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Universal bounds for spreading on networks
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ABSTRACT

Spreading (diffusion) of innovations is a stochastic process on social networks. When the key driving mechanism is the peer effect (word of
mouth), the rate at which the aggregate adoption level increases with time depends strongly on the network structure. In many applications,
however, the network structure is unknown. To estimate the aggregate adoption level as a function of time for such innovations, we show
that the minimal and maximal adoption levels are attained on a homogeneous two-node network and on a homogeneous infinite complete
network, respectively. Solving the Bass model on these two networks yields explicit lower and upper bounds for the expected adoption level
on any network. These bounds are tight, and they also hold for the individual adoption probabilities of nodes. The gap between the lower and
upper bounds increases monotonically with the ratio of the rates of internal and external influences.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0191197

Quantitative predictions for the adoption level of a new product
from the time it is first introduced into the market are of fun-
damental importance to firms and investors. When most of the
spreading of the new product occurs through word-of-mouth, the
structure of the social network plays a key role in determining the
adoption level in the market. In many cases, however, the social
network structure is unknown. In such cases, one wishes to have
at least some information on the minimal and maximal adoption
levels. In this paper, we find explicit expressions for these lower
and upper bounds and analyze the size of the gap between the two.

I. INTRODUCTION

Diffusion (spreading) of innovations in networks is an active
research area in mathematics, economics, management science,
social sciences, and more.1–3 In marketing, diffusion of new products
is a classical problem.4

The first mathematical model of diffusion of new products was
introduced by Bass.5 In this model, individuals adopt a new prod-
uct because of external influences by mass media and commercials
and because of internal influences (peer effect, word-of-mouth) by
individuals who have already adopted the product. Let f denote the
adoption level (fraction of adopters) in the population at time t.
Then, according to the Bass model,

f ′(t) =
(
1 − f

) (
p + qf

)
, t > 0, f(0) = 0. (1)

Thus, the 1 − f potential adopters adopt due to external influences at
the constant rate of p and due to internal influences at the rate of qf,
which is proportional to the fraction of adopters. Equation (1) can
be solved explicitly, yielding the S-shaped Bass formula,5

fBass(t) =
1 − e−(p+q)t

1 +
q

p
e−(p+q)t

. (2)

The Bass model (1) inspired a huge body of theoretical and
empirical research; in 2004, it was selected as one of the 10 most-
cited papers in the 50-year history of Management Science.6 Initially,
this research was carried out using compartmental Bass models,
such as Eq. (1), in which the population is divided into several com-
partments (e.g., nonadopters and adopters), and the transition rates
between compartments are given by deterministic ordinary differ-
ential equations. Compartmental Bass models, therefore, implicitly
assume that the underlying social network is a homogeneous com-
plete graph, i.e., that all individuals within the population are equally
likely to influence each other.

In order not to make these assumptions, in more recent studies,
diffusion of new products has been studied using Bass models on
networks.7–12 These agent-based models for the stochastic adoption
decision of each individual allow for implementing a heterogeneous
network structure, whereby individuals can only be influenced by
adopters who are also their peers.

Explicit expressions for the expected adoption level f(t) in
the Bass model were only obtained for a few networks. Niu13
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computed explicitly the expected adoption level fcomplete(t; M) on
complete homogeneous networks with M nodes and showed
that limM→∞ fcomplete(t; M) = fBass(t), see Theorem 2 below. Fibich
and Gibori8 computed explicitly the expected adoption level
fcircle(t; M) on homogeneous circles with M nodes. They showed
that the adoption level on the infinite circle, denoted by f1D(t)

:= limM→∞ fcircle(t; M), is given by f1D(t) = 1 − e
−(p+q)t+q 1−e−pt

p .
For most networks, explicit expressions for f(t) are not avail-

able. Moreover, in many applications, the network structure is not
known. Hence, it is important, for both theoretical and practical
considerations, to obtain explicit lower and upper bounds for the
expected adoption level f(t).

In Ref. 8, it was conjectured that since circular and complete
networks are the “least-connected” and the “most-connected” net-
works, the adoption level on any infinite network should be bounded
from below by that on the infinite circle and from above by that on
the infinite complete network, i.e., that f1D(t) ≤ f(t) ≤ fBass(t). So far,
this conjecture has remained open.

In this study, we settle this conjecture. We prove that
f(t) ≤ fBass(t) for any finite or infinite network. Thus, as was conjec-
tured in Ref. 8, fBass is a universal upper bound for the adoption level.
Moreover, this upper bound is tight and is strict for non-complete
networks. The tight universal upper bound for the individual adop-
tion probabilities of nodes (i.e., for the probability of any node to
adopt the product before time t) is also given by fBass.

The universal lower bound for f(t) on general finite or infinite
networks, however, is not f1D. Rather, we prove that f(t) ≥ f hom

M=2(t)

for any network, where f hom
M=2 := 1 − e−pt qe−pt−pe−qt

q−p
is the expected

adoption level on a homogeneous two-node network. This universal
lower bound is also tight, and it also holds for the individual adop-
tion probabilities of nodes. Thus, the conjecture from Ref. 8 that f1D

is a universal lower bound for all infinite networks is wrong (note,
however, that for any D ≥ 1, f1D is the tight lower bound for the
adoption level fD(t) on infinite D-dimensional Cartesian network
where each node is connected to its 2D nearest neighbors with edges
of weight

q

2D
; see Ref. 14 for more details).

Let us motivate the “success” of the conjecture from Ref. 8
regarding the upper bound, and its “failure” regarding the lower
bound. As noted, the compartmental Bass model (1) corresponds to
a complete network, which is indeed the “most-connected” network,
in the sense that each node can be directly influenced by all other
nodes. A one-sided circle, where each node can only influenced by
the node to its left, however, is not the “least-connected” network.
This is because each node is also indirectly influenced by all other
nodes. Rather, the “least-connected” network is a collection of dis-
joint pairs of nodes, where each node can be directly influenced by
the other node in the pair but cannot be indirectly influenced by any
other node.

More generally, this study presents a collection of analytic
results that share a common principle: weak influences by numer-
ous adopters lead to a faster spreading than strong influences by a few
adopters. The results that the lower and upper bounds are attained
on two-node and infinite complete networks, respectively, can be
viewed as extreme manifestations of this principle.

To quantify the influence of the social-network structure on
the adoption level of new products, we study the size of the gap

between the lower and upper bounds. The gap size is a mono-
tonically increasing function of the ratio

q

p
of the rates of internal

and external influences. For products that spread predominantly
through word of mouth, we obtain an explicit approximation for
the gap size. This explicit approximation shows that the network
structure indeed has a large influence on the adoption level of such
products.

The practical implications of this study are as follows:

(1) Availability of explicit lower and upper bounds for the expected
adoption level as a function of time.

(2) The insight that when p � q, the network structure has a large
effect on the speed at which a new product will spread.

(3) The principle that weak influences by numerous adopters lead
to a faster spreading than strong influences by a few adopters
suggests that promotional strategies that lead to a small increase
in peer effects by numerous individuals will be more effective
than those that lead to a large increase in peer effects by few
individuals.

The paper is organized as follows. Section II presents the Bass
model on a general network. Section III presents the main results
of this paper on the universal lower and upper bounds. Section IV
considers the size of the gap between the lower and upper bounds.
Section V lists some open research problems. The detailed proofs are
given in Sec. VI.

II. BASS MODEL ON NETWORKS

We begin by introducing the Bass model on a general heteroge-
neous network. This model is stochastic, unlike the compartmental
Bass model (1) that is a deterministic ODE.

A new product is introduced at time t = 0 to a network with M
individuals, denoted by M := {1, . . . , M}, where M can be finite or
infinite. We denote by Xj(t) the state of individual j at time t so that

Xj(t) =

{
1, if j is an adopter of the product at time t,

0, otherwise.

Since the product is new, all individuals are initially nonadopters,
i.e.,

Xj(0) = 0, j ∈ M. (3a)

The underlying social network is represented by a weighted directed
graph such that if there is an edge from k to j, the rate of inter-
nal influence of adopter k on nonadopter j to adopt is qk,j > 0, and
qk,j = 0 if there is no edge from k to j. The edges and influence rates
are not assumed to be symmetric, i.e., qk,j may be different from qj,k.
Since nonadopters do not self-influence to adopt,

qj,j ≡ 0, j ∈ M.

In contrast to similar models in epidemiology on networks,15 such
as the susceptible infected (SI) model, j also experiences external
influences to adopt by mass media and commercials at a constant
rate of pj > 0. Internal and external influences are assumed to be
additive. Thus, the adoption time Tj of nonadopter j is piecewise
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exponentially distributed at the rate of

λj(t) := pj +
∑

k∈M

qk,jXk(t), j ∈ M, t > 0, (3b)

which increases whenever k adopts and qk,j > 0. Finally, it is
assumed that once an individual adopts the product, she or he
remains an adopter for all time. Therefore, the stochastic adoption
of j ∈ M in the time interval (t, t + 1t) as 1t → 0 is given by

P(Xj(t + 1t) = 1 | X(t))

=

{
1, if Xj(t) = 1,(
pj +

∑
k∈M

qk,jXk(t)
)
1t, if Xj(t) = 0,

(3c)

where X(t) := (X1(t), . . . , XM(t)) is the state of the network at time
t. Note that the time variable is continuous.

The maximal rate of internal influences that can be exerted on
node j (which is when all its neighbors/peers are adopters) is

qj :=
∑

k∈M

qk,j. (4a)

For simplicity, we assume that each node can be influenced by at
least one node, i.e.,

qj > 0, j ∈ M. (4b)

We do not assume, however, that the network only consists of a
single connected component. The underlying network of the Bass
model (3) is denoted by

N = N
(
M, {pk}k∈M, {qk,j}k,j∈M

)
. (5)

The adoption level at time t is 1
M

∑
j∈M Xj(t). Our goal is

to obtain lower and upper bounds for the expected adoption level
(fraction of adopters),

f(t;N ) :=
1

M
E


∑

j∈M

Xj(t)


 .

To do that, we will compute lower and upper bounds for the
adoption probabilities of nodes

fj(t;N ) := P(Xj(t) = 1) = E
[
Xj(t)

]
, j ∈ M

and then use

f =





1

M

∑M
j=1 fj, M < ∞,

limM→∞

1

M

∑M
j=1 fj, M = ∞.

(6)

The dependence of the adoption level and of the adoption prob-
abilities of nodes on the external and internal influence rates is
monotonic:

Theorem 1 (Ref. 16): Consider the Bass model (3) on network
N , see (5). Let t > 0. Then f(t;N ) is monotonically increasing, and
{fm(t;N )} is monotonically non-decreasing, with respect to each pj

and each qk,j.

A. Homogeneous complete networks

Let fcomplete(t; p, q, M) denote the expected adoption level
in the Bass model (3) on the homogeneous complete network
Ncomplete(p, q, M), defined as

pj ≡ p, qk,j =





q

M − 1
, k 6= j,

0, k = j,
j, k ∈ M. (7)

As M increases, each node is influenced by more nodes, but the
weight of each node decreases, so that the maximal rate of internal
influences qj ≡ q remains unchanged, see Eq. (4a). Nevertheless, the
expected adoption level increases with M:

Lemma 1 (Ref. 17): Let t, p, q > 0. Then, fcomplete(t; p, q, M) is
monotonically increasing in M.

As M → ∞, the Bass model (3) on complete networks
approaches the original compartmental Bass model:

Theorem 2 (Ref. 13): limM→∞ fcomplete(t; p, q, M) = fBass

(t; p, q), where fBass is given by (2).
From Lemma 1 and Theorem 2, we have
Corollary 1: Let t, p, q > 0. Then

fcomplete(t; p, q, M) < fBass(t; p, q), M = 1, 2, . . . .

III. MAIN RESULTS

In this section, we present the main results of this paper. The
proofs are given in Sec. VI. For clarity, we formulate the results for
networks that are homogeneous in {pj} and {qj}, i.e.,

pj ≡ p, qj ≡ q, j ∈ M. (8)

Networks that do not satisfy (8) are discussed in Sec. III D.
The condition (8) can be satisfied by any graph structure

that satisfies (4b) and not just by the complete network (7). For
example, for any given network N (M, {pj}, {qk,j}), define network

Ñ
(
M, {p̃j}, {̃qk,j}

)
such that p̃j := p and q̃k,j := qk,j

q

qj
. Then, Ñ satis-

fies (8), and it has the same nodes/edges structure as N .

A. Non-tight universal bounds

The following universal lower and upper bounds are
immediate:

Lemma 2: Consider the Bass model (3) on a network N that is
homogeneous in {pj} and {qj}, see (8). Then,

1 − e−pt ≤ fm(t) ≤ 1 − e−(p+q)t, t ≥ 0, m ∈ M, (9a)

and so

1 − e−pt ≤ f(t) ≤ 1 − e−(p+q)t, t ≥ 0. (9b)

Proof. Since Xk(t) ∈ {0, 1} for any k ∈ M, the adoption rate of
node m is bounded by, see (3b) and (4a),

p = pm ≤ λm(t) ≤ pm +
∑

k∈M

qk,m = p + q, m ∈ M, t ≥ 0.

Hence, (9a) follows, and so (9b) follows by (6). �

Thus, the lower and upper bounds (9a) for fm(t) correspond to
the extreme cases when none of the other individuals adopted by

Chaos 34, 053101 (2024); doi: 10.1063/5.0191197 34, 053101-3

© Author(s) 2024

 02 M
ay 2024 17:09:51

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

time t and when all the other individuals adopted at t = 0+, respec-
tively. Therefore, these bounds are not expected to be tight, as indeed
we will show below.

B. Tight upper bound

If one adds edges to a network, this increases the adoption level
f (Theorem 1). The following two observations suggest a stronger
result, namely, that even if as we add edges, we lower the weights
of the edges while keeping qj ≡ q unchanged, the adoption level
increases:

(1) The adoption level fcomplete(t; p, q, M) in homogeneous complete
networks is monotonically increasing in M (Lemma 1).

(2) The adoption level fD(t; p, q) in infinite D-dimensional Carte-
sian networks, where each node is connected to its 2D nearest
neighbors, and the weights of these edges is

q

2D
, is monotonically

increasing in D (this was shown numerically and asymptotically
in Ref. 8).

Thus, for networks that satisfy (8), numerous weak edges lead to a
faster diffusion than a few strong ones. Therefore, we can expect that
among all networks with M nodes that satisfy (8), the fastest diffu-
sion would be on the complete network Ncomplete(p, q, M), see (7), as
formulated in Conjecture 1 below. If that is indeed the case, then by
Corollary 1, the adoption levels on all networks should be bounded
from above by fBass. Indeed, we can rigorously prove the following:

Theorem 3: Consider the Bass model (3) on a network N that
is homogeneous in {pj} and {qj}, see (8). Then

fm(t;N ) ≤ fBass(t; p, q), t ≥ 0, m ∈ M, (10)

where fBass is given by (2), and so

f(t;N ) ≤ fBass(t; p, q), t ≥ 0. (11)

In Lemma 2, we derived the upper bound fj(t), f(t) ≤ 1
− e−(p+q)t. The upper bound of Theorem 3 is better (i.e., lower), since
by (2),

fBass(t; p, q) =
1 − e−(p+q)t

1 +
q

p
e−(p+q)t

< 1 − e−(p+q)t.

We can further show that fBass is the tight universal upper bound:
Lemma 3: The universal upper bound in Theorem 3 is tight, in

the sense that

sup
{N | (8) holds}

f(t;N ) = sup
{N | (8) holds}, m∈M

fm(t;N ) = fBass(t; p, q).

While the upper bound fBass is attained for an infinite homo-
geneous complete network (Theorem 2), it is strict for nodes that
have a finite indegree, hence for networks with a positive fraction of
nodes with finite indegree:

Theorem 4: Assume the conditions of Theorem 3.

(1) If node m has a finite indegree, then

fm(t;N ) < fBass(t; p, q), t > 0. (12)

(2) If there is a positive fraction of nodes in the network with a finite
indegree, then

f(t;N ) < fBass(t; p, q), t > 0. (13)

Therefore, the upper bound fBass is strict for any network that
is not infinite and complete (up to a vanishing fraction of nodes). In
particular, assume that the network type is one of the following:

• A finite network.
• An infinite (homogeneous or heterogeneous) D-dimensional

Cartesian network.
• An infinite scale-free network.18

• An infinite small-worlds network.19

• The infinite sparse random networks limM→∞ G
(
M, λ

M

)
.20

Since all these finite and infinite networks have a positive fraction of
finite-indegree nodes, Theorem 4 implies that f < fBass for all these
network types.

C. Tight lower bound

Let N hom
M=2 (p, q) denote the homogeneous network with two

nodes, where

M = {1, 2}, p1 = p2 = p, q1,2 = q2,1 = q, q1,1 = q2,2 = 0.
(14)

The expected adoption level on N hom
M=2 can be explicitly calculated

(see, e.g., Ref. 16), giving

f hom
M=2(t; p, q) = 1 − e−pt qe−pt − pe−qt

q − p
, p 6= q. (15)

Note that there is only one homogeneous network with two nodes.
Thus, f hom

M=2(t; p, q) = f hom
complete(t; p, q, M = 2) = f hom

circle(t; p, q, M = 2).

As noted informally in Sec. III B, for networks that satisfy (8),
few strong edges lead to a slower spreading than numerous weak
ones. Hence, it is intuitive to expect that for given p and q, the adop-
tion level is lowest when the influence q on any node in the network
is exerted by a single node. This requirement is satisfied when the
network is a one-sided circle or a collection of disjoint one-sided cir-
cles. Among all circles, the lowest adoption is on a two-node circle.17

This is because on a two-node circle each node can only be influ-
enced by one node, whereas on longer circles, each node can also
be indirectly influenced by additional nodes. Indeed, we now prove
that f hom

M=2 is a universal lower bound for {fm}, hence, for f,
Theorem 5: Assume the conditions of Theorem 3. Then

fm(t;N ) ≥ f hom
M=2(t; p, q), t ≥ 0, m ∈ M, (16a)

and so

f(t;N ) ≥ f hom
M=2(t; p, q), t ≥ 0. (16b)

In Lemma 2, we derived the lower bound fj(t), f(t) ≥ 1 − e−pt.
The lower bound in Theorem 5 is better (i.e., larger), since by
Theorem 1,

f hom
M=2(t; p, q) > f hom

M=2(t; p, q = 0) = 1 − e−pt.

Moreover, f hom
M=2 is the tight universal lower bound:

Lemma 4: Let M ∈ {2, 4, . . . }. Then

inf
{N |(8) holds}

f(t;N ) = inf
{N |(8) holds},m∈M

fm(t;N ) = f hom
M=2(t; p, q).

The lower bound fj ≥ f hom
M=2 is attained if and only if j belongs to

an isolated pair of nodes.
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Theorem 6: Assume the conditions of Theorem 3. Let j ∈ M.
If j can only be influenced by a single node, denoted by k, and if k can
only be influenced by j, then

fj(t;N ) = fM=2
hom (t; p, q), t ≥ 0. (17)

Otherwise,

fj(t;N ) > fM=2
hom (t; p, q), t > 0. (18)

Therefore, f > f hom
M=2 for any finite network with an odd number

of nodes, which is homogeneous in {pj} and {qj} .

D. Bounds for networks inhomogeneous in {p j} or {q j}

We can extend the upper-bound results to networks that are
not homogeneous in {pj} and in {qj} as follows:

Corollary 2: Theorem 3, Lemma 3, and Theorem 4 remain
valid if we replace condition (8) with

p = max
j∈M

pj, q = max
j∈M

qj. (19)

Proof. This follows from Theorem 1. �

Similarly, we can extend the lower-bound results to networks
that are not homogeneous in {pj} and {qj}.

Corollary 3: Theorem 5, Lemma 4, and Theorem 6, remain
valid if we replace condition (8) with

p = min
j∈M

pj, q = min
j∈M

qj. (20)

Both extensions, however, are quite crude. Indeed, in Ref. 21, it
was proved that on vertex-transitive graphs (A graph is called “ver-
tex transitive” if for any two nodes i, j ∈ M, there is a permutation
of the indices {1, . . . , M} of the nodes, which maps i → j and leaves
the graph invariant.), the difference between the expected adop-
tion level on a network that is heterogeneous in {pj} and {qj} and

on the corresponding homogeneous network with p̄ := 1
M

∑M
j=1 pj

and q̄ := 1
M

∑M
j=1 qj is O

(
ε2

)
small, where ε is the level of hetero-

geneity in {pj} and {qj}. Moreover, numerical simulations in Ref. 22
showed that heterogeneity in {pj} and {qj} has a minor effect on the
expected adoption level in the Bass model on complete networks.
In,8 simulations of the Bass model on 1D and 2D Cartesian net-
works showed that when the values of {pj} and {qj} are uniformly
distributed within ±20% of the corresponding values of p and q of
the homogeneous individuals, the heterogeneous and homogeneous
expected adoption levels are nearly indistinguishable. Even when the
heterogeneity level was increased to ±50%, the heterogeneous and
homogeneous expected adoption level were still very close. Similar
results were obtained in Ref. 23 in simulations of the Bass-SIR model
on 1D and 2D Cartesian networks, on small-worlds networks, and
on scale-free networks. Therefore, all the analytic and numerical evi-
dence suggests that f(t; {pj}, {qj}) ≈ f(t; p̄, q̄). Hence, for all practical

purposes, one can bound f(t; {pj}, {qj}) from below by f hom
M=2(t; p̄, q̄)

and from above by fBass(t; p̄, q̄).

IV. GAP BETWEEN LOWER AND UPPER BOUNDS

Consider any network N that is homogeneous in {pj} and {qj},
see (8). By Theorems 3 and 5, the expected adoption level and the

adoption probability of nodes are bounded by

f hom
M=2(t; p, q) ≤ f(t;N ), fm(t;N ) ≤ fBass(t; p, q), t ≥ 0.

Therefore, it is natural to consider the size of the gap between the
explicit lower and upper bounds f hom

M=2 and fBass, which expresses the
dependence of the diffusion on the network structure.

The explicit bounds can be written in a dimensionless form as

f hom
M=2(t; p, q) = f hom

M=2

(̃
t; q̃

)
, fBass(t; p, q) = fBass

(̃
t; q̃

)
,

where t̃ = qt and q̃ =
q

p
. The nondimensional parameter q̃ expresses

the ratio of internal and external influences. Since network effects
are only due to internal influences, they increase with

q

p
. Thus, when

q = 0, there are no network effects, and so the two bounds are
identical, i.e.,

f hom
M=2(t; p, q = 0) = fBass(t; p, q = 0) = 1 − e−pt.

When
q

p
� 1, the network has a minor effect on the diffusion, and

so f hom
M=2 ≈ fBass, see Fig. 1(a). For products that spread predominantly

through word-of-mouth, however, the regime of relevance is
q

p
� 1,

typically 10 ≤
q

p
≤ 100.5 As can be expected, the difference between

f hom
M=2 and fBass is significant for

q

p
= 10 [Fig. 1(b)] and even larger for

q

p
= 100 [Fig. 1(c)]. Note that for any network N , f(t;N ) lies in the

shaded region between f hom
M=2(t) and fBass(t).

It is instructive to compare the adoption levels on different net-
works using the “half-life” T1/2 for half of the population to adopt.
In particular, we can use T1/2 to compare the bounds fBass and f hom

M=2.

The ratio
T

1/2
Bass

T
1/2,hom
M=2

can be estimated asymptotically, yielding

T
1/2
Bass

T
1/2,hom
M=2

∼
2

log 2

p

q
log

q

p
,

q

p
� 1. (21)

Figure 1(d) confirms that
T

1/2
Bass

T
1/2,hom
M=2

decreases with
q

p
and approaches

the asymptotic limit (21) as
q

p
→ ∞. This limit goes to zero as

q

p
→ ∞, showing that the network structure has a large effect on

diffusion when
q

p
� 1, i.e., for products that diffuse primarily by

internal influences.

V. OPEN PROBLEMS

This manuscript settles the conjecture from Ref. 8 but leads to
some new questions, which are currently open. Indeed, the upper
and lower bounds in Theorems 3 and 5 are tight for networks with
any number of nodes. Can these bounds be improved if we restrict
ourselves to networks with a fixed number of nodes?

Thus, let

G(p, q, M) := {N | NhasMnodes, (8)holds}

be the set of all networks with M nodes that are homogeneous in
{pj} and {qj}. In the beginning of Sec. III B, we argued that the fastest
diffusion in G(p, q, M) should occur on the homogeneous complete
network (7). Therefore, we formulate
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FIG. 1. The expected adoption level f(t) of any network N lies in the shaded region between the lower bound f homM=2 (orange dashed) and upper bound fBass (blue solid).

(A) q

p
= 0.1. The two bounds are nearly indistinguishable. (B) q

p
= 10. (C) q

p
= 100. (D)

T
1/2
Bass

T
1/2,hom
M=2

as a function of q

p
(blue solid) and its asymptotic approximation (21)

(black dashes).

Conjecture 1:

sup
N∈G(p,q,M)

f(t;N ) = fcomplete(t; p, q, M).

We note, however, that the rate of convergence of fcomplete to fBass

as M → ∞ is O
(

1
M

)
, see Ref. 24. Therefore, the difference between

these two upper bounds becomes negligible for large (e.g., M = 106)
networks.

Consider now the lower bound. Let M be even, and let network
Ñ be composed of M

2
pairs of nodes, each of which is of type N hom

M=2 ,

see Eq. (14). Then f
(
t; Ñ

)
= f hom

M=2(p, q). Therefore,

inf
N∈G(p,q,M)

f(t;N ) = f hom
M=2(p, q), M even.

Thus, the lower bound f hom
M=2 cannot be improved (i.e., increased) for

networks with a fixed even number of nodes. The tight lower bound
for M odd, however, is an open problem.

Another open question is the tight lower bound of f among
connected networks with M nodes (even or odd) that are homoge-
neous in {pj} and {qj}. Here, one may need to distinguish between
connected undirected networks, weakly connected directed graphs
(there is an undirected path between any pair of vertices), and
strongly connected directed graphs (there is a directed path between
every pair of vertices).

VI. PROOF OF RESULTS

A. Master equations

Denote the nonadoption probability of node j by

[Sj](t) := 1 − fj(t) = P(Xj(t) = 0). (22)

Then, [Sj] satisfies the master equation,25

d

dt
[Sj](t) = −

(
pj + qj

) [
Sj

]
+

∑

k∈M

qk,j[Sj, Sk](t), [Sj](0) = 1,

(23)
where qj is given by (4a), and

[Sj, Sk](t) := P(Xj(t) = Xk(t) = 0).

In general, to close these equations, one adds the master equations
for all pairs {[Sj, Sk]}, all triplets {[Sj, Sk, Sm]}, etc., see Ref. 25. For the
purpose of obtaining the lower and upper bounds, however, we will
only need the following result:

Lemma 5: Consider the Bass model (3). Then, for any
i, j ∈ M,

[Si](t)[Sj](t) ≤ [Si, Sj](t) ≤ e−2pt, 0 ≤ t < ∞. (24)

Proof. The left inequality is proved in Ref. 14. For the right
inequality, we note that the joint nonadoption probability of a pair
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{i, j} of isolated nodes (qj = qi = 0) is given by

[Si, Sj](t; p, qj = qi = 0) = e−2pt,

see, e.g., Ref. 16. Hence, the right inequality follows from Theorem 1.
�

B. Differential and integral Bass inequalities

Let us recall the following result:
Lemma 6 (Ref. 8): Let p, q > 0 and let f(t) satisfy the differ-

ential Bass inequality,

df

dt
< (1 − f)(p + qf), t > 0, f(0) = 0.

Then, f(t) < fBass(t; p, q) for 0 < t < ∞.
Let [SBass] := 1 − fBass denote the nonadoption level in the

compartmental Bass model. Then, by Eq. (1),

d

dt
[SBass](t) = −(p + q)[SBass] + q[SBass]

2, [SBass](0) = 1. (25)

If we replace the equality sign in Eq. (25) by an inequality, the
solution of this inequality is bounded from below by [SBass]:

Lemma 7: Let p, q > 0, and let [S](t) satisfies the differential
Bass inequality

d

dt
[S](t) > −(p + q)[S] + q[S]2, t > 0, [S](0) = 1.

Then, [S](t) > [SBass](t) for 0 < t < ∞.
Proof. This follows from Lemma 6 and [SBass] = 1 − fBass. �

Multiplying Eq. (25) by e(p+q)t, integrating between zero and
t, and using the initial condition give the integral form of the
compartmental Bass model,

[SBass](t) = e−(p+q)t + q

∫ t

0

e−(p+q)(t−τ)[SBass]
2(τ ) dτ . (26)

If we replace the equality sign in Eq. (26) by an inequality, the solu-
tion of the resulting integral Bass inequality is bounded from below
by [SBass]:

Lemma 8: Let p, q > 0, and let [S](t) be non-negative and
continuous in [0, ∞).

(1) If [S] satisfies the integral Bass inequality

[S](t) ≥ e−(p+q)t + q

∫ t

0

e−(p+q)(t−τ)[S]2(τ ) dτ , t > 0, (27)

then [S](t) ≥ [SBass](t; p, q) for t ≥ 0.
(2) If inequality (27) is strict, then [S](t) > [SBass](t; p, q) for t > 0.

Proof. Let u := [S] − [SBass]. Subtracting Eq. (26) from Eq. (27)
gives

u(t) ≥ q

∫ t

0

e−(p+q)(t−τ)
(
[S]2 − [SBass]

2
)
(τ ) dτ .

Therefore,

u(t) ≥

∫ t

0

φ(τ)u(τ ) dτ , φ(τ) := qe−(p+q)(t−τ) ([S] + [SBass]) (τ ).

(28)

Since [S] and [SBass] are continuous and non-negative, then so
is φ. Let

v(t) := e−
∫ t
0 φ

∫ t

0

φ(τ)u(τ ) dτ . (29)

Then v(0) = 0 and

dv

dt
= e−

∫ t
0 φφ(t)

(
u(t) −

∫ t

0

φ(τ)u(τ ) dτ

)
≥ 0,

where the inequality follows from Eq. (28). Therefore, for t ≥ 0,

v(t) ≥ 0. Hence, by Eq. (29),
∫ t

0
φ(τ)u(τ ) dτ ≥ 0, and so by Eq. (28),

u(t) ≥ 0.
If inequality (27) is strict, we replace in the above proof all “≥”

signs by “>” signs. �

C. Upper bound

We begin with an auxiliary result.
Lemma 9: Consider the Bass model (3). Let (19) hold, and let

[S](t) := inf
j∈M

{
[Sj](t)

}
. (30)

Then, [S](t) is non-negative and continuous.
Proof. The non-negativity of [S] follows from that of {[Sj]}. Let

j ∈ M. Since all probabilities are bounded between 0 and 1, then
using (23) and (19),

∣∣∣∣
d

dt
[Sj]

∣∣∣∣ ≤ (p + q)[Sj] +
∑

k∈M

qk,j

[
Sj, Sk

]
≤ p + q +

∑

k∈M

qk,j ≤ κ ,

where κ := p + 2q. Hence, by the mean-value theorem, for
any t, t∗ > 0,

∣∣[Sj](t) − [Sj] (t∗)
∣∣ ≤ κ |t − t∗|, and so −[Sj] (t∗)

≤ −[Sj](t) + κ |t − t∗| ≤ −[S](t) + κ |t − t∗|. Taking the supre-
mum of the left-hand side yields −[S] (t∗) ≤ −[S](t) + κ |t − t∗|,
and so [S](t) − [S] (t∗) ≤ κ |t − t∗|. Swapping t and t∗ gives the
inverse estimate, and so [S](t) is continuous. �

Proof of Theorem 3. Since 1 − fm = [Sm] ≥ [S], see Eqs. (22)
and (30), it is sufficient to show that

[S](t) ≥ [SBass](t, p, q). (31)

By Eq. (23) with qj = q, see (8),

[Sj] = e−(p+q)t +

∫ t

0

e−(p+q)(t−τ)
∑

k∈M

qk,j [Sj, Sk](τ ) dτ . (32)

Therefore, by the lower bound in Eqs. (24) and (30),

[Sj] ≥ e−(p+q)t +

∫ t

0

e−(p+q)(t−τ)
∑

k∈M

qk,j [Sj](τ ) [Sk](τ ) dτ

≥ e−(p+q)t + q

∫ t

0

e−(p+q)(t−τ)[S]2(τ )dτ .

Taking the infimum over all j gives

[S] ≥ e−(p+q)t + q

∫ t

0

e−(p+q)(t−τ)[S]2(τ ) dτ .
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Therefore, since [S] is non-negative and continuous (Lemma 9), we
can use the integral Bass inequality (Lemma 8) to get inequality (31),
from which Eq. (10) follows. Therefore, by Eqs. (6) and (11) follows.

�

Proof of Lemma 3. The result for f follows from Theorem 2.
Since the complete network (7) is homogeneous, fm ≡ f for all
m ∈ M. Hence, the result holds for any fm as well. �

Proof of Theorem 4. Let

Ad(N ) := {m ∈ M | indegree (m) = d}

denote the set of all nodes with indegree d in network N . Then it
is sufficient to prove that for all networks that satisfy (8) and for all
d ∈ N,

[Sm](t;N ) > [SBass](t; p, q), t > 0, m ∈ Ad(N ). (33)

We prove Eq. (33) by induction on d. When d = 0, node
m ∈ A0 is not influenced by any other node, and so

[Sm](t;N ) = e−pt = [SBass](t; p, q = 0) > [SBass](t; p, q), (34)

where the inequality follows from Theorem 1.
For the induction stage, we assume that Eq. (33) holds for all

networks that satisfy Eq. (8) and for all m ∈ Ad−1 and prove that
it holds for all networks that satisfy Eq. (8) and for all m ∈ Ad, as
follows. Let m ∈ Ad, where d ≥ 1, and denote by {k1, . . . , kd} the
d nodes that can influence m. The master equation for [Sm] is, see
Eqs. (8) and (23),

d

dt
[Sm] = −(p + q)[Sm] +

d∑

i=1

qki ,m[Sm, Ski
], [Sm](0) = 1. (35)

By the indifference principle, we can compute each of the d probabil-

ities {[Sm, Ski
]}d

i=1
on a modified network Ñi, in which we remove the

edge ki → m. Thus, [Sm, Ski
] = ˜[Sm, Ski

], where the tilde sign refers

to probabilities in Ñi. In this modified network, node m has indegree
d − 1, and so by the induction assumption (In the modified network
Ñi, we reduced qm by qki ,m > 0. Therefore, q̃m < q, and so we cannot

apply the induction assumption directly for Ñi. By Theorem 1, how-
ever, since the induction assumption holds when q̃m = q, see Eq. (8),
it also holds when q̃m < q.),

[̃Sm] > [SBass].

In addition, by Theorem 3,

[̃Ski
] ≥ [SBass].

Combining the above and Eq. (24), we have that

[Sm, Ski
] = ˜[Sm, Ski

] ≥ [̃Sm][̃Ski
] > [SBass]

2.

Therefore,

d∑

i=1

qki ,m [Sm, Ski
] >

d∑

i=1

qki ,m[SBass]
2 = q[SBass]

2. (36)

By Eqs. (35) and (36),

d

dt
[Sm] + (p + q)[Sm] > q[SBass]

2, [Sm](0) = 1.

This is the differential Bass inequality (Lemma 6), written in terms
of [S], see Eq. (7). Hence, [Sm] > [SBass], as needed. �

D. Lower bound

Proof of Theorem 5. To prove the lower bound (16a) for fm, it
is sufficient to show that

[Sm](t) ≤ [S hom
M=2](t; p, q) := 1 − f hom

M=2(t; p, q) = e−pt qe−pt − pe−qt

q − p
,

where [Sm] = 1 − fm. By the upper bound in Eqs. (24) and (32), we
have that

[Sm] ≤ e−(p+q)t +

∫ t

0

e−(p+q)(t−τ)
∑

k∈M

qk,me−2pτ dτ

= e−(p+q)t + q

∫ t

0

e−(p+q)(t−τ)e−2pτ dτ

=

(
1 −

q

q − p

)
e−(p+q)t +

q

q − p
e−2pt =

[
S hom

M=2

]
(t; p, q).

Therefore, we proved Eq. (16a), which implies Eq. (16b). �

Proof of Lemma 4. When M = 2, this bound is attained by
N = N hom

M=2 (p, q). Moreover, this bound is also attained by any finite
or infinite network, which is a collection of disjoint pairs of nodes,
each of which is of type N hom

M=2 (p, q). �

Proof of Theorem 6. The only inequality in the proof of
Theorem 5 arises from using the upper bound in Eq. (24). There-
fore, the lower bound (16a) for [Sm] becomes an equality if and only
if [Sm, Sk] = e−2pt for all k ∈ M \ m for which qk,m > 0. A minor
modification of Theorem 1 shows that

[Sj, Sk] = e−2pt

⇐⇒ j and k cannot be influenced by any other node.

Therefore, the result follows. �

E. Asymptotic evaluation of
T
1/2
Bass

T
1/2,hom
M=2

By Eq. (15), T1/2 := T
1/2,hom
M=2 is the solution of

e−pT1/2 qe−pT1/2
− pe−qT1/2

q − p
=

1

2
. (37)

Let X := e−pT1/2
and λ :=

q

p
. Then, e−qT1/2

= X
q
p = Xλ. Plugging this

into Eq. (37) and noting that 0 < X < 1 and λ > 0 give

X2 −
1

2
=

p

q − p

(
−X2 + Xλ

)
= O

(
1

λ

)
, λ � 1.

Therefore,

X2 ∼
1

2
, λ � 1.

Hence, by the definition of X,

T
1/2,hom
M=2 =

1

2p
log(X−2) ∼

log(2)

2p
, λ � 1.
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Finally, by Lemma 11 in Ref. 8,

T
1/2
Bass =

log
(
2 +

q

p

)

p + q
∼

log
(

q

p

)

q
, λ � 1,

and so Eq. (21) follows.
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