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a b s t r a c t

A dynamical system is said to be reversible if, given an output, the input can always be recovered
in a well-posed manner. Nevertheless, we argue that reversible systems that have a time-reversal
symmetry, such as the Nonlinear Schrödinger equation and the φ4 equation can become "physically
irreversible". By this, we mean that realistically-small experimental errors in measuring the output can
lead to dramatic differences between the recovered input and the original one. The loss of reversibility
reveals a natural "arrow of time", reminiscent of the thermodynamic one, which is the direction in
which the radiation is emitted outward. Our results are relevant to imaging and reversal applications
in nonlinear optics.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Consider a time-evolution dynamical system with solution
operator u(t) = Q (t)u(0). Strictly speaking, a system is said to
be reversible if for any t > 0 and u(t) there exists a time-reversal
operator Q−1(t) such that u(0) = Q−1(t)u(t). Thus, a system is
reversible if it is always possible to recover the input u(0) from
the output u(t). A vast body of research is devoted to proving
reversibility in various physical and mathematical systems, see
e.g., [1–3].

Obviously, not all dynamical systems are reversible. Indeed,
when two different initial states u1(0) and u2(0) evolve in finite
time tf into the same output state u(tf) = Q (tf)u1(0) = Q (tf)u2(0),
then it is impossible to determine the input state from the output
state. Hence, the operator Q−1(tf) does not exist and so the
system becomes irreversible.1

Usually, for a system to be referred to as reversible, well-
posedness of the time-reversal operator Q−1 is also required.
Intuitively, well-posedness means that for two ‘‘close’’ output
states u1(tf) and u2(tf), the corresponding inputs u1(0) and u2(0)
should be ‘‘close’’ as well.2 This requirement guarantees that

∗ Corresponding author.
E-mail addresses: asagiv88@gmail.com, as6011@columbia.edu (A. Sagiv).

1 For example, let y′(t) = −3y2/3 . Then for any c ∈ R, yc (t) ={
(c − t)3 if t < c ,
0 if t ≥ c is a solution. Hence, if y(tf) = 0 at some time tf > 0,

then y(0) cannot be uniquely determined.
2 A canonical example where the reversal operator exists but is ill-posed is

y′(t) = −y with y(0) = y0 . Since y(t) = y0e−t , then for any tf > 0 and y(tf), there
corresponds a unique y(0) = y(tf)etf , and so reversibility is possible. Because of

minor errors in the measurement of the output would not lead
to large errors in the recovered input. See e.g., [5–7] for various
methods of reversal and recovery of the input state.

In this study, we argue that systems that are considered re-
versible under the above definition (existence and
well-posedeness of Q−1), can nevertheless exhibit irreversibility
in a weaker yet physically meaningful way. Consider, for example,
the nonlinear Schrödinger equation (NLS)

i∂tψ(t, x) +∆ψ + N(|ψ |)ψ = 0 ,

ψ(0, x) = ψ0(x) ∈ H1 , x ∈ Rd,

where N(|ψ |) : R+ → R is real-valued. The NLS has the time-
reversal symmetry t → −t and ψ → ψ⋆. Hence, given ψ(tf, ·),
one can recover the original initial condition ψ0 by solving the
NLS backward to t = 0. Furthermore, since the NLS solution
is well-posed in H1 (so long as it exists) [8], then by the time-
reversal symmetry it is also well-posed backward in time. There-
fore, the NLS is reversible in the sense that Q−1(t) exists and is
well-posed.

Nevertheless, we argue that the NLS can become ‘‘physically
irreversible’’. By this, we mean that realistically-small experi-
mental errors in measuring the output ψ(tf, ·) can lead to dra-
matic differences between the recovered input and the original
one. This ‘‘loss of reversibility’’ is due to the generic process
whereby NLS solutions approach a solitary wave (or multiple

the exponential dependence in tf , however, the slightest error in y(tf) will have
a large impact on the recovered value of y(0). The canonical PDE example for
this type of irreversibility is the heat equation, which is well-posed forward in
time but ill-posed backward in time [4].
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solitary waves) on compact domains, while emitting radiation to
infinity. Because the system is Hamiltonian, these are not attrac-
tors in the usual sense, because the convergence to solitary waves
is only on compact domains, while dismissing ‘‘far away’’ and
low-energy radiation. Nevertheless, these ‘‘quasi-attractors’’ are
the cause for the loss of reversibility, since their basins of attrac-
tion contain initial conditions which are very different from each
other, yet they all evolve into the same solitary wave (while emit-
ting radiation). Hence, the ‘‘reversal information’’ for recovering
the initial condition lies in the far-away low-amplitude radiation,
rather than in the high-amplitude solitary waves. Moreover, the
low-amplitude radiation undergoes diffraction/dispersion. This
makes it prone to inaccurate measurements, which in turn may
result in loss of reversibility.

NLS loss of reversibility is thus a consequence of (1) its soli-
tary waves being quasi-attractors under forward propagation and
(2) the time-reversal symmetry, since this implies that they are
also quasi-attractors under backward propagation. Hence, gener-
ically, when an inward radiation interacts with a backward prop-
agating solitary wave, it is likely to remain a solitary wave.
Therefore, if the initial condition is quite different from the soli-
tary wave, a successful reversal of the output to the original initial
condition requires a precise measurement of the output radiation
(which is the cumulative result of all the radiation emitted out-
ward throughout the forward propagation). Consequently, under
perturbations of the output radiation, the backward solution is
quite likely to stay near the quasi-attractor solitary wave, rather
than escape to the original initial condition.

The above explanation for loss of reversibility in the NLS sug-
gests that a system which has a time-reversal symmetry may lose
it in the case where its solutions converge to a ‘‘quasi-attractor’’
while emitting radiation. Indeed, we demonstrate a similar loss of
reversibility in kink–antikink interactions in the φ4 equation [9].
The full scope of phenomena in which reversibility might be lost
is quite broad; These main examples for loss of reversibility in
this paper are dispersive, nonlinear, non-integrable Hamiltonian
systems. However, we also present an example of loss of re-
versibility in hyperbolic conservation laws (Section 7 and [6]),
and an example in an integrable dispersive system (Section 6.1).
Moreover, while all of the above examples are nonlinear, we
expect a similar loss of reversibility in reversible linear systems
that evolve into localized stable states while emitting radiation
to infinity, e.g., the linear Schrödinger equation with a localized
potential [10], a notion known as asymptotic completeness [11].
Generically, we expect loss of reversibility whenever a ‘‘large’’
family of initial conditions converge to the same quasi-attractor.

In our NLS simulations, loss of reversibility can be observed
even when the L2 error of the reversed output is as small as
1%. This may go against the standard physical intuition, since
the L2 norm corresponds to the power of the beam. The above
attractor + radiation interaction dynamics clarifies this apparent
inconsistency: Since most of the L2 norm/power of the output
is concentrated in the high-amplitude attractor, a 1% change in
the overall power can correspond to a significant change of the
radiation field (which contains the reversal information).

One might argue that using the L2 error of the output to
predict NLS reversibility is wrong, since the theory of NLS well-
posedness is usually formulated in H1 space. We observe, how-
ever, that small H1 errors of the output may also lead to loss of
reversibility. Thus, although the well-posedness theory guaran-
tees reversibility for a sufficiently small H1 error of every output
ψ(tf, ·), it does not predict the size of this H1 environment. More
rigorously, H1 continuity only guarantees that for every ϵ > 0,
t > 0, and u0 ∈ H1, there exists δ > 0 such that for every
∥u1 − u0∥H1 ≤ δ then ∥Q (t)u1 − Q (t)u0∥H1 ≤ ϵ. It says nothing
on the dependence of δ on the perturbation distance ϵ, time t ,

or the location in phase space u0. As we show in this paper, δ
may be exceedingly small, which leads to a loss of reversibility.
Moreover, since the radiation in the NLS disperses, the size of
the well-posedness environment decreases with propagation, as
we indeed observe numerically. Thus, the existence and well-
posedness of the reversal operator Q−1(t) are not sufficient for
the NLS to be reversible in various physically-meaningful setups.

Because of its time-reversal symmetry, it is commonly thought
that forward and backward propagation in the NLS are physi-
cally equivalent (unlike e.g., in the heat equation). The loss of
reversibility, however, suggests that the forward and backward
directions are not equivalent in terms of stability under per-
turbations. This is reminiscent of the thermodynamic arrow of
time. Recall the well-known experiment where a small bottle
of perfume is opened in a large room. Microscopically, particles
evolve by deterministic and reversible interactions. Macroscop-
ically, however, the forward dynamics, in which the particles
are distributed evenly in the room, is irreversible, due to the
second law of thermodynamics. This seeming contradiction is
settled since, on the microscopic level, the probability of the
backward process (the gas particles spontaneously return to the
bottle) is negligible under random perturbations.3 In this sense,
the generic evolution into a quasi-attractor + radiation process
which leads to loss of reversibility in the NLS suggests that the
radiation induces an ‘‘arrow of time’’. This arrow of time may, or
may not, coincide with actual time. Thus, if we associate physical
well-posedness with time moving forward, than time is forward
propagating in the direction in which the radiation is emitted
outward, and the recovery of the input data by backward prop-
agation becomes less and less likely as the solution propagates
forward. This point of view further shows that the L2 and H1 er-
rors of the output are inadequate indicators for reversibility, since
these norms do not take into account the transverse direction of
the radiation.

Whether the NLS is physically irreversible is of practical im-
portance. Indeed, in the last decade there have been algorith-
mic and experimental attempts at holography [13–17], phase
retrieval [18,19], and pulse reconstruction [20,21] in focusing
Kerr media, all of which rely on the time-reversal symmetry of
the NLS. This study, therefore, reveals some of the fundamental
limitations that any such reversal technique would face, and
highlights the importance of accurately capturing the radiation
for reversal experiments to succeed.

The paper is organized as follows. In Section 2 we demonstrate
how loss of reversibility occurs in the fusion of two solitary
waves of the one-dimensional cubic–quintic NLS under several
seemingly small perturbations. Analysis of loss of reversibility
and its relation to a natural ‘‘arrow of time’’ in the NLS is pre-
sented in Section 3. We present two additional examples of loss
of reversibility – self focusing filaments in the two-dimensional
cubic–quintic NLS (Section 4) and kink–antikink collisions in the
φ4 equation (Section 5). In Section 6 we discuss the implications
of our findings to optical applications and experiments. Section 7
concludes with a comparison to loss of reversibility in nonlinear
acoustics.

2. Loss of reversibility

Light propagation is generally considered to be a reversible
process. Indeed, mathematical models from ray optics and the
wave equation to Maxwell’s equations are all invariant under the
transformation t → −t . This invariance is in sharp contrast to

3 The rigorous derivation of the time irreversible (macroscopic) Boltzmann
equation from the reversible equations of motion for the (microscopic) particles
is still very much an open question [12].
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Fig. 1. Intensity |ψ |
2 of the solution of the one-dimensional cubic–quintic NLS (3) with ϵ = 10−3 . (a) Forward propagation of the initial condition (4) for 0 ≤ z ≤ zf .

Here zf = 0.95 and zsplit = 0.35. (b) Output intensity |ψ(zf, x)|2 . Here xmax = 13. (c) Backward propagation of ψ(zf, x) for zf ≥ z ≥ 0. (d–g) Same for ψper(zf, x) given
by (5), (6), (9), and (11), respectively.

other physical processes such as heat diffusion, which are not
reversible.

The propagation of high-power laser beams and pulses is
described by the Nonlinear Schrödinger equation (NLS) in d + 1
dimensions

i
∂

∂z
ψ(z, x) +∆ψ + N(|ψ |)ψ = 0 , ψ(0, x) = ψ0(x) (1)

where x = (x1, . . . , xd) are the transverse coordinates (and/or
time in the anomalous dispersive regime), ∆ = ∂2x1 + · · · + ∂2xd ,
and z is the dimensionless propagation distance. Since mathemat-
ically speaking, z is the evolution variable of (1), it will be hence-
forth referred to as ‘‘time’’. When the medium is absorption-free,
then N(|ψ |) is real and the NLS (1) has the reversal symmetry

z → −z , ψ → ψ⋆ . (2)

In other words, if ψ(z, x) is a solution of (1), then so is ψ⋆(−z, x).
Intuitively, this reversibility means that propagation in the posi-
tive and negative z directions are physically equivalent. Therefore,
in principle, given ψ(zf, x) at some zf > 0, one can recover
the original initial condition ψ0(x) by ‘‘time reversal’’ (or ‘‘phase
conjugation’’), i.e., by solving the NLS (1) backward until z = 0.

As our first example, consider the one-dimensional cubic–
quintic NLS

iψz(z, x) + ψxx + |ψ |
2ψ − ϵ|ψ |

4ψ = 0 , ψ(0, x) = ψ0(x) (3)

with ϵ = 10−3. This equation admits the solitary wave solutions
ψ = eiκzRκ (x), where Rκ satisfies −κRκ (x) + R′′

κ + R3
κ − ϵR5

κ = 0.
Consider the solution of (3) with

ψ0(x) = e−iθxRκ (x − x0) + eiθxRκ (x + x0) , (4)

where κ = 90, x0 = 2, and θ =
7
8π . This initial condition consists

of two intersecting in-phase solitary waves. Upon colliding, the
two beams fuse into a single on-axis beam, see Fig. 1(a).

If we reverse the ‘‘output’’ beam ψ(zf, x), will it ‘‘know’’ that
it should split into two solitary waves? Since the NLS (3) is

reversible, the answer should be positive. Indeed, when we solve
(3) backward from z = zf to z = 0, the reversed beam splits into
two separate beams, see Fig. 1(c).

In physical settings, however, one cannot capture the output
beam ψ(zf, x) exactly. Hence, one effectively reverses a perturbed
output beam ψper(zf, x). Two examples of such perturbed profiles
are:

1. Spatial truncation. The output beam is measured with a
detector of finite radius xmax:4

ψper(zf, x) =

{
ψ(zf, x) , |x| < xmax ,

0 , |x| ≥ xmax .
(5)

2. Band-limited filter. The detector can only resolve spatial
frequencies within a band-limited range:

ψper
= F−1

[
ψ̂BL(zf, k)

]
,

ψ̂BL(zf, k) : =

{
ψ̂(zf, k) , |k| ≤ kmax ,

0 , |k| > kmax ,

(6)

where F[ψ(zf, x)] = ψ̂(zf, k) is the spatial Fourier trans-
form. This can be the result of a limited resolution (e.g., in
CCD cameras), or of a finite-size detector that is placed at
a distance after nonlinear media.

If, instead of reversing the exact output beam ψ(zf, x), we
reverse the perturbed output ψper(zf, x), which is given either by
(5) with xmax = 13 or by (6) with kmax = 1.2π , the backwards
dynamics changes from beam splitting (Fig. 1(c)) to a single on-
axis beam (Figs. 1(d) and 1(e), respectively). Hence, reversibility
is ‘‘completely’’ lost under these perturbations.

4 Reversal can be optically accomplished by phase-conjugators (OPC), e.g., us-
ing four-wave mixing in χ (3) materials [22]. The same limitations and
perturbations may apply to such devices, and we shall therefore refer to them
as ‘‘detectors’’ as well.
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Fig. 2. Same settings as in Fig. 1. (a) Intensity (solid) and discretized intensity with dI = 0.88 (dash-dots) at zf . (b) Backward propagation of ψ(zf, x) discretized
with dI = 0.25. (c) Same with dI = 0.88.

2.1. Indicators for loss of reversibility

The intensity in the truncated region |x| ≥ xmax of the per-
turbed output beam (5) is 1000 times smaller than its peak in-
tensity, see Fig. 1(b). Hence, it is surprising that truncating this
low-intensity region causes such a dramatic loss of reversibility.
Intuitively, truncation of a low-intensity region should be ‘‘justi-
fied’’ if its power is small compared with the overall power, i.e., if

∆P : =
∥ψ(zf, ·) − ψper(zf, ·)∥2

2

∥ψ(zf, ·)∥2
2

≪ 1 . (7)

For both perturbations (5)–(6), however, ∆P is small, as ∆P =

1.8% and 5%, respectively.
The seeming contradiction between the smallness of ∆P and

the complete loss of reversibility might be resolved if we recall
that most of the rigorous analytic theory of existence, blowup,
and stability in the NLS is carried out in H1 spaces, [8,23–25],5
i.e., for solutions with a finite H1 norm, where

∥ψ∥
2
H1 : = ∥ψ∥

2
2 + ∥∇ψ∥

2
2 .

Intuitively, the H1 norm is more informative than the power/L2
norm, since it is also affected by the beam’s phase, whereas the
power is only affected by the beam’s amplitude. Indeed, if we
denote ψ = AeiS where A and S are real, then

∥ψ∥
2
H1 − ∥ψ∥

2
2 = ∥∇ψ∥

2
2 = ∥∇A∥

2
2 + ∥A∇S∥2

2 .

Hence, even in regions where A is moderately small, there can be
non-negligible contributions to the H1 norm from ∇S. It is thus
more informative to consider the H1 counterpart of ∆P , which
we define as6

∆H1
: =

∥ψ(zf, ·) − ψper(zf, ·)∥2
H1

∥ψ(zf, ·)∥2
H1

. (8)

∆H1 is unsuitable for some of the perturbations we consider,
e.g., (5), since ψper has a ‘‘jump’’ and is therefore not in H1.
However, repeating the simulation in Fig. 1(d) for a variation
of (5) where the truncation is replaced by a piecewise linear
filter yields loss of reversibility as well (results not shown). We
therefore use ∆̃H1

= ∥ψ(zf, ·)∥2
H1(|x|>xmax)

/∥ψ(zf, ·)∥2
H1 for (5).

For perturbation, (5) we have that ∆̃H1
= 7.4% (which is still

quite small) whereas for perturbation (6) we have ∆H1
= 29.1%.

5 Well-posedness results for some NLS models (1) do exist in L2 spaces [26]
and in Hs spaces with s < 1 [27]. These theories, however, are not as
comprehensive as the H1 theory, and to the best of our knowledge do not exist
for (3) or for its two-dimensional counterpart (12).
6 To maintain consistency with the definition of ∆P , we consider here the

H1 norm squared.

Thus, in both cases∆H1 is an order of magnitude larger than∆P .7
Nevertheless,∆H1 is still small for perturbation (5), yet it leads to
loss of reversibility. Hence, even though ∆H1 is a better indicator
for loss of reversibility than ∆P , it is far from providing a definite
answer.

Finally, we suggest a possible method to experimentally mea-
sure ∆H1. Since ∆P can be measured by intensity (|ψ |

2) mea-
surement only, and since phase measurements are difficult in
many settings, it would be desirable to suggest an intensity-
only measurement method for ∆H1 as well. First, note that by
Parseval Identity ∥f ∥2

H1 =
∫
Rd (1 + |ξ |2)|f̂ (ξ )|

2
dξ , where f̂ is

the Fourier transform of f [28]. Second, note that the linear far-
field expression for the propagation of an input profile f (x) is f̂ .
Hence, if the experimental settings allow for linear propagation
of ψ(zf, x) far beyond zf, then a simple intensity measurement
would provide ∥f ∥2

H1 , as well as ∆H1.

2.2. Digital measurements

Standard digital detectors use a finite set of discrete values to
record the intensity |ψ |

2. To model the effect of digitization on
back-propagation, we project the output intensity |ψ(zf, x)|2 on
the discrete values In = n · dI with dI > 0, and reverse the dis-
cretized profile. The discretization with dI = 0.88 has a seemingly
negligible effect on the output profile, see Fig. 2(a). Indeed, ∆P
for the discretized profiles with dI = 0.88 and dI = 0.25 is 4.5%
and 1.3%, respectively. These two resolutions, however, exhibit
very different backward dynamics: The finely-discretized profile
undergoes splitting (Fig. 2(b)), whereas the coarsely-discretized
profile fails to split (Fig. 2(c)). Note that in contrast to our prior
perturbations, ∆H1 is undefined for a digitized output beam.8

2.3. Loss of reversibility and physical ill-posedness

In light of the reversal transformation (2), loss of reversibil-
ity is equivalent to physical ill-posedness for the initial condi-
tion ψ⋆(zf, x). Here, by physical ill-posedness we mean that the
backward-propagating solution is highly sensitive to small per-
turbations of its initial condition, i.e., that there exist output
profiles ψper(zf, x) for which ∆H1 is small, but such that when

7 To understand why ∆P ≪ ∆H1 , we note that by Parseval’s identity
∥f ∥2 =

∫
R |f̂ (k)|

2
dk and ∥∇f ∥2

2 =
∫
R |k|2|f̂ (k)|

2
dk, where f̂ (k) is the Fourier

transform of f (x). Hence, the band-limited filter (6) ‘‘leaves out’’ more ∆H1 norm
then ∆P , since

∫
∞

kmax
|k|2|f̂ (k)|

2
dk ≥ k2max

∫
∞

kmax
|f̂ (k)|

2
dk. The same also applies

for the spatial truncation (5). Since high wave-numbers disperse faster to x ≫ 1,
since far from x = 0, the intensity is weak, i.e., |ψ |

2
≪ 1, then its dynamics are

described by the linear Schrödinger equation. Hence, the spatial truncation also
amounts to the attenuation of high wave numbers.
8 The discretized ψ(zf, x) is a linear combination of step functions, which are

not in H1 .
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Fig. 3. Same settings as in Fig. 1. (a). Forward propagation of ψ(zf, x) for zf ≤ z ≤ 1.5zf . (b)–(d) Same for ψper(zf, x) as in Figs. 1(d)–1(f), respectively. (e) |ψ(1.5zf, x)|
for subplots (a)–(d). The four lines are nearly indistinguishable. (f) |ψ(1.5zf, x)| (dashes) and the solitary wave Rκ (x) with κ ≈ 127.5 (solid). The two lines are
indistinguishable for |x| ≤ 1.

back-propagated to z = 0 yield solutions ψper(z = 0, x) that are
very different from ψ0(x).

The H1 norm is invariant under conjugation, i.e., ∥ψ∥H1 =

∥ψ∗
∥H1 . Therefore, if∆H1 is a good indicator for loss of reversibil-

ity, then loss of reversibility of ψ(zf, x) should also imply physical
ill-posedness in forward propagation of ψ(zf, x). To test this hy-
pothesis, in Figs. 3(a)–3(c) we solve the NLS forward in z for z ≥ zf
with three initial conditions at z = zf: The exact solution ψ(zf, x),
and the two perturbed profiles ψper(zf, x) given by (5) and (6),
respectively. The three solutions are nearly the same at z = 1.5zf
(Fig. 3(e)), showing that the effect of perturbations (5) and (6) is
negligible at z > zf. Hence, we again see that∆H1 is not a reliable
indicator for loss of reversibility.

3. Arrow of ‘‘time’’

Figs. 1 and 3 show that the NLS solution with the initial
condition ψ(zf, x) is physically ill-posed in backward propagation
but well-posed in forward propagation. These seemingly opposite
behaviors have a common explanation:

1. For z ≥ zf (i.e., forward propagation), the high-intensity
‘‘core’’ of ψ is approximately a solitary wave, see Fig. 3(f).9
By orbital stability [30,31], a solution of (3) which is close
in H1 to a solitary wave will remain so as it propagates.
Thus, orbital stability explains the observed well-posedness
in forward propagation.10

2. For z ≤ zf (i.e., backward propagation), since the NLS
is continuous with respect to the initial condition, any
sufficiently small perturbation of ψ(zf, x) would preserve
reversibility, and so the back-propagating beam would
split. As the perturbation increases, the perturbed profile

9 Solitary waves of (12) are given by 2κ1/2
[1 +

√
1 −

8
3 κϵ cosh(2κ

1/2x)]−1/2 ,
see [29].
10 Fig. 3(e) demonstrates the stability of the solution’s amplitude. By orbital
stability, the complex profile of the perturbed solution may differ from that of
the solitary wave by a constant phase term eiβ(z) [30,31].

ψper(zf, x) enters the ‘‘large’’ H1-neighborhood of the orbit
{eiβRκ | β ∈ [0, 2π ]}, in which, by orbital stability, the
solution remains close to Rκ for all z. In such a case, the
back-propagating beam would not split into two beams,
and so reversibility would be lost.

Therefore, in the backward propagation of ψ(zf, x), one ex-
pects a phase transition between reversibility (beam splitting)
and loss of reversibility (an on-axis solitary wave). To see that,
we reconsider the time-reversal of ψ(zf, x) under the spatial-
truncation (5), only this time with xmax = 13.6 instead of xmax =

13. At z = zsplit where the exact solution splits, the perturbed
solution develops a double-peak profile, seen in Fig. 4(a) as an
ellipse-shaped pattern in the (z, x) plane. As xmax increases to
13.86 and 13.91 the ellipse extends further along the z axis, see
Figs. 4(b)–4(c), respectively. For xmax = 14.1, the beam splits
and so reversibility is maintained, see Fig. 4(d). Finally, we note
that a similar phase transition occurs for other perturbations that
lead to loss of reversibility, e.g., as one changes the discretization
parameter in (Fig. 5).

In Figs. 1 and 3 we saw that ψ(zf, x) is physically ill-posed
in backward propagation but well-posed in forward propaga-
tion. Since the NLS is invariant under transformation (2), the
opposite holds for ψ⋆(zf, x): It is physically ill-posed in forward
propagation but well-posed in backward propagation. Therefore:

1. NLS well-posedness is not ‘‘time-symmetric’’.
2. The question of ill- and well-posedness is not simply a

matter of moving forward or backward in ‘‘time’’.

To understand why there is well-posedness in one direction
but physical ill-posedness in the opposite direction, we revisit
Fig. 1(a), where two beams collide and fuse into a single soli-
tary wave. During the fusion process, some radiation is emitted
outward. For z > zf, the radiation propagates away from the
beam, and so perturbations of the surrounding radiation have a
minor effect on the dynamics of the beam core. When ψ(zf, x) is
reversed, it is the radiation that propagates inward that ‘‘splits’’
the solitary wave. From a physical perspective, this observation
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Fig. 4. Same settings as in Fig. 1(d) with (a) xmax = 13.6, (b) xmax = 13.86, (c) xmax = 13.91, and (d) xmax = 14.1.

Fig. 5. Same settings as in Fig. 2 with (a) dI = 0.88, (b) dI = 0.44, (c) dI = 0.30, and (d) dI = 0.24.

leads to the following definition of the ‘‘arrow of time’’ – the
well-posed forward/well-posedness direction in the NLS is the one
in which the radiation is emitted outward.

Having an inward-propagating radiation is thus a necessary
condition for the back-propagating beam to split. It is not, how-
ever, a sufficient condition. For example, when the same inward-
propagating radiation has a π phase shift, i.e.,

ψper(x) =

{
ψ(zf, x) , |x| < xmax ,

eiπψ(zf, x) , |x| ≥ xmax ,
(9)

the reversed beam does not split (∆̃H1
= 29% and ∆P = 7.2%),

see Fig. 1(f).11 Reversibility can also be lost without a phase
mismatch between the incoming radiation and the beam core. To
see that, we set

ψper(x) =

{
ψ(zf, x) , |x| < xmax ,

βψ(zf, x) , |x| ≥ xmax ,
(10)

where, as in Fig. 1, xmax = 13. By continuity, for β sufficiently
close to 1 (0.5 ≤ β ≤ 1.3) reversibility is not lost. Already for
β = 0.4 (∆̃H1

= 2.7% and ∆P = 0.6%) or β = 1.4 (∆̃H1
= 1.2%

and ∆P = 0.3%), however, reversibility is lost and we observe a
single backward propagating beam (results not shown).12

We further demonstrate the importance of having the precise
radiation with a gentler perturbation of ψ(zf, x), in which only a
portion of the radiation is blocked, i.e.,

ψper(x) =

{
ψ(zf, x) , |x| < xb ,
0 , xb < |x| < xb + 1 ,
ψ(zf, x) , |x| > xb + 1 .

(11)

For xb = 11, this is a truly small perturbation (∆P = 0.29%,
∆H1

= 3.5%). Nevertheless, it prevents beam splitting and thus
leads to a complete loss of reversibility, see Fig. 1(g).

11 Here, ∆̃H1
= |1 − β|∥ψ(zf, ·)∥2

H1(|x|>xmax)
/∥ψ(zf, ·)∥2

H1 .
12 Here, ∆̃H1

= ∥ψ(zf, ·)∥2
H1(|x|̸∈[xb,xb+1])

/∥ψ∥
2
H1 .

The dynamics in Fig. 1(c) may give the false impression that
the splitting at z = zsplit in back-propagation is caused by the
radiation that ‘‘hits’’ the central beam precisely at zsplit. Apply-
ing (11) with xb = 4, 8, and 10, however, yields similar dynamics
to that of Fig. 1(g) (results not shown). This shows that ‘‘all’’ of
the radiation is needed for the split, and not just the radiation
that arrives at zsplit.

Remark. The connection between well-posedness and the di-
rection of the radiation is reminiscent of the Sommerfeld radi-
ation condition in the Helmholtz equation, where solutions are
well-posed only if energy does not flow into the system from
infinity.

3.1. Loss of reversibility increases with propagation distance

So far we saw that for a given one-parameter family of pertur-
bations of ψ(zf, x), as the distance between ψper(zf, x) and ψ(zf, x)
increases, there is a ‘‘phase transition’’ between reversibility and
loss of reversibility. For example, the truncation (5) at zf = 0.95
leads to loss of reversibility for xmax = 13.91, but not for xmax =

14.1 (Fig. 4). For concreteness, we say that reversibility is lost
when the output of the reversal is a single beam and not two out-
going beams. We define xth = xth(zf) to be the threshold value of
xmax such that reversibility is maintained for xmax > xth, but is lost
for xmax < xth. Fig. 6(a) shows that xth increases with zf. This result
is intuitive, since the low-intensity radiation which contains the
reversal information undergoes linear dispersion/diffraction, and
so it spreads over a larger spatial domain as zf increases. This
argument, however, does not indicate whether the (L2 or H1)
distance between ψ(zf, x) and ψper(zf, x; xmax = xth(zf)) increases
with zf, i.e., whether as zf increases, one is required to capture
‘‘more of the radiation’’ to guarantee reversibility. Figs. 6(b) and
6(c) show that both∆P and∆H1 for perturbation (5) with xmax =
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Fig. 6. Domains of reversibility and irreversibility for perturbation (5). The separatix is (a) xth(zf). (b) ∆P(zf). (c) ∆̃H1(zf).

Fig. 7. The two-dimensional cubic–quintic NLS (12) with the Gaussian input beam (13). (a1) |ψ(z, r)|2 for 0 ≤ z ≤ zf . Here zf = 0.4 and zcr = 0.04. (a2) Intensity
at z = 0 (dashes) and at zf = 0.4 (solid). The dotted line is the solitary wave Rκ (r) with κ ≈ 148. (b1) Backward propagation of ψ(zf, r) for zf ≥ z ≥ 0. (b2)
ψ reversed(z = 0, r) (solid) is indistinguishable from ψ0(r) (dashes). (c1) Same as (b1) for ψper(zf, r) given by (5) with rmax = 17. (c2) ψper(0, r) (solid), ψ(zf, r) (dots),
and ψ0(r) (dashes).

xth decay with zf.13 However, these simulations are inconclusive
as to the asymptotic limit, i.e.,:

Question. For a given initial condition ψ0, does the minimal ∆H1

and ∆P for loss of reversibility of ψ(z, x) vanishes as z → ∞?

4. Second example — beam collapse

Loss of reversibility is not limited to beam fusion. To see that,
we solve the two-dimensional cubic–quintic NLS

iψz(z, x)+∆ψ+|ψ |
2ψ−ϵ|ψ |

4ψ = 0 , ψ(0, x) = ψ0(x) , (12)

where x = (x, y) and ϵ = 10−3, with the single-beam initial
condition

ψ0(x) = 9e−r2 , r : = |x| , (13)

see Fig. 7(a). The power of this Gaussian beam is well above the
critical power for collapse (P ≈ 7.4Pcr, see [32]) and therefore
it initially collapses at zcr ≈ 0.035. After the collapse is arrested
by the defocusing quintic nonlinearity, the beam evolves into a

13 Note that the other perturbations employed in Fig. 1 also have a numerical
parameter, and one can therefore consider its threshold value in a similar
manner.

narrow solitary wave whose peak intensity is 8 times higher than
that of the input beam, see Fig. 7(a2). We set zf = 0.4, which is
long after the beam has collapsed.

The NLS (12) is focusing, regardless of whether one moves for-
ward or backward in z. Nevertheless, as ψ(zf, r) back-propagates
it seemingly evolves into the wider initial Gaussian input (13), see
Fig. 7(b). As in our previous example, it is the inward-propagating
radiation that causes the back-propagating solitary wave to de-
focus. To see that, we perturb ψ(zf, r) with the spatial trunca-
tion (5) with rmax = 17,14 and observe that the back-propagated
perturbed beam is very different from the initial condition at
z = 0, see Fig. 7(c). Thus, this spatial truncation leads to loss of
reversibility, even though both ∆P = 0.4% and ∆̃H1

= 7% are
small.15

4.1. Regaining reversibility

In Figs. 7(b) and 7(c) we saw that the backward dynamics of
ψ(zf, x) changes dramatically under perturbation (5), so that the

14 rmax plays the same role as xmax in (5).
15 We used a radially-symmetric perturbation in order to show that loss
of reversibility is a separate process from symmetry-breaking. Here ∆̃H1

=

∥ψ∥
2
H1(|x|>rmax)

/∥ψ∥
2
H1 .
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Fig. 8. (a)–(b): Same as Figs. 7(a) and 7(b), respectively, over a larger domain zf ≥ z ≥ −2zf . (c) On-axis intensity of the exact (solid) and perturbed (dash–dot)
solutions. (d) The output intensity at z = −2zf of the exact (solid) and perturbed (dot dashes) solutions.

perturbed and unperturbed solutions are very different at z = 0.
To check whether this loss of reversibility persists beyond z = 0,
in Figs. 8(a) and 8(b) we continue the back-propagation until
z = −2zf. The two solutions become similar again around z =

−1.5 zf, see Fig. 8(c), so that at z = −2zf they are very close to
each other, see Fig. 8(d).

Why is reversibility regained as z → −∞? Assume that the
perturbation is sufficiently small such that (i) Both the unper-
turbed and perturbed solutions converge to solitary waves Rκ and
Rκ ′ , respectively, as z → −∞, and (ii) the perturbed solution
emits a similar amount of radiation as the unperturbed solution.
Then, since the power of solitary waves of the cubic–quintic NLS
(12) is monotone in κ , and since the perturbation is small (∆P ≪

1), then |κ − κ ′
| ≪ 1 and so reversibility will be regained as

z → −∞. Note that in this case, as z → −∞, the ‘‘arrow of
time’’ is in the direction of −z. Indeed, the radiation is emitted
outward for the time-reversal process in this domain.

5. Third example — kink–antikink collisions in the φ4 equa-
tion

Loss of reversibility can also be observed in the φ4 equation

φtt − φxx + φ − φ3
= 0 . (14)

In three space dimensions, the φ4 equation has been used to
model physical phenomena at all scales, from the Higgs phe-
nomenon at the subatomic scale [33] to the formation of domain
walls in the early universe at the largest scale [34], and to phase
transitions in superconductors [35].

Eq. (14) possesses a family of traveling-wave kink solutions

φ(x, t) = φK(x − vt; v) = tanh (ξ/
√
2) ,

ξ = (x − x0 − vt)/
√
1 − v2 ,

for any velocity −1 < v < 1, and another family φK̄ : = −φK
called antikinks.

Let φ0(x) = φK(x + x0; v) + φK̄(x − x0; −v) + 1 denote a
kink φK and antikink φK̄ with equal and opposite velocities ±v;
with ∂φ

∂t defined analogously. The outcome of their interaction
depends very sensitively on the value of v [36,37]. For example,
for v = 0.21 the collision results in ‘‘capture’’, after which the
kink and antikink remain bound together at the collision site
and radiate energy away to infinity, see Fig. 9(a). For a slightly
smaller value of v located inside a specific interval called a ‘‘two-
bounce window’’, the kink and antikink first collide, then begin to
separate, then reverse direction and collide a second time before
escaping with a different final velocity, see Fig. 9(d).

We perform a time-reversal experiment, analogous to that
described in Section 2 for each of the two initial velocities. As
expected, running the simulation backward in time, starting at
tf = 75, yields an exact reversal of the initial conditions, see

Figs. 9(c–d). We then truncate the outputs at xmax = 20, see
(5), and time-reverse the perturbed outputs, see Figs. 9(e–f). The
truncated ‘‘captured’’ solution from Fig. 9(a) loses its reversibility,
as the recovered input remains captured, rather separating into
an escaping kink and anti–kink pair. The truncated two-bounce
resonant solution from Fig. 9(b), by contrast, maintains its re-
versibility, since the recovered input is nearly indistinguishable
from the original one.16 In both cases, we also simulated the
system forward in time and observed that truncating the radi-
ation had a negligible effect on the forward dynamics (results
not shown). Thus, similarly to the NLS, the transverse direction
of the radiation induces a natural arrow of time with regard to
sensitivity to perturbations.

Like NLS, the φ4 equation is time reversible, as it is invariant
under the transformation t → −t . It is also well posed for
(φ(·, 0), φt (·, 0)) ∈ H2

loc × H1, decaying sufficiently rapidly to ±1
as |x| → ∞, see [38]. Hence, the reversal operator Q−1(t) exists
and is well-posed for all t > 0. Henry et al. showed that kink
solutions are asymptotically orbitally stable, its solutions might
become "physically irreversible".

To show that, as in the case of the NLS, the truncated ra-
diation in Figs. 9(e) and 9(f) is ‘‘small’’, we need to estimate
its relative size. Unlike the NLS, we cannot use the L2 and H1

norms since the solutions of interest do not decay at infinity.
However, Eq. (14) conserves an energy H : =

∫
∞

−∞
(φ2

t /2+φ2
x /2+(

φ2
− 1

)2
/4 dx), which is finite for these solutions. We therefore

define the relative error as

∆Hrel
: =

H(φper) − H(φ)
H(φ)

.

The relative errors of the truncated solutions in both cases are
small: 0.42% for the ‘‘captured’’ solution and 0.28% for the ‘‘two-
bounce’’ solution.

The explanation for the different behaviors is related to the
mathematical theory underlying the sensitive dependence of
the final state on the initial velocity, as demonstrated in Fig. 9
(a–b). We describe this briefly; for further details, see [9,39–42].
The kink and antikink attract each other, and one can define
a potential energy describing their interaction, as well as a ki-
netic energy. While the combined kinetic and potential energy
is negative, the kink–antikink pair is bound together. When
the combined energy is positive, they escape from each other.
During collisions, there are three important effects: (1) The kink–
antikink separation undergoes large acceleration. (2) The kink and
antikink reversibly interchange energy with a secondary mode of

16 In this case, reversibility is maintained even if xmax = 10 (results not
shown).
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Fig. 9. (a) Numerical simulation of a kink–antikink collision with initial velocity v = 0.21, showing capture, where tcollide = 33 and tf = 75. (b) Numerical simulation
of kink–antikink collision with v = 0.19622 showing escape after two collisions. Here, t1 = 34 and t2 = 52. (c) Time-reversed simulation from subfigure (a). (d)
Time-reversed simulation from subfigure (b). (e) Time-reversed simulation from subfigure (a), data cut off at x = 20. (f) Time-reversed simulation from subfigure (b),
data cut off at x = 20. All simulations performed on computational domain |x| < 32.

Fig. 10. The location of the antikink over time in the time-reversed simulations shown in Fig. 9. Panel (a) shows the location for the ‘‘capture’’ simulations and
panel (b) for the ‘‘two-bounce’’ simulations.

oscillation of the system.17 This mode is unexcited before the first
collision, and the amount of energy exchanged on subsequent
interactions depends sensitively on its amplitude and phase at
the moment of collision. (3) The creation of radiation, which
irreversibly carries energy away from the localized solutions.
Energy transferred to the internal mode may be returned to the
kinks as kinetic energy, allowing them to escape, but energy lost
as radiation cannot, because it carries energy with it away from
the kink location toward infinity. The radiation approximately

17 The identity of this secondary mode, long thought to be a so-called
internal mode, remains an open question. Under this assumption, Sugiyama
developed a finite-dimensional model that thoroughly analyzed by Goodman and
Haberman [39,41]. Takyi and Weigel has shown a major flaw in this reasoning,
including an algebra error in Sugiyama’s model, rendering its use invalid
for quantitative arguments [42]. Others have suggested it is a quasinormal
mode [43]. Nonetheless, as a qualitative description, the model gives excellent
insights.

satisfies the linearized evolution, which is dispersive, and high-
frequency radiation moves at unit speed, much faster than the
kink and antikink. The time between collision n and (n + 1) (and
thus the phase of the second oscillator) depends on the combined
kinetic and potential energy in the kink–antikink pair following
collision n. If this energy is positive following a collision, the kink
and antikink escape. As more collisions that occur, more energy is
lost to radiation and the probability of eventual escape decreases.

Fig. 10 shows the location of the antikink over time in the
four time-reversed runs, and demonstrates how the locations
diverge over time in the cutoff and non-cutoff cases. Just before
tcollision in the two time-reversed simulations of the ‘‘capture’’
solution, shown in subfigure (a), the two simulations have begun
to diverge. The cutoff simulation has lost a little bit of energy and
the collision occurs slightly before the collision in the non-cutoff
simulation. Because the result of the collision depends sensitively
on the phase of the secondary oscillator, this leads to escape in
one simulation but not in the other, thus time reversal is lost.
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By contrast, the positions in the two reverse-time simulations of
the two-bounce solution, shown in subfigure (b), only begin to
diverge after the kink and antikink have already escaped, leading
to preservation of time-reversal.

6. Imaging and reversibility in nonlinear optics

In recent years, there has been an increasing interest in imag-
ing in nonlinear media. We briefly note four directions of related
research.

Berti et al. [20] studied the reversibility of ultra-short pulses
in lossy focusing medium. The envelopes of these pulses, mod-
eled either by the (3 + 1)d NLS or by more comprehensive
models, are numerically shown to be reversible in physical set-
tings and parameters. The authors of [20] explain the seeming
contradiction between reversibility and effects such as energy
loss, intensity clamping, loss of phase etc., as follows: ‘‘. . . the
information redistribution in space and over all observables ensures
that the information required to back-propagate the pulse is in fact
conserved. Indeed, it is well-known that the filaments are not an
isolated system, but are in strong interaction with the surrounding
photon bath’’ [20].

Our study supports the conclusion that the information in
the surrounding ‘‘photon bath’’ may be crucial for maintaining
reversibility. Moreover, we show that imprecise or incomplete
‘‘knowledge’’ of the phase and amplitude of the ‘‘photon bath’’
(i.e., the radiation) may lead to loss of reversibility. Hence, our
study suggests that the reversibility which was numerically ob-
served in [20] might be lost in physical experiments due to
e.g., the use of a detector with a finite size or a finite bandwidth.
The stabilizing role of the ‘‘photon bath’’ in propagation in non-
linear focusing media has been noticed in several experimental
settings, see e.g., [44–46].

Goy and Psaltis [15,16] developed an algorithm for hologra-
phy, (i.e., the recovery of an object’s 3D structure), in focusing
nonlinear media. In their experiment, an object reflects a laser
beam which propagates to the detector in nonlinear focusing
medium. The imaging algorithm, based on Psaltis’ pulse-reversal
algorithm [21] has essentially two steps: (1) measuring the phase
and amplitude of the output profile, and (2) numerically solving
the NLS backward. At moderate powers, the imaging is improved
by using their nonlinear holography process, compared to lin-
ear Schrödinger-based algorithm. At high powers, however, the
success of their algorithm decreases. This failure is attributed to
the emergence of ‘‘parasitic filaments’’ in the numerical backward
propagation, which obscure the original input image [17]. Goy,
Makris, and Psaltis proposed an algorithm to improve digital
holography in focusing media by introducing random artificial
perturbations to the output signal [17]. This method successfully
addresses the issue of parasitic filaments, and thus improves
digital holography in focusing media.

Our study suggests a different limitation to reversibility in
focusing media: As the solutions converge to a quasi-attractor
(solitary waves), the "reversal information" which is contained
in the radiation, disperses. This issue has not been accounted for
in [15,16], and so the algorithm in [17] is therefore not designed
to handle it.

Barsi, Wan, and Fleischer [13] and Barsi and Fleischer [14]
demonstrated that the use of a defocusing nonlinear medium
can improve the imaging resolution beyond Abbe’s diffraction
limit. Subsequently, the same group harnessed medium nonlin-
earity to the well-known Gerchberg–Saxton algorithm for phase
retrieval, i.e., the retrieval of complex phase using only inten-
sity measurement [18,19]. The authors noted that ‘‘. . . Although
focusing nonlinearities can also couple these modes, noise-induced
instabilities can dominate the signal and may limit the ability to in-
vert. . . ’’ [13]. Indeed, in the phase-retrieval numerical simulations,

focusing media lead to instabilities [19]. Our work identifies a
different inherent limitation to achieving reversibility in focusing
media (dispersion of the reversal information contained in the
radiation), which may further limit its use for imaging and phase
retrieval.

Our work may also be relevant imaging in nonlinear inho-
mogeneous media. To see that, we note the work of Frostig
et al. [47]. which characterizes the propagation of speckled light(a
wide beam with each pixel given an iid random phase) in fo-
cusing media by two processes: (i) self focusing. (ii) the for-
mation of many beams and their subsequent fusion into few
intense filaments. Combined with our study, these insights sug-
gest that propagation-reversal of light from an inhomogeneous
media/speckled source via focusing media will be a daunting task;
It will require to reverse both beam fusion and beam collapse —
the very two processes that we demonstrated to be prone to loss
of reversibility (Sections 2 and 4).

6.1. An integrable example: three-wave interaction

Loss of reversibility may also occur in beam fusion in three-
wave interaction in quartic nonlinear media (χ (2)

̸= 0), which is
described by the integrable equations [48,49]

∂zu1(z, x) + c1∂xu1=γ1u∗

2u
∗

3 ,

∂zu2(z, x) + c2∂xu2=γ2u∗

3u
∗

1 ,

∂zu3(z, x) + c3∂xu3=γ3u∗

1u
∗

2 ,

where for i = 1, 2, 3, ui(z, x) is an envelope of a wave with
frequency ωi and group velocity ci, and γi = ±1 is a medium-
dependent coefficient. This is because, on one hand, these equa-
tions admit solutions where u1 and u2 solitary waves collide and
fuse into a u3 solitary wave while emitting radiation. On the other
hand, these equations also admit traveling-waves solutions u3 =

f (x − c3z), where u1 ≡ u2 ≡ 0. Since for both of these solutions,
the output at large z consists of a single solitary wave with
frequency ω3 and some radiation, the reversal information is con-
tained in the radiation, and therefore the three-waves interaction
is prone to loss of reversibility.

6.2. Loss of reversibility in the integrable NLS?

The previous section shows that integrable PDEs can un-
dergo loss of reversibility. Since Section 2 considers the one-
dimensional cubic–quintic NLS (3), it is only natural to ask
whether the integrable cubic one-dimensional NLS, i.e., (3) with
ϵ = 0, can undergo a similar loss of reversibility. When we
repeat the experiment of propagating, reversing, and reversing
a truncated output (5) as in Section 2 but with ϵ = 0, the results
are substantially different; see Fig. 11. Indeed, as predicted by the
inverse scattering transform, the number of beams at t = ±∞ is
conserved, and therefore there is no beam fusion [50]. There-
fore, since we started with a (nearly) pure two-soliton solution,
there is a negligible amount of radiation and so the truncation
has a negligible effect on reversibility. In the terminology used
throughout this paper, there is only one quasi-attractor, the two-
soliton solution, and so reversibility is not lost (or even mildly
affected) given the truncation. This is not to say that loss of
reversibility is impossible in integrable systems (Section 6.1) or
that it is impossible in the cubic NLS in different settings.

7. Comparison with loss of reversibility in Burgers equation

It is instructive to compare the loss of reversibility in the
NLS and φ4 equation with the one in Burgers equation. Loss
of reversibility in acoustics was experimentally demonstrated by
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Fig. 11. (a)–(b): Same as Figs. 7(a) and 7(b), respectively, over a larger domain zf ≥ z ≥ −2zf . (c) On-axis intensity of the exact (solid) and perturbed (dash-dot)
solutions. (d) The output intensity at z = −2zf of the exact (solid) and perturbed (dot dashes) solutions.

Fig. 12. The inviscid Burgers equation (15), with two initial conditions as given in (16) (solid), and evolves into the same shock at t = 1 (dashes).

Tanter et al. [51]. In their experiments, they observed that re-
versibility is possible if one reverses the wave before an acoustic
shock wave forms, but not if it is measured after the shock.

Tanter et al. modeled their experiment with two coupled
Burgers equations. To explicitly demonstrate loss of reversibility
in the inviscid Burgers equation

ut (t, x) + uux = 0 , u(0, x) = u0(x) , (15)

we consider the two initial conditions (See Fig. 12.)

u(1)
0 (x) =

{
1 , x < 0 ,
0 , x ≥ 0 , u(2)

0 (x) =

{ 1 , x < 0 ,
1 − x , 0 ≤ x < 1 ,
0 , x ≥ 1 .

(16)

Both initial conditions evolve into the same moving-shock
solution u(t, x) = u(1)

0 (x − t) for t ≥ 1 [52]. Hence, reversibility is
lost for t ≥ 1. Indeed, since a shock wave forms when multiple
characteristic lines coincide, its time-reversal (a rarefaction wave)
consists of a cone in the (t, x) plane where there is a lacuna of
characteristics [53].

The above explicit example of loss of reversibility is differ-
ent from the previous examples in this paper, since it occurs
when two different initial conditions evolve into exactly the same
output profile (rather than into two similar profiles). This is
irreversibility in the strictest mathematical sense, since for t ≥ 1,
the inverse operator Q−1(t) does not exist.

7.1. Open question

The above ‘‘loss of existence’’ of the reversal operator Q−1 is
due to the formation of a singularity in Burgers equation (as a
shock wave is formed, its derivative becomes infinite). Is there a
similar ‘‘loss of existence’’ of Q−1 in the NLS? For this to occur,
the NLS solution should become singular. Recall that the cubic
two-dimensional cubic NLS

iψz(z, x, y) +∆ψ + |ψ |
2ψ = 0 , (17)

has a ‘‘large’’ family of initial conditions that all lead to blowup so-
lutions which decompose at the singularity point zcr into a univer-
sal blowup profile ψR0 that collapses as a δ function at the log log
rate, and a radiation field φ, such that ∥ψR0 (z, ·)∥H1 , ∥ψ(z, ·)∥H1

→ ∞ and ψ − ψR0 → φ in L2 as z → zcr [25,54]. It is currently
an open question whether two different initial conditions can
collapse at the same point zcr with exactly the same radiation
field φ. In other words, is the radiation field φ at the blowup point
zcr sufficient to recover the input beam ψ0? For the special case
of φ = 0, reversibility can be lost at collapse, as the following
proposition shows.

Proposition. For every x∗ ∈ R2 there exists an initial condition
ψ0,x∗ ∈ C∞(R2) for which

lim
t→1−

|ψx∗ (t, x)| = δ(x) ,
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where the limit is in the weak-∗ topology, and such that the follow-
ing pointwise convergence holds

φ(x) : = lim
t→1−

ψx∗ (t, x) = 0 . x ̸= 0 .

See Appendix for the proof. Unfortunately, this proof gives
no clue regarding the general case of φ ̸= 0, since it relies on
the non-generic property of the explicit collapse solution (A.1);
see [25] and the references therein. This question is also open for
other nonlinear PDEs that have blowup solutions which decom-
pose into a universal blowup profile and radiation, such as the
nonlinear heat equation [55,56] or the generalized Korteweg–de
Vries equation (gKdV) [57].

Physically, singularities never form in acoustics and in non-
linear optics. In the NLS (12), we observed that small collapse-
arresting defocusing nonlinearity leads to what we call physical
loss of reversibility. Similarly, Tanter et al. observed numeri-
cally and experimentally that this physical loss of reversibil-
ity occurs in the viscous Burgers, where shock formation is
arrested [51]. One might surmise that the introduction of a
dissipative term, which renders the inverse Burgers equation
ill-posed, is the source for loss of reversibility. By continuity,
however, any sufficiently small regularizing term, dissipative or
not, should lead to similar loss of reversibility near the shock
formation, i.e., where Q−1 ceases to exist in the inviscid case.
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Appendix. Proof of loss of reversibility for a collapsing beam

Denote the explicit blowup solution of the NLS (17) by

ψtc (t, x) =
1

|tc − t|
R(ξ ) exp

{
i
(
ζ (t) −

|x|2

4(tc − t)

)}
, tc ≥ 0 ,

(A.1)

where R is the ground state solution of −R +∆R + R3
= 0, and

ξ =
x

tc − t
, ζ =

t
tc(tc − t)

.

Fixing tc = 1, this solution of (17) satisfies the desired blowup
properties [25].

Next, define the Galilean transformation by

Fcψ(t, x) : = ψ(t, x − ct) exp
{
i
(
c · x
2

−
|c|2z
4

)}
, c ∈ R2 .

(A.2)

By the Galilean and Translation Invariances of the NLS (17) then
Fx∗ψ1(t = 0, x − x∗) collapses with exactly the same properties
at (tc = 1, x = 0).
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