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SM1. End of proof of Lemma 4.1. Substituting the expression for S(t;M - 1)
from (4.7) into the right-hand side of (4.6), integrating, and equating the coefficients
of the exponents on both sides of (4.6) gives, after some algebra,
(SM1.1)

S(t;M) = e - (p+q)t + qe - (p+q)t
M - 2\sum 
k=1

Ak,M - 1

\int t

0

e - kp\tau d\tau + qe - (p+q)tBM - 1

\int t

0

e - (M - 1)p\tau +q\tau d\tau 

= e - (p+q)t  - qe - (p+q)t
M - 2\sum 
k=1

Ak,M - 1
e - kpt  - 1

kp
+ qe - (p+q)tBM - 1

e - (M - 1)pt+qt  - 1

q  - (M  - 1)p
.

Equating the coefficients of e - Mpt in (4.7) and (SM1.1) gives BM = q
q - (M - 1)pBM - 1.

Since B1 = 1, see (3.8), we get that

(SM1.2) BM =
qM - 1\prod M - 1

j=1 (q  - jp)
.

Equating the coefficients of e - (kp+q)t in (4.7) and (SM1.1) gives

(SM1.3) Ak,M =  - qAk - 1,M - 1

(k  - 1)p
, k = 2, . . . ,M  - 1,

and
(SM1.4)

A1,M = 1 +
q

p

M - 2\sum 
k=1

Ak,M - 1

k
 - qBM - 1

q  - (M  - 1)p
= 1 +

q

p

M - 2\sum 
k=1

Ak,M - 1

k
 - qM - 1\prod M - 1

j=1 (q  - jp)
,

where in the second equality we used (SM1.2). By (SM1.3) and (SM1.4),

(SM1.5)

AM - k,M =
( - q)M - k - 1

(M  - k  - 1)!pM - k - 1
A1,k+1

=
( - q)M - k - 1

(M  - k  - 1)!pM - k - 1

\left[  1 - qk\prod k
j=1(q  - jp)

+
q

p

k - 1\sum 
j=1

Aj,k

j

\right]  .

Using (SM1.3) again, we get that

(SM1.6) Aj,k =
pM - k(M  - k + j  - 1)!

( - q)M - k(j  - 1)!
AM - k+j,M .

Plugging (SM1.6) into (SM1.5) yields

AM - k,M =
( - q)M - k - 1

(M  - k  - 1)!pM - k - 1

\left[  1 - qk\prod k
j=1(q  - jp)

+
q

p

k - 1\sum 
j=1

pM - k(M  - k + j  - 1)!

( - q)M - kj!
AM - k+j,M

\right]  .
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Therefore,

(SM1.7) AM - k,M =
( - q)M - k - 1

(M  - k  - 1)!pM - k - 1
cM - k,

where

(SM1.8) cM - k := 1 - qk\prod k
j=1(q  - jp)

 - 
k - 1\sum 
j=1

pM - k - 1(M  - k + j  - 1)!

( - q)M - k - 1j!
AM - k+j,M .

Relation (4.1a) follows from f = 1  - S and from (4.7), (SM1.2), and (SM1.7) with
(M  - k)  - \rightarrow k.

Plugging (SM1.7) into (SM1.8) yields

cM - k = 1 - qk\prod k
j=1(q  - jp)

 - 
k - 1\sum 
j=1

p - j( - q)j

j!
cM - k+j .

Making the change of variables \~j := k  - j in the summation gives (4.1b).

SM2. Proof of (4.19). Following [SM1, proof of Lemma 8], we can obtain
from (2.6) that
(SM2.1)

d

dt
Prob (Xj(t) = 0) = - pProb (Xj - 1(t) = 0, Xj(t) = 0, Xj+1(t) = 0)

 - 
\Bigl( 
p+

q

2

\Bigr) 
Prob (Xj - 1(t) = 0, Xj(t) = 0, Xj+1(t) = 1)

 - 
\Bigl( 
p+

q

2

\Bigr) 
Prob (Xj - 1(t) = 1, Xj(t) = 0, Xj+1(t) = 0)

 - (p+ q) Prob (Xj - 1(t) = 1, Xj(t) = 0, Xj+1(t) = 1) .

The configuration \{ Xj(t) = 0, Xj+1(t) = 0\} can be written as a union of two disjoint
configurations:

\{ Xj(t) = 0,Xj+1(t) = 0\} =

\{ Xj - 1(t) = 0, Xj(t) = 0, Xj+1(t) = 0\} \cup \{ Xj - 1(t) = 1, Xj(t) = 0, Xj+1(t) = 0\} .

Therefore, it probability is the sum of the probabilities of the disjoint configurations:
(SM2.2)

Prob (Xj(t) = 0, Xj+1(t) = 0) = Prob (Xj - 1(t) = 0, Xj(t) = 0, Xj+1(t) = 0)

+ Prob (Xj - 1(t) = 1, Xj(t) = 0, Xj+1(t) = 0) .

Similarly,
(SM2.3)

Prob (Xj - 1(t) = 0, Xj(t) = 0) = Prob (Xj - 1(t) = 0, Xj(t) = 0, Xj+1(t) = 0)

+ Prob (Xj - 1(t) = 0, Xj(t) = 0, Xj+1(t) = 1) ,

and

(SM2.4)

Prob (Xj(t) = 0) = Prob (Xj - 1(t) = 0, Xj(t) = 0, Xj+1(t) = 0)

+ Prob (Xj - 1(t) = 1, Xj(t) = 0, Xj+1(t) = 0)

+ Prob (Xj - 1(t) = 0, Xj(t) = 0, Xj+1(t) = 1)

+ Prob (Xj - 1(t) = 1, Xj(t) = 0, Xj+1(t) = 1) .
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Rearranging (SM2.2), (SM2.3) and (SM2.4), and plugging the relevant terms of these
equations into (SM2.1), leads to (4.19).

A similar derivation yields the relation
(SM2.5)
d

dt
Prob (Xj(t) = 0, Xj+1(t) = 0) = - (2p+ q)Prob (Xj(t) = 0, Xj+1(t) = 0)

+
q

2

\Bigl[ 
Prob (Xj - 1(t) = 0, Xj(t) = 0, Xj+1(t) = 0)

+ Prob (Xj(t) = 0, Xj+1(t) = 0, Xj+2(t) = 0)
\Bigr] 

which is used in the derivation of (B.9).

SM3. Proof of Lemma 4.8. We first consider node j + k which is not on the
circle, where k = 1, . . . ,K. By the indifference principle, its probability to be a non-
adopter by time t can be calculated from the equivalent network in Figure SM1(B).
Therefore, Prob (Xj+k(t) = 0) = S(t, p, q,M  - K + k), or equivalently

(SM3.1) Prob (Xj+k(t) = 1) = f\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}\mathrm{l}\mathrm{e}(t; p, q,M  - K + k).

For the M  - K nodes on the circle, it can easily be verified that edges j \rightarrow j + 1

\rightarrow . . . j +K are non-influentials to any of them. Therefore, by the indifference
principle, the probability of such a node j to become an adopter is

(SM3.2) Prob (Xj(t) = 1) = f\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}\mathrm{l}\mathrm{e}(t; p, q,M  - K).

Combining (3.1), (SM3.1), and (SM3.2) yields the result.

SM4. Proof of Lemma 4.9. By the indifference principle for \Omega = \{ 1\} , the
networks in Figures SM2(A1) and SM2(A2) are equivalent for the one-sided case, and
the networks in Figures SM2(B1) and SM2(B2) are equivalent for the two-sided case.
By the strong version of the generalized dominance principle applied to networks
SM2(A2) and SM2(B2), see remark after Lemma 3.5, Prob

\bigl( 
X\mathrm{t}\mathrm{w}\mathrm{o} - \mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{d}

1 (t) = 0
\bigr) 
<

Prob
\bigl( 
X\mathrm{o}\mathrm{n}\mathrm{e} - \mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{d}

1 (t) = 0
\bigr) 
. Similarly, by the indifference principle for \Omega = \{ M\} , the

networks in Figures SM3(B1) and SM3(B2) are equivalent for the two-sided case. By
the strong version of the generalized dominance principle applied to networks SM3(A)
and SM3(B2), Prob

\bigl( 
X\mathrm{t}\mathrm{w}\mathrm{o} - \mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{d}

M (t) = 0
\bigr) 
> Prob

\bigl( 
X\mathrm{o}\mathrm{n}\mathrm{e} - \mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{d}

M (t) = 0
\bigr) 
.

SM5. Proof of Lemma A.1. Let t > 0. Since b(t) > 0, we have that \mathrm{d}
\mathrm{d}\mathrm{t}\sigma (t) +

K\sigma (t) > 0. Multiplying both sided by eKt yields \mathrm{d}
\mathrm{d}\mathrm{t}

\bigl( 
eKt\sigma (t)

\bigr) 
> 0. Integrating both

sides from 0 to t and rearranging leads to \sigma (t) > e - Kt\sigma (0). Since \sigma (0) = 0, the result
follows.
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Fig. SM1. Equivalent networks for the calculation of Prob(Xj+k(t) = 0). Solid red and dashed
blue arrows are influential and non-influential edges to \Omega = \{ j+k\} , respectively. (A) One-sided circle

with a one-sided ray. (B) The non-influential edges j \rightarrow j +K + 1 and j + k \rightarrow j + k + 1

are deleted; the non-influential edge j + k \rightarrow j +K + 1 is added.

Fig. SM2. Equivalent networks for the calculation of Prob(X1(t) = 0) for the one-sided and
the two-sided cases. Solid red and dashed blue arrows correspond to influential and non-influential
edges to \Omega = \{ 1\} , respectively. (A1 ) One-sided line. (A2 ) All non-influential edges in (A1 ) are
deleted. (B1 ) Two-sided line. (B2 ) All non-influential edges in (B1 ) are deleted.
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Fig. SM3. Equivalent networks for the calculation of Prob(XM (t) = 0) for the one-sided and
the two-sided cases. Solid red and dashed blue arrows correspond to influential and non-influential
edges to \Omega = \{ M\} , respectively. (A) One-sided line (with an internal influence of q). (B1 ) Two-
sided line (with an internal influence of q

2
). (B2 ) All non-influential edges in (B1 ) are deleted,

resulting in a one-sided line with an internal influence of q
2
.
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