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Abstract: Traditionally, interactions between laser beams or filaments were considered to be
deterministic. We show, however, that in most physical settings, these interactions ultimately
become stochastic. Specifically, we show that in nonlinear propagation of laser beams, the shot-
to-shot variation of the nonlinear phase shift increases with distance, and ultimately becomes
uniformly distributed in [0, 2π]. Therefore, if two beams travel a sufficiently long distance
before interacting, it is not possible to predict whether they would intersect in- or out-of-
phase. Hence, if the underlying propagation model is non-integrable, deterministic predictions
and control of the outcome of the interaction become impossible. Because the relative phase
between the two beams becomes uniformly distributed in [0, 2π], however, the statistics of these
stochastic interactions are universal and fully predictable. These statistics can be efficiently
computed using a novel universal model for stochastic interactions, even when the noise dis-
tribution is unknown.
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1. Introduction

Nonlinear interactions between two or more laser beams, pulses, and filaments [1] are related
to applications ranging from modulation methods in optical communication [2], to coherent
combination of beams [3–7], interactions between filaments in atmospheric propagation [8],
focusing of multiple speckle patterns [9] and ignition of nuclear fusion using up to 192
beams [10]. In the integrable one-dimensional cubic case, such interactions can only lead
to phase and lateral shifts, which can be computed analytically using the Inverse Scattering
Transform [11–13]. In the non-integrable case, however, richer dynamics are possible, including
beam repulsion, breakup, fusion and spiraling [1, 14–16]. Since the outcome of the interaction
strongly depends on the relative phases of the beams [17], one can use the initial phase to control
the interaction dynamics [18]. Nonlinear interactions between solitary waves were also studied
in other physical systems [19, 20], such as fiber optics [21, 22], waveguide arrays [23], water
waves [24, 25], plasma waves [26] and Bose-Einstein condensates [27].

In previous studies it was shown, both theoretically and experimentally, that when a laser
beam undergoes an optical collapse, its initial phase is "lost", in the sense that the small shot-
to-shot variations in the input beam lead to large changes in the nonlinear phase shift of the
collapsing beam [28,29]. Therefore, if two such beams intersect after they collapsed, one cannot
predict whether they will intersect in- or out-of-phase, and so post-collapse interactions between
beams become "chaotic" and cannot be controlled [30]. Loss of phase due to input noise can
also interfere with imaging and holography in nonlinear medium [31, 32]. Note that loss of
phase does not imply a loss of coherence, but rather that at any given propagation distance,
the coherent beam can only be determined up to an unknown constant phase. Thus, if the
unperturbed beam profile is given by ψ = AeiS , then in the presence of input noise ψ̃ = Ãei S̃ ,
where Ã(z, x) ≈ A(z, x), S̃(z, x) ≈ S(z, x) + θ(z), and θ is an unknown O(1) perturbation of
the nonlinear phase shift which varies with the propagation distance z but is independent of the
transverse coordinates x.

In this study we show that loss of phase is ubiquitous in nonlinear optics. Thus, while
collapse accelerates the loss of phase process, non-collapsing or mildly-collapsing beams can
also undergo a loss of phase. The loss of phase builds up gradually with the propagation distance,
i.e., the shot-to-shot variations of the beam’s nonlinear phase shift increase with the propagation
distance, and approach a uniform distribution in [0, 2π] at sufficiently large distances. As noted,
because of the loss of phase, deterministic predictions and control of interactions between laser
beams become impossible in the presence of noise. We show, however, that loss of phase allows
for accurate predictions of the statistical properties of these stochastic interactions, even without
any knowledge of the noise source and characteristics. Indeed, because the relative phase
between the beams becomes uniformly distributed in [0, 2π], the statistics of the interaction
are universal, and can be computed using a "universal model" in which the only noise source is
a uniformly distributed phase difference between the input beams. These computations can be
efficiently performed using a polynomial-chaos based approach.

2. Loss of phase

The propagation of laser beams in a homogeneous medium is governed by the dimensionless
nonlinear Schrödinger equation (NLS) in d + 1 dimensions

i
∂

∂z
ψ(z, x) + ∇2ψ + N ( |ψ |)ψ = 0 , (1)

where z is the dimensionless propagation distance (in units of the diffraction length),
x = (x1 , . . . , xd ) are the transverse coordinates (and/or time in the anomalous regime),
and ∇2 = ∂2

x1
+ · · · + ∂2

xd
[33]. Here we consider nonlinearities N (ψ) that support stable
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solitary waves ψ = eiκz Rκ (x), such as the cubic-quintic NLS

i
∂

∂z
ψ(z, x) + ∇2ψ + |ψ |2ψ − ε |ψ |4ψ = 0 , (2)

the saturated NLS

i
∂

∂z
ψ(z, x) + ∇2ψ +

|ψ |2
1 + ε |ψ |2ψ = 0 ,

and certain non-local nonlinearities [34, 35] or PT-symmetric systems [36–38].

2.1. Numerical observations

In a physical system the input beam always changes from shot to shot due to noise and
instabilities of the laser system. To model this shot to shot variation, we write

ψ(z = 0, x; α) = ψ0(x; α) , (3)

where α is the noise realization. We denote by ϕ(z; α) := argψ(z, x = 0; α) the cumulative
on-axis phase at z, and study the evolution (in z) of the probability distribution function (PDF)
of the non-cumulative on-axis phase

ϕ̃(z; α) := ϕ(z; α) mod(2π) . (4)

−1 1
0

25
z = 0.15

α

ϕ
(a1)

−1 1
30

55
z = 3

α

(b1)

−1 1
105

130
z = 11

α

(c1)

−1 1
0

2π

α

ϕ̃
(a2)

−1 1
0

2π

α

(b2)

−1 1
0

2π

α

(c2)

0 2π

f

ϕ̃

30
2π

0

(a3)

0 2πϕ̃

1
2π

0

(b3)

0 2πϕ̃

1
2π

0

(c3)

−4 4
0

6

x

|ψ|
(a4)

−4 4
0

6

x

(b4)

−4 4
0

6

x

(c4)

Fig. 1. The cubic-quintic NLS (2) with d = 1, ε = 10−3, and the initial condition (5) at
(a1)–(a4) z = 0.15, (b1)–(b4) z = 3, and (c1–c4) z = 11. (a1)–(c1) Cumulative on-axis
phase as a function of α. (a2)–(c2) Non-cumulative on-axis phase. (a3)–(c3) The PDF of ϕ̃.
(a4)–(c4) Transverse profile for α = 1 (solid) and α = −1 (dot-dash).

For example, consider the one-dimensional cubic-quintic NLS (2) with the Gaussian initial
condition with a random power

ψ0(x; α) = 3.4(1 + 0.1α)e−x2
, α ∼ U (−1, 1) , (5)

where U (−1, 1) is the uniform distribution in (−1, 1). Here we consider the one-dimensional
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case to emphasize that loss of phase and "chaotic" interactions are not limited to collapsing
beams, as was implied by earlier studies [28]. At z = 0.15, the maximal variation of the
cumulative phase Δϕ := ϕ(α = 1) − ϕ(α = −1) is fairly small (≈ 0.08π), see Fig. 1(a1).
The corresponding non-cumulative on-axis phase ϕ̃(α) is identical (Fig. 1(a2)). Because α
is randomly distributed, so is ϕ̃(α). The probability distribution function (PDF) of ϕ̃ can be
computed from that of α. Since in this example α ∼ U (−1, 1) and the variation in ϕ̃ at z = 0.15
is small, the PDF of ϕ̃, denoted by f (ϕ̃), is fairly localized, see Fig. 1(a3). As the beam continues
to propagate (z = 3), the maximal variation of the cumulative phase increases to Δϕ ≈ 1.8π, and
so ϕ̃ attains most values in [0, 2π], though not with the same probability (Figs. 1(b1)– 1(b3)).
At an even larger propagation distance (z = 11), the maximal phase variation is Δϕ ≈ 6.5π,
i.e., slightly over three cycles of ϕ̃, see Figs. 1(c1)–1(c2). At this stage ϕ̃ is nearly uniformly dis-
tributed in [0, 2π], see Fig. 1(c3), which implies that the beam "lost" its initial phase ϕ(z = 0).
By "loss of phase" we mean that one cannot infer from f , the PDF of ϕ̃(z; α), or from several

realizations
{
ϕ(z; α j

}J
j=1

, whether the initial condition was ψ0(x), see (5) or eiθψ0(x) for some

0 < θ < 2π. Loss of phase is not accompanied by a "loss of amplitude". Indeed, the differences
between the profiles for α = ±1 remain small throughout the propagation (Figs. 1(a4)– 1(c4)).

We obtained similar results for the same equation and initial condition in two dimensions. We
found that loss of phase occurs much faster in two dimensions, so that the ϕ̃ becomes uniformly
distributed already after two diffraction lengths (z ≈ 2). See Appendix A for further details.

z

x

(a)

0 7

3

0

−3
0 7

0

80

ϕ

(b)

z

Fig. 2. Same as Fig. 1. (a) The intensity |ψ(z, x) |2 for α = 0. (b) The on-axis phase for
α = 1 (solid) and α = −1 (dots).

2.2. Theory

To understand the emergence of loss of phase in Fig. 1, we note that after an initial transient,
the beam core evolves into a stable solitary wave, see e.g., Fig. 2(a), and so,

ψ(z, x; α) ≈ eiη0 (α)eiκz Rκ (x) + radiation , (6)

where η0(α) is the on-axis phase which is accumulated during the initial transient, κ is the
propagation constant, and Rκ is the positive solution of ∇2Rκ − κRκ (x) + N (Rκ )Rκ = 0. By (6),

ϕ(z; α) ≈ η0(α) + zκ(α) . (7)

Thus, the nonlinear phase shift grows linearly with z at the rate of κ = κ(α), see Fig. 2(b).
Since α is randomly distributed, then so is κ(α). More generally, for any initial noise, the

beam core evolves into a solitary wave with a random propagation constant κ(α), and so ϕ is
given by (7) [note that this is also the case with multi-parameter noises, e.g., when the amplitude,
the phase and the tilt angle are all random]. Consequently, the initial on-axis phase is completely
lost as z → ∞:

Lemma 1 Let α be a random variable which is distributed in [αmin , αmax] with an absolutely-
continuous measure dμ, let κ(α) be a continuously differentiable, piece-wise monotone function
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on [αmin , αmax], let η0(α) be continuously differentiable on [αmin , αmax], and let ϕ be given
by (7). Then

lim
z→∞ ϕ(z; α) mod (2π) ∼ U ([0, 2π]) .

Proof: see Appendix B .
Lemma 1 provides a new road to the emergence of loss of phase. Indeed, in previous

studies [28–30], the loss of phase was caused by the large self-phase modulations (SPM) that
accumulate during the initial beam collapse (i.e., by the variation of η0 in α). Briefly, when a
beam undergoes collapse, then in the absence of a collapse-arresting mechanism, ϕ0(α) → ∞ as
z → Zc (α), where Zc is the collapse point [28]. Therefore, if a beam undergoes a considerable
self-focusing before its collapse is arrested, then it accumulates significant SPM, i.e., η0(α) �
2π. In that case, although small changes in α lead to small relative changes in η0(α), those are
O(1) absolute changes in η0(α). In this study, however, we consider non-collapsing beams of the
1D NLS, or self-trapped beams of the 2D NLS. Therefore Δη0 := η0(αmax) − η0(αmin) 	 2π.
In such cases, the loss of phase builds up gradually with the propagation distance z, and not
abruptly during the initial collapse, as in the previous studies.

Loss of phase is related to the fact that NLS solitary waves can "only" be orbitally stable; i.e.,
stable up to multiplication by eiθ for some θ ∈ [0, 2π], see [39,40]. Loss of phase is a genuinely

nonlinear phenomenon. Indeed, in the linear propagation regime, ψ(z, x) = (2iz)− 1
2 eu

|x |2
4z ∗

ψ0(x). Therefore if ψ0(α1) − ψ0(α2) 	 1 then ψ(α1) − ψ(α2) 	 1 as well.
Lemma 1 is reminiscent of classical results in ergodic theory of irrational rotations of the

circle [41]. Unlike these results, however, Lemma 1 does not describe the trajectory of a single
point on the circle under consecutive discrete phase additions, but rather the convergence of a
continuum of points under with continuous linear change with a varying rate κ.

By (7), the maximal difference in the cumulative phase between solutions grows linearly in z,
i.e.,

Δϕ(z) := ϕ(z; αmax) − ϕ(z; αmin) ≈ Δη0 + z · Δκ ,
where Δκ := κ(αmax) − κ(αmin) is the maximal variation in the propagation constant, induced
by the noise. As suggested by the proof of Lemma 1 and by Fig. 1, ϕ̃ is close to be uniformly
distributed once Δϕ(z) � 2π. Therefore, the characteristic distance for loss of phase is

Zlop :=
2π
Δκ

. (8)

3. Stochastic interactions and the universal model
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Fig. 3. The 1d cubic-quintic NLS (2) with ε = 2 · 10−2 and the initial condition (9) with
κ0 = 8. (a) κ1 = 8, η0 = 0. (b) κ1 = 8.1, η0 = 0. (c) κ1 = 8.1, η0 ≈ −0.48π.

A priori, the loss of initial phase has no physical implications, since the NLS (1) is invariant
under the transformation ψ → eiβψ. When the NLS (1) is non-integrable, however, the relative
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phase between two beams [16,17,30,42] or condensates [27] can have a dramatic effect on their
interaction, thus making the loss of initial phase physically important. To illustrate that, consider
again the cubic-quintic NLS (2) for d = 1 with the two crossing beams initial condition

ψ0(x) = eiθxRκ0 (x − a) + eiη0 e−iθx Rκ1 (x + a) , (9)

where a = 12, θ = π
8 , κ0 = 8, and Rκ is the solitary wave of (2). By Galilean invariance, before

the beams intersect at (zcross , xcross) ≈ (14.7, 0), each beam propagates as a solitary wave, and
so

ψ(z, x) ≈ eiκ0zeiθx−iθ
2z Rκ0 (x − a − 2θz)

+eiη0 eiκ1ze−iθx−iθ
2z Rκ1 (x + a + 2θz) .

Hence, the difference between the on-axis phases of the two beams at (zcross , xcross) is

Δϕ ≈ (κ1 − κ0)zcross + η0 . (10)

When the two input beams are in-phase (η0 = 0) and identical (κ0 = κ1), they intersect in-
phase (Δϕ = 0), and so they merge into a strong central beam, see Fig. 3(a). If we introduce
a 1.25% change in the propagation constant of the second beam (κ1 = κ0 + 0.1), then by (10),
Δϕ ≈ 0.1 · 14.7 ≈ 0.48π. This phase difference is sufficient for the two beams to repel each
other, see Fig. 3(b). Therefore, the interaction is "chaotic", in the sense that a small change in
the input beams leads to a large change in the interaction pattern. To further demonstrate that
the change in the interaction pattern is predominately due to the phase difference, we "correct"
the initial phase of the second beam by setting η0 ≈ −0.48π, so that Δϕ ≈ 0 at (zcross , xcross),
and indeed observe that the two beams merge, see Fig. 3(c). Unlike Fig. 3(a), the output beam is
slightly tilted upward, since the lower input beam is more powerful, and therefore the net linear
momentum points upward.

In what follows, we consider interactions between the two crossing beams

ψ0(x) = eiθxRκ0 (x − a) + c · eiη0 e−iθx Rκ1 (x + a)

with four different noise sources:

random κ : η0 = 0, c = 1, κ1 = κ0

(
1 +

α

8

)
, (11a)

random κ, out of phase : η0 = π, c = 1 , (11b)

κ1 = κ0

(
1 +

α

8

)
,

random power: η0 = 0, c = 1 + 0.1α, κ1 = κ0 , (11c)

random phase: η0 = πα, c = 1, κ1 = κ0 , (11d)

where α ∼ U (−1, 1). Figs. 4(a1)–4(d1) shows the "exit intensity" |ψ(z f , x; α) |2 at z f = 17
as a function of x, for −1 ≤ α ≤ 1. As in Fig. 3, depending on α, there are two possible
outputs: Either a single beam (resulting from beam fusion), or two beams (resulting from beam
repulsion). Generally speaking, there is a single output beam whenever the two input beams are
"sufficiently" in-phase at (zcross , xcross).

In a physical setting the noise distribution is typically unknown. Nevertheless, the on-axis
phase of each beam core is given by (7), where κ(α) is a random variable. Therefore, by
Lemma 1, for zcross � Zlop, the phase of each beam at (zcross , xcross), and hence also the relative
phase between them, is uniformly distributed in [0, 2π]. Hence, to leading order, the statistics
of the interactions are given by a universal model in which the only noise source is a random
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Fig. 4. Solutions of the 1d cubic-quintic NLS (2) with ε = 2 · 10−2. (a1)–(d1): the exit
intensity |ψ(z f = 17, x; α) |2, (a2)–(d2): the probability of the number of output beams,
and (e) the mean (
, �, ◦,�) and standard deviation of the lateral location of the output
beams, for the noisy initial conditions (11a)–(11d), respectively. Here a = 12, θ = π

8 , and
κ0 = 8.

relative phase, which is uniformly distributed in [0, 2π], i.e.,

ψuniversal
0 = ψ (1)

0 + eiπαψ (2)
0 , α ∼ U (−1, 1) (12)

where ψ (1)
0 and ψ (2)

0 are the two unperturbed input beams, c.f., (11d). Indeed, for all 4 noisy
initial conditions we observe that: (i) the probability for a single filament is 22% ± 2% and for
two filaments is 78% ± 2%, see Figs. 4(a2)–4(d2), and (ii) the mean and standard deviation of
the lateral locations of the output beams are nearly identical, see Fig. 4(e).

4. Novel numerical method

The above results show that the statistics of long-range interactions between laser beams are
independent of the noise source and its characteristics, and can be computed using the "universal
model" (12) in which the only randomness comes from the addition of a random constant phase
to one of the input beams, which is uniformly distributed in [0, 2π], c.f. (11d). To efficiently use
the universal model, we developed a polynomial-chaos based numerical method, which is both
spectrally accurate and makes use of any deterministic NLS solver. Although in the universal
model the noise is uniformly distributed, we allow for a more general noise distribution, so that
we can e.g., produce results such as figure 1 for non-uniform noise distributions.

Let ψ(z, x; α) be the solution of the NLS (1) with the random initial condition (5). In what
follows, we introduce an efficient numerical method for computing the statistics of g(ψ), e.g.,
the average intensity over many shots Eα[|ψ |2].

The standard numerical method for this problem is Monte-Carlo, in which one draws N

random values of α and approximates Eα
[
g(α)
] ≈ 1

N

N∑
n=1

g(αn ). The main drawback of this

method is its slow O(1/
√

N ) convergence rate, where N is the number of NLS simulations.
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If g(α) := g(ψ(·; α)) is smooth in α, however, we can use orthogonal polynomials as a
spectrally accurate basis for interpolation [43] and numerical integration. Let α is distributed
in [αmin , αmax] according to a PDF c(α), and let {pn (α)}∞n=0 be the corresponding sequence of

orthogonal polynomials, in the sense that
αmax∫

αmin

pn (α)pm (α)c(α) dα = δn ,m . For example, if α

is uniformly distributed in [−1, 1], then {pn } are the Legendre polynomials, and if α is normally
distributed in (−∞,∞), then {pn } are the Hermite polynomials. Recall that for smooth solutions

one has the spectrally accurate quadrature formula Eα
[
g(α)
] ≈ N∑

j=1
g(αN

j
)wN

j
, where {αN

j
}N
j=1

and
{
wN

j

}N
j=1

are the roots of the orthogonal polynomial pN (α) and their respective weights

wN
j
=

αmax∫

αmin

N∏
i=1, i� j

α−αN
i

αN
j −αN

i

c(α) dα. See [44] for a numerically efficient and stable algorithm

for computing the quadrature points and weights
{
αN
j
, wN

j

}N
j=1

. We apply the collocation

Polynomial Chaos Expansion (PCE) method as follows [45, 46]:

1. For j = 1, . . . , N , solve the NLS for ψ
(
z, x; αN

j

)
, and set g(αN

j
) := g

(
ψ(z, x; αN

j
)
)
.

2. Approximate

g(α) ≈ gN (α) :=
N−1∑

n=0

ĝN (n)pn (α), (13a)

where

ĝN (n) =
N∑

j=1

pn (αN
j )g
(
αN
j

)
wN

j , n = 0, . . . , N − 1 . (13b)

This method is “non-intrusive”, i.e., it does not require any changes to the deterministic NLS
solver. Moreover, the orthogonality of {pn } leads to direct formulae for the mean and standard
deviation of g:

Eα
[
g(α)
] ≈ 1

p0
ĝN (0) ,

σ
[
g(α)
] ≈
√√√

N−1∑

n=0

|ĝN (n) |2 − |ĝN (0) |2
p2

0

.

As noted, the PCE method, presented in its basic form in steps 1–2, has a spectral convergence
rate for smooth functions. For example, the results in Figs. 1 and 5 were computed using
N = 10 and N = 31 NLS simulations, respectively. To reach a similar accuracy with the
Monte Carlo method would require more than 1000 NLS simulations. Some quantities of
interest, however, such as the number of filaments (Fig. 4(a2)–4(d2)), or the non-cumulative
on-axis phase ϕ̃ = arg (ψ(z, x = 0; α)) mod(2π), (Fig. 1(a3)–1(c3) and Fig. 5(a3)–5(c3)) are
non-smooth. Therefore, a straightforward application of the PCE method for such quantities
requires O

(
103
)

simulations to converge. In such cases, we begin with stages (1)–(2) and

calculate the PCE approximation (13) of the smooth function ψ(z, x; α) using {ψ(z, x; αN
j

)}N
j=1

with a relatively small N . Then we proceed as follows:
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3. Use the gPC interpolant (13) to obtain ψ(·, α̃m ) ≈ ψN (·, α̃m ) on a sufficiently dense
grid {α̃m }Mm=1, where M � N .

4. Compute g(α̃m ) ≈ g(ψN (·, α̃m )) for m = 1, . . . , M ,

5. Compute the statistics of g(ψ) using {g(ψN (·, α̃m ))}Mm=1.

For example, when we computed the number of beams at z = z f in Fig. 4, we first
computed the PCE interpolant ψN (z f , x; α) with N = 71. Then we computed ψ(z f , x; α̃m ) ≈
ψN (z f , x; α̃m ) for m = 1, . . . , M = 801. For each α̃m , we count the number of filaments and
used this to produce the histogram in figure 4(a2)–4(d2). The additional computational cost of
sampling ψN (13) at M � N grid points in step (3) is negligible compared to directly solving
the NLS for N times in stage (1).

5. Conclusions

In this study, we showed that when two (or more) laser beams interact after a sufficiently
long propagation distance, their relative phase at the crossing point varies so much from
shot to shot, that the outcome of their interaction cannot be deterministically predicted or
controlled. In such cases, the notion of a "typical experiment" or a "typical solution" may be
misleading, and one should adopt a stochastic approach. The loss of phase can explain some
of the difficulties in phase-dependent methods in optical communications such as Quadrature
Amplitude Modulation (QAM) [2], and in coherent combining of hundreds of laser beams
in a small space for ignition of nuclear fusion [15], and for creating a more powerful laser
beam [6]. In these applications, controlling the phases of the input beams or pulses might not
provide a good control over their interaction or combination, due to the loss of phase. Our study
suggests that controlling the relative phases at the intersection point may be achieved by either
shortening the propagation distance, or by coupling the beams throughout the propagation. Loss
of phase can also explain the high sensitivity to initial perturbations of interactions between
topologically-charged solitons [47]. Loss of phase is also relevant to the loss of polarization for
elliptically-polarized beams [48].

Appendix

A. Loss of phase in two dimensions

We repeated the simulations of Fig. 1 in two dimensions, see Fig. 5. As in the one-dimensional
case, the phase variation increases with the propagation distance, and becomes uniformly dis-
tributed around z = 2, see Fig. 5(c3).

To compare the rates at which the PDFs of ϕ̃ converge to the uniform distribution funi(y) :≡
1

2π on [0, 2π], we plot in Fig. 6(a) the distance ‖ f − funi‖ :=
2π∫

0

∣∣∣ f (y) − 1
2π

∣∣∣ dy. Note that the

convergence is not monotone, because the distance has a local minimum whenever Δϕ = 2πk
for an integer k.

The convergence is much faster for d = 2 than for d = 1. This is because typically, Δκ is
much larger in 2d than in 1d. For example, in Fig. 6(b) Δκ ≈ 25 in 2d, and Δκ ≈ 1.8 in 1d.
Intuitively, this is because the input beam evolves into a solitary wave, and over a given power
range, the propagation constant of the solitary wave changes considerably less in 1d than in
2d. Hence, by (8), the loss of phase occurs much faster in the two-dimensional case than in the
one-dimensional case, thus explaining Fig. 6(a).
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Fig. 6. The cubic-quintic NLS (2) with ε = 10−3, and the initial condition (5) in one (dot-
dash) and two (solid) dimensions. (a) Distance between the PDF of ϕ̃ and the uniform
distribution on [0, 2π] . (b) The propagation constant of the beam core, see (6), as a function
of α.

The reason why Δκ is much larger in 2d than in 1d is as follows: denote the solitary-wave
power by P(κ) :=

∫ |Rκ |2 dx. When ε = 0 in (2), then dP
dκ = 0 for d = 2 but dP

dκ > 0 for
d = 1 [33]. Hence, if 0 < ε 	 1, then dP

dκ = O(ε ) for d = 2, but dP
dκ = O(1) for d = 1.

Therefore dκ
dP
= O(1) for d = 1 but dκ

dP
= O( 1

ε ) for d = 2.

B. Proof of Lemma 1

For a given z ≥ 0, denote ϕz (α) = κ(α) + η0 (α)
z

, then ϕ̃(α) = zϕz (α) mod (2π). We prove that
lim
z→∞ ϕ̃(α) ∼ U ([0, 2π]) by showing that for every 0 ≤ a < b ≤ 2π,

lim
z→∞ μ

(
ϕ̃−1 ([a, b])

)
=

b − a
2π

, (14)

where ϕ̃ [a, b] := {α ∈ [αmin , αmax] | ũz (α) ∈ [a, b]}.
We first prove the lemma for a strictly monotone function κ on (αmin , αmax). For sufficiently
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large z, ϕz is also monotone. Let xz
k

and yz
k

be the solutions of

ϕz (xz
k
) =

2kπ + a
z

, ϕz (yz
k
) =

2kπ + b
z

, k ∈ Z . (15)

There exists kmin ≤ kmax such that xz
kmin−1 and yz

kmax+1 do not exist, and for clarity we
suppressed the dependence of kmin and kmax on z. By definition,

μ
(
ϕ̃−1 ([a, b])

)
=

kmax∑

k=kmin

μ
(
xz
k
, yz

k

)
+ E(z) =

=

kmax∑

k=kmin

μ

(
ϕ−1
z

(
2πk + a

z

)
, ϕ−1

z

(
2πk + b

z

))
+ E(z) , (16)

where the error term E(z) exists if either yz
kmin−1 > αmin or xz

kmax+1 < αmax exist. In such cases,
since dμ is continuous,

E(z) = μ
(
[αmin , y

z
kmin−1]

)
+ μ
(
[xz

kmax+1 , αmax]
)
.

We now show that if yz
kmin−1 exists, then lim

z→∞ μ
(
αmin , y

z
kmin−1

)
= 0 (a similar proof holds

also for xz
kmax+1). It is enough to show that lim

z→∞ xz
kmin
= αmin, because yz

kmin −1
< xkmin and μ is a

continuous measure. Let δ > 0, then

zϕz (αmin + δ) − zϕz (αmin) =

(η0(αmin + δ) − η0(αmin)) + z (κ(αmin + δ) − κmin)

goes to infinity as z → ∞. Therefore, for large enough z, xz
kmin
∈ (αmin , αmin + δ). Thus, for all

δ > 0,
αmin ≤ lim

z→∞ xz
kmin

< αmin + δ .

Since ϕz is strictly monotone, then by the inverse function theorem ϕ−1
z ∈ C1, and so by

substituting α = ϕ−1
z (y),

μ

(
ϕ−1
z

(
2πk + a

z

)
, ϕ−1

z

(
2πk + b

z

))
=

ϕ−1
z

(
2πk+b

z

)
∫

ϕ−1
z

(
2πk+a

z

)
c(α) dα =

2πk+b
z∫

2πk+a
z

gz (y) dy ,

where gz (y) := c(ϕ−1
z (y))(ϕ−1

z )′(y). By Lagrange mean-value theorem, for each index k, there
exists ξz

k
∈ (a, b) such that

μ

(
ϕ−1
z

(
2πk + a

z

)
, ϕ−1

z

(
2πk + b

z

))
=

gz

(
2πk + ξz

k

z

)
b − a

z
.
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Substituting the above into (16) yields

μ
(
ϕ−1
z ([a, b])

)
=

b − a
z

kmax∑

k=kmin

gz

(
2πk + ξz

k

z

)
+ E(z) . (17)

Next, consider the integrals

I :=

αmax∫

αmin

c (α) dy = μ (αmin , αmax) = 1 , (18a)

I2 :=

y
z
kmax∫

x
z
kmin

c(α) dα =

2πkmax+b
z∫

2πkmin+a
z

gz (y) dy .

Using Riemann sums

I2 =
2π
z

kmax∑

k=kmin

gz

(
2πk + ξz

k

z

)
+O
(
z−1
)
. (18b)

Denoting ϕz (αmin) := ϕz ,min and ϕz (αmax) := ϕz ,max Since

ϕz ,max∫

ϕz ,min

=

ϕz (xz
kmin

)∫

ϕz ,min

+

ϕz (y z
kmax

)∫

ϕz (xz
kmin

)

+

ϕz ,max∫

ϕz (y z
kmax

)

,

then I = I2 +O(z−1). Equating (18b) and (18a), and substituting into (17), yields

μ
(
ϕ−1
z ([a, b])

)
=

b − a
2π
+ o(1) ,

by which we prove (14)
Finally, if κ, hence ϕz is piece-wise monotone, we apply the above proof for each sub-interval

over which ϕz is monotone, and by additivity of measure have the result.
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