SUPPLEMENTARY MATERIALS: BOUNDARY EFFECTS IN THE
DISCRETE BASS MODEL*

GADI FIBICHT, TOMER LEVINT, AND OREN YAKIR
SM1. End of proof of Lemma 4.1. Substituting the expression for S(¢t; M —1)

from (4.7) into the right-hand side of (4.6), integrating, and equating the coefficients
of the exponents on both sides of (4.6) gives, after some algebra,
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Equating the coefficients of e =™P! in (4.7) and (SM1.1) gives By = mBM*l'
Since By = 1, see (3.8), we get that
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Equating the coefficients of e~(*P+9? in (4.7) and (SM1.1) gives
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where in the second equality we used (SM1.2). By (SM1.3) and (SM1.4),
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Using (SM1.3) again, we get that
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Plugging (SM1.6) into (SM1.5) yields
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Therefore,
(—g)M—F-1
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Relation (4.1a) follows from f = 1— S and from (4.7), (SM1.2), and (SM1.7) with
(M —k) — k.
Plugging (SM1.7) into (SM1.8) yields
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Making the change of variables j := k — j in the summation gives (4.1b).

SM2. Proof of (4.19). Following [SM1, proof of Lemma 8], we can obtain
from (2.6) that
(SM2.1)

%Prob (X;(t) = 0) = — pProb (X;_1(t) = 0, X;(£) = 0, X,41(£) = 0)

_ <p n g) Prob (X;_1(t) = 0, X;(t) = 0, X;41(t) = 1)
- (p + g) Prob (X, _1(t) = 1, X;(t) = 0, X, 1(t) = 0)
— (p + q) Prob (Xj—l(t) = 17Xj(t) =0, Xj+1(t) = 1) :

The configuration {X,;(t) = 0, X;41(¢) = 0} can be written as a union of two disjoint
configurations:

{Xi(t) = 0,X;11(t) = 0} =
{Xj—1(t) = 0,X;(t) = 0, X;41(t) = 0 U{X; 1 (t) = 1, X;(t) = 0, X;41(¢) = 0}
Therefore, it probability is the sum of the probabilities of the disjoint configurations:
(SM2.2)
Prob (Xj (t) =0, XJJrl(t) = 0) = Prob (Xjfl(t) =0, Xj (t) =0, XJ+1(t) = 0)
+ Prob (X;_1(t) = 1, X;(t) = 0, X;11(¢) = 0).
Similarly,
(SM2.3)
Prob (Xj_l(t) = O,Xj(t) = 0) = Prob (Xj_l(t) = O,Xj(t) = O,Xj+1(t) = O)
+ Prob (Xj,1<t) = O,Xj(t) = O,Xj+1(t> = 1) ,

and
Prob (X;(t) = 0) = Prob (X;_1(t) = 0, X;(t) = 0, X;11(t) = 0)
+ Prob (Xj_l(t) =1, Xj(t) = O,Xj+1(t) = O)
(SM24) + Prob (X;1(6) = 0. X(t) = 0, Xy (1) = 1)
+ Prob (X;-1(t) = 1, X;(t) = 0, X;41(t) = 1)
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Rearranging (SM2.2), (SM2.3) and (SM2.4), and plugging the relevant terms of these
equations into (SM2.1), leads to (4.19).

A similar derivation yields the relation
(SM2.5)

S Prob (X,(1) = 0, X;41(1) = 0) = — (20 +q)Prob (X; (1) = 0, X, 11(1) = 0)

+ 2 [Prob (X;-1(t) = 0, X, (1) = 0, X;41(t) = 0)
+ Prob (X;(t) = 0, X;41(t) = 0, X 2(t) = 0) |

which is used in the derivation of (B.9).

SM3. Proof of Lemma 4.8. We first consider node j + k which is not on the
circle, where kK = 1,..., K. By the indifference principle, its probability to be a non-
adopter by time ¢ can be calculated from the equivalent network in Figure SM1(B).
Therefore, Prob (X;4£(t) =0) = S(¢,p,q, M — K + k), or equivalently

(SM31) PI'Ob( _]-‘rk( ) ) = fCircle(t;pyqa M-K + k)

For the M — K nodes on the circle, it can easily be verified that edges @ —

— ... are non-influentials to any of them. Therefore, by the indifference
principle, the probability of such a node j to become an adopter is

(SM32) Prob (X](t) = 1) = fcircle(t;paQa M — K)

Combining (3.1), (SM3.1), and (SM3.2) yields the result.

SM4. Proof of Lemma 4.9. By the indifference principle for @ = {1}, the
networks in Figures SM2(A1) and SM2(A2) are equivalent for the one-sided case, and
the networks in Figures SM2(B1) and SM2(B2) are equivalent for the two-sided case.
By the strong version of the generalized dominance principle applied to networks
SM2(A2) and SM2(B2), see remark after Lemma 3.5, Prob (X{™~59ed(4) = 0) <
Prob (X fne*Sided(t) = 0). Similarly, by the indifference principle for Q = {M}, the
networks in Figures SM3(B1) and SM3(B2) are equivalent for the two-sided case. By
the strong version of the generalized dominance principle applied to networks SM3(A)
and SM3(B2), Prob (X§7°~*9°d(¢) = 0) > Prob (X§;° 99 (¢) = 0).

SM5. Proof of Lemma A.1. Let t > 0. Since b(t) > 0, we have that Lo (t) +
¢

Ko(t) > 0. Multiplying both sided by eX? ylelds d—(eK o(t)) > 0. Integratlng both
sides from 0 to ¢ and rearranging leads to o(t) > !(0). Since o(0) = 0, the result
follows.
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F1G. SM1. Equivalent networks for the calculation of Prob(X;(t) = 0). Solid red and dashed
blue arrows are influential and non-influential edges to Q = {j+k}, respectively. (A) One-sided circle

with a one-sided ray. (B) The non-influential edges @ — and (j + k) — (j + k+ 1)

are deleted; the non-influential edge (j + k) — (j + K+ 1) is added.
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Fic. SM2. Equivalent networks for the calculation of Prob(Xi(t) = 0) for the one-sided and
the two-sided cases. Solid red and dashed blue arrows correspond to influential and non-influential
edges to Q@ = {1}, respectively. (A1) One-sided line. (A2) All non-influential edges in (A1) are
deleted. (B1) Two-sided line. (B2) All non-influential edges in (B1) are deleted.
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Fic. SM3. Equivalent networks for the calculation of Prob(Xs(t) = 0) for the one-sided and
the two-sided cases. Solid red and dashed blue arrows correspond to influential and non-influential
edges to Q = {M?}, respectively. (A) One-sided line (with an internal influence of q). (B1) Two-

sided line (with an internal influence of %). (B2) All non-influential edges in (B1) are deleted,
resulting in a one-sided line with an internal influence of %.
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