 5(A). Repeating this simulation on the line, however, suggests that one-sided
diffusion is strictly slower than two-sided diffusion (Figure 5(B)). To analytically prove
this result, it suffices to show that (see (3.1))

(4.23)

M\sum 
j=1

Prob
\bigl( 
Xtwo-sided

j (t) = 0
\bigr) 
<

M\sum 
j=1

Prob
\bigl( 
Xone-sided

j (t) = 0
\bigr) 
, t > 0.

Obviously, this result would hold if Prob
\bigl( 
Xtwo-sided

j (t) = 0
\bigr) 
< Prob

\bigl( 
Xone-sided

j (t) = 0
\bigr) 

for j = 1, . . . .M . This, however, is not the case, as is confirmed numerically in, e.g.,
Figure 10(A), and analytically in the following lemma.
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Lemma 4.9. We have Prob
\bigl( 
Xtwo - sided

1 (t) = 0
\bigr) 
< Prob

\bigl( 
Xone - sided

1 (t) = 0
\bigr) 
, but

Prob
\bigl( 
Xtwo - sided

M (t) = 0
\bigr) 
> Prob

\bigl( 
Xone - sided

M (t) = 0
\bigr) 
.

Proof. See online Appendix SM4, which makes use of the generalized dominance
and the indifference principles.

Fig. 10. (A) Probability to remain a nonadopter by time t, on a one-sided (red asterisks)
and a two-sided (blue squares) line with M nodes. (B) \nu (t, k,M) as a function of k. In both
figures, M = 12, t = 10, p = 0.01, and q = 0.1.

The key to proving (4.23) is to show that for any pair of symmetric nodes \{ k,M+
1  - k\} , the sum of their adoption probabilities in the one-sided case is smaller than
in the two-sided case, i.e.,

(4.24a) \nu (t, k,M) > 0, t > 0, k = 1, . . . ,M,

where

(4.24b)
\nu (t, k,M) :=

\Bigl[ 
Prob(Xone - sided

k (t) = 0) + Prob(Xone - sided
M - k+1 (t) = 0)

\Bigr] 
 - 
\Bigl[ 
Prob(Xtwo - sided

k (t) = 0) + Prob(Xtwo - sided
M - k+1 (t) = 0)

\Bigr] 
;

see, e.g., Figure 10(B).
We first prove (4.24a) for the boundary nodes \{ 1,M\} .
Lemma 4.10. Let M \geq 2. Then \nu (t, 1,M) > 0 for t > 0.

Proof. See Appendix A.

By symmetry (see (4.24b)), \nu (t, k,M) = \nu (t,M + 1  - k,M). Therefore, we only
need to prove that \nu (t, k,M) > 0 for 2 \leq k \leq M+1

2 .
We first provide an intuitive induction-type argument for (4.24a), namely that if

\nu (t, k  - 1,M) > 0, then \nu (t, k,M + 2) > 0. Consider the symmetric pair \{ k,M +
2 + 1  - k\} in a line with M + 2 nodes. If we ignore the influence of the boundary
nodes \{ 1,M + 2\} , then the adoption probabilities of nodes \{ k,M + 2 + 1  - k\} in a
line with M + 2 nodes are given by the adoption probabilities of the symmetric pair
\{ k - 1,M+1 - (k - 1)\} in a line withM nodes. Therefore, by the induction assumption,
\nu (t, k,M + 2)| \{ X1(t)=XM+1(t)\equiv 0\} = \nu (t, k  - 1,M) > 0. To add the influence of the
boundary nodes \{ 1,M + 2\} , we should only consider the case where their adoptions
are external, i.e., not influenced by the nodes \{ 2,M+1\} . Since the external adoptions
of nodes \{ 1,M + 2\} are identical in both networks, and since the combined influence
of the nodes \{ 1,M +2\} on the nodes \{ 2,M +1\} is the same in both networks, adding
their effect does not change the result that \nu (t, k,M + 2) > 0.

The rigorous proof of (4.24a) is provided by the following.
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Lemma 4.11. Let M \geq 3. Then \nu (t, k,M) > 0 for t > 0 and 2 \leq k \leq M+1
2 .

Proof. See Appendix B.

Lemmas 4.10 and 4.11 immediately lead to the following theorem.

Theorem 4.12. Consider a line with M \geq 2 consumers. Then

(4.25) fone - sided
line (t; p, q,M) < f two - sided

line (t; p, q,M), t, p, q > 0.

In addition,

(4.26) lim
M\rightarrow \infty 

fone - sided
line (t; p, q,M) = lim

M\rightarrow \infty 
f two - sided
line (t; p, q,M).

Proof. Lemmas 4.10 and 4.11 imply (4.23). Combining (3.1) with (4.23) yields
(4.25).

Equation (4.26) is obtained as follows. By (4.22) and (4.25),

fone - sided
line (t; p, q,M) < f two - sided

line (t; p, q,M) < fcircle(t; p, q,M).

Taking the limit M \rightarrow \infty and using (4.10) and (4.16) gives (4.26).

Therefore, the equivalence of one-sided and two-sided diffusion requires that the
network be periodic. The difference between one-sided and two-sided diffusion ini-
tially increases with time (see Figure 5(B)) as the probability that adopters reach
the boundary increases. Since limt\rightarrow \infty f = 1 in both cases, however, this difference
vanishes as t\rightarrow \infty .

4.5. \bfitD \geq 2. In higher dimensions, the analysis becomes much harder, and so
we resort to numerics. In Figure 11 we simulate the diffusion on a two-dimensional
Cartesian grid. In the periodic case (a two-dimensional torus), one-sided diffusion
and two-sided diffusion are identical (Figure 11(A)). In the nonperiodic case (a two-
dimensional square), however, one-sided diffusion is strictly slower than two-sided
diffusion (Figure 11(B)). In Figure 12 we observe similar results for diffusion on a
three-dimensional Cartesian grid. Therefore, based on Lemma 4.3, Theorem 4.12,
and Figures 11 and 12, we formulate the following conjecture.

Conjecture 4.13. In the discrete Bass model on a D-dimensional Cartesian
network,

1. one-sided and two-sided diffusion are identical when the network is periodic;
2. one-sided diffusion is strictly slower than two-sided diffusion when the network

is nonperiodic.

0 2 4 6 8 10

t* = qt

0

0.5

1

f  
A

two-sided
one-sided

0 2 4 6 8 10

t* = qt

0

0.5

1

f  
B

Fig. 11. Same as Figure 5 on a two-dimensional Cartesian grid with M = 6 \times 6 nodes.
(A) Periodic boundary conditions. (B) Nonperiodic boundary conditions.
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0 2 4 6 8 10

t* = qt

0

0.5

1

f  
A

two-sided
one-sided

0 2 4 6 8 10

t* = qt

0

0.5

1

f  
B

Fig. 12. Same as Figure 5 on a three-dimensional Cartesian grid with M = 6 \times 6 \times 6 nodes.
(A) Periodic boundary conditions. (B) Nonperiodic boundary conditions.

Appendix A. Proof of Lemma 4.10. We begin with several auxiliary results.

Lemma A.1. Let \sigma (t) be the solution of

d

dt
\sigma (t) +K\sigma (t) = b(t), t > 0, \sigma (0) = 0,

where K is a constant, and b(t) > 0 for t > 0. Then \sigma (t) > 0 for t > 0.

Proof. See online Appendix SM5.

Lemma A.2. Let M \geq 3, and let

\gamma (t, k,M) := Sk(t; p, q,M) - 2Sk+1(t; p, q,M) + Sk+2(t; p, q,M).

Then \gamma (t, k,M) > 0 for t > 0 and k = 1, . . . ,M  - 2.

Proof. By [8, Lemma 7],

\gamma (t, k,M) = Prob (Xj+1(t) = 1, Xj+2(t) = 0, . . . , Xj+k+1(t) = 0, Xj+k+2(t) = 1) .

Since the right-hand side is strictly positive for t > 0, the result follows.8

Lemma A.3. Let M \geq 2, and let

\beta (t, k,M) :=

\biggl[ 
Sk

\biggl( 
t; p,

q

2
,M

\biggr) 
 - Sk+1

\biggl( 
t; p,

q

2
,M

\biggr) \biggr] 
 - 
\bigl[ 
Sk

\bigl( 
t; p, q,M

\bigr) 
 - Sk+1

\bigl( 
t; p, q,M

\bigr) \bigr] 
.

Then

(A.1) \beta (t, k,M) > 0, t > 0, k = 1, . . . ,M  - 1.

Proof. We begin by considering the case of M \geq 3. We prove (A.1) by a reverse
induction on k. Thus, we first prove that \beta (t,M  - 1,M) > 0. Then we show that
\beta (t, k + 1,M) > 0 implies \beta (t, k,M) > 0.

Differentiating \beta (t,M  - 1,M) and using (4.3) and

(A.2) SM (t; p, q,M) = e - Mpt

(see (4.3b)) gives
(A.3)
d

dt
\beta (t,M  - 1,M) +

\Bigl[ 
(M  - 1)p+

q

2

\Bigr] 
\beta (t,M  - 1,M) =

q

2

\bigl[ 
SM - 1

\bigl( 
t; p, q,M

\bigr) 
 - SM

\bigl( 
t; p, q,M

\bigr) \bigr] 
.

8The restriction M \geq 3 follows from the term Sk+2(t; p, q,M) since M \geq k + 2 and k \geq 1.
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By [8, Lemma 3],

SM - 1(t;M) - SM (t;M) = Prob (X1(t) = 0, X2(t) = 0, . . . , XM - 1(t) = 0, XM (t) = 1) .

Since the right-hand side is strictly positive for t > 0, so is the right-hand side of (A.3).
Since \beta (0,M  - 1,M) = 0, Lemma A.1 implies that \beta (t,M  - 1,M) > 0 for t > 0.

For k < M  - 1, assume that \beta (t, k + 1,M) > 0 for t > 0. Differentiating
\beta (t, k,M) and using (4.3) yields d

dt\beta (t, k,M)+
\bigl( 
kp+ q

2

\bigr) 
\beta (t, k,M) = q

2\beta (t, k+1,M)+
q
2\gamma (t, k,M) + p

\bigl[ 
Sk+1

\bigl( 
t; p, q2 ,M

\bigr) 
 - Sk+1

\bigl( 
t; p, q,M

\bigr) \bigr] 
. By the induction assumption,

\beta (t, k + 1,M) > 0. By Lemma A.2, \gamma (t, k,M) > 0 for M \geq 3. By Lemma 3.6, the
last term on the right-hand side is positive. Hence, since \beta (0, k,M) = 0, it follows
from Lemma A.1 that \beta (t, k,M) > 0 for t > 0 and M \geq 3.

When M = 2, \beta (t, 1, 2) = S1

\bigl( 
t; p, q2 , 2

\bigr) 
 - S1

\bigl( 
t; p, q, 2

\bigr) 
, since SM is independent

of q; see (4.3b). Hence, by Lemma 3.6, \beta (t, 1, 2) > 0.9

We now show that S(t; p, q,M) is monotonically decreasing with M .

Lemma A.4. Let

(A.4) \alpha (t, k) := S1(t; p, q, k) - S1(t; p, q, k + 1).

Then \alpha (t, k) > 0 for t > 0 and k \geq 1.

Proof. We proceed by induction on k. Thus, we first prove that \alpha (t, 1) > 0 and
then show that if \alpha (t, k  - 1) > 0, then \alpha (t, k) > 0.

By (A.4), \alpha (t, 1) = S1(t; p, q, 1) - S1(t; p, q, 2). Since S1(t; p, q, 1) is the probability
of a single node with no neighbors to be a nonadopter by time t, then S1(t; p, q, 1) =
S1(t; p, 0, 2). By Lemma 3.6, S1(t; p, 0, 2) > S1(t; p, q, 2). Therefore, \alpha (t, 1) > 0 .

Now, assume that \alpha (t, k - 1) > 0. Differentiating \alpha (t, k) and using (4.3) and (3.7)
gives d

dt\alpha (t, k)+(p+q)\alpha (t, k) = q[S2(t; p, q, k) - S2(t; p, q, k+1)] = qe - pt[S1(t; p, q, k - 
1) - S1(t; p, q, k)] = qe - pt\alpha (t, k - 1). By the induction assumption, the right-hand side
is positive for t > 0. In addition, \alpha (0, k) = 0. Therefore, by Lemma A.1, \alpha (t, k) > 0
for t > 0.

We are now ready to prove Lemma 4.10.

Proof of Lemma 4.10. In Lemma 4.4 we proved that

(A.5) Prob
\bigl( 
Xone - sided

k (t) = 0
\bigr) 
= S1(t; p, q, k), k = 1, . . . ,M.

In addition, in Lemma 4.6 we showed that

(A.6) Prob(Xtwo - sided
1 (t) = 0) = Prob(Xtwo - sided

M (t) = 0) = S1

\Bigl( 
t; p,

q

2
,M

\Bigr) 
.

Plugging expressions (A.5) and (A.6) into (4.24b) for k = 1 gives

(A.7) \nu (t, 1,M) = S1(t; p, q, 1) + S1(t; p, q,M) - 2S1

\Bigl( 
t; p,

q

2
,M

\Bigr) 
.

Differentiating \nu (t, 1,M) and using (4.3) gives d
dt\nu (t, 1,M)+p\nu (t, 1,M) = q\beta (t, 1,M).

By Lemma A.3, \beta (t, 1,M) > 0 for t > 0 and M \geq 2. In addition, \nu (0, 1,M) = 0.
Therefore, by Lemma A.1,

(A.8) \nu (t, 1,M) > 0, t > 0, M \geq 2.

9The restriction M \geq 2 follows from the term Sk+1(t; p, q,M) since M \geq k + 1 and k \geq 1.
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Remark. For M = 1, we have from (3.8) and (A.7) that

(A.9) \nu (t, 1, 1) = 0.

Therefore, combining (A.8) and (A.9) yields

(A.10) \nu (t, 1,M) \geq 0, t > 0, M \geq 1.

This inequality will be used in Appendix B.1.

Appendix B. Proof of Lemma 4.11. By symmetry,

(B.1) Prob(Xtwo - sided
k (t) = 0) = Prob(Xtwo - sided

M - k+1 (t) = 0), k = 1, . . . ,M.

Plugging expressions (A.5) and (B.1) into (4.24b) gives

\nu (t, k,M) = S1(t; p, q, k) + S1(t; p, q,M  - k + 1) - 2Prob(Xtwo - sided
k (t) = 0).

Differentiating \nu (t, k,M) and using (4.19) and (4.3) yields

(B.2)
d

dt
\nu (t, k,M) + (p+ q)\nu (t, k,M) = q\psi (t, k,M),

where
(B.3)
\psi (t, k,M) = S2(t; p, q, k) + S2(t; p, q,M  - k + 1)

 - Prob(Xtwo - sided
k - 1 (t) = 0, Xtwo - sided

k (t) = 0) - Prob(Xtwo - sided
k (t) = 0, Xtwo - sided

k+1 (t) = 0).

In Appendix B.1 we show that

(B.4) \psi (t, k,M) > 0, t > 0, k \geq 2, M \geq 2k  - 1.

Therefore, \psi (t, k,M) > 0 for t > 0 and 2 \leq k \leq M+1
2 . In addition, \nu (0, k,M) = 0.

Now applying Lemma A.1 to (B.2) gives the desired result.

B.1. Proof of (B.4). We proceed by induction on k. Thus, we first show
that \psi (t, 2,M) > 0 for t > 0 and for M \geq 2 \times 2  - 1 = 3. Then we show that if
\psi (t, k - 1,M) > 0 for M \geq 2(k - 1) - 1 = 2k - 3, then \psi (t, k,M) > 0 for M \geq 2k - 1.

By (4.20),
(B.5)

\psi (t,k,M) = S2(t; p, q, k) + S2(t; p, q,M  - k + 1)

 - S
\Bigl( 
t; p;

q

2
, k  - 1

\Bigr) 
S
\Bigl( 
t; p;

q

2
,M  - k + 1

\Bigr) 
 - S

\Bigl( 
t; p;

q

2
, k
\Bigr) 
S
\Bigl( 
t; p;

q

2
,M  - k

\Bigr) 
.

By Lemma 3.10,
(B.6)
S2(t; p, q, k) = e - ptS(t; p, q, k  - 1), S2(t; p, q,M  - k + 1) = e - ptS(t; p, q,M  - k).

By Lemma A.4,

(B.7) S
\Bigl( 
t; p,

q

2
, k
\Bigr) 
< S

\Bigl( 
t; p,

q

2
, k  - 1

\Bigr) 
, S

\Bigl( 
t; p,

q

2
,M  - k + 1

\Bigr) 
< S

\Bigl( 
t; p,

q

2
,M  - k

\Bigr) 
.

By (A.2),

(B.8) S
\Bigl( 
t; p,

q

2
, 1
\Bigr) 
= S

\bigl( 
t; p, q, 1

\bigr) 
= e - pt.
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Plugging (B.6), (B.7), and (B.8) into (B.5) with k = 2 and then using (A.7) yields

\psi (t, 2,M) > e - pt
\Bigl[ 
S
\bigl( 
t; p, q, 1

\bigr) 
+ S

\bigl( 
t; p, q,M  - 2

\bigr) 
 - 2S

\bigl( 
t; p,

q

2
,M  - 2

\bigr) \Bigr] 
= e - pt\nu (t, 1,M  - 2).

By (A.10), the right-hand side is not negative for M  - 2 \geq 1, i.e., M \geq 3. Therefore,
\psi (t, 2,M) > 0 for M \geq 3.

For k \geq 3, assume that \psi (t, k  - 1,M) > 0 for t > 0 and for M \geq 2k  - 3.
Differentiating \psi (t, k,M) in (B.3) and using (4.3) and (SM2.5) yields

(B.9)

d

dt
\psi (t, k,M) + (2p+ q)\psi (t, k,M) = q

\Bigl[ 
S3

\bigl( 
t; p, q, k

\bigr) 
+ S3

\bigl( 
t; p, q,M  - k + 1

\bigr) 
 - 1

2
Prob

\bigl( 
Xtwo - sided

k - 2 (t) = 0, Xtwo - sided
k - 1 (t) = 0, Xtwo - sided

k (t) = 0
\bigr) 

 - 1

2
Prob

\bigl( 
Xtwo - sided

k - 1 (t) = 0, Xtwo - sided
k (t) = 0, Xtwo - sided

k+1 (t) = 0
\bigr) 

 - 1

2
Prob

\bigl( 
Xtwo - sided

k - 1 (t) = 0, Xtwo - sided
k (t) = 0, Xtwo - sided

k+1 (t) = 0
\bigr) 

 - 1

2
Prob

\bigl( 
Xtwo - sided

k (t) = 0, Xtwo - sided
k+1 (t) = 0, Xtwo - sided

k+2 (t) = 0
\bigr) \Bigr] 
.

By Lemma 3.10, for k \geq 3,

S3

\bigl( 
t; p, q, k

\bigr) 
= e - 2ptS

\bigl( 
t; p, q, k  - 2

\bigr) 
, S2

\bigl( 
t; p, q, k  - 1

\bigr) 
= e - ptS

\bigl( 
t; p, q, k  - 2

\bigr) 
.

Therefore,

S3

\bigl( 
t; p, q, k

\bigr) 
= e - ptS2

\bigl( 
t; p, q, k  - 1

\bigr) 
.(B.10a)

Similarly,

S3

\bigl( 
t; p, q,M  - k + 1

\bigr) 
= e - ptS2

\bigl( 
t; p, q,M  - k

\bigr) 
.(B.10b)

By the indifference principle (see Figure 13),
(B.11)

Prob
\Bigl( 
Xtwo - sided

k (t) = 0, Xtwo - sided
k+1 (t) = 0, Xtwo - sided

k+2 (t) = 0
\Bigr) 

= S
\bigl( 
t; p, q, 1

\bigr) 
S
\Bigl( 
t; p,

q

2
, k

\Bigr) 
S
\Bigl( 
t; p,

q

2
,M  - k  - 1

\Bigr) 
= e - ptS

\Bigl( 
t; p,

q

2
, k

\Bigr) 
S
\Bigl( 
t; p,

q

2
,M  - k  - 1

\Bigr) 
,

where in the second equality we used (A.2). Plugging (B.10) and (B.11) into (B.9)
gives
(B.12)
d

dt
\psi (t, k,M) + (2p+ q)\psi (t, k,M)

= qe - pt
\Bigl[ 
S2

\bigl( 
t; p, q, k  - 1

\bigr) 
+ S2

\bigl( 
t; p, q,M  - k

\bigr) 
 - 1

2
S
\bigl( 
t; p,

q

2
, k  - 2

\bigr) 
S
\bigl( 
t; p,

q

2
,M  - k + 1

\bigr) 
 - 1

2
S
\bigl( 
t; p,

q

2
, k  - 1

\bigr) 
S
\bigl( 
t; p,

q

2
,M  - k

\bigr) 
 - 1

2
S
\bigl( 
t; p,

q

2
, k  - 1

\bigr) 
S
\bigl( 
t; p,

q

2
,M  - k

\bigr) 
 - 1

2
S
\bigl( 
t; p,

q

2
, k
\bigr) 
S
\bigl( 
t; p,

q

2
,M  - k  - 1

\bigr) \Bigr] 
.

By Lemma A.4,

S
\Bigl( 
t; p,

q

2
, k  - 1

\Bigr) 
< S

\Bigl( 
t; p,

q

2
, k  - 2

\Bigr) 
, S

\Bigl( 
t; p,

q

2
, k
\Bigr) 
< S

\Bigl( 
t; p,

q

2
, k  - 1

\Bigr) 
,(B.13a)
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Fig. 13. Equivalent networks for the calculation of Prob(Xtwo - sided
k (t) = 0, Xtwo - sided

k+1 (t) =

0, Xtwo - sided
k+2 (t) = 0) on the two-sided line. Solid red and dashed blue arrows are influential and

noninfluential edges to \Omega = \{ k, k+1, k+2\} , respectively. (A) Two-sided line. (B) All noninfluential

edges are deleted. The noninfluential edges k \rightarrow 1 and k + 2 \rightarrow M are added.

S
\Bigl( 
t; p,

q

2
,M  - k + 1

\Bigr) 
< S

\Bigl( 
t; p,

q

2
,M  - k

\Bigr) 
, S

\Bigl( 
t; p,

q

2
,M  - k

\Bigr) 
< S

\Bigl( 
t; p,

q

2
,M  - k  - 1

\Bigr) 
.

(B.13b)

By (B.12) and (B.13), d
dt\psi (t, k,M) + (2p + q)\psi (t, k,M) > qe - pt\psi (t, k  - 1,M  - 2),

where

\psi (t, k  - 1,M  - 2) = S2

\bigl( 
t; p, q, k  - 1

\bigr) 
+ S2

\bigl( 
t; p, q,M  - k

\bigr) 
 - S

\Bigl( 
t; p,

q

2
, k  - 2

\Bigr) 
S
\Bigl( 
t; p,

q

2
,M  - k

\Bigr) 
 - S

\Bigl( 
t; p,

q

2
, k  - 1

\Bigr) 
S
\Bigl( 
t; p,

q

2
,M  - k  - 1

\Bigr) 
;

see (B.5). By the induction assumption, the right-hand side is positive for M  - 2 \geq 
2k  - 3; i.e., M \geq 2k  - 1. Therefore, by Lemma A.1, \psi (t, k,M) > 0 for M \geq 2k  - 1.
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