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ABSTRACT

We derive the funnel theorems for the Bass and susceptible–infected models on networks that describe the spreading of innovations and
epidemics. Let j be a node and divide the remaining nodes into L ≥ 2 disjoint sets {Al}

L
l=1. The funnel theorems provide lower and upper

bounds for the difference between the susceptibility probability of j and the product of its susceptibility probability on the L modified networks
in which j can only be influenced by incoming edges from Al. In particular, one can let L be equal to the indegree of j, so that in the modified
networks, j is only influenced by one incoming edge. We illustrate how the funnel theorems can be used to obtain exact explicit expressions
for the adoption/infection probabilities of nodes and for the expected adoption/infection level in various types of networks, both with and
without cycles.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0269855

Spreading of epidemics or innovations is stochastic processes on
social networks. In this paper, we introduce the “funnel theo-
rems,” which relate the susceptibility probability of a node of
indegree L to the product of its susceptibility probabilities on L
modified networks, in which the node under consideration is only
influenced by one incoming edge at a time. We then illustrate
how the “funnel theorems” can be used to analyze the spreading
dynamics on various network structures, both with and without
cycles.

I. INTRODUCTION

Mathematical models for the spreading of epidemics have been
around for a century.1 For example, in the Susceptible–Infected (SI)
model, the epidemics starts from a few infected individuals and
progresses as infected individuals transmit it to susceptible ones.
Mathematical models for the spreading of innovations is a younger
problem—the first model was introduced in 1969 by Bass.2 In this
model, individuals adopt a new product because of external influ-
ences by mass media and internal influences by individuals who
have already adopted the product (peer effect, word of mouth).

For many years, the spreading of epidemics and innova-
tions were only analyzed using compartmental models, which are

typically given by one or several deterministic ordinary differential
equations. Such models implicitly assume that all the individuals
within the population are equally likely to influence each other,
i.e., that the underlying social network is a homogeneous complete
graph. In more recent years, research on the spreading of epidemics
and innovations has gradually shifted to network models, in which
the adoption/infection event by each individual is stochastic.3,4

These network models allow for heterogeneity among individuals
and for implementing a network structure where individuals can
only be influenced by their peers.

The stochastic spreading of new products and epidemics on
networks has been extensively studied using numerical simulations,
see e.g., Refs. 3–9. These simulations are relatively straightforward
to implement, even for spreading models that are considerably
more complex than the unidirectional Bass or SI models. Because
these models are stochastic, each simulation run yields a different
outcome. Consequently, numerical studies typically report results
averaged over a sufficiently large number of simulations to ensure
statistical reliability.

The analysis of stochastic spreading of new products and epi-
demics on networks is more challenging. Existing research in this
area has primarily focused on two key quantities: the probability
of adoption/infection at individual nodes and the expected adop-
tion/infection level across the network. The starting point of the
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analysis is usually the master (Kolmogorov) equations, which are
2M − 1 coupled deterministic linear ODEs for the susceptibility
probabilities of all the subsets of the nodes, where M is the num-
ber of network nodes. To be able to solve this exponentially large
system explicitly, one needs to reduce the number of ODEs signifi-
cantly. The common approach to do that has been to employ some
approximation (mean-field, pairwise model,10,11 etc.). More often
than not, there has been no rigorous error bound for the accuracy
of the approximation.

The goal of this study is to develop a novel analytic tool for
obtaining explicit solutions of the master equations that are exact. At
present, there are three analytic approaches for solving the master
equations explicitly, without making any approximation. The first
is based on utilizing symmetries of the network to reduce the num-
ber of master equations without making any approximation. This
approach was applied to homogeneous and inhomogeneous com-
plete networks and circles.12–15 The second approach is based on
the indifference principle.16 This analytic tool simplifies the explicit
calculation by replacing the original network with a simpler one.
The indifference principle has been used to compute the suscepti-
bility probabilities of nodes on bounded and unbounded lines and
on percolation lines.16,17 The third approach is to identify networks
on which there is an exact closure at the level of triplets, such as
undirected graphs with no cycles,18 and infinite configuration model
networks with Poisson-type distributions.19

In this paper, we introduce a new approach, which is based on
the funnel theorems. Choose some node j and partition the remain-
ing M − 1 nodes into L disjoint subsets of nodes, denoted by {Al}

L
l=1.

The funnel theorems provide the sign and magnitude of the dif-
ference between the susceptibility probability of j in the original
network and the product of its susceptibility probabilities in L mod-
ified networks in which j can only be influenced by edges arriving
from Al, where l = 1, . . . , L (see Fig. 1 for an illustration). In gen-
eral, the susceptibility probabilities of j in the modified networks are
easier to compute since the indegree of j is lower than in the original

FIG. 1. The funnel theorems (for the case of L = 2 disjoint sets of nodes) relate
the susceptibility probability of a node j that can be influenced by incoming edges
from the sets A1 and A2 (top row), to the product of its susceptibility probabilities

in the modified networks N
A1 ,pj ,I

0
j and N

A2 ,pj ,I
0
j , where j can be influenced by

incoming edges only from A1 or only from A2, respectively (bottom row).

network. For example, application of the funnel theorem to inte-
rior nodes of undirected lines reduces this problem to that of nodes
on directed lines, which is an easier task. In particular, one can
let L = indegree(j), so that from each set, Al emerges exactly one
incoming edge to j. Since indegree(j) = 1 in the modified networks,
the susceptibility probability of j can be related to that of the tail
node of the incoming edge (see, e.g., see Theorem 4.1 in Ref. 20).

The funnel relation is an equality if j is a vertex cut or, more
generally, if j is a funnel node. This is the case, e.g., for any node on
an undirected network that does not lie on a cycle. When j is not a
funnel node, however, the funnel relation is a strict inequality. This
is the case, e.g., for any node in an undirected network that lies on
a cycle. For such situations, the funnel theorems provide lower and
upper bounds for the difference between the susceptibility probabil-
ity of j in the original network and the product of its susceptibility
probability on the L modified networks.

The unknowns in the master equations are the susceptibility
probability of sets of nodes. An alternative approach for analyz-
ing the spreading dynamics is the edge-based compartmental model
(EBCM) of Voltz21 and Miller et al.,22 in which the unknowns are
the fractions of edges with nodes at certain states. In general, this
method yields approximate solutions. In the infinite-population
limit on configuration models, however, it was rigorously proved
by Decreusefond et al.23 and Jacobsen et al.24 that this method yields
exact solutions.

This paper is organized as follows. Section II presents a uni-
fied model for the Bass and SI models on networks. Section III is a
theoretical review of the master equations and the indifference prin-
ciple. Section IV presents the main result of this paper—the funnel
theorems. The power of the funnel theorems is illustrated in Sec. V,
where we use the funnel equality to easily obtain novel explicit exact
expressions for the adoption/infection probability of nodes that are
a vortex cut among L identical networks and for interior nodes on
bounded lines. We also show how the funnel theorems can be used
to compute the exact expected adoption/infection level on sparse
d-regular networks and Erdős–Renyí networks, which have numer-
ous cycles. In this case, the use of the funnel equality is more
involved. Moreover, one needs to use the lower and upper bounds
of the funnel theorems to show that the effect of cycles vanishes on
infinite networks.

The second part of this paper is devoted to proving the fun-
nel theorems. Let {�l}

L
l=1 be disjoint subsets of the nodes. The key

ingredient in the proof of the funnel theorems is an estimate of the

sign and magnitude of the difference [S∪L
l=1

�l
] −

∏L
l=1[S�l

] between

the probability that all the nodes in ∪L
l=1�l are susceptible and the

product of the L probabilities that all the nodes in each �l are
susceptible. In Sec. VI, we show that this difference is always non-
negative and find the necessary and sufficient condition for it to
be equal to zero. For the case where this difference is positive, we
also obtain an upper bound for its magnitude. The funnel theorems
are proved in Sec. VII. Section VIII concludes with a discussion and
open questions.

II. THE BASS/SI MODEL ON NETWORKS

The Bass model describes the adoption process of an inno-
vative new product in a population. When the product is first
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introduced into the market, all the individuals are susceptible (non-
adopters). As time goes on, individuals gradually adopt the prod-
uct due to external influences by mass media and internal influ-
ences by individuals who already adopted the product (peers effect,
word of mouth). The SI model describes the spreading of infec-
tious diseases within a population. In this model, some individuals
are initially infected (the “patient zero” cases), and all subsequent
infections occur through interactions between infected and suscep-
tible individuals. In both models, once an individual becomes an
adopter/infected, they remain so at all later times. In particular, they
remain “contagious” forever. The difference between the two mod-
els is in the external influences: In the SI model, they occur at t = 0
and in the Bass model at t > 0.

It is convenient to unify these two models into a single model,
the Bass/SI model on networks, as follows. Consider M individuals,
denoted byM := {1, . . . , M}. Let Xj(t) denote the state of individual
j at time t so that

Xj(t) =

{
1 if j is adopter/infected at time t,

0 if j is susceptible at time t,
j ∈ M.

The initial conditions at t = 0 are stochastic so that

Xj(0) = X0
j ∈ {0, 1}, j ∈ M, (2.1a)

where

P
(
X0

j = 1
)

= I0
j , P

(
X0

j = 0
)

= 1 − I0
j , I0

j ∈ [0, 1], j ∈ M,

(2.1b)
and

the random variables
{
X0

j

}
j∈M

are independent. (2.1c)

So long as j is susceptible, its adoption/infection rate at time t is

λj(t) = pj +
∑

k∈M

qk→jXk(t), j ∈ M. (2.1d)

Here, pj is the rate of external influences on j, and qk→j is the rate of
internal influences (peer effects) by k on j, provided that k is already
an adopter/infected. Once j adopts the product/becomes infected, it
remains so at all later times (i.e., the only admissible transition is
Xj = 0 → Xj = 1). Hence, as 1t → 0,

P(Xj(t + 1t) = 1 | X(t)) =

{
λj(t)1t if Xj(t) = 0,

1 if Xj(t) = 1,
j ∈ M,

(2.1e)
where X(t) := {Xj(t)}j∈M

is the state of the network at time t, and

the random variables {Xj(t + 1t) | X(t)}
j∈M

are independent.

(2.1f)

We assume that all the nodes have a positive probability to be ini-
tially susceptible, that the external and internal influence rates are
non-negative, and that any node can adopt externally, either at t = 0

or at t > 0, i.e.,

0 ≤ I0
j < 1, pj ≥ 0, qk→j ≥ 0, I0

j + pj > 0, k, j ∈ M.

(2.1g)

In the Bass model, there are no adopters when the product is
first introduced into the market, and so, I0

j ≡ 0 and pj > 0. In

the SI model, there are only internal influences for t > 0, and so,
pj = 0 and I0

j > 0.25

The internal adoption rates {qk→j} induce a directed weighted
graph on the nodes M so that the directed edge k → j exists if and
only if qk→j > 0, and its weight is given by qk→j. We denote the
network that corresponds to (2.1) by N = N (M, {pj}, {qk→j}, {I

0
j }).

III. THEORY REVIEW

The starting point of nearly all of the analytic theory of
the Bass/SI model (2.1) on networks is the master equations. Let
∅ 6= � ⊂ M be a nontrivial subset of the nodes, and let
�c := M\� denote the complementary set. Let

X�(t) := max
k∈�

Xk(t). (3.1)

Thus, X� = 0 if none of the nodes in � are adopters at time t, and
X� = 1 if at least one of the nodes in � is an adopter. Let

S�(t) := {X�(t) = 0}, [S�](t) := P(S�(t)) (3.2)

denote the event that all nodes in � are susceptible at time t and the
probability of this event, respectively. To simplify the presentation,
we introduce the notations

Sk := S{k}, S�1 ,...,�L
:= S∪L

l=1
�l

.

Thus, for example, S�,k := S�∪{k} and Sm1 ,m2 ,m3 := S{m1 ,m2 ,m3}. We
also denote the sum of the external influences on the nodes in �

and the sum of the internal influences by the node k ∈ �c on the
nodes in � by

p� :=
∑

m∈�

pm, qk→� :=
∑

m∈�

qk→m,

respectively. We then have
Theorem 3.1 (Ref. 13): The master equations for the Bass/SI

model (2.1) are

d[S�]

dt
= −

(
p� +

∑

k∈�c

qk→�

)
[S�] +

∑

k∈�c

qk→�[S�,k], (3.3a)

subject to the initial conditions

[S�](0) =
[
S0

�

]
,

[
S0

�

]
:=
∏

m∈�

(
1 − I0

m

)
, (3.3b)

for all ∅ 6= � ⊂ M.
The quantities of most interest are the susceptibility proba-

bilities {[Sj](t)} of the nodes and the expected susceptibility level

[S](t) := 1
M

∑M
j=1[Sj](t) in the network. Solving the master equations

(3.3a) and (3.3b) for {[Sj](t)} requires knowing the susceptibility
probabilities {[Sk,j]} of all pairs of nodes. The master equations for
{[Sk,j](t)}, in turn, involve the susceptibility probabilities {[Sm,k,j](t)}
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of all the triplets of nodes, etc. Therefore, to close the system of equa-
tions for {[Sj](t)}, one needs to solve 2M − 1 master equations for the
susceptibility probabilities of all the nontrivial subsets of M modes.
Consequently, an explicit exact solution of the master equations is,
in general, not feasible.

For networks with an inherent symmetry or structure, it is some-
times possible to obtain an exact reduced system of master equations
that can be solved explicitly. This is the case, e.g., with complete
and circular networks.12–14 Another approach for obtaining an exact
explicit solution is to use the indifference principle. Let us first recall

Definition 3.1 (influential edge16): Consider the Bass/SI
model (2.1). Let � ⊂ M. A directed edge k → m is said to be “influ-
ential to �” if k ∈ �c, and if either m ∈ � or there is a path from m
to �, which does not go through the node k. Any edge that is not
“influential to �” is called “non-influential to �.”

We then have
Theorem 3.2 (indifference principle16): Consider the Bass/SI

model (2.1). Let ∅ 6= � ⊂ M. Then, [S�] remains unchanged if we
delete or add edges that are non-influential to �.

The indifference principle is a powerful tool that enables us
to add or delete noninfluential edges so that the value of [S�] will
remain unchanged, but its calculation on the modified network
becomes simpler. For example, it can be used to compute the exact
susceptibility level on percolation lines.17

IV. THE FUNNEL THEOREMS

The funnel theorems are a novel analytic tool that extends the
range of networks for which exact explicit solutions can be obtained.
To introduce these theorems, we begin with a few definitions.

Definition 4.1 (partition of nodes): Let L ≥ 2, j ∈ M and
∅ 6= Al ⊂ M\{j} for l = 1, . . . , L. We say that “{A1, . . . , AL, {j}} is a
partition of M” if A1 ∪ · · · ∪ AL ∪ {j} = M and the sets {Al}

L
l=1 are

mutually disjoint.
Figure 2 illustrates a partition into L = 3 disjoint sets.
Consider the Bass/SI model (2.1) on the network N . Let

N
Al ,pj ,I

0
j denote the modified network in which j experiences exter-

nal influences and internal influences from its peers in Al (see
Fig. 1):

Definition 4.2
(
N

Al ,pj ,I
0
j and

[
S

Al ,pj ,I
0
j

j

])
: Let j ∈ M and Al ⊂

M\{j}. The network N
Al ,pj ,I

0
j is obtained from N by delet-

ing all the internal influences on j by nodes that are not in

Al, i.e., by setting q
Al ,pj ,I

0
j

k→j := 0 for k ∈ M\Al. The susceptibility

FIG. 2. A partition {A1, A2, A3, {j}}.

probability of j in the network N
Al ,pj ,I

0
j is denoted by

[
S

Al ,pj ,I
0
j

j

]

:= [Sj]
(
t;N

Al ,pj ,I
0
j

)
.

If the node j ∈ M is isolated (i.e., has a zero indegree), it
can only adopt due to external influences, and its susceptibility
probability is denoted by

[Sisolated
j ] :=

[
S

Al=∅,pj ,I
0
j

j

]
.

A. Lower bound

We first show that the susceptibility probability [Sj] of any node
j is always greater than or equal to the product of the susceptibility

probabilities
∏L

l=1

[
S

Al ,pj ,I
0
j

j

]
, divided by [Sisolated

j ]
L−1

:

Theorem 4.1: Consider the Bass/SI model (2.1). Let j ∈ M,
and let {A1, . . . , AL, {j}} be a partition of M. Then,

[Sj] ≥

∏L
l=1

[
S

Al ,pj ,I
0
j

j

]
[
Sisolated

j

]L−1
, t ≥ 0 (funnel inequality), (4.1)

where [
Sisolated

j

]
=
(
1 − I0

j

)
e−pjt. (4.2)

Proof. See Sec. VII. �

Note that in (4.1), we needed to divide
∏L

l=1

[
S

Al ,pj ,I
0
j

j

]
by

[Sisolated
j ]

L−1
since each of the L terms in the product includes the

external influences on j.
In order to determine the conditions under which the funnel

inequality becomes an equality, we introduce some more definitions.
Definition 4.3 (influential node): Let ∅ 6= � ⊂ M. We say

that “node m is influential to �” if m ∈ �, or if m ∈ �c, and there is
a finite simple path from m to �.

Definition 4.4 (funnel node): Let {A1, . . . , AL, {j}} be a parti-
tion of M. A node j is called a “funnel node of {Al}

L
l=1 in the network

N ” if there is no node inM\{j}, which is influential to j both inN Al

and in N
Ã

l for some l 6= l̃.
Recall also the following terminology from graph theory:
Definition 4.5 (vertex cut): Let {A1, . . . , AL, {j}} be a par-

tition of M. A node j is called a “vertex cut between {Al}
L
l=1” if

removing j from the network makes the sets {Al}
L
l=1 disconnected

from each other.
For example, the node j is a vertex cut of {A1, A2, A3} in

Fig. 3(a), but not in Figs. 3(b) and 3(c). Any node that is a vertex
cut is also a funnel node:

Lemma 4.1: Let {A1, . . . , AL, {j}} be a partition of M. If node
j is a vertex cut between {Al}

L
l=1, then j is a funnel node.

Proof. Let j be a vertex cut between {Al}
L
l=1. If node m ∈ Al is

influential to j, then m cannot be influential to j in N
Ã

l since in N
Ã

l ,
we removed all the edges from Al to j, and there is no sequence of
edges (influential or not) from m to Ãl. �

Therefore, for example, j is a funnel node in Fig. 3(a). The con-
verse statement, however, is not true; i.e., j can be a funnel node
even if the sets Al and Ãl are directly connected. Indeed, this is the
case if for any m ∈ Al and m̃ ∈ Ãl such that the edge m → m̃ exists,
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FIG. 3. (a) j is a vertex cut of {A1, A2, A3}.
Therefore, it is also a funnel node of
{A1, A2, A3}. (b) j is not a funnel node of
{A1, A2, A3} since the mode m is influential to
j inN A1 and inN A2 . (c) j is a funnel node, but
not a vertex cut, of {A1, A2, A3}.

either the node m is non-influential to j in N Al , or the node m̃ is
non-influential to j in N

Ã
l ; see, e.g., Fig. 3(c).

Theorem 4.2: Assume the conditions of Theorem 4.1.

• If j is a funnel node of {Al}
L
l=1, then

[Sj] =

∏L
l=1

[
S

Al ,pj ,I
0
j

j

]
[
Sisolated

j

]L−1
, t ≥ 0 (funnel equality). (4.3)

• If, however, j is not a funnel node of {Al}
L
l=1, then

[Sj] >

∏L
l=1

[
S

Al ,pj ,I
0
j

j

]
[
Sisolated

j

]L−1
, t > 0 (strict funnel inequality).

(4.4)

Proof. See Sec. VII. �

Intuitively, the event that j remains susceptible occurs if and
only if the following L + 1 events occur: the “external event” that j
remains susceptible under the external influences and the L “internal
events” that j remains susceptible under the internal influences by
edges arriving from Al, where l = 1, . . . , L. If j is a funnel node, these
L + 1 events are independent, and so, we have the funnel equality.
If j is not a funnel node, however, some of the L “internal events”
are positively correlated. Consequently, the probability that all the L
“internal events” occur is larger than the product of their individual
probabilities.

Corollary 4.1: Assume the conditions of Theorem 4.1. Let
j ∈ M. If for any m ∈ M\{j}, there is at most one finite path from m
to j, then the funnel equality (4.3) holds.

Proof. If there exists node m, which is influential to j in N Al

and in N
Ã

l , then there are two different paths leading from m to
j. Therefore, there is no such node m. Hence, j is a funnel node of
{A1}

L
l=1, and therefore, the result follows from Theorem 4.2. �

Corollary 4.2: Assume the conditions of Theorem 4.1. If the
network is undirected and contains no cycles, the funnel equality (4.3)
holds for all j ∈ M.

Proof. This follows from Corollary 4.1. �

B. Upper bound

Theorems 4.1 and 4.2 provide a lower bound for

[Sj] −

∏L
l=1

[
S
Al ,pj ,I

0
j

j

]

[Sisolated
j ]

L−1 . We can also derive an upper bound for this

difference. To simplify the presentation, we assume that

1. All the nodes have the same weight and initial condition, i.e.,

pj ≡ p, I0
j ≡ I 0, j ∈ M. (4.5a)

2. The network is undirected, and all the edges have the same
weight, i.e.,

qk→j = qj→k ∈ {0, q}, k, j ∈ M. (4.5b)

3. The parameters satisfy; see (2.1g),

q > 0, p ≥ 0, 0 ≤ I 0 < 1, p + I 0 > 0. (4.5c)

Theorem 4.3: Assume the conditions of Theorem 4.1. Let (4.5)

hold. Assume that there are Nj ≥ 1 cycles {Cn}
Nj

n=1 in which j is con-

nected to Al on one side and to Ãl on the other side, where l 6= l̃
(Al and Ãl may be different for each cycle). Then,

0 < [Sj] −

∏L
l=1

[
S

Al ,pj ,I
0
j

j

]

[Sisolated
j ]

L−1
<

[
Sisolated

j

] Nj∑

n=1

E(t; Kn + 1), t > 0,

(4.6)
where Kn is the number of nodes of Cn, and E(t; K) satisfies the bound

E(t; K) ≤ 2(1 − I 0)e−(p+q)t

(
eqt⌊
K+1

2

⌋
)⌊ K+1

2

⌋

, 0 < t <
1

q

⌊
K + 1

2

⌋
.

(4.7a)

We also have the global-in-time bound

E(t; K) ≤ 2(1 − I 0)

(
q

p + q

)⌊ K+1
2

⌋

, t ≥ 0. (4.7b)

Proof. See Sec. VII. �

On undirected networks, j is a funnel node of {Al}
L
l=1 if and

only if there is no cycle in which j is connected to Al on one side

and to Ãl on the other side, where l 6= l̃. The difference between

[Sj] and

∏L
l=1

[
S
Al ,pj ,I

0
j

j

]

[Sisolated
j ]

L−1 , thus, arises from the presence of nodes that

can lead to the adoption/infection of j through two sequences of
peer-effect events: one whose final node before j is from Al and the

other whose final node before j is from Al̃, where l 6= l̃. Since the
effect of an infected node on the state of another node decays super-
exponentially with their distance, see Ref. 26, so does the difference

between [Sj] and

∏L
l=1

[
S
Al ,pj ,I

0
j

j

]

[Sisolated
j ]

L−1 .

V. APPLICATIONS OF THE FUNNEL THEOREMS

The funnel theorems enable us to obtain explicit exact expres-
sions for the susceptibility probability of nodes on various networks.
Intuitively, this is because the indegree of the node j on the modified

networks {N
Al ,pj ,I

0
j }

L

l=1 is lower than in the original network.
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A. Vertex cut between identical networks

The simplest application of the funnel theorem is when the
node is a vertex cut between L identical networks:

Lemma 5.1: Consider the Bass/SI model (2.1). Let the node
j be a vertex cut between L identical networks. Denote by [Sj](t; L)

the susceptibility probability of j in this network and by [Sj](t; L = 1)
the susceptibility probability of j when it belongs to only one of these
networks. Then,

[Sj](t; L) =
[Sj]

L(t; L = 1)
[
Sisolated

j

]L−1
. (5.1)

Proof. By Lemma 4.1, j is a funnel node of the L identical net-
works. Therefore, the funnel equality holds, see Thoerem 4.2, and so
the result follows from (4.3). �

Thus, if we know the susceptibility probability of j in some
network, we can write an explicit expression for the susceptibility
probability of j when it is a vertex cut of L such networks.

Example 5.1: Consider the Bass/SI model on the homogeneous
infinite line where each node can be influenced by its two adjacent
nodes; i.e.,

I0
j ≡ I 0, pj ≡ p, qk→j =

q

2
1|j−k|=1, k, j ∈ Z. (5.2)

The susceptibility probability of each node on the line is identical and
is given by [SZ

j ] = [S1D], where

[S1D](t; p, q, I 0) :=





1 − (1 − I 0)e
−(p+q)t+q(1−I 0) 1−e−pt

p if p > 0,

1 − (1 − I 0)e−qI 0t if p = 0,

(5.3)

see Refs. 12, 14, and 15.
We then have
Corollary 5.1: Consider the Bass/SI model (2.1). Let the node

0L be the intersection point of the L identical infinite lines (5.2). Then,
the susceptibility probability at the intersection node is

[S0L ] (t) = [S1D](t; p, Lq, I 0), (5.4)

where [S1D] is given by (5.3).
Proof. By (5.1),

[S0L ](t) =
[S1D]

L
(t; p, q, I 0)

[Sisolated
j ]

L−1
.

Substitution of (4.2) and (5.3) proves the result. �

This result is illustrated in Fig. 4.

B. Vertex cut between non-identical networks

We can also apply the funnel theorem for a node, which is a
vertex cut between nonidentical networks.

Example 5.2: Consider the Bass/SI model (2.1) on the homo-
geneous bounded line [1, . . . , M], where each node can be influenced

FIG. 4. The susceptibility probability at the intersection node of three infinite lines
is given by (5.4) with L = 3.

by its two adjacent nodes so that

I0
j ≡ I 0, pj ≡ p, qk→j =

q

2
1|j−k|=1, k, j ∈ {1, . . . , M}. (5.5)

Let
[
S[1,...,M]

j

]
(t; p, q, I 0) denote the susceptibility probability of the

node j. The susceptibility probability of the boundary nodes can be
calculated using the indifference principle,16

[
S[1,...,M]

1

]
=
[
S[1,...,M]

M

]
= [Scircle]

(
t; p,

q

2
, I 0, M

)
, (5.6)

where [Scircle](t; p, q, I 0, M) is the expected susceptibility level in the
Bass/SI model on a circle with the same parameters (i.e., when we
add the edge 1 ↔ M between the boundary nodes). An exact explicit
expression for [Scircle] has been obtained by utilizing translation
invariance.12,16

We now use the funnel theorem to obtain a novel explicit
expression for the susceptibility probability of the interior nodes, in
terms of the known expression for [Scircle]:

Lemma 5.2: Consider the Bass/SI model (2.1) on the bounded
line (5.5). Then,

[S[1,...,M]
j ](t; p, q, I 0)

=
[Scircle]

(
t; p,

q

2
, I 0, j

)
[Scircle]

(
t; p,

q

2
, I 0, M + 1 − j

)

(1 − I 0)e−pt
,

j = 1, . . . , M.

Proof. Let 1 < j < M, A1 := {1, . . . , j − 1}, and A2 :=
{j + 1, . . . , M}. Then, {A1, A2, {j}} is a partition of the nodes, and j
is a vertex cut between A1 and A2. Therefore, by the funnel equality
(4.3),

[
S[1,...,M]

j

]
=

[
S

A1 ,pj ,I
0
j

j

] [
S

A2 ,pj ,I
0
j

j

]

[
Sisolated

j

] . (5.7)

Chaos 35, 073109 (2025); doi: 10.1063/5.0269855 35, 073109-6

© Author(s) 2025

 07 July 2025 18:02:31

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

As far as j is concerned, the network N
A1 ,pj ,I

0
j is identical to the

network [1, . . . , j]. Therefore,

[S
A1 ,pj ,I

0
j

j ] = [S
[1,...,j]
j ] = [Scircle]

(
t; p,

q

2
, I 0, j

)
;

see (5.6), Similarly,

[S
A2 ,pj ,I

0
j

j ] = [S
[j,...,M]
j ] = [Scircle]

(
t; p,

q

2
, I 0, M + 1 − j

)
.

Since [Sisolated
j ] is given by (4.2), the result follows. �

This expression is considerably simpler than the one that was
derived in Lemma 4.6 of Ref. 16.

C. Sparse random networks with numerous loops

Moving on to more challenging applications of the funnel the-
orems, let us consider d-regular networks, where the degree of each
node is equal to d. Assume that the weight and initial condition of all
the nodes are p and I 0, respectively, and the weight of all the edges
is

q

d
. Although large d-regular networks have numerous cycles, one

can use the funnel theorems to compute explicitly and exactly the
expected susceptibility level as M → ∞:

Theorem 5.1 (Ref. 27): With probability one with respect
to the distribution of graphs, the expected susceptibility level in the
Bass/SI model on infinite random d-regular networks is the solution
of the equation

d[S]

dt
= −[S]

(
p + q

(
1 −

(
[S]

e−pt(1 − I 0)

)− 2
d

[S]

))
,

(5.8)

[S](0) = 1 − I 0.

Sketch of proof. A rigorous proof of Theorem 5.1 is presented
in Ref. 27. Here, we only provide a sketch of the derivation, in
order to highlight the use of the funnel theorems. Let j ∈ M, let
{k1, . . . , kd} denote the d neighbors of j, and let {A1, . . . , Ad, {j}} be
a partition of M such that kl ∈ Al for l = 1, . . . , d. Assume first that
there are no cycles in the network. Then, the funnel equality holds
(Corollary 4.2), and therefore,

[Sj] =

∏d
l=1

[
S

Al ,p,I 0

j

]

[
Sisolated

j

]d−1
=

yd(t)

((1 − I 0)e−pt)
d−1

, (5.9a)

where y(t) is the susceptibility probability of a degree-one node in an
otherwise infinite d-regular network. By the indifference principle,16

the reduced master equation for y(t) is

dy

dt
= −

(
p +

q

d

)
y +

q

d
(1 − I 0)e−ptz(t), (5.9b)

where z(t) is the susceptibility probability of a node of degree
d − 1 in an otherwise infinite d-regular network. Finally, by the fun-
nel equality, the same derivation as of (4.3), only with d − 1 instead
of d, gives that

z(t) =
yd−1(t)

((1 − I 0)e−pt)
d−2

. (5.9c)

Combining Eqs. (5.9a), (5.9b), and (5.9c), we get (5.8).

Let us now justify why we could neglect the effect of cycles and
use the funnel equality in (4.3) and in (5.9c). On d-regular networks,
the number of cycles of length K increases exponentially with K.
The upper bound of the funnel equality shows, however, that the
error introduced by using the funnel equality when j lies on a circle
of length K decays to zero at a rate that is super-exponential in K
(Theorem 4.3). As a result, the overall error introduced by using the
funnel equality goes to zero as M → ∞. �

Let us further consider sparse Erdős–Rényi (ER) networks such
that for any two nodes k, j ∈ M, the edge between k and j exists with
probability λ

M
, independently of all other edges, where 0 < λ < ∞.

Assume also that the weight and initial condition of all the nodes
are p and I 0, respectively, and the weight of all the edges is

q

λ
. The

funnel theorems can be used in the same fashion, though with more
technical details, to compute explicitly and exactly the susceptibility
level on infinite sparse ER networks:

Theorem 5.2 (Ref. 27): With probability one with respect
to the distribution of graphs, the expected susceptibility level in the
Bass/SI model (2.1) on sparse infinite ER networks is given by

[SER(t; p, q, λ, I 0)] = (1 − I 0)e−pt−λ(1−y(t)), t ≥ 0, (5.10a)

where y(t) is the solution of the equation

dy

dt
=

q

λ

(
−y + (1 − I 0)e−pt−λ(1−y)

)
, t ≥ 0, y(0) = 1. (5.10b)

See Ref. 27 for more details.

VI. LOWER AND UPPER BOUNDS FOR[
S

∪
L
l=1

�l

]
−
∏L

l=1[S�l
]

In Sec. VII, we shall see that the proof of the funnel theo-
rems relies on knowing the sign and magnitude of the difference

[S∪L
l=1

�l
] −

∏L
l=1[S�l

]. It is reasonable to assume that the suscep-

tibility probabilities of L ≥ 2 disjoint sets of nodes are uncorre-
lated when the sets are “disconnected,” and positively correlated
otherwise.28 Indeed, we have

Theorem 6.1: Consider the Bass/SI model (2.1). Let �1, . . . , �L

⊂ M such that �l ∩ �̃l = ∅ for any l 6= l̃. Then,

[
S∪L

l=1
�l

]
≥

L∏

l=1

[S�l
], t ≥ 0. (6.1)

In addition,

1. If there exist l 6= l̃ and a node in M that is influential to both �l

and �̃l, then

[
S∪L

l=1
�l

]
>

L∏

l=1

[S�l
], t > 0. (6.2)

2. If, however, for any l 6= l̃, there is no node in M that is influential
to both �l and �̃l, then

[
S∪L

l=1
�l

]
=

L∏

l=1

[S�l
], t ≥ 0. (6.3)

Proof. See Sec. VI B. �
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We can also derive an upper bound for [S∪L
l=1

�l
] −

∏L
l=1[S�l

]

by utilizing the spatiotemporal estimates for the correlation between
the susceptibility probabilities of two nodes that were derived in
Ref. 26.

Theorem 6.2: Consider the Bass/SI model (2.1) on an undi-
rected network such that (4.5) holds. Let �1, . . . , �L ⊂ M such that
�l ∩ �̃l = ∅ for any l 6= l̃. Denote by {0n}

NL
n=1 the NL distinct simple

paths that connect between pairs of sets in {�1, . . . , �L} such that the

interior nodes of {0n}
NL
n=1 are in M\

⋃L
l=1 �l. Let NL ≥ 1. Then,

0 <

[
S∪L

l=1
�l

]
−

L∏

l=1

[S�l
] <

NL∑

n=1

E(t; Kn), t > 0, (6.4)

where Kn is the number of nodes of the path 0n (including the two
boundary nodes in ∪L

l=1�l), and E(t; Kn) satisfies the bounds (4.7a)
and (4.7b).

Proof. See Sec. VI C. �

Indeed, since the effect of an infected node on the state of
another node decays super-exponentially with their distance, see
Ref. 26, so does the correlation between their states.

A. Auxiliary results

Before proving Theorem 6.1, some auxiliary results will be
needed. We first note some consequences of the master equations:

Lemma 6.1: [S0
�] > 0 for all ∅ 6= � ⊂ M.

Proof. This follows from (2.1g) and (3.3b). �

Lemma 6.2: Let ∅ 6= � ⊂ M. Then,

0 <
[
S0

�

]
e−(p�+

∑
k∈�c qk→�)t ≤ [S�] ≤

[
S0

�

]
e−p�t < 1, t > 0.

(6.5)
Proof. The master equation (3.3a) can be rewritten as

d[S�]

dt
= −p�[S�] −

∑

k∈�c

qk→�

(
[S�] − [S�,k]

)
. (6.6)

If the event S�,k occurs, the event S� occurs as well. Therefore,

[S�] ≥ [S�,k]. (6.7)

In addition, we have that qk→� ≥ 0 and [S�,k] ≥ 0. Therefore, from
Eq. (6.6), we have that

−p�[S�] ≥
d[S�]

dt
≥ −

(
p� +

∑

k∈�c

qk→�

)
[S�].

In addition, [S0
�] > 0; see Lemma 6.1. Therefore, the result follows.

�

Lemma 6.3: Let ∅ 6= � ( M and k ∈ �c. Then,
[S�,k] < [S�] for t > 0.

Proof. By the law of the sum of probability,

[S�] − [S�,k] = [S� ∩ Ik] ≥ [SM−k
∩ Ik] = [SM−k

] − [SM],

where [S� ∩ Ik] := P(X� = 0, Xk = 1) andM−k := M\{k}. There-
fore, it is sufficient to prove that y(t) := [SM−k

] − [SM] > 0 for

t > 0. From the master equations (3.3a) and (3.3b), we have that

[SM] = e−pMt
∏

m∈M

(1 − I0
m)

and

dy

dt
= −(pM−k

+ qk→M−k
)y + pk[SM], y(0) = I0

k

∏

m∈M−k

(
1 − I0

m

)
.

(6.8)

Therefore, by (2.1g), [SM] > 0 for t > 0 and y(0) ≥ 0. Furthermore,
by (2.1g), either pk > 0 or y(0) > 0. Therefore, it follows from (6.8)
that y(t) > 0 for t > 0. �

The following result is immediate:
Lemma 6.4: Let ∅ 6= �1, �2 ⊂ M such that �1 ∩ �2 = ∅.

Then, there exists a node in M, which is influential to both �1 and
�2 if and only if at least one of the following conditions hold:

1. There exists a path from �1 to �2 or from �2 to �1.
2. There exists a node m /∈ �1 ∪ �2 from which there exist a path to

�1 and a path to �2.

Corollary 6.1: Let ∅ 6= �1, �2 ⊂ M such that �1 ∩ �2 = ∅.
Let the network be undirected. Then, there exists a node that is influ-
ential to both �1 and �2 if and only if there exists a path between �1

and �2.
We also have
Lemma 6.5: Let ∅ 6= �1, �2 ⊂ M such that �1 ∩ �2 = ∅.

Denote

Q�1 ,�2 := [S�1 ,�2 ] − [S�1 ][S�2 ]. (6.9)

Then, Q�1 ,�2(t) satisfies the equation

dQ�1 ,�2

dt
+


p�1∪�2 +

∑

m/∈�1∪�2

qm→�1∪�2


Q�1 ,�2

=
∑

m/∈�1∪�2

(
qm→�1Q�1∪{m},�2 + qm→�2Q�1 ,�2∪{m}

)

+
∑

m∈�2

qm→�1

(
[S�1 ] − [S�1 ,m]

)
[S�2 ]

+
∑

m∈�1

qm→�2

(
[S�2 ] − [S�2 ,m]

)
[S�1 ], (6.10a)

subject to the initial condition

Q�1 ,�2(0) = 0. (6.10b)
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Proof. Using (6.9) and the master equation (3.3a), we have that

dQ�1 ,�2

dt
=

d[S�1 ,�2 ]

dt
− [S�1 ]

d[S�2 ]

dt
− [S�2 ]

d[S�1 ]

dt

= −


p�1∪�2 +

∑

m/∈�1∪�2

qm→�1∪�2


 [S�1 ,�2 ] +

∑

m/∈�1∪�2

qm→�1∪�2 [S�1∪�2 ,m]

+ [S�1 ]


p�2 +

∑

m/∈�2

qm→�2


 [S�2 ] − [S�1 ]

∑

m/∈�2

qm→�2 [S�2 ,m]

+ [S�2 ]


p�1 +

∑

m/∈�1

qm→�1


 [S�1 ] − [S�2 ]

∑

m/∈�1

qm→�1 [S�1 ,m]

= −


p�1∪�2 +

∑

m/∈�1∪�2

qm→�1∪�2


(Q�1 ,�2 − [S�1][�2 ]

)
+

∑

m/∈�1∪�2

qm→�1

(
Q�1∪{m},�2 − [S�1 ,m][S�2 ]

)

+
∑

m/∈�1∪�2

qm→�2

(
Q�1 ,�2∪{m} − [S�1 ][S�2 ,m]

)
+ [S�1 ]


p�2 +

∑

m/∈�2

qm→�2


 [S�2 ] − [S�1 ]

∑

m/∈�2

qm→�2 [S�2 ,m]

+ [S�2 ]


p�1 +

∑

m/∈�1

qm→�1


 [S�1 ] − [S�2 ]

∑

m/∈�1

qm→�1 [S�1 ,m],

which leads to (6.10a). The initial condition follows from the independence of the initial conditions of nodes; see (2.1c). �

B. Proof of Theorem 6.1

We now turn to the proof of Theorem 6.1.
Lemma 6.6: Let ∅ 6= �1, �2 ⊂ M such that �1 ∩ �2 = ∅.

Then, Q�1 ,�2(t) ≥ 0 for t ≥ 0.
Proof. We proceed by backward induction on the size of

�1 ∪ �2. Consider the induction base where �1 ∪ �2 = M. Then,
Eq. (6.10) for Q�1 ,�2 reduces to

dQ�1 ,�2

dt
+ c�1 ,�2 Q�1 ,�2 =

∑

k∈�2

qk→�1

(
[S�1 ] − [S�1 ,k]

)
[S�2 ]

+
∑

j∈�1

qj→�2

(
[S�2 ] − [S�2 ,j]

)
[S�1 ],

(6.11a)

where c�1 ,�2 := p�1∪�2 +
∑

m/∈�1∪�2
qm→�1∪�2 ≥ 0, subject to

Q�1 ,�2(0) = 0. (6.11b)

By Lemma 6.3, [S�1 ] − [S�1 ,k] > 0 and [S�2 ] − [S�2 ,j] > 0. In addi-
tion, qk→�1 ≥ 0 and qj→�2 ≥ 0. Therefore, we have that

dQ�1 ,�2

dt
+ c�1 ,�2Q�1 ,�2 ≥ 0, Q�1 ,�2(0) = 0. (6.12)

This differential inequality implies that Q�1 ,�2(t) ≥ 0 for t ≥ 0.
Assume by induction that Q�1 ,�2(t) ≥ 0 for t ≥ 0 for all

�1, �2 for which |�1 ∪ �2| = n + 1. Consider �1, �2 for which |�1

∪ �2| = n. Then, the right-hand side of Eq. (6.10a) is nonnegative.

Therefore, the differential inequality (6.12) holds, and so, Q�1 ,�2 ≥ 0
for t ≥ 0. �

Lemma 6.7: Consider the Bass/SI model (2.1). Let ∅ 6= �1,
�2 ⊂ M such that �1 ∩ �2 = ∅. Then,

[S�1∪�2 ] ≥ [S�1 ][S�2 ], t ≥ 0. (6.13)

In addition,

1. If there exists a node that is influential to both �1 and �2, then

[S�1∪�2 ] > [S�1 ][S�2 ], t > 0. (6.14)

2. If, however, there is no node that is influential to both �1 and �2,
then

[S�1∪�2 ] = [S�1 ][S�2 ], t ≥ 0. (6.15)

Proof. Inequality (6.6) is Lemma 6.6. To prove (6.14)
and (6.15), we proceed by backward induction on the size of
�1 ∪ �2.

Consider the induction base where �1 ∪ �2 = M. Then,
Q�1 ,�2 satisfies Eq. (6.11). Therefore, since the right-hand side of
(6.12) is non-negative, see (6.12), then Q�1 ,�2 > 0 is and only if the
right-hand side of (6.11) is positive. By Lemma 6.3, [S�1 ] − [S�1 ,k]
> 0 and [S�2 ] − [S�2 ,j] > 0 for all j and k. Hence, Q�1 ,�2(t) is pos-
itive for all t > 0 if and only if there exist j ∈ �1 and k ∈ �2 such
that either qj,k > 0 or qk→j > 0 so that the inhomogeneous term in
the ODE (6.11a) is positive and is identically zero otherwise. This
proves the theorem for �1 ∪ �2 = M since in this case, the only
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relevant paths, see Lemma 6.4, are directed edges from �1 to �2 or
from �2 to �1.

Now, assume by induction that the lemma holds for all
�1, �2 for which |�1 ∪ �2| = n + 1. Consider �1, �2 for which |�1

∪ �2| = n. Since [S�1 ] − [S�1 ,k] and [S�2 ] − [S�2 ,j] are both posi-
tive (Lemma 6.3) and Q�1∪{m},�2 and Q�1 ,�2∪{m} are nonnegative by
Lemma 6.6, Eq. (6.10) implies that Q�1 ,�2 > 0 for t > 0 if and only if
at least one of the following three conditions holds and is identically
zero otherwise:

C1. For some j ∈ �1 and k ∈ �2, either qj→k > 0 or qk→j > 0.
C2. For some m /∈ �1 ∪ �2 and j ∈ �1, qm→j > 0 and

Q�1∪{m},�2 > 0.
C3. For some m /∈ �1 ∪ �2 and k ∈ �2, qm→k > 0 and

Q�1 ,�2∪{m} > 0.

Therefore, to finish the proof, we need to show that at least one of
the conditions C1–C3 holds if and only if there exist a path of the
claimed forms in Lemma 6.4.

We first show if any of conditions C1–C3 holds, there exists a
path of the claimed form:

• Assume that Condition C1 holds. Then, there exists a single-edge
path from �1 to �2 or from �2 to �1.

• Assume that Condition C2 holds. Then, there is an edge from m
to j ∈ �1. In addition, since Q�1∪{m},�2 > 0, then by the induction
hypothesis,
D1. there is a path from �1 ∪ {m} to �2, or
D2. there is a path from �2 to �1 ∪ {m}, or
D3. there is a node m̃ /∈ �1 ∪ {m} ∪ �2 and paths from m̃ to

�1 ∪ {m} and to �2.
Now,
(i) If Condition D1 holds, there is either a path from �1 to �2,

or there are paths from m to �1 and to �2.
(ii) If Condition D2 holds, there is a path from �2 to �1, which

may or may not go through m.
(iii) If Condition D3 holds, there is a node m̃ from which there

are paths to �1 (which may or may not go through m) and
to �2.

Hence, when Condition C2 holds, there exists a path of the
claimed form.

• The proof for Condition C3 is the same as for Condition C2.

To finish the proof, we now show if there exists a path of the
claimed form, then at least one of conditions C1–C3 holds.

• If there is a single-edge path between �1 and �2, then Condition
C1 holds.

• Assume that there is a path with L ≥ 2 edges from �1 to �2.
Denote by m the next to last node in the path. Then, m 6∈ �1 ∪ �2,
and the path without the last edge is a path from �1 to �2 ∪ {m}.
Since |�1 ∪ �2 ∪ {m}| = |�1 ∪ �2| + 1, then by the induction
assumption, Q�1 ,�2∪{m} > 0. In addition, qm→k > 0 for some
k ∈ �2. Therefore, Condition C3 holds. Similarly, if there is a path
with L > 1 edges from �2 to �1, then Condition C2 holds.

• Finally, suppose that there is some node m̃ /∈ �1 ∪ �2 and paths
from m̃ to �1 and to �2. Since the case of a path from �1 to �2

or from �2 to �1 has already been considered, we may assume
that the path from m̃ to �1 contains no element of �2 and vice

versa. Also, by truncating the paths at the first node reached of the
desired set, we may assume that no node of either path except the
last belongs to �1 ∪ �2. Let m be the next to last node of the path
to �1; note that m might be m̃. Since the path continues from m
to �1, then qm→j > 0 for some j ∈ �1. Moreover, the path from
m̃ to m is a path from m̃ to �1 ∪ {m}, so there exist paths from
m̃ to �1 ∪ {m} and from m̃ to �2. Therefore, by the induction
hypothesis, Q�1∪{m},�2 > 0. Hence, condition C2 holds.

�

Proof of Theorem 6.1. We proceed by induction on L. The
induction base L = 2 is Lemma 6.7. Assume that Theorem 6.1 holds
for L. To prove Theorem 6.1 for L + 1, let us denote �̃1 :=

⋃L
l=1 �l

and �̃2 := �L+1. Then,

[S∪L+1
l=1

�l
] = [S�̃1 ,�̃2

] ≥ [S�̃1
][S�̃2

] = [S∪L
l=1

�l
][S�L+1

] ≥

L+1∏

l=1

[S�l
],

where the first inequality follows from Lemma 6.7 and the second
from the induction assumption. By Lemma 6.7, the first inequality is
an equality if and only there is no node, which is influential to both
�̃1 and �̃2. By the induction assumption, the second inequality is

an equality if and only if for any l,̃ l ∈ {1, . . . , L} where l 6= l̃, there
is no node in M, which is influential to both �l and �̃l. Therefore,
Theorem 6.1 follows for L + 1. �

C. Proof of Theorem 6.2

We first prove Theorem 6.2 for two sets that are connected by
a single path:

Lemma 6.8: Consider the Bass/SI model (2.1) on an undi-
rected network such that (4.5) holds. Let ∅ 6= �1, �2 ⊂ M such that
�1 ∩ �2 = ∅. If there is a unique simple path 0 between �1 and �2,
then

[S�1 ,�2 ] − [S�1 ][S�2 ] < E(t; K), t > 0, (6.16)

where K is the number of nodes of the path 0, and E(t; K) satisfies the
bounds (4.7a) and (4.7b).

Proof. Let t > 0. Denote by N− the network obtained by delet-
ing the central edge of 0. If K is even, we delete the K

2
th edge. If K

is odd, we delete either the K−1
2

th or the
(

K−1
2

+ 1
)
th edge. In this

network, there is no node that is influential to �1 and to �2; see
Corollary 6.1. Hence, by Lemma 6.7,

[S−
�1 ,�2

] = [S−
�1

][S−
�2

],

where [S−
�] denotes the susceptibility probability of � in N−. Since

the deleted edge is influential to �1 and �2, it follows from the
dominance principle, see Ref. 16, that

[S�1 ] < [S−
�1

], [S�2 ] < [S−
�2

], [S�1 ,�2 ] < [S−
�1 ,�2

].
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Therefore,

[S�1 ,�2 ] − [S�1 ][S�2 ]

< [S−
�1 ,�2

] − [S�1 ][S�2 ]

= [S−
�1 ,�2

] − [S−
�1

][S−
�2

] + [S−
�1

][S−
�2

] − [S�1 ][S�2 ]

= [S−
�1

][S−
�2

] − [S�1 ][S�2 ]

= ([S−
�1

] − [S�1 ])[S−
�2

] + ([S−
�2

] − [S�2 ])[S�1 ].

Since 0 < [S−
�2

], [S�1 ] < 1, see (6.5), we have that

[S�1 ,�2 ] − [S�1 ][S�2 ] <
([

S−
�1

]
− [S�1 ]

)
+
([

S−
�2

]
− [S�2 ]

)
.

(6.17a)

Denote by m1 and m2 the nodes of the deleted central edge,
which are connected in N− to �1 and to �2, respectively, and by
N+ the network that is obtained by transferring the two directional
weights of the deleted edge to the nodes m1 and m2, i.e., by setting

q+
m2→m1

= q+
m1→m2

= 0, p+
m1

= p+
m2

= p + q.

Denote the probabilities inN+ by [S+
�]. By the dominance principle,

[S�1 ] > [S+
�1

] and [S�2 ] > [S+
�2

]. Hence,

[
S−

�1

]
− [S�1 ] <

[
S−

�1

]
−
[
S+

�1

]
,

[
S−

�2

]
− [Sj] <

[
S−

�2

]
−
[
S+

�2

]
.

(6.17b)

Combining inequalities (6.17), we obtain (6.16) with

E(t; K) :=
(
[S−

�1
] − [S+

�1
]
)
+
(
[S−

�2
] − [S+

�2
]
)

.

Next, we derive the bound (4.7a) for E(t; K). Denote by
i1 ∈ �1 and i2 ∈ �2 the end nodes of the path 0. The difference
[S−

�1
] − [S+

�1
] is only due to realizations in which i1 adopts because

of an adoption path from m1 to �1 in N+, but not in N−. Therefore,

[S−
�1

] − [S+
�1

] < [S−
i1

] − [S+
i1

].

Denote by Ñ+ and Ñ− the networks obtained from N+ and N−

by keeping only the nodes and edges from m1 to i1 and denote the
probabilities in Ñ± by [̃S±

�]. Then,

[S−
i1

] − [S+
i1

] < [̃S−
i1

] − [̃S+
i1

].

The networks Ñ+ and Ñ− are the homogeneous and heterogeneous
one-sided lines with p1 = p and p̄1 := p + q that were defined in
Lemma 15 of Ref. 26, and the number of nodes in these lines is either⌊

K
2

⌋
or
⌊

K
2

⌋
+ 1. Therefore, by Eq. (34) in Ref. 26,

[
S−

�1

]
−
[
S+

�1

]
<
[
S−

i1

]
−
[
S+

i1

]

<
[̃
S−

i1

]
−
[̃
S+

i1

]
< (1 − I 0)e−(p+q)t

(
eqt⌊

K
2

⌋
)⌊ K

2

⌋

,

⌊
K

2

⌋
> qt. (6.17c)

The same bound also holds for [S−
�2

] − [S+
�2

]. Therefore, we
obtain (4.7a).

Finally, to prove the globally uniform upper bound (4.7b), we
note that, by Lemma 6.2,

[
S−

�1

]
−
[
S+

�1

]
< (1 − I 0)e−pt, t > 0. (6.18)

As in the proof of Corollary 3 in Ref. 26 from inequalities (6.17c)
and (6.18), it follows that

[
S−

�1

]
−
[
S+

�1

]
< (1 − I 0)

(
q

p + q

)⌊ K
2

⌋

, t > 0. (6.19)

The same bound also holds for [S−
�2

] − [S+
�2

]. Therefore, we
have (4.7b). �

Next, we consider two disjoint sets that are connected by N
paths:

Lemma 6.9: Consider the Bass/SI model (2.1) on an undi-
rected network such that (4.5) holds. Let ∅ 6= �1, �2 ⊂ M such
that �1 ∩ �2 = ∅. If there are N ≥ 2 distinct simple paths
{0n}

N
n=1 between �1 and �2 such that their interior nodes are in

M\(�1 ∪ �2), then

[S�1 ,�2 ] − [S�1 ][S�2 ] <

N∑

n=1

E(t; Kn), t > 0, (6.20)

where Kn is the number of nodes of the path 0n, and E(t; Kn) satisfies
the bounds (4.7a) and (4.7b).

Proof. Denote the end nodes of the path 0n by i1,n ∈ �1 and
i2,n ∈ �2. Assume first that the N paths are disjoint, i.e., that do not
share interior nodes (they may share, however, the end nodes {i1,n}
and {i2,n}). Denote by N− the network obtained by deleting the N
central edges of {0n}

N
n=1. Then, as in the proof of Lemma 6.8, see

(6.17a),

[S�1 ,�2 ] − [S�1 ][S�2 ] <
([

S−
�1

]
− [S�1 ]

)
+
([

S−
�2

]
− [S�2 ]

)
.

(6.21a)

For n = 1, . . . , N, denote by m1,n and m2,n the nodes of the deleted
central edge of 0n, which are connected in N− to �1 and to �2,
respectively. Denote by N+ the network obtained by transferring
the 2n directional weights of the deleted edges to the 2n nodes of
these edges, i.e.,

q+
m2,n→m1,n

= q+
m1,n→m2,n

= 0, p+
m1,n

= p+
m2,n

= p + q, n = 1, . . . , N.

As in the proof of Lemma 6.8, see (6.17b),
[
S−

�1

]
− [S�1 ] <

[
S−

�1

]
−
[
S+

�1

]
. (6.21b)

The difference between [S−
�1

] and [S+
�1

] is due to realizations in
which �1 adopts because of one of the N adoption paths from m1,n

to �1 in N+, but not in N−. Therefore, it is bounded by the sum of
the individual differences in [S�1 ] due to each of these N paths, i.e.,

[
S−

�1

]
−
[
S+

�1

]
≤

N∑

n=1

([
S−

�1

]
−
[
S+,n

�1

])
, (6.21c)

where [S+,n
�1

] is the susceptibility probability of �1 in the network
N+,n, that is obtained from N− by setting

q+
m2,n→m1,n

= q+
m1,n→m2,n

= 0, p+,n
m1,n

= p+,n
m2,n

= p + q. (6.22)
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Combining inequalities (6.21), and noting that (6.21b) and (6.21c)
also hold for �2, we obtain

[S�1 ,�2 ] − [S�1 ][S�2 ] <

N∑

n=1

E(t; Kn),

(6.23)

E(t; Kn) :=
([

S−
�1

]
−
[
S+,n

�1

])
+
([

S−
�2

]
−
[
S+,n

�2

])
.

Let us now derive the bounds (4.7a) and (4.7b) for E(t; Kn). By
(6.17c) and (6.22),

[
S−

�1

]
−
[
S+,n

�1

]
< (1 − I 0)e−(p+q)t

(
eqt⌊
Kn
2

⌋
)⌊ Kn

2

⌋

,

⌊
Kn

2

⌋
> qt.

(6.24)

The same bound also holds for [S−
�2

] − [S+,n
�2

]. Therefore, we obtain
(4.7a). Finally, as in the proof of Lemma 6.8, for all t > 0, we have
that

[S−
�1

] − [S+,n
�1

] < (1 − I 0)e−pt, t > 0.

From this inequality and (6.24), it follows that

[S−
�1

] − [S+,n
�1

] < (1 − I 0)

(
q

p + q

)⌊ Kn
2

⌋

, t > 0.

The same bound also holds for [S−
�2

] − [S+,n
�2

]. Hence, we
obtain (4.7b).

Consider now the case where the paths {0n}
N
n=1 are not disjoint.

Note that in this case, {0n}
N
n=1 refers to all the possible paths between

�1 and �2. Thus, for example, two paths that intersect at a sin-
gle node are counted as four different paths. Similarly, if two paths
merge into a single path, then separate, then merge into a single
path, they are also counted as four paths. Without loss of general-
ity, we can assume that the paths are arranged in order of increasing
length so that K1 ≤ K2 · · · ≤ KN. We construct the networkN− iter-
atively, as follows. For n = 1, . . . , N, if after the n − 1th iteration
all the edges of the path 0n still exist, we delete the central edge of
0n. At the end of this iterative process, all the N paths are discon-
nected, and so the sets �1 and �2 are disjoint in N−. Therefore,
[S−

�1 ,�2
] = [S−

�1
][S−

�2
], and so (6.21a) holds. As before, let N+ be

obtained from N− by increasing the weights of the nodes of the
deleted edges from p to p + q. Then, (6.21b) holds. We claim that
the bound (6.21c) also holds, and therefore, that (6.23) holds.

To prove that (6.21c) still holds, we first note that, as in the
case of disjoint paths, the difference [S−

�1
] − [S+

�1
] is only due to

the adoption paths that start from the nodes of the deleted edges
and reach �1 in N− (and in N+). Unlike the case of disjoint paths,
however, in the networks N− and N+, there can be more than one
adoption path from a node of a deleted edge to �1. Moreover, these
adoption paths can intersect or even share edges. Nevertheless, since
the overall contribution to [S−

�1
] − [S+

�1
] from these adoption paths

is due to realizations in which �1 adopts because of one of these
adoption paths in N+ but not in N−, it is still bounded by the con-
tribution due to each of these adoption paths separately. Therefore,
we now consider the separate contribution of each of these adoption
paths.

Assume that in the nth iteration in the construction of N−, we
deleted the central edge m1,n ↔ m2,n of the path 0n. Denote by 01

n

and 02
n the equal-length subpaths of 0n between �1 and m1,n and

between m2,n and �2, respectively, i.e.,

0n = 01
n ↔ m1,n ↔ m2,n ↔ 02

n.

In the network N+, the node m1,n has weight p + q. The contribu-
tion to the difference [S−

�1
] − [S+

�1
] of the adoption path from m1,n

to �1 through 01
n is bounded by the nth term in the sum (6.21c). We

also need to consider, however, the possibility that in the network
N+, the node m1,n is connected to �1 through another subpath,
which we denote by 0̃1. Let us also denote the path between �1 and
�2, which is made of 0̃1 and 02

n by 0ñ; i.e.,

0ñ := 0̃1 ↔ m1,n ↔ m2,n ↔ 02
n.

• If 0̃1 is shorter than 01
n, the path 0ñ is shorter than 0n. Since the

subpath 0̃1 exists in N+, the path 0ñ exists at the beginning of the
nth iteration. This, however, is in contradiction with the iterative
construction of N− since 0ñ is shorter than 0n.

• If 0̃1 is longer than 01
n, the path 0ñ is longer than 0n, and so ñ > n.

At the ñth iteration, the path 0ñ does not exist (since we already
deleted the edge m1,n ↔ m2,n). In the sum (6.21c), however, we
accounted for the impact of deleting the central edge of 0ñ by
the term with Kñ. This term is larger than the one needed for the
impact of the node m1,n on [S−

�1
] − [S+

�1
] through 0̃1, since 0̃1 is

longer than 02
n, and so the central edge of 0ñ lies inside 01

n (i.e., is
closer to �1 than m1,n).

• If 0̃1 has the same length as 01
n, then we can assume without loss

of generality that n̂ > n, and therefore, a similar argument holds.

Finally, we need to rule out the possibility that in the network
N+ (in which the edge m1,n ↔ m2,n has been deleted), the node m2,n

is also connected to �1. Indeed, assume by contradiction that m2,n is
connected to �1 in N+. Since there is no path between �1 and �2 in
N+, this implies that there is no path between m2,n and �2 in N+.
Since, however, the path 02

n between m2,n and �2 exists at the end of
the nth iteration, this implies that at some later iteration n̂ > n, the
path 02

n became disconnected because one of the edges was deleted.
This deleted edge is the central edge m1,n̂ ↔ m2,n̂ of the path

0n̂ := 01
n̂ ↔ m1,n̂ ↔ m2,n̂ ↔ 02

n̂.

Since the central edge of 0n̂ was deleted at the n̂th iteration, the path
0n̂ existed at the beginning of the n̂th iteration. Let 0̄2 denote the
subpath of 02

n between m2,n̂ and �2. Then, at the beginning of the
n̂th iteration, the path

0̄ := 01
n̂ ↔ m1,n̂ ↔ m2,n̂ ↔ 0̄2

between �1 and �2 also exists. The length of 0̄, however, is shorter
than that of 0n̂. Indeed, since 0̄2 is a proper subpath of 02

n, it is
shorter than 02

n, which in turn is shorter than 02
n̄ (since n < n̄).

Therefore, we reached a contradiction, since the central edge of 0̄

should have been deleted before that of 0n̂, and so 0̄ could not exist
at the beginning of the n̂th iteration. �
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Proof of Theorem 6.2. When NL ≥ 1, it follows from Lemma
6.4 that there exists a node that is influential to both �1 and �2.
Therefore, the lower bound follows from Theorem 6.1.

For the upper bound, we proceed by induction on L. The case
L = 2 is Lemma 6.9. Assume that (6.4) holds for L. Consider (6.4)
for L + 1. We can reorder the NL+1 paths among {�1, . . . , �L+1}
so that the first NL paths are among {�1, . . . , �L}, and the paths
between {�1, . . . , �L} and �L+1 are enumerated from NL + 1 to
NL+1. Therefore, by (6.20) with �̃1 :=

⋃L
l=1 �l and �̃2 := �L+1,

[S�1 ,...,�L+1
] − [S�1 ,...,�L

][S�L+1
]

= [S�̃1 ,�̃2
] − [S�̃1

][S�̃2
] <

NL+1∑

n=NL+1

E(t; Kn).

Hence, since [S�L+1
] ≤ 1,

[S�1 ,...,�L+1
] −

L+1∏

l=1

[S�l
]

=
(
[S�1 ,...,�L+1

] − [S�1 ,...,�L
][S�L+1

]
)

+

(
[S�1 ,...,�L

][S�L+1
] −

L+1∏

l=1

[S�l
]

)

<

NL+1∑

n=NL+1

E(t; Kn) + [S�L+1
]

(
[S�1 ,...,�L

] −

d∏

l=1

[S�l
]

)

<

NL+1∑

n=NL+1

E(t; Kn) +

NL∑

n=1

E(t; Kn).

Therefore, we have (6.4). �

VII. PROVING THE FUNNEL THEOREMS

We are finally in a position to prove the funnel theorems. The
adoption/infection of node j in network N is due to one of the
following L + 1 distinct influences:

1. Internal influences on j by edges that arrive from Al for some
l ∈ {1, . . . , L}.

2. External influences on j.

In order to identify the specific influence that leads to the adoption
of j, we introduce

Definition 7.1
(
N Al and

[
S

Al
j

])
: Let j ∈M and Al ⊂M\{j}.

The network N Al is obtained from N by deleting all the external
influences on node j and all the internal influences on j by nodes

that are not in Al, i.e., by setting I
0,Al
j := 0, p

Al
j := 0, and q

Al
k→j := 0

for k ∈ M\Al. The susceptibility probability of j in the networkN Al

is denoted by
[
S

Al
j

]
(t) := [Sj]

(
t;N Al

)
.

The funnel inequality shows that the susceptibility probabil-
ity [Sj] is bounded from below by the product of the susceptibility
probabilities of j due to each of the L + 1 distinct influences:

FIG. 5. In the proof of Theorem 7.1, the original networkN (top) is replaced by
the network N+ (bottom) in which the node j is replaced by the L + 1 nodes
{jp, jA1 , . . . , jAL } such that jp,I 0 inherits the external influences on j and jAl inherits
the internal influences on j from Al for l = 1, . . . , L.

Theorem 7.1: Consider the Bass/SI model (2.1). Let {A1, . . . ,
AL, {j}} be a partition of M. Then,

[Sj] ≥
[
Sisolated

j

] L∏

l=1

[
S

Al
j

]
, t ≥ 0, (7.1)

where [Sisolated
j ] = (1 − I0

j )e
−pjt.

Proof. The susceptibility probability [Sisolated
j ] for an isolated

node follows from the master equations (3.3a) and (3.3b). To prove
(7.1), we first note that by the indifference principle (Theorem 3.2),
all the edges that emanate from j are non-influential to j. Since this
holds for all the L + 2 probabilities in (7.1), in what follows, we can
assume that no edges emanate from j.

In principle, we need to compute the L + 2 probabilities in (7.1)
on the L + 2 networks N , N A1 , . . . , N AL , and N pj . We can sim-
plify the analysis, however, by considering only two networks, as
follows. Given the original network N , we define the network N+

by “splitting” node j into the L + 1 nodes {jA1 , . . . , jAL
, jp} such that

(see Fig. 5):

1. jAl
inherits from j the directed edges from Al to j, i.e.,

[S+
jAl

](0) := 1, p+
jAl

:= 0, q+
k→jAl

:= qk→j1k∈Al
,

k ∈ M, i = 1, . . . , K.

2. jp inherits from j its weight and initial condition, i.e.,

[S+
jp

](0) := 1 − I0
j , p+

jp
:= pj, q+

k→jp
:= 0, k ∈ M.

3. Since no edges emanate from j in network N , no edges emanate
from jA1 ,. . . , jAL

, and jp in network N+.
4. The weights of the nodes M\{j}, and of the edges among these

nodes, are the same in N and in N+.
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Let X+
k (t) denote the state of node k in network N+, and let

[S+
k ] := P(X+

k (t) = 0). By construction,

[
Sisolated

j

]
=
[
S+

jp

]
,

[
S

Al
j

]
=
[
S+

jAl

]
, l ∈ {1, . . . , L}. (7.2)

In the Appendix, we prove that

[Sj] =
[
S+

jA1
,...,jAL

,jp

]
, (7.3)

where [S+
jA1

,...,jAL
,jp

] := P
(
X+

jA1
(t) = · · · = X+

jAL
(t) = X+

jp
(t) = 0

)
.

Since jp is an isolated node in N+, its adoption is independent of
that of jA1 , . . . , jAL

, and so

[
S+

jA1
,...,jAL

,jp

]
=
[
S+

jp

] [
S+

jA1
,...,jAL

]
. (7.4)

Applying Theorem 6.1 to network N+ gives

[
S+

jA1
,...,jAL

]
≥

L∏

l=1

[
S+

jAl

]
. (7.5)

Combining relations (7.3)–(7.5) gives

[Sj] ≥
[
S+

jp

] L∏

l=1

[
S+

jAl

]
. (7.6)

Substituting (7.2) in (7.6) proves (7.1). �

Lemma 7.1: Consider the Bass/SI model (2.1). Let j ∈ M, and
let {A1, . . . , AL, {j}} be a partition of M.

• If j is a funnel node of {A1}
L
l=1, then

[Sj] =
[
Sisolated

j

] L∏

l=1

[
S

Al
j

]
, t ≥ 0 (funnel equality). (7.7)

• If, however, j is not a funnel node of A1 and A2, then

[Sj] >

[
Sisolated

j

] L∏

l=1

[
S

Al
j

]
, t > 0 (strict funnel inequality).

(7.8)

Proof. The inequality sign in the derivation of the funnel
inequality (7.1) only comes from the use of Theorem 6.1 in obtain-
ing (7.5). By Theorem 6.1, inequality (7.5) is strict if and only if there
exist i1, i2 ∈ {1, . . . , L} and a node m ∈ M that is influential to both
jAl

and to jÃ
l
, where i1 6= i2. Since no edges emanate from jA1 , . . . , jAL

,

and jp, we have that m ∈ M\{j}.
Thus, the funnel inequality is strict if and only if there exists a

node m ∈ M\{j} in N+, which is influential to jAl
and to jÃ

l
. This,

however, is the case if and only if there exists a node m ∈ M\{j},
which is influential to j in N Al and in N

Ã
l , i.e., if j is not a funnel

node of Al and Ãl. �

We can use the funnel equality to compute the combined
influences from Al and pj:

Lemma 7.2: Consider the Bass/SI model (2.1). Let j ∈ M and
Al ⊂ M\{j}. Then,

[
S

Al ,pj ,I
0
j

j

]
=
[
S

Al
j

] [
Sisolated

j

]
, l ∈ {1, . . . , L}, t ≥ 0, (7.9)

where [S
Al ,pj ,I

0
j

j ] := [Sj](t;N
Al ,pj ,I

0
j ).

Proof. Let N̂ denote the network obtained from N
Al ,pj ,I

0
j

by adding a fictitious isolated note, denoted by M + 1. Let M̂

:= {1, . . . , M + 1}, B1 := M\{j}, and B2 := {M + 1}. Then, {B1, B2,
{j}} is a partition of M̂, and j is a vertex cut, hence a funnel node, of
B1 and B2 in N̂ .

Let X̂j denote the state of j in N̂ . By the funnel equality (7.7),

[̂Sj] = [̂S
B1
j ][̂S

B2
j ][̂Sisolated

j ].

By construction,

[̂Sj] = [S
Al ,pj ,I

0
j

j ], [̂S
B1
j ] = [̂S

M\{j}
j ] = [S

Al
j ],

[̂S
B2
j ] = [̂S

{M+1}
j ] ≡ 1, [̂Sisolated

j ] = [Sisolated
j ],

where [SU
j ] denotes the state of j in network N U. Therefore,

[S
Al ,pj ,I

0
j

j ] = [S
Al
j ][Sisolated

j ]. �

Proof of Theorems 4.1 and 4.2. These theorems follow from
Theorem 7.1 and Lemmas 7.1 and 7.2. �

Proof of Theorem 4.3. The left inequality follows from (4.4). To
prove the upper bound, we use the notations from the proof of
Theorem 7.1. By relations (7.2)–(7.4),

[Sj] = [Sisolated
j ][S+

jA1
,...,jAL

].

Recall that node j in network N is split into nodes {jA1 , . . . , jAL
, jpj

}

in network N+. Hence, the cycle Cn corresponds to a path 0+
n in

N+ between some jAl
and jÃ

l
that has Kn + 1 nodes (including jAl

and jÃ
l
). Therefore, by Lemma 6.9,

[S+
jA1

,...,jAL
] −

L∏

l=1

[S+
jAl

] <

Nj∑

n=1

E(t; Kn + 1), t > 0.

Multiplying this inequality by [Sisolated
j ] and using the fact that

[S+
jAl

] = [S
Al
j ], see (7.2), we obtain

[Sj] − [Sisolated
j ]

L∏

l=1

[S
Al
j ] < [Sisolated

j ]

Nj∑

n=1

E(t; Kn + 1), t > 0.

Since [S
Al ,pj ,I

0
j

j ] = [S
Al
j ][Sisolated

j ], see (7.9), the inequality (4.6) follows.
�

VIII. DISCUSSION

The main theoretical contributions of this study are the three
funnel theorems. These theorems provide a framework for calcu-
lating a node’s susceptibility probability by relating it to suscepti-
bility probabilities in related networks where the node’s indegree is
reduced (typically to one)—which is a more tractable problem.

Kiss et al.29 derived the funnel equality (7.7) for nodes that
are vertex cuts (in the SIR model). Our funnel theorems are more
general in two aspects. First, we show that an equality holds not
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only when the node is a vertex cut, but also when the node is a fun-
nel node, which is not a vertex cut. Second, when the node is not
a funnel node, we obtain lower and upper bounds for the funnel
inequality. As noted, these bounds enable us to show that the fun-
nel equality becomes exact on some infinite sparse networks with
numerous cycles.

The relation between the funnel (in)equality and the sign and

magnitude of [S∪L
l=1

�l
] −

∏L
l=1[S�l

] was not noted in previous stud-

ies. Moreover, while it has been proved that [S∪L
l=1

�l
] ≥

∏L
l=1[S�l

],

see Ref. 30, to the best of our knowledge, the necessary and suffi-
cient condition under which this inequality is strict (Theorem 6.1),

as well as the upper bound for [S∪L
l=1

�l
] −

∏L
l=1[S�l

] (Theorem 6.2),

were not obtained before. The inequality [S∪L
l=1

�l
] ≥

∏L
l=1[S�l

] can

serve as an analytic tool, beyond its role in the derivation of the fun-
nel theorems. For example, in Theorem 3 of Ref. 31, it was used to
compute the universal upper bound for the expected adoption level
in the Bass model on networks.

This study only considers the Bass and SI models on networks.
It is reasonable to expect that the funnel theorems can be extended to
more comprehensive models in epidemiology. As noted, Kiss et al.29

derived the funnel equality for nodes that are vertex cuts in the SIR
model. The results of this study are likely to be extendable to the SIS
model and to the Bass-SIR model.32

The Bass and SI models on networks only allow for pairwise
interactions between individuals. In recent years, however, there has
been increasing interest in modeling group interactions, which leads
to the study of spreading processes on hypernetworks.33 The master-
equation methodology can be extended to the Bass and SI models on
hypernetworks, enabling the derivation of explicit solutions for such
systems.34 In particular, the funnel theorems can be adapted to the
Bass and SI models on hypernetworks, providing an analytic tool for
analyzing the spreading dynamics in the presence of higher-order
interactions.35

The extension of epidemiological models to non-Markovian
processes is an important question that received much attention; see
Ref. 3 and the numerous references therein. Whether and to what
extent the results of this study can be extended to non-Markovian
processes is currently an open question.
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APPENDIX: PROOF OF (7.3)

Let us fix t > 0 and N ∈ N. Let 1t = t
N

, tN := N1t, and Xn
j

:= Xj(t
n). As N → ∞, 1t → 0 and tN ≡ t. Then, we need to prove

that

lim
N→∞

[Sj](t
N; 1t) = lim

N→∞

[
S+

jA1
,...,jAL

,jp

]
(tN; 1t). (A.1)

To do this, we introduce the following implementation of the Bass/SI
model (2.1):

Choose 1t > 0
for j = 1, . . . , M

sample ω0
j ∼ U(0, 1)

if 0 ≤ ω0
j ≤ I0

j then X0
j := 1 else X0

j := 0

end
for n = 1, 2, . . .

for j = 1, . . . , M
if Xn−1

j = 1 then Xn
j := 1

if Xn−1
j = 0 then

sample ωn
j ∼ U(0, 1)

if 0 ≤ ωn
j ≤

(
pj +

∑
k∈M qk→jX

n−1
k

)
1t then Xn

j := 1

else Xn
j := 0

end
end

Let us denote the outcome of this implementation by

X̃N
k := Xk(t

N; {ωn}∞
n=0, 1t), k ∈ M, N = 0, 1, . . . ,

where ω
n := {ωn

k }k∈M
. Let us also denote

ω
n
−j := {ωn

k }k∈M\{j}, ω
+,n = {ωn

−j, ω
n
jA1

, . . . , ωn
jAL

, ωn
jp
},

M
+ :=

(
M\j

)
∪ {jA1 , . . . , jAL

, jp}.

The implementation of the Bass/SI model (2.1) on N+ is denoted by

X̃+,N
k := X+

k (tN; {ω+,n}
∞

n=0, 1t), k ∈ M
+, N = 0, 1, . . . ,

where the L + 2 realizations ωn
j , ωn

jA1
, . . . , ωn

jAL
, ωn

jp
are independent.

Since there are no edges that emanate from the nodes
j, jA1 , . . . , jAL

, jp, the sub-realizations {ωn
−j}

∞

n=0
completely determine

{X̃N
k } and {X̃+,N

k } for all k ∈ M\{j} and N ∈ N. Hence, if we use the
same {ωn

−j}
∞

n=0
and 1t for both networks, then

X̃N
k ≡ X̃+,N

k , k ∈ M\{j}, N = 0, 1, . . . . (A.2)

To compute the left-hand side of (A.1), we first note that

X̃N
j = 0 ⇐⇒ X̃n

j = 0, n = 0, . . . , N.

Hence,

X̃N
j = 0 ⇐⇒ I0

j < ω0
j ≤ 1 and

ωn
j ≥


pj +

∑

k∈M\{j}

qk→jX̃k(t
n−1)


1t, n = 1, . . . , N.
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Therefore,

[
Sj | {ωn

−j}
N

n=1

]
(tN; 1t) = [S0

j ]

N∏

n=1

Hn
j

Hn
j := 1 −


pj +

∑

k∈M\{j}

qk→jX̃k(t
n−1)


1t,

where [S0
j ] = 1 − I0

j . Hence,

[Sj](t
N; 1t)

=
[
S0

j

] ∫

[0,1](M−1)×N

(
N∏

n=1

Hn
j

({
ω

n
−j

}N

n=1
, 1t

))
dω

1
−j · · · dω

N
−j.

(A.3)

Similarly, to compute the right-hand side of (A.1) , we note
that X̃+,N

jp
= X̃+,N

jA1
= · · · = X̃+,N

jAL
= 0 if and only if X̃+,0

jp
= X̃+,0

jA1
= · · ·

= X̃+,0
jAL

= 0, and for n = 1, . . . , N,

ωn
jp

≥ pj1t, ωn
jAl

≥


∑

k∈Al

qk→jX̃
+,n−1
k


1t, l ∈ {1, . . . , L}.

Since X̃+,0
jA1

= · · · = X̃+,0
jAL

≡ 0, then P(X̃+,0
jp

= X̃+,0
jA1

= · · · = X̃+,0
jAL

= 0) = P(X̃+,0
jp

= 0) = [S0
j ]. Therefore,

[
S+

jA1
,...,jAL

,jp

]
(tN; 1t)

=
[
S0

j

] ∫

[0,1](M−1)×N

(
N∏

n=1

Hn,+
j

({
ω

n
−j

}N

n=1
, 1t

))
dω

1
−j · · · dω

N
−j,

(A.4)

where

Hn,+
j := (1 − pj1t)

L∏

l=1


1 − 1t

∑

k∈Al

qk→jX̃
+,n−1
k


 .

By (A.2),

Hn,+
j =

(
1 − pj1t

) L∏

l=1


1 − 1t

∑

k∈Al

qk→jX̃
n−1
k




= 1 −


pj +

∑

k∈M\{j}

qk→jX̃
n−1
k


1t + O((1t)2)

= Hn
j + O((1t)2).

Hence,

N∏

n=1

Hn,+
j = (1 + O(1t))

N∏

n=1

Hn
j . (A.5)

Letting N → ∞ and using (A.3)–(A.5) proves (A.1).
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