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Abstract. Does a new product spread faster among heterogeneous or homogeneous con-
sumers?We analyze this question using the stochastic discrete Bassmodel inwhich consum-
ers may differ in their individual external influence rates {pj} and in their individual internal
influence rates {qj}. When the network is complete and the heterogeneity is only manifested
in {pj} or only in {qj}, it always slows down the diffusion, comparedwith the corresponding
homogeneous network.When, however, consumers are heterogeneous in both {pj} and {qj},
heterogeneity slows down the diffusion in some cases but accelerates it in others. Moreover,
the dominance between the heterogeneous and homogeneous adoption levels is global in
time in some cases but changes with time in others. Perhaps surprisingly, global dominance
between two networks is not always preserved under “additive transformations”, such as
adding an identical node to both networks. When the network is not complete, the effect of
heterogeneity depends also on its spatial distributionwithin the network.

Keywords: marketing • bass model • heterogeneity • agent-based model • stochastic models • discrete models • diffusion in networks •
analysis

1. Introduction
The study of the diffusion of innovations started in the sociology literature (De Tarde [6]) and expanded over the
years (Rogers [20]). More generally, diffusion in social networks has attracted the attention of researchers in
physics, mathematics, biology, computer science, social sciences, economics, and management science, as it con-
cerns the spreading of “items” ranging from diseases and computer viruses to rumors, information, opinions,
technologies, and innovations (Albert et al. [1], Anderson and May [2], Jackson [15], Pastor-Satorras and
Vespignani [18], Strang and Soule [21]). In marketing, diffusion of new products plays a key role, with applica-
tions in retail service, industrial technology, and agriculture and in educational, pharmaceutical, and consumer-
durables markets (Mahajan et al. [16]).

The first quantitative model of the diffusion of new products was proposed in 1969 by Bass [3]. In this model,
we consider a population of size M and denote by n � n(t) the number of individuals who adopted the product
by time t. Each of the (M− n) nonadopters may adopt the product because of external influences by mass media at
a constant rate of p and because of internal influences by individuals who already adopted the product at the rate
of q

Mn. Thus, the rate of internal influences increases linearly with the number of adopters. The individual adop-
tion rate of each nonadopter is the sum of the nonadopter’s external and internal adoption rates, that is,

p+ q
M

n(t): (1)

Therefore, the rate of change of the number of adopters is

n′(t) � (M − n(t)) p + q
M

n(t)
( )

: (2)

The Bass Model (2) inspired a huge amount of follow-up research; in 2004, it was chosen as one of the most cited
papers in the 50-year history of Management Science (Hoppe [14]). From a modeling perspective, it is a compart-
mental model. Thus, the population is divided into two compartments (groups), adopters and nonadopters; Equa-
tion (2) provides the rate at which individuals move between these two compartments. Most of the extensions of
the Bass model have also been compartmental models, given by a deterministic ordinary differential equation
(ODE) or ODEs. As a result, they are relatively easy to analyze. Compartmental models, however, make two
implicit assumptions whose validity is highly questionable:

Assumption 1. All individuals within the population are equally likely to influence each other. In other words, the under-
lying social network is a complete graph.
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Assumption 2. All individuals within the population are homogeneous, that is, they all have the same p and q.

To check the consequences of these assumptions, one needs to go back to the more fundamental discrete model
for the stochastic adoption of each individual in the population (Rand and Rust [19]). For example, the discrete
analogue of the compartmental Model (2) is, compare to (1),

Probability j adopts in
(t, t + Δt)

∣∣∣∣∣ j did not adopt
by time t

( )
� pj + qj

Mj
Nj(t)

( )
Δt, (3)

where pj and qj are the rates of external and internal influences on j, Mj is the number of peers (the degree) of j,
and Nj(t) is the number of adopters at time t among his or herMj peers.

Discrete stochastic Bass models are considerably harder to analyze than compartmental models. They enable
us, however, to relax the assumptions of a complete network and of homogeneity. Most of the analysis of the dis-
crete Bass model so far has been concerned with the role of the network structure. Niu [17] showed that as M→ ∞, the
discrete Bass model on a homogeneous complete network approaches the compartmental Bass Model (2). Fibich and
Gibori [10] analyzed the discrete Bass model on Cartesian networks. Fibich et al. [12] analyzed the effect of boun-
dary conditions in Cartesian networks. Fibich [7, 8] analyzed the discrete Bass-SIR model, in which adopters even-
tually recover and no longer influence others to adopt, on various networks. Fibich and Levin [11] analyzed the
percolation of new products on various networks, from which a fraction of the nodes is randomly removed.

All of the above studies analyzed the discrete Bass model on homogeneous networks, that is, when all individuals
have the same p and q. Goldenberg et al. [13] studied numerically the discrete Bass model on complete networks with
heterogeneous consumers and observed that heterogeneity has a small effect on the aggregate diffusion. To the best
of our knowledge, analysis of the effect of heterogeneity in the discrete Bass model was only done in Fibich et al. [9].
In that study, Fibich, Gavious, and Solan used the averaging principle to estimate the quantitative difference between
heterogeneous and homogeneous networks. Specifically, they showed that if the network is translation-invariant and
the heterogeneity is mild, the difference between the aggregate diffusion in the heterogeneous and the corresponding
homogeneous networks scales as ε2, where ε is the level of heterogeneity of {pj} and {qj}.

Several studies used compartmental models to study the effect of heterogeneity. Bulte and Joshi [4] divided
the population into two groups: the influentials with p � p1 and q � q1 and the imitators with p � 0 and q � q2.
Their numerical results revealed that heterogeneity in p and q can change the qualitative behavior of the diffusion
(Bulte and Joshi [4]). Chaterjee and Eliashberg [5] constructed a compartmental diffusion model that allowed for
heterogeneity in consumers’ initial perceptions and price hurdles. Although their study did not directly analyze
heterogeneity in p and q within the framework of the discrete Bass model, it showed that heterogeneity can alter
the qualitative behavior of aggregate adoption (Chatterjee and Eliashberg [5].)

This paper provides the first-ever analysis of the qualitative effect of heterogeneity in the stochastic discrete Bass model.
We show that heterogeneity in p and q can speed up or slow down the diffusion compared with the correspond-
ing homogeneous network. This result is surprising because heterogeneity only in p or only in q always slows
down the diffusion. In some cases, the dominance between the heterogeneous and homogeneous networks is
global in time; in others, the dominance flips after some time. When the network is not complete, the effect of het-
erogeneity also depends on the way in which it is spatially distributed in the network.

The methodological contribution of this paper consists of several novel analytical tools: themaster equations for hetero-
geneous networks, explicit expressions for the first three derivatives of the expected adoption on heterogeneous networks
at t � 0, and a cumulative distribution function (CDF) dominance condition for comparing the diffusion on two net-
works. We also use the dominance principle for heterogeneous networks, which was introduced in Fibich et al. [12].

From a more general perspective, the vast majority of models in marketing and in economics assume that all
individuals are homogeneous. This assumption is made not because it is believed to hold but simply because het-
erogeneous models are typically an order of magnitude harder to analyze than their homogeneous counterparts.
This paper thus adds to the relatively thin literature on heterogeneous models in marketing and in economics.

The paper is organized as follows. In Section 2, we introduce the heterogeneous discrete Bass model. We then
review some results for homogeneous complete networks (Section 2.1), for one-sided and two-sided homogene-
ous circular networks (Section 2.2), and the dominance principle for heterogeneous networks (Section 2.3). In Sec-
tion 3, we introduce several novel analytic tools for the heterogeneous discrete Bass model. Thus, in Section 3.1 we
derive the master equations for the heterogeneous Bass model. This linear system of ODEs can be solved analytically to
yield an explicit expression for the expected fraction of adopters in any heterogeneous network; we provide explicit
expressions for M � 2 and M � 3. In Section 3.2, we derive explicit expressions for the first three derivatives at t � 0 of
the adoption in heterogeneous networks. These expressions allow us to analyze the initial diffusion dynamics on het-
erogeneous and homogeneous networks. In Section 3.3, we introduce the CDF dominance condition. This condition
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allows us to compare the adoption levels of two different networks by comparing the CDFs of the times of the mth
adoptions in both networks for m � 1, : : : ,M. We use this tool throughout the paper to compare the diffusion in het-
erogeneous and homogeneous networks.

In Section 4, we compare heterogeneous complete networks with their homogeneous counterparts that have
the same number of nodes, the same average p, and the same average q. When the heterogeneity is only in p, it
always slows down the diffusion (Section 4.1). This is also the case for networks that are heterogeneous only in q
(Section 4.2), provided that the heterogeneity in q is mild, that is, that a nonadopter is equally influenced by all
other adopters, see (3). In Section 4.3 we consider networks that are heterogeneous in both p and q. When the het-
erogeneities in p and q are positively correlated, heterogeneity slows down the diffusion. When the heterogene-
ities in p and q are not positively correlated, however, the diffusion in the heterogeneous case can be slower than,
faster than, or equal to that in the homogeneous case.

Consider two networks for which the adoption in the first is lower than in the second for all times. Will this
global-in-time dominance be preserved if we increase the pj values of all the nodes in both networks by the same
amount or if we add an identical node to both networks? In Section 5, we show that this is indeed the case when
there is a node-wise and edge-wise dominance between the two networks but not necessarily in other cases. We
also show that the dominance between heterogeneous and homogeneous networks is not necessarily global in time
but rather can flip with time. In Section 6, we consider heterogeneous periodic one-dimensional networks (circles).
In Sections 6.1 and 6.2, we derive the master equations for heterogeneous one-sided and two-sided circle, respec-
tively. We explicitly solve these equations for any M in the one-sided case and for M � 2 and M � 3 in the two-
sided case. We then show that the adoption in a heterogeneous two-sided circle can be higher or lower than that in
the corresponding heterogeneous one-sided circle (Section 6.3). This is different from the homogeneous case, where
diffusion on a two-sided circle is identical to that on the corresponding one-sided circle (Fibich and Gibori [10]).

The analytic tools developed in this study can also be applied to homogeneous networks. Indeed, in Fibich
and Gibori [10], the authors conjectured that diffusion on infinite homogeneous Cartesian networks becomes
faster as the dimension of the network increases. In Section 7, we prove this conjecture for small times. When the
network is not complete, the effect of heterogeneity depends also on the way in which it is distributed among the
nodes. To illustrate this, in Section 8 we consider two heterogeneous one-sided circles that have the same nodes
but differ in the way in which the nodes are distributed in the circle. We explicitly compute the aggregate adop-
tion for both networks as M→ ∞. We obtain different expressions, which show that the adoption indeed
depends also on the spatial distribution of the heterogeneity. Finally, in Section 9 we show that as we vary the
level of heterogeneity, its effect varies continuously and monotonically (at least for weak heterogeneity). In addi-
tion, the effect of the variance of the parameters is much smaller than that of their mean.

1.1. Emerging Picture
This paper contains numerous results. In order to see the wood for the trees, it is useful to summarize some uni-
fying themes:

1. When the network is heterogeneous only in pj or only in qj, heterogeneity always slows the diffusion for all times.
2. When the heterogeneity is both in pj and qj, the qualitative effect of heterogeneity is more complex:

a. When the heterogeneities in p and q are positively correlated, heterogeneity always slows the diffusion for
all times.
b. When, however, the heterogeneities in p and q are not positively correlated, heterogeneity can accelerate

or slow down the diffusion. Moreover, the dominance between the heterogeneous and homogeneous networks
is global in time for some cases but changes with time for others.

3. Global dominance between two networks is not necessarily preserved under “additive transformations,” such
as increasing all the {pj} of both networks by the same amount or adding an identical node to both networks.

4. When a network is heterogeneous and not complete, the effect of heterogeneity on the aggregate diffusion
depends also on the spatial distribution of the heterogeneity among the nodes.

2. The Heterogeneous Discrete Bass Model
We begin by introducing the diffusion model that is analyzed in this study. A new product is introduced at time
t � 0 to a network withM potential consumers. We denote by Xj(t) the state of consumer j at time t, so that

Xj(t) � 1, if consumer j adopts the product by time t,
0, otherwise:

{

Fibich and Golan: Diffusion with Heterogeneous Consumers
Mathematics of Operations Research, 2023, vol. 48, no. 1, pp. 257–287, © 2022 INFORMS 259

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

32
.6

6.
40

.5
0]

 o
n 

20
 S

ep
te

m
be

r 2
02

3,
 a

t 0
1:

13
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Because all consumers are nonadopters at t � 0,

Xj(0) � 0, j � 1, : : : ,M: (4)

Once a consumer adopts the product, it remains an adopter for all time. The underlying social network is repre-
sented by a weighted directed graph, where the weight of the edge from node i to node j is qi,j ≥ 0 and qi,j � 0 if
there is no edge from i to j. Thus, if i already adopted the product and qi,j > 0, his or her rate of internal influence
on consumer j to adopt is qi,j. In addition, consumer j experiences an external influence to adopt, at the rate of pj.
Hence, as dt→ 0,

Prob(Xj(t+ dt) � 1) �
1, if Xj(t) � 1,

pj +
∑M
k�1
k≠ j

qk,jXk(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt, if Xj(t) � 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (5)

If j is a nonadopter, the maximal internal influence that can be exerted on j, which occurs when all of his or her
peers are adopters, is denoted by

qj :�
∑M
k�1
k≠ j

qk,j: (6)

We assume that any individual can be influenced by at least one other individual, that is, that

qj > 0, j � 1, : : : ,M: (7)

We also denote by

qk :� ∑M
j�1
j≠k

qk,j (8)

the sum of the internal influences that k exerts on his or her peers.
We mostly consider a milder form of heterogeneity in q, where {qj}Mj�1 can be heterogeneous but each individual is

equally influenced by any of his or her peers, that is,

qi,j �
qj

degree( j) , if i influences j,

0, otherwise:

{
(9)

Therefore, the network structure is preserved under mild heterogeneity. For example, in the case of a mildly het-
erogeneous complete network, (5) reads

Prob(Xj(t + dt) � 1) �
1, if Xj(t) � 1,

pj + qj
M − 1

N(t)
( )

dt, if Xj(t) � 0,

{
where N(t) :�∑M

j�1Xj(t) is the number of adopters at time t.
Our main goal is to compute the effect of the heterogeneity in {pj} and {qi,j} (or {qj}) on the expected number of

adopters

n(t) :� E
∑M
j�1

Xj(t)
[ ]

� E[N(t)], (10)

or equivalently on the expected fraction of adopters

f (t) :� 1
M

n(t): (11)
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2.1. Homogeneous Complete Networks
When the network is complete and homogeneous, then

pj ≡ p, qi,j � q
M − 1

, i, j � 1, : : : ,M, i ≠ j: (12)

In that case, (5) reads

Prob(Xj(t + dt) � 1) �
1, if Xj(t) � 1,

p + q
M − 1

N(t)
( )

dt, if Xj(t) � 0:

{
(13)

Niu [17] proved that asM→ ∞, the expected fraction of adopters in (13) approaches the solution of the compart-
mental Bass model (Bass [3])

f ′(t) � 1− f (t)( )
p+ q f (t)( )

, f (0) � 0: (14)

This equation can be solved explicitly, yielding the Bass Equation (Bass [3])

fBass(t; p, q) � 1 − e−(p+q)t

1 + q
p e

−(p+q)t : (15)

2.2. Homogeneous Circles
Let us denote by f 1-sidedcircle (t;p,q,M) the expected fraction of adopters in a homogeneous one-sided circle with M
nodes where each individual is only influenced by his left neighbor (see Figure 1(a)), that is,

pj ≡ p, qi,j �
q, if ( j− i)mod M � 1,

0, if ( j− i)mod M≠ 1,
j, i � 1, : : : ,M:

{
Similarly, denote by f 2-sidedcircle (t;p,qR,qL,M) the expected fraction of adopters in a homogeneous two-sided circle
with M nodes where each individual can be influenced by his or her left and right neighbors (see Figure 1(b)),
that is,

pj ≡ p, qi,j �
qL if ( j− i)mod M � 1,

qR if (i− j)mod M � 1,

0 if |j− i|mod M≠ 1,

j, i � 1, : : : ,M:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
In Fibich and Gibori [10], the authors proved that the diffusion on one-sided and two-sided homogeneous circles
are identical

f 1-sidedcircle (t; p, q,M) ≡ f 2-sidedcircle (t; p, qR, qL,M), 0 ≤ t < ∞, (16)

provided that the maximal internal influence experienced by each node is identical in both cases, that is, that

q � qL + qR: (17)

Figure 1. (a) A one-sided circle with the nonadopters chain (Sjk). (b) A two-sided circle with the nonadopters chain (Sja,b).
(a) (b)
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In addition, they explicitly computed the diffusion on infinite homogeneous circles:

lim
M→∞ f 1-sidedcircle (t; p, q,M) � f1D(t; p, q) :� 1 − e−(p+q)t+q1−e−ptp : (18)

2.3. Dominance Principle
A useful tool for comparing the diffusion in two networks is the dominance principle. Let us begin with the fol-
lowing definition:

Definition 1 (Node-Wise and Edge-Wise Dominance). Consider the heterogeneous discrete Bass Model (5) on net-
works A and B with M nodes, with external parameters {pAi } and {pBi }, and internal parameters {qAi,j} and {qBi,j},
respectively. We say that A�B if

pAj ≤ pBj for all j and qAi,j ≤ qBi,j for all i≠ j:

We say that A � B if at least one of theseM2 inequalities is strict.

Lemma 1 (Dominance Principle (Fibich et al. [12]). If A�B, then fA(t) ≤ fB(t) for t > 0. If A � B, then fA(t) < fB(t) for
t > 0.

3. Analytic Tools
In this section, we introduce several novel analytical tools. These tools will be later used to analyze the effect of
heterogeneity in the heterogeneous discrete Bass Model (5).

3.1. Master Equations
In order to analytically compute the expected number of adopters, we derive the master equations for a general
heterogeneous network with M nodes as follows. Let (Sm1 , : : : ,Smn )(t) denote the event that at time t, nodes
{m1, : : : ,mn} are nonadopters, where 1 ≤ n ≤M, mi ∈ {1, : : : ,M}, and mi ≠mj if i≠ j. Let [Sm1 , : : : ,Smn](t) denote the
probability that such an event occurs.

Lemma 2. The master equations for the heterogeneous discrete Bass Model (5) are

d
dt

[Sm1 , : : : ,Smn](t) � − ∑n
i�1

pmi +
∑M
j�n+1

∑n
i�1

qlj,mi

( )
[Sm1 , : : : ,Smn](t) + ∑M

j�n+1

∑n
i�1

qlj ,mi

( )
[Sm1 , : : : ,Smn ,Slj](t), (19a)

for any {m1, : : : ,mn}({1, : : : ,M}, where {ln+1, : : : , lM} � {1, : : : ,M}\{m1, : : : ,mn} and

d
dt

[S1,S2, : : : ,SM](t) � − ∑M
i�1

pi

( )
[S1,S2, : : : ,SM](t), (19b)

subject to the initial conditions

[Sm1 , : : : ,Smn](0) � 1, ∀{m1, : : : ,mn} ⊂ {1, : : : ,M}: (19c)

Proof. See Appendix A. w

The master Equations (19) constitute a linear system of 2M − 1 differential equations for all possible subsets
{m1, : : : ,mn} ⊂ {1, : : : ,M}. These equations can be solved explicitly as follows. By (19b)–(19c),

[S1, : : : ,SM](t) � e−(∑M
j�1 pj)t: (20)

Proceeding to solve (19) backward from n �M− 1 to n � 1 gives (Appendix B)

[Sk](t) �∑M
n�1

∑
{m1�k,m2, : : : ,mn}

ck(m1,: : : ,mn)e
−(∑n

i�1 pmi+
∑M

j�n+1
∑n

i�1 qlj,mi )t, (21)
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where ck(m1,: : : ,mn) are constants. Once we solve for {[Sk]}Mk�1, the expected fraction of adopters in the network is
given by (see (10) and (11)),

f t; pi
{ }

, qi,j
{ }( )

� 1− 1
M

∑M
k�1

[Sk](t): (22)

For example, the master Equations (19) forM � 2 read

d
dt

[Si](t) � −(pi + qi−1,i)[Si](t) + qi−1,i[S1,S2](t), i � 1, 2, (23a)

d
dt

[S1,S2](t) � −(p1 + p2)[S1,S2](t), (23b)

[S1](0) � [S2](0) � [S1,S2](0) � 1: (23c)

Solving this system forM � 2 yields

[S1](t) � a1e−(p1+q2,1)t + b1e−(p1+p2)t, [S2](t) � a2e−(p2+q1,2)t + b2e−(p1+p2)t:

Therefore, by (22),

f (t) � 1 − 1
2

∑2
j�1

aje−(pj+qj−1,j)t − bje−(p1+p2)t
[ ]

, aj � pj−1
pj−1 − qj−1,j

, bj � qj−1,j
pj−1 − qj−1,j

: (24)

Similarly, whenM � 3,

f (t) � 1 − 1
3

∑3
j�1

aje−(pj+qj−1,j+qj+1,j)t − bje−(pj+pj+1+qj−1,j+qj+2,j+1)t + cje−(p1+p2+p3)t
[ ]

, (25a)

where

aj � 1 + 1 + qj−1,j + qj+2,j+1
pj−1 − qj−1,j − qj+2,j+1

( )
qj+1,j

pj+1 + qj+2,j+1 − qj+1,j

+ 1 + qj−2,j−1 + qj+1,j
pj+1 − qj−2,j−1 − qj+1,j

( )
qj−1,j

pj−1 + qj−2,j−1 − qj−1,j

−
qj+1,j

qj−1,j + qj+2,j+1
pj−1 − qj−1,j − qj+2,j+1

+ qj−1,j
qj−2,j−1 + qj+1,j

pj+1 − qj−2,j−1 − qj+1,j
pj+1 + pj−1 − qj−1,j − qj+1,j

,

(25b)

bj � 1 + qj−1,j + qj+2,j+1
pj−1 − qj−1,j − qj+2,j+1

( )
qj+1,j

pj+1 + qj+2,j+1 − qj+1,j
+ qj,j+1
pj + qj−1,j − qj,j+1

( )
, (25c)

cj �
qj+1,j

qj−1,j + qj+2,j+1
pj−1 − qj−1,j − qj+2,j+1

+ qj−1,j
qj−2,j−1 + qj+1,j

pj+1 − qj−2,j−1 − qj+1,j
pj+1 + pj−1 − qj−1,j − qj+1,j

: (25d)

Remark 1. The subscripts of qi,j in (23)–(25) are modulo M and in {1, : : : ,M}. For example, if i � 1, then
“i− 1 �M,” and if i � M, then “i+ 2 � 2”, etc.

Remark 2. The master Equations (19) hold for heterogeneous (and homogeneous) networks with any structure.
For example, we can have a one-sided circle by setting qi,j � 0 for ( j− i)mod M≠ 1 (Section 6.1), a two-sided circle
by setting qi,j � 0 for |j− i|mod M≠ 1 (Section 6.2), a D-dimensional Cartesian structure by setting qi,j as in Equa-
tion (49) (Section 7), etc.

3.2. Initial Dynamics
We can use the master Equations (19) to analyze the initial dynamics, by deriving explicit expressions for
f ′(0), f ′′(0), and f ′′′(0). We begin with the most general heterogeneity:
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Lemma 3. Consider the heterogeneous discrete Bass model (5). Then

f ′(0) � 1
M

∑M
j�1

pj, f ′′(0) � 1
M

∑M
i�1

piqi −
∑M
i�1

p2i

( )
, (26)

where qi is defined in (8). In addition, if the heterogeneity in q is mild (see (9)), then

f ′′(0) � 1
M(M − 1)

∑M
j�1

qj
∑M
i�1

pi −
∑M
j�1

qjpj

[ ]
− 1
M

∑M
i�1

p2i : (27)

Proof. Substituting t � 0 in (19a) and using (19c) gives

d
dt

[Sm1 , : : : ,Smn](0) � − ∑n
i�1

pmi +
∑M
j�n+1

∑n
i�1

qlj,mi

( )
+ ∑M

j�n+1

∑n
i�1

qlj,mi

( )
� −∑n

i�1
pmi : (28)

Hence, by (11) and (22), we get Equation (26) for f ′(0). Differentiating (19a) and using (28) gives the equation for
f ′′(0). Substituting (9) in (26) gives (27). w

These explicit expressions allow us to determine on which network the diffusion is initially faster. The expres-
sions for the derivatives become simpler when the heterogeneity is just in q:1

Corollary 1. Consider a network of size M which is homogeneous in p and heterogeneous in q. Then (26) reads

f ′(0) � p, f ′′(0) � p
1
M

∑M
j�1

qj − p

( )
: (29)

If, in addition, the heterogeneity in q is mild (see (9)), then

f ′′′(0) � p3 + p
M

M − 2

(M − 1)2
∑M
i�1

qi

( )2
− 2M − 3

(M − 1)2
∑M
i�1

q2i − 4p
∑M
i�1

qi

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠: (30)

Proof. See Appendix C. w

Finally, we consider the homogeneous case:

Corollary 2. Consider a complete homogeneous network with p, q, and M, see (12). Then

f ′(0) � p, f ′′(0) � p(q − p), f ′′′(0) � p p2 − 4pq +M − 3
M − 1

q2
( )

: (31)

Proof. This follows from Corollary 1. w

3.3. CDF Dominance Condition
In this section, we derive a sufficient condition for the adoption in network A to be slower than in network B. Let
A be a network with M nodes. For a specific realization of the discrete model (5), let tAi denote the time between
the (i− 1) th and ith adoptions, where i � 1, : : : ,M and tA0 :� 0. Therefore, the time of the mth adoption is

TA
m :� t0 + t1+⋯ + tm, m � 0, 1, : : : ,M,

and the number of adopters at time t is given by

NA(t) �max{m ∈ {0, : : : ,M} : TA
m ≤ t}: (32)

The expected number of adopters in network A is nA(t) � E[NA(t)].
Let B be a different network with M nodes and define tBi , T

B
m, NB(t), and nB(t) in a similar manner. We now

show that the adoption in A is slower than in B, if {tAi } and {tBi } satisfy a certain CDF dominance condition:

Theorem 1. Let {tAi (ωi)}Mi�1 and {tBi (ωi)}Mi�1 be two sequences of independent nonnegative random variables that satisfy the
CDF dominance condition

FtAi (τ) ≤ FtBi (τ), 1 ≤ i ≤M, τ ≥ 0, (33a)

such that there exists at least one index 1 ≤ j ≤M for which

FtAj (τ) < FtBj (τ), τ > 0: (33b)
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Then the expected number of adopters in A is less than that in B, that is,
nA(t) < nB(t), 0 < t < ∞:

Proof. See Appendix D. w

4. Heterogeneity in Complete Networks
In this section, we consider the qualitative effect of heterogeneity in complete networks. To do that, we compare
the adoption in a heterogeneous network with that in a homogeneous network that has the same number of
nodes M, the same average {pj}, and the same average {qi,j} or {qj}. Thus, we compare f het(t; {pi}Mi�1, {qi,j}Mi,j�1) or
f het(t; {pi}Mi�1, {qj}Mj�1) with f hom(t;p,q,M), where

p � 1
M

∑M
i�1

pi, q � 1
M

∑M
i�1

∑M
j�1
j≠ i

qi,j � 1
M

∑M
j�1

qj: (34)

4.1. Heterogeneity in p
We begin with complete networks that are heterogeneous in p and homogeneous in q, that is,

qi,j ≡ q
M − 1

, ∀j ≠ i: (35)

When the network has just two nodes, we can use the master Equations (23) forM � 2 to show that heterogeneity
in p always slows down the diffusion:

Lemma 4. Consider a heterogeneous network with M � 2, p1 ≠ p2, and q1,2 � q2,1 ≡ q and let p � p1+p2
2 . Then

f het(t; {p1,p2},q) < f hom(t;p,q,M � 2), 0 < t < ∞:

Proof. See Appendix E. w

One could try to generalize this result to any network size M by induction on the network size M. To do that,
we need a result that global dominance between two networks is preserved when we add a new identical node
to both networks. As Lemma 10 in Section 5 will show, however, this is not always the case. Therefore, we take a
different approach and generalize Lemma 4 to any network size M by making use of the CDF dominance
condition:

Theorem 2. Consider a complete graph with M nodes that are heterogeneous in {pi}Mi�i and homogeneous in q (see (35)). Let
p � 1

M
∑M

i�1 pi. Then

f het(t; {pi}Mi�1,q) < f hom(t;p,q,M), 0 < t <∞:

Proof. Let thomk denote the time between the (k− 1) th and kth adoptions in the homogeneous network, where
k � 1, : : : ,M. Let Fhomk (τ) :� Prob(thomk ≤ τ) denote the cumulative distribution function of thomk . Let thetk and Fhetk (τ)
be defined similarly for the heterogeneous network. We now introduce two auxiliary lemmas:

Lemma 5. Consider a complete graph with M nodes that are heterogeneous in {pi}Mi�1 and in {qi}Mi�1 where qi is the influence
exerted on (and not by) node i. Furthermore, assume that the pi values and qi values are positively correlated, that is, p1 ≤
p2 ≤⋯≤ pM and q1 ≤ q2 ≤⋯≤ qM. Let p � 1

M
∑M

i�1 pi and q � 1
M
∑M

i�1 qi. Let thom1 denote the time until the first adoption and
thomk denote the time between the (k− 1)th and kth adoptions in the homogeneous network for k � 2, : : : ,M. Let Fhomk (t) :�
Prob(thomk ≤ t) denote the cumulative distribution function of thomk for k � 1, : : : ,M. Let thetk and Fhetk (t) be defined similarly
for the heterogeneous network. Then Fhet1 (t) � Fhom1 (t) for t ≥ 0, and

Fhetk (t) < Fhomk (t), k � 2, : : : ,M, 0 < t <∞: (36)

Proof. See Appendix F. w

Lemma 6. The random variables (ti) are independent.
Proof. See Appendix F. w
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By Lemma 5, (in the special case where q1 �⋯� qM � q), Fhet1 (τ) ≡ Fhom1 (τ) for τ ≥ 0 and

Fhetk (τ) < Fhomk (τ), k � 2, : : : ,M, 0 < τ <∞:

In addition, by Lemma 6, the random variables {thomk } and the random variables {thetk } are independent. Hence,
the conditions of Theorem 1 are satisfied, and so Theorem 2 follows by (11). w

Remark 3. We could also prove Theorem 2 for small times using the explicit expressions for f ′(0) and f ′′(0); see
Appendix G.

The results of this section show that in complete networks, heterogeneity in {pj} always slows down the diffusion.
This follows from the convexity of the model. Indeed, as the proof of Lemma 5 shows, the times between consec-
utive adoptions follow an exponential distribution, for which the CDF is convex in {pj}.

To further motivate this result, consider a heterogeneous network with M � 2 nodes; where p1 � 2p, p2 � 0,
and q1 � q2 � q and its homogeneous counterpart with p1 � p2 � p and q1 � q2 � q. In both the homogeneous and
the heterogeneous cases, the first adoption occurs at a rate of 2p. In the homogeneous case, however, the second
adoption occurs at a rate of p+ q, whereas in the heterogeneous case it occurs at a rate of q. Hence, the adoption
is faster in the homogeneous network. More generally, consider an M � 2 heterogeneous network with
p1 � p+ ε, p2 � p− ε, and q1 � q2 � q, where 0 < ε ≤ p. The first adoption occurs at a rate of 2p in both the heteroge-
neous and homogeneous networks. For the homogeneous network, the second adoption is at the rate of p+ q. In
the heterogeneous network, because p1 > p2, then in the majority of cases node 1 is the first to adopt, in which
case the second adoption is by node 2 at a rate of p− ε+ q. In the minority of cases, node 2 is the first to adopt, in
which case the second adoption is by node 1 at a rate of p+ ε+ q. Therefore, the overall adoption in the heteroge-
neous case is slower. This intuition can be generalized to networks with M nodes. The first adoption always
occurs at the same rate for the homogeneous and heterogeneous cases, but subsequent adoptions are slower in
the heterogeneous case.

4.2. Mild Heterogeneity in q
We now consider complete networks that are mildly heterogeneous in q but homogeneous in p, that is,

pi ≡ p, i � 1, : : : ,M:

Theorem 3. Consider a complete graph with M nodes that are mildly heterogeneous in {qi}Mi�i (see (9)) and homogeneous in
p. Let q � 1

M
∑M

i�1 qi. Then

f het(t;p, {qi}Mi�1) < f hom(t;p,q,M), 0 < t <∞:

Proof. Let thomk , Fhomk (τ), thetk , and Fhetk (τ) be defined as in the proof of Theorem 2. By Lemma 5, in the special case
where p1 � p2 � : : :pM, Fhet1 (τ) ≡ Fhom1 (τ) for τ ≥ 0, and

Fhetk (τ) < Fhomk (τ), k � 2, : : : ,M, 0 < τ <∞:

Therefore, the proof is the same as for Theorem 2. w

Remark 4. We can also prove Theorem 3 for small times using the explicit expressions for f ′(0), f ′′(0), and f ′′′(0);
see Appendix G.

Remark 5. Theorem 3 does not extend to the case of a general heterogeneity {qi,j}. For example, if M � 3, then a
complete network is also a two-sided circle; so, by (16), if qL ≠ qR and qL + qR ≡ q, then

f het t;p, qi,j
{ }( )

≡ f 2-sidedcircle t;p,qR,qL,M � 3
( )

≡ f 2-sidedcircle t;p,
q
2
,
q
2
,M � 3

( )
≡ f hom(t;p,q):

The question of whether f het ≤ f hom when the heterogeneity in q is not mild is currently open.
In summary, the results in this section show that in complete networks, mild heterogeneity in {qj} always slows

down the diffusion.

4.3. Heterogeneity in p and q
So far, we saw that one-dimensional heterogeneity (i.e., just in p or just in q) always slows down the adoption.
We now show that this is not always the case when the network is heterogeneous in both p and q.

4.3.1. Positive Correlation Between {pj} and {qj}. When {pj} and {qj} are positively correlated, heterogeneity
always slows down the adoption:

Fibich and Golan: Diffusion with Heterogeneous Consumers
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Theorem 4. Consider a complete graph with M nodes that are heterogeneous in {pi}Mi�1 and in {qi}Mi�1, such that (9) holds.
Furthermore, assume that {pi} and {qi} are positively correlated, so that p1 ≤ p2 ≤⋯≤ pM and q1 ≤ q2 ≤⋯≤ qM. Let
p � 1

M
∑M

i�1 pi and q � 1
M
∑M

i�1 qi. Then

f het t; {pi}Mi�1, {qi}Mi�1
( )

< f hom(t;p,q,M), 0 < t < ∞:

Proof. Let thomk , Fhomk (τ), thet:k , and Fhet:k (τ) be defined as in the proof of Theorem 2. In Lemma 5, we prove the CDF
dominance condition, Fhet1 (τ) ≡ Fhom1 (τ) for τ ≥ 0 and

Fhetk (τ) < Fhomk (τ), k � 2, : : : ,M, 0 < τ <∞:

The rest of the proof is the same as for Theorem 2. w

Remark 6. We can prove Theorem 4 for small times using the explicit expressions for f ′(0) and f ′′(0); see
Appendix G.

4.3.2. Nonpositive Correlation Between {pj} and {qj}. When {pj} and {qj} are not positively correlated, the effect
of the heterogeneity can become more diverse, even for networks with M � 2. In particular, f het can be higher than
f hom for all times:

Lemma 7. Let B be a heterogeneous network with M � 2, {p1,p2} � {2p, 0}, and {q1,q2} � {0, 2q} and let A be the corre-
sponding homogeneous network with M � 2, p1 � p2 � p, and q1 � q2 � q; see Figure 2. Then for 0 < t <∞,

f B(t) > f A(t), if q > p,

f B(t) � f A(t), if q � p,

f B(t) < f A(t), if q < p:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Proof. This follows from the master Equation (23) forM � 2; see Appendix H. w

Remark 7. We can also prove Lemma 7 for small times using the explicit expressions for f ′(0) and f ′′(0); see
Appendix G.

Lemma 7 is confirmed in Figure 3 using simulations of (5). The intuition behind this result is as follows. In both net-
works, the first adoption occurs at the rate of 2p. The second adoption occurs at a rate of 2q in the heterogeneous case

Figure 2. Networks used in Lemma 7. (a) Homogeneous. (b) Heterogeneous.

(a) (b)

Figure 3. Fractional adoption in the homogeneous (solid) and heterogeneous (dash-dot) networks shown in Figure 2. Plot
shows the average of 104 simulations of (5). (a) p � q

2. (b) p � q. (c) p � 2q.
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and at the rate of p+ q in the homogeneous case. Therefore, by Theorem 1, f het(t) is (globally in-time) greater than,
equal to, or less than f hom(t) if q is greater than, equal to, or less than p, respectively. We can use this intuition to show
that for anyM, f het(t) can be (globally in-time) greater than, equal to, or less than f hom(t):
Lemma 8. Consider two complete networks with M nodes: a homogeneous network with pi � p and qi,j � q

M−1 for all nodes,
and a heterogeneous network with p1 �Mp, p2 � p3 �⋯� pM � 0, q1,2 � q1,3 �⋯� q1,M � 2q

M−1 , q2,1 � q3,1 �⋯� qM,1 � 0, and
qi,j � q

M−1 when i≠ 1 and j≠ 1; see Figure 4. Then for 0 < t <∞,

f het(t) > f hom(t), if
q

M− 1
> p,

f het(t) � f hom(t), if
q

M− 1
� p,

f het(t) < f hom(t), if
q

M− 1
< p:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Proof. The first adoption in both networks occurs at the rate of Mp. The second adoption occurs at a rate of 2q
in the heterogeneous case and (M− 1)p+ q in the homogeneous case. The n th adoption occurs at a rate of

n(M− n+ 1) q
M−1 in the heterogeneous case and (M− n+ 1) p+ (n− 1) q

M−1
( )

in the homogeneous case. Hence, the

result follows from Theorem 1. w

5. Loss of Global Dominance Under Additive Transformations
Let A and B be two networks withM nodes such that the expected adoption in A is slower than in B for all times,
that is,

fA(t) < fB(t), 0 < t < ∞:

Consider the following two additive transformations of these networks:
Transformation 1 (T1): (A,B) → (A′,B′), where A′ and B′ are obtained by adding Δp to all nodes in both net-

works, that is,

pA
′

j � pAj +Δp, pB
′

j � pBj +Δp, j � 1, : : : ,M: (37)

Transformation 2 (T2): (A,B) → (A′′,B′′), where A′′ and B′′ are obtained by adding an identical (M+ 1) node to
A and B, so that

pA
′′

M+1 � pB
′′

M+1 � pM+1, (38a)

qA
′′

i,M+1 � qB
′′

i,M+1 � qinM+1, qA
′′

M+1,i � qB
′′

M+1,i � qoutM+1, i � 1, : : : ,M: (38b)

It is natural to ask the following:2

Question. Is the global dominance between two networks preserved under the “additive” transformations (37) and (38),
that is, is it true that fA′ (t) < fB′ (t) and fA′′ (t) < fB′′ (t) for 0 < t < ∞?

In some cases, global dominance is indeed preserved:

Figure 4. Networks used in Lemma 8. A solid edge indicates an internal influence of q
M−1, and a dashed edge indicates an inter-

nal influence of 2q
M−1. (a) Homogeneous network. (b) Heterogeneous network.

(a) (b)
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Lemma 9. Let A � B (see Definition 1). Then

fA(t) < fB(t), 0 < t < ∞,

and for any Δp, pM+1, qinM+1, and qoutM+1,

fA′ (t) < fB′ (t), fA′′ (t) < fB′′ (t), 0 < t <∞:

Proof. If A � B, then A′ � B′ and A′′ � B′′. Hence, the result follows from the dominance principle (Lemma 1). w

This lemma may seem to suggest that global dominance is indeed preserved under the additive transforma-
tions (37) and (38). This, however, is not always the case. Indeed, global dominance can be lost under a uniform
addition of Δp to all nodes (T1) or under the addition of an identical node (T2):

Lemma 10. There exist two networks A and B of size M such that fA(t) < fB(t) for 0 < t < ∞, but

f A
′ (t) > f B

′ (t), t� 1, (39a)

and

f A
′′ (t) > f B

′′ (t), t� 1: (39b)

Proof. Let B be a heterogeneous network with M � 2, {p1,p2} � {2p, 0}, and {q1,q2} � {0, 2q}; let A be the corre-
sponding homogeneous network with p1 � p2 � p and q1 � q2 � q; and let p < q. Then by Lemma 7,
f A(t) < f B(t) for 0 < t < ∞; see Figure 5(a).

Let A′ and B′ be the networks obtained from A and B when we increase all the {pj} s by Δp; see (37). By (24),

f A
′ (t) � 1− p+Δp

p−q+Δp e
−(p+Δp+q)t + q

p−q+Δp e
−(2p+2Δp)t, and f B

′ � 1− 1
2 e−(2p+Δp)t + 2p+Δp

2p−2q+Δp e
−(2q+Δp)t − 2q

2p−2q+Δp e
−(2p+2Δp)t

[ ]
: LetΔp

> q− p. Then for t� 1, f A
′ (t) ≈ 1− p+Δp

p−q+Δp e
−(p+Δp+q)t and f B

′ ≈ 1− 1
2 e

−(2p+Δp)t. Therefore, because q > p, we have (39a).
If we add an identical (M+ 1) st node toA and B with pM+1 � ∞ and qoutM+1 ≡ Δp, thenA′′ and B′′ are equivalent to

A′ and B′, and so (39b) holds. By continuity, the result also holds for finite but sufficiently large values of pM+1. w

The above calculations show that the dominance between a homogeneous and heterogeneous network is not
always global in time but rather can change with time:

Corollary 3. There exists a heterogeneous network and a corresponding homogeneous network for which f het(t) − f hom(t)
changes its sign in 0 < t <∞.

Proof. By (26) and (31), ( f A′ )′(0) � ( f B′ )′(0) � p+Δp and ( f A′ )′′(0) − ( f B′ )′′(0) � p(p− q) < 0. Therefore,

f A
′ (t) < f B

′ (t), 0 < t 1: (40)

The result follows from (39a) and (40). w

Thus, the flip of the dominance as (A,B) → (A′,B′) occurs for t� 1 (see (39a)) but not for t 1 (see (40)), as is
illustrated in Figure 5. Indeed, the uniform increase of {pi} by Δp does not change the dominance between the
heterogeneous and homogeneous networks during the initial dynamics because, by Lemma 3, the initial

Figure 5. (a) Difference between f A and f B from Lemma 7. (b) Difference between f A
′
and f B

′
from Lemma 10. Here p � 0.05, q �

0.15, and Δp � 0:15.
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dynamics are determined by the mean and variance of {pi}, each of which is equally affected by a uniform shift
by Δp in the heterogeneous and homogeneous cases (Appendix G). This uniform increase, however, can affect
the dominance later on. Indeed, as Δp→ ∞, A′ and B′ become homogeneous in p. However, B′ is heterogeneous
in q, and so its diffusion is slower than in the homogeneous case A′ (Theorem 3).

6. Heterogeneity in 1D Networks
In Section 4, we analyzed the diffusion in complete networks. We now consider the opposite type of networks,
namely, structured sparse networks where each node is only connected to one or two nodes.

6.1. One-Sided Circle
Assume that M consumers are located on a one-sided circle, such that each node can only be influenced by its
left neighbor (Figure 1(a)). Thus, if ( j− i)mod M≠ 1, then qi,j � 0. In this case, (5) reads

Prob(Xj(t+ dt) � 1) � 1, if Xj(t) � 1,
(pj + qjXj−1(t))dt, if Xj(t) � 0,

{
(41)

where qj � qj−1,j; see (6). Let (Sjk)(t) :� (Sj−k+1,Sj−k+2, : : : ,Sj)(t) denote the event that the chain of k nodes that ends
at node j are all nonadopters at time t (see Figure 1(a)), and let [Sjk](t) denote the probability of that event. We
proceed to derive the master equations for [Sjk](t):
Lemma 11. Consider the heterogeneous discrete Bass model (41) on a one-sided circle. For any j, 1 ≤ j ≤M, the M master
equations for {[Sjk]}Mk�1 are3

d
dt

[Sjk](t) � − ∑j
i�j−k+1

pi

( )
+ qj−k+1

( )
[Sjk](t) + qj−k+1[Sjk+1](t), k � 1, : : : ,M− 1, (42a)

and4

d
dt

[SjM](t) � −∑M
i�1

pi

( )
[SjM](t), (42b)

subject to the initial conditions

[Sjk](0) � 1, k � 1, : : : ,M: (42c)

Proof. See Appendix I. w

Equations (42) for {[Sjk](t)}Mk�1 are decoupled from those for {[Sik](t)}Mk�1 for i≠ j. This allows us to solve them
explicitly for anyM and thus to obtain the fractional adoption on a one-sided heterogeneous circle:

Theorem 5. Consider the heterogeneous discrete Bass model (41) on the one-sided circle. Then

f 1-sidedcircle (t) � 1 − 1
M

∑M
j�1

[Sj1](t), [Sj1](t) �
∑M
k�1

cjkv
j
k(1)eλ

j
kt, (43)

where3

λ
j
k �

− ∑j
i�j−k+1

pi

( )
− qj−k+1, k � 1, : : : ,M − 1,

−∑M
i�1

pi, k � M,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (44a)

vjk(1) �

1, k � 1,∏j
m�j−k+2

−qm∑m−1
i�j−k+1pi

( )
+ qj−k+1 − qm

, k � 2, : : : ,M − 1,

∏j
m�j−M+2

−qm∑m−1
i�j−M+1pi

( )
− qm

, k � M,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(44b)
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c jM � 1, and for k �M− 1, : : : , 1,

cjk � 1− ∏j+1−k
m�j+1−(M−1)

−qm∑m−1
i�j−M+1pi

( )
− qm

− ∑M−1

l�k+1

∏j−k+1
m�j−l+2

−qm∑m−1
i�j−l+1pi

( )
+ qj−l+1 − qm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠cjl: (44c)

Proof. See Appendix J. w

As expected, when M � 2, (43)–(44) reduce to (24); whenM � 3, it reduces to (25) with qj+1,j � qj+2,j+1 � 0.

6.2. Two-Sided Circle
Consider now a circle with M nodes where each node can be influenced by its left and right neighbors. Thus, if
|j− i|mod M≠ 1, then qi,j � 0 (Figure 1(b)). In this case, (5) reads

Prob(Xj(t+ dt) � 1) � 1, if Xj(t) � 1,

[pj + qj−1,jXj−1(t) + qj+1,jXj+1(t)]dt, if Xj(t) � 0:

{
(45)

Let (Sjm,n)(t) :� (Sj−m, : : : ,Sj, : : : ,Sj+n)(t) denote the event that the m+ n+ 1 nodes { j−m, : : : , j, : : : , j+ n} are all non-
adopters at time t (see Figure 1(b)), and let [Sjm,n](t;M) denote the probability of that event. We proceed to derive
the master equations for [Sj] � [Sj0,0]:
Lemma 12. Consider the heterogeneous discrete Bass model (45) on the two-sided circle. For any 1 ≤ j ≤M and any
0 ≤m+ n ≤M− 2, the master equations for {[Sjm,n]} are5

d
dt

[Sjm,n](t) � − ∑j+n
i�j−m

pi

( )
+ qj−m−1,j−m + qj+n+1,j+n

( )
[Sjm,n](t) + qj+n+1,j+n[Sjm,n+1](t)

+ qj−m−1,j−m[Sm+1,n](t), (46a)

and

d
dt

[SM](t) � −∑M
i�1

pi

( )
[SM](t), (46b)

subject to the initial condition

[Sjm,n](0) � 1, 0 ≤m+ n ≤M− 1, (46c)

where [SM](t) :� [SjM−1,0](t) � [SjM−2,1](t) �⋯� [Sj0,M−1](t).
Proof. See Appendix K. w

Remark 8. As in the one-sided case, the M(M−1)
2 + 1 equations for {[Sjm,n](t)}m,n are decoupled from those for

{[Sim,n](t)}m,n for i≠ j.

Theorem 6. Consider the heterogeneous discrete Bass Model (45) on the two-sided circle. Then

f 2-sidedcircle (t) � 1 − 1
M

∑M
j�1

[Sj0,0](t), (47)

where {[Sj0,0](t)}Mj�1 can be determined from (46).

Unlike the one-sided case, we have not found a way to explicitly solve for [Sj0,0](t) for a general M (see Appen-
dix L). We did, however, obtain explicit solutions of (46) for M � 2 and M � 3 (Appendix L). As expected, the
resulting expressions for f 2-sidedcircle identify with (24) and (25), respectively.

6.3. Comparison of One-Sided and Two-Sided Circles
Recall that on homogeneous circles, one-sided and two-sided diffusion are identical if q � qR + qL; see (16). To
extend this condition to the heterogeneous case, we interpret it as saying that the sum of the incoming qk,j into
each node is identical in both networks, that is,

q1-sidedj � q2-sidedj−1,j + q2-sidedj+1,j , j � 1, : : : ,M: (48)

Fibich and Golan: Diffusion with Heterogeneous Consumers
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In light of (16), is it true that in the heterogeneous case f 1-sidedcircle (t;p, {qj}) ≡ f 2-sidedcircle (t; ,p, {qj61,j}) when (48) holds?

WhenM � 2, heterogeneous one-sided and two-sided circles are by definition identical, and so f 1-sidedcircle ≡ f 2-sidedcircle .
WhenM > 2 however, this is no longer the case:

Lemma 13. Consider a one-sided and a two-sided heterogeneous circles with M ≥ 3 nodes, for which (48) holds. Then
f 1-sidedcircle (t) can be (globally in-time) larger or smaller than f 2-sidedcircle (t).
Proof. Consider the followingM � 3 circles with p1 � p and p2 � p3 � 0.

1. Let q1,3 � q3,1 � q and q2,3 � q3,2 � q2,1 � q1,2 � 0 (Figure 6). By (48), in the one-sided case q3 � q1 � q and q2 � 0.
Hence, node 1 adopts at the same rate in both networks, node 2 adopts in neither case, and node 3 only adopts in
the two-sided circle. Therefore, f 2-sidedcircle (t) is larger than f 1-sidedcircle (t) for all t.

2. Let q2,3 � q3,2 � q and q1,3 � q3,1 � q2,1 � q1,2 � 0 (Figure 7). By (48), in the one-sided case q3 � q2 � q and q1 � 0.
Hence, node 1 adopts at the same rate in both cases, but nodes 2 and 3 only adopt in the one-sided case. Therefore,
f 1-sidedcircle (t) is larger than f 2-sidedcircle (t) for all t. w

Intuitively, the overall impact of an edge depends not only on its own weight but also on the node that it origi-
nates from. Thus, generally speaking, an edge that originates from a node with pi � 0 has a weaker effect than an
equal-weight edge that originates from a node with pi > 0. Hence, one can utilize this insight to construct net-
works for which f 1-sidedcircle (t) is higher or lower than f 2-sidedcircle (t).

7. D-Dimensional Homogeneous Cartesian Networks
Let fD(t;p,q) denote the fraction of adopters on the infinite D-dimensional Cartesian homogeneous network, where
nodes are labeled by their D-dimensional coordinate vector i � (i1, : : : , iD),

pi ≡ p, qi,j �
q
2D

, if ‖i− j‖1 � 1,

0, otherwise,
i, j ∈ Z

D,
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (49)

and ‖i− j‖1 :�∑D
k�1 |ik − jk |. Thus, each node can be influenced by its 2D nearest neighbors at the rate of q

2D. See,
for example, Figure 8 forM � 2.

Figure 6. Heterogeneous networks that satisfy (48) for which f 2-sidedcircle (t) > f 1-sidedcircle (t). (a) Two-sided network. (b) One-sided
network.

(a) (b)

Figure 7. Same as Figure 6 with heterogeneous networks for which f 2-sidedcircle (t) < f 1-sidedcircle (t).
(a) (b)
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In Fibich and Gibori [10], the authors conjectured that for any p,q > 0,

f1D(t;p,q) < f2D(t;p,q) <⋯< fBass(t;p,q), 0 < t < ∞:

So far, this conjecture has remained open. We now prove this conjecture for the initial dynamics:

Lemma 14. Consider the D-dimensional Cartesian networks (49). Then

f1D(t;p,q) < f2D(t;p,q) < f3D(t;p,q) <⋯< fBass(t;p,q), 0 < t 1:

Proof. Because fBass(t;p,q) � limM→∞ f complete(t;p,q,M) (see Section 2.1), then by (31),

f ′Bass(0) � p, f ′′Bass(0) � p(q− p), f ′′′Bass(0) � lim
M→∞p p2 − 4pq+M− 3

M− 1
q2

( )
� p(p2 − 4pq+ q2):

In Appendix M, we show that for any dimension D,

f ′D(0) � p, f ′′D (0) � p(q− p), f ′′′D (0) � p p2 − 4pq+D− 1
D

q2
( )

: (50)

Therefore, the result follows. w

8. Distribution of Heterogeneity
When the network is not complete, the effect of heterogeneity on f (t) depends also on the relative locations of the
heterogeneous nodes in the network. To illustrate this, let A be a one-sided circle with M nodes that is homoge-
neous in q and heterogeneous in p, so that

qAi � q, pAi �
p1, 1 ≤ i ≤M

2
,

p2,
M
2

< i ≤M,
i � 1, : : : ,M:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (51)

Let B be a one-sided circle withM nodes that are homogeneous in q and heterogeneous in p, so that

qBi � q, pBi � p1, i odd,
p2, i even, i � 1, : : : ,M:

{
(52)

Thus, A and B have exactly the same heterogeneous nodes {(pi,qi)}Mi�1, but their relative locations along the circle
are different.

We can explicitly compute the aggregate adoptions in A and B as M→ ∞:

Figure 8. An infinite two-dimensional homogeneous Cartesian network. Each node has external influence of p and is influenced
by its four nearest-neighbors at internal influence rates of q4.
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Lemma 15. Consider the one-sided circles (51) and (52). Then

lim
M→∞ f hetA (t) � f1D(t; p1, q) + f1D(t; p2, q)

2
, (53)

where f1D is given by (18), and

lim
M→∞ f hetB (t) � 1− 1

2q
e−qt(V1

: (t) +U1
: (t)), (54a)

where U1 and V1 are the solution of

U1
: (t) � qe−p1tV1(t), U1(0) � 1,

V1
: (t) � qe−p2tU1(t), V1(0) � 1: (54b)

Proof. See Appendix N. w

Figure 9, (a) and (b) confirms the results of Lemma 15 numerically. In addition, Figure 9(c) shows that

lim
M→∞ f hetA (t; p1, p2, q) < lim

M→∞ f hetB (t; p1, p2, q), 0 < t < ∞:

Therefore, in particular, the effect of heterogeneity depends also on the locations of the heterogeneous nodes
along the circle. The intuition behind this inequality is as follows. Assume without loss of generality that p1 > p2.
In both networks, the diffusion is limited by the rate at which the “weak” p2 nodes adopt the product. In circle A,
there is negligible interaction between the separate regions of the weak and strong nodes, and so the weak p2
nodes adopt the product without any assistance from the p1 nodes. In circle B, however, whenever a strong p1
node adopts, it immediately exerts an internal influence on its adjacent weak node to adopt. Hence, the weak
nodes adopt the product more quickly and so the aggregate diffusion is faster.

We can further consider the one-sided circles A, B, and C with qA,B,Ci ≡ q and

pAi �

p1, 1 ≤ i <
M
3
,

p2,
M
3

≤ i <
2M
3

,

p3,
2M
3

≤ i ≤M,

pBi �
p1, i mod 3 � 1,

p2, i mod 3 � 2,

p3, i mod 3 � 0,

pCi �
p1, i mod 3 � 1,

p3, i mod 3 � 2,

p2, i mod 3 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where p1 > p2 > p3. Following the previous arguments, we expect that the diffusion in circle A (three separate uni-
form regions) is slower than in circles B and C (alternating patterns). Moreover, the diffusion in C is faster than

Figure 9. (a) Fraction of adopters fA as a function of time in circleAwithM � 1,000, p1 � 0:4, p2 � 0:1, and q � 0.2. Solid line is
the explicit expression (53) and dashed line is the average of 104 simulations of (41). The two curves are nearly indistinguishable.
(b) Same for fB. Solid line is the explicit expression (54). (c) Comparison of fA (dashes) and fB (solid).
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in B, because the weakest p3 nodes are directly influenced by the strongest p1 nodes. Figure 10 confirms these
predictions numerically.

This naturally leads to the following question: For a given network structure, what is the optimal distribution
of {pi} that maximizes the diffusion? Based on the above arguments, the weak nodes should be close to strong
ones. A systematic study of this intriguing optimization problem, however, is left for a future study.

9. Level of Heterogeneity
Until now, we considered a dichotomous distinction of heterogeneity versus homogeneity. We now briefly con-
sider the quantitative effect of varying the level of heterogeneity on f hom(t) − f het(t). We consider vertex-transitive
networks, that is, networks that are structured exactly the same about any node (e.g., circles, infinite
D-dimensional Cartesian networks, complete networks).

Lemma 16 (Fibich [8], Fibich et al. [9]). Let ε > 0 and hj,p, hj,q ∈ R for j � 1, : : : ,Msuch that
∑M

j�1 hj,p � 0 and
∑M

j�1 hj,q � 0.
Consider a vertex-transitive network withM nodes that is heterogeneous in p and mildly heterogeneous in q (see (9)), that is,

pj(ε) � p(1+ εhj,p), qj(ε) � q(1+ εhj,q), j � 1, : : : ,M:

Then, for ε 1,

f het(ε) :� f het(t; {pj(ε)}, {qj(ε)})

� f hom(t;p,q) + ε2

2

∑M
i�1

∑M
j�1

(p2hi,phj,pai,j + 2pqhi,phj,qbi,j + q2hi,qhj,qci,j) +O(ε3), (55)

where

ai,j :� ∂2f het

∂pi∂pj
|ε�0, bi,j :� ∂2f het

∂pi∂qj
|ε�0, ci,j :� ∂2f het

∂qi∂qj
|ε�0:

Proof. The proof is similar to Fibich [8] and Fibich et al. [9], except that here we prove the smoothness of f het

using the novel master Equations (19). By (22), f het(t) is a linear combination of {[Sk](t)}. Because {[Sk](t)} are sol-
utions of the master Equations (19), which are linear constant-coefficient ODEs, they depend smoothly on
{pj} and {qi,j}, and so f het depends smoothly on ε. Furthermore, because the network is vertex transitive,
f (t; {pj}, {qj}) is weakly symmetric, that is, f (t; {(p, : : : ,p) + η1ei}, {(q, : : : ,q) + η2ei}) does not depend on 1 ≤ i ≤M
for any p,q,η1,η2, where ei is the unit vector in the i th coordinate. Therefore, by the averaging principle (Fibich

et al. [9]), ∂f∂ε ≡ 0, and so relation (55) holds. w

Lemma 16 shows that the effect of heterogeneity increases smoothly and monotonically with the variance in
{pj} and {qj}, at least for a weak heterogeneity. The effects of the variances of {pj} and {qj}, however; are O(ε2) small,
that is, are much smaller than the effects of their means. These conclusions also hold for any network structure for t 1

Figure 10. Comparison of fA (dash-dot), fB (dashes), and fC (solid), whereM � 900, p1 � 0:5, p2 � 0:2, p3 � 0:01, and q � 0.2.
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(Appendix G) andwere observed numerically in Fibich [8], Fibich et al. [9], Fibich and Gibori [10], and Goldenberg
et al. [13].

For example, consider a complete network that is mildly heterogeneous in q. Then f het − f hom < 0 by Theorem 3,
and so a higher variance leads to slower diffusion (Figure 11(a)). This slowdown effect, however, is quite small
and barely noticeable for ε � 25%. The O(ε2) effect of heterogeneity holds not only for very small values of ε but
rather for 0 ≤ ε ≤ 50% (Figure 11(b)). Therefore, although Lemma 16 is formally stated for small values of ε, in
practice it holds for larger values of ε.
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Appendix A. Proof of Lemma 2
Let (Sm1 , : : : ,Smn , Il)(t) denote the event that at time t, nodes {m1, : : : ,mn} are nonadopters and node lj is an adopter, where
1 ≤ n <M, mi ∈ {1, : : : ,M}, mi ≠mj if i≠ j, and lj ∉ {m1, : : : ,mn}. Let [Sm1 , : : : ,Smn , Ilj ](t) denote the probability that such an
event occurs.

The configuration (Sm1 , : : : ,Smn ) cannot be created. It is destroyed when
1. Any of n nonadopters adopts the product through external influence, which happens at rate pmi for them

th
i nonadopter.

2. Any of the n nonadopters in (Sm1 , : : : ,Smn , Ilj ) adopts because of external influence by node lj for all n+ 1 ≤ j ≤M, which
happens at rate qlj ,mi .

Therefore,

d
dt

[Sm1 , : : : , Smn ](t) � − ∑n
i�1

pmi

( )
[Sm1 , : : : , Smn ](t) − ∑M

j�n+1

∑n
i�1

qlj,mi

( )
[Sm1 , : : : , Smn , Ilj ](t):

By the total probability theorem,

[Sm1 , : : : , Smn , Ilj ](t) � [Sm1 , : : : , Smn ](t) − [Sm1 , : : : , Smn , Slj ](t):
Combining these two relations gives (19a).

The configuration (S1,S2, : : : ,SM) cannot be created. It is destroyed when any of the “S”s turns into an “I,” which hap-
pens at the rate pi for the ith node, hence, giving (19b).

The initial conditions (19c) follow from (4).

Appendix B. Derivation of Equation (21) for [Sk](t)
Substituting (20) in (19a) with n �M− 1 and l1 � {1, : : : ,M}\{m1, : : : ,mM−1} gives

d
dt

[Sm1 , : : : ,SmM−1 ](t) � − ∑M−1

i�1
(pmi + ql1,mi )

( )
[Sm1 , : : : ,SmM−1 ](t) + ∑M−1

i�1
ql1,mi

( )
e−(∑M

j�1 pj)t:

The solution of this ODE with the initial condition (19c) is

[Sm1 , : : : , SmM−1 ](t) � c0e−(∑M
j�1 pj)t + c1e−(∑M−1

i�1 (pmi+ql1,mi ))t,

Figure 11. (a) Fractional adoption in a complete homogeneous (solid) and mildly heterogeneous in q networks with ε � 25%
(dashes) and ε � 50% (dash-dot). Plots show the average of 10,000 simulations with M � 1,000, p � 0.01, q � 0.4, and where
{hj,q} are generated by a standard normal distribution. (b) f het(t � 15;ε) as a function of ε (solid). The fitted parabola is P2(ε) �
0:9122− 0:3616ε2 (dashes).
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where c0 �
∑M−1

i�1 ql1,mi∑M−1
i�1 ql1,mi−pl1

and c1 � − pl1∑M−1
i�1 ql1,mi−pl1

. As this process is repeated for n �M− 2,M− 3, : : : , 1, at each stage we

solve an ODE of the form

y′ + ay �∑
j
cje−bj t, a :�∑n

i�1
pmi +

∑M
j�n+1

∑n
i�1

qlj ,mi :

The solution of this ODE is of the form y � c0e−at +∑j c̃je−bj t: Thus, y is a linear combination of all the “old” right-hand-
side exponents plus the new exponent e−at. Therefore, for n � 1 and m1 � k we get (21).

Appendix C. Proof of Corollary 1
When p is homogeneous and q is mildly heterogeneous, the master Equation (19a) reads

d
dt
[Sm1 , : : : ,Smn ](t) � − np+M− n

M− 1

∑n
i�1

qmi

( )
[Sm1 , : : : ,Smn ](t) + ∑M

j�n+1

∑n
i�1

qmi

M− 1

( )
[Sm1 , : : : ,Smn ,Slj ](t), (C.1)

Substituting n � 1 in (C.1) and differentiating gives

d2

dt2
[Sm1 ](t) � −(p+ qm1 )[Sm1 ](t) +∑M

j�2

qm1

M− 1
[Sm1 ,Smj ](t): (C.2)

Substituting [Sm1 ]′(0) � −p and [Sm1,l]′(0) � −2p (see (28)) gives

d2

dt2
[Si](0) � (p+ qi)(p) − (2p)qi � p(p− qi): (C.3a)

Similarly,

d2

dt2
[Si, Sj](0) � 2p +M − 2

M − 1
(qi + qj)

( )
(2p) − (3p)(M − 2) qi

M − 1
+ qj
M − 1

( )
� p 4p −M − 2

M − 1
(qi + qj)

( )
: (C.3b)

Differentiating (C.2) and using Equations (C3.a,b) gives

d3

dt3
[Si](0) � −(p + qi)p(p − qi) + qi

M − 1

∑M
j�1, j≠i

p 4p −M − 2
M − 1

(qi + qj)
( )

,

and so we get the desired result by (22).

Appendix D. Proof of Theorem 1
Inequalities (33) imply that for every i, there is a probability space (Ω′

i ,P
′
i ) and two random variables t′iAω′

i ) and t′iB(ω′
i )

that satisfy

FtAi (τ) � Ft′iA (τ), 1 ≤ i ≤M, τ ≥ 0,

FtBi (τ) � Ft′i B (τ), 1 ≤ i ≤M, τ ≥ 0, (D.1a)

and also the pointwise dominance condition

t′i
A(ω′

i ) ≥ t′i
B(ω′

i ), ∀i, ∀ω′
i ∈Ω′

i , t′i
A(ω′

i ) > t′i
B(ω′

i ) ∀ω′
i ∈Ω′

i : (D.1b)

For example, let 0 ≤ ω′
i ≤ 1, let P′

i be the Lebesgue measure of Ω′
i � [0, 1], and let t′iA � F−1

tAi
. Then

Ft′iA (t) � Prob t′i
A ω′

i
( ) ≤ t

( )
� μ 0 ≤ ω′

i ≤ (t′iA)−1(t)
( )

� μ 0 ≤ ω′
i ≤ FtAi (t)

( )
� FtAi (t),

which gives (D.1a). In addition, because FtAi (t) ≤ FtBi (t), then t′iA � F−1
tAi

≥ F−1
tBi

� t′iB, and because FtAj (t) < FtBj (t), then t′jA > t′jB.

Therefore, we have (D.1b). By (D.1b), T′
m
A(ω′) ≥ T′

m
B(ω′) for all m and ω′ and, furthermore, T′

k
A(ω′) > T′

k
B(ω′) for j ≤ k ≤M.

Hence, for 0 < t <∞,

Prob(T′
m
A ≤ t) ≤ Prob(T′

m
B ≤ t), 1 ≤ k ≤ j− 1,

Prob(T′
k
A ≤ t) < Prob(T′

k
B ≤ t), j ≤ k ≤M:

{
(D.2)

Because Prob(NA(t) ≥m) �∑M
k�m Prob(NA(t) � k), then∑M

m�1
Prob(NA(t) ≥m) �∑M

k�1
k ·Prob(NA(t) � k) � E[NA(t)]: (D.3)

Fibich and Golan: Diffusion with Heterogeneous Consumers
Mathematics of Operations Research, 2023, vol. 48, no. 1, pp. 257–287, © 2022 INFORMS 277

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

32
.6

6.
40

.5
0]

 o
n 

20
 S

ep
te

m
be

r 2
02

3,
 a

t 0
1:

13
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Therefore,

Eω′ [N′
A(t)] �

∑M
m�1

Prob(N′
A(t) ≥ m) � ∑M

m�1
Prob(T′

m
A ≤ t) < ∑M

m�1
Prob(T′B

m ≤ t) � Eω′ [N′
B(t)], (D.4)

where the inequality follows from (D.2). Because the (tAi )’s are independent, then so are the (t′iA)’s. Therefore, because
tAi and t′iA are identically distributed (see (D.1a)), then

Prob(TA
m ≤ t) � Prob(T′

m
A ≤ t) ∀m, ∀t:

By (32), this equality can be rewritten as

Prob(NA(t) ≥ m) � Prob(N′
A(t) ≥ m), ∀m, ∀t: (D.5)

Therefore, by (D.5) and (D.3),

Eω[NA(t)] � Eω′ [N′
A(t)], t ≥ 0:

Similarly,

Eω[NB(t)] � Eω′ [N′
B(t)], t ≥ 0:

The result follows from (D.4) and the last two relations.

Appendix E. Proof of Lemma 4
We first recall an auxiliary lemma:

Lemma E.1 (Fibich et al. [12, lemma E.1.]). Let σ(t) be the solution of

d
dt
σ(t) +Kσ(t) � b(t), t > 0, σ(0) � 0,

where K is a constant, and b(t) > 0 for t > 0. Then σ(t) > 0 for t > 0.

To prove Lemma 4, let δ :� p1 − p � −(p2 − p) > 0. By (22),

f hom(t) − f het(t) � ([S1]het(t) + [S2]het(t)) − ([S1]hom(t) + [S2]hom(t))
2

: (E.1)

Because for both networks p1 + p2 � 2p, then by (20),

[S1,S2]het(t) � [S1,S2]hom(t) � [S2](t), [S2](t) :� 1− e−2pt:

By (23a),
d
dt

[Si]het(t) � −(pi + q)[Si]het(t) + q[S2](t), (E.2)

and so
d
dt

([S1]het + [S2]het)(t) � −(p + δ + q)[S1]het(t) + q[S2](t) − (p − δ + q)[S2]het(t) + q[S2](t), (E.3)

and

d
dt

([S1]hom + [S2]hom)(t) � 2
d
dt

[S1]hom(t) � 2(−(p + q)[S1]hom(t) + q[S2](t)): (E.4)

Let y(t) :� ([S1]het(t) + [S2]het(t)) − ([S1]hom(t) + [S2]hom(t)) � 2( f hom(t) − f het(t)), see (E.1). We need to prove that y(t) > 0 for
0 < t < ∞. By (E.3) and (E.4),

d
dt
y(t) � −(p+ q)y(t) − δ[S1]het(t) + δ[S2]het(t), y(0) � 0:

Therefore, by Lemma E.1, it suffices to show that

−δ([S1]het(t) − [S2]het(t)) > 0: (E.5)

By (E.2)

d
dt

[S1]het − d
dt

[S2]het
( )

(t) + (p + q)([S1]het − [S2]het)(t) � −δ([S1]het + [S2]het)(t):

Applying Lemma E.1 to this ODE gives that [S1]het(t) < [S2]het(t) for t > 0, hence (E.5) holds.

Appendix F. CDF Dominance Condition
We begin with two auxiliary lemmas.
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Lemma F.1. Assume that the time tj at which j adopts is exponentially distributed with parameter λj, where j � 1 : J. Then

Prob
i adopts before

all others

( )
� λi∑J

j�1λj
: (F.1)

Proof.

Prob
i adopts before

all others

( )
�
∫ ∞

0
f (i adopts at t) ∏J

j�1, j≠i

∫ ∞

t
f ( j adopts at τj) dτj

( )
dt

�
∫ ∞

0
λie−λi t

∏J
j�1, j≠i

∫ ∞

t
λje−λjτj dτj

( )
dt �

∫ ∞

0
λie−λi t

∏J
j�1, j≠i

e−λj t dt

�
∫ ∞

0
λie

−(∑J
j�1 λj)t dt � λi∑J

j�1λj

: w

Lemma F.2. Let a � 1
n
∑n

i�1 ai and wi � g(ai), where g is monotonically increasing and
∑n

i�1wi � 1. Then
∑n

i�1wiai ≥ a:

Proof. Without loss of generality, a1 ≤ a2 ≤⋯≤ an. Therefore, from the monotonicity of g, w1 ≤ w2 ≤ : : : ≤ wn. Hence, one
can apply the Chebyshev sum inequality

1
n

∑n
i�1

aiwi ≥ 1
n

∑n
i�1

ai

( )
1
n

∑n
i�1

wi

( )
� a
n
: w (F.2)

We now prove the CDF dominance condition:

Proof of Lemma 5. The time thom1 until the first adoption in the homogeneous network is exponentially distributed with
parameter Mp. Therefore, the corresponding CDF is

Fhom1 (t) :� Prob(thom1 ≤ t) � 1− e−Mpt:

Similarly, the time thet1 until the first adoption in the heterogeneous network is exponentially distributed with parameter∑M
i�1 pi. Therefore, the corresponding CDF is

Fhet1 (t) :� Prob(thet1 ≤ t) � 1− e
−
(∑M
i�1

pi
)
t
:

Hence, by definition of p,

Fhom1 (t) � Fhet1 (t):
In the homogeneous case, the time thom2 between the first and second adoptions is exponentially distributed with parame-

ter (M− 1) p+ q
M−1

( )
� (M− 1)p+ q. Therefore, the corresponding CDF is

Fhom2 (t) :� Prob(thom2 ≤ t) � 1− e−((M−1)p+q)t:

In the heterogeneous case, let wk denote the probability that the first adopter was k. In that case, the time between the

first and second adoptions is exponentially distributed with parameter
∑M

i�1,i≠k pi + qi
M−1

( )
�Mp− pk +Mq−qk

M−1 , and so the corre-

sponding conditional CDF is

F2,k(t) :� Prob(thom2 ≤ t|1st adopter was k) � 1− e− Mp−pk+Mq−qk
M−1

( )
t:

Therefore, the overall CDF for t2 is

Fhet2 (t) �∑M
k�1

Prob(thom2 ≤ t|1st adopter was k) ·Prob(1st adopter was k)

�∑M
k�1

wkF2,k(t) �
∑M
k�1

wk 1− e− (M−1)p+Mq−qk
M−1

( )
t

( )
< 1− e−

∑M
k�1wk (Mp− pk+Mq−qk

M−1
( )

t,

where the last inequality follows from the strict concavity (Gλλ < 0) of the function G � 1− e−λt when 0 < t <∞.
By (F.1),

wk � pk∑M
j�1pi

� pk
Mp

: (F.3)
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Therefore, wk is monotonically increasing in pk; so by Lemma F.2,∑M
k�1

wkpk ≥ 1
M

∑M
k�1

pk � p: (F.4)

Hence, because G � 1− e−λt is monotonically increasing in λ,

Fhet2 (t) < 1− e−((M−1)p+q)t � Fhom2 (t), 0 < t <∞:

In the homogeneous case, the time t3 between the second and third adoptions is exponentially distributed with parame-

ter (M− 2) p+ 2q
M−1

( )
. Therefore, the corresponding CDF is given by

Fhom3 (t) :� Prob(thom3 ≤ t) � 1− e− (M−2)p+2qM−2
M−1( )t: (F.5)

In the heterogeneous case, let wk,m denote the probability that the first and second adopters were k and m, respectively.
In that case, the time between the second and third adoptions is exponentially distributed with parameter

∑M
i�1,i≠k,m

pi + 2 qi
M−1

( )
�Mp− pk − pm + 2Mq−qk−qm

M−1 , and so the corresponding conditional CDF is F3,k,m(t) � 1− e− Mp−pk−pm+2Mq−qk−qm
M−1

( )
t. There-

fore, the overall CDF for thet3 is

Fhet3 (t) � ∑M
k,m�1
m≠k

wk,mF3,k,m(t) �
∑M
k,m�1
m≠k

wk,m 1− e− Mp−pk−pm+2Mq−qk−qm
M−1

( )
t

( )

< 1− e
−∑M

k,m�1
m≠k

wk,m (Mp−pk−pm+2Mq−qk−qm
M−1

( )
t

, (F.6)

where the last inequality follows from the strict concavity of G � 1− e−λt when 0 < t < ∞. By (F.1),

wk,m � wk ·Prob(2nd adopter is m | 1st adopter was k) � pk
Mp

pm + qm
M−1

Mp− pk +Mq−qk
M−1

( )
:

In addition,

∑M
k,m�1
m≠k

wk,m pk + 2qk
M − 1

( )
� ∑M

k�1
wk pk + 2qk

M − 1

( ) ∑M
m�1,m≠k

Prob(2nd adopter is m | 1st adopter was k)︸"""""""""""""""""""""""""""""""︷︷"""""""""""""""""""""""""""""""︸
�1

� p + 2
q

M − 1

( )
,

and ∑M
k,m�1
m≠k

wk,m pm + 2qm
M − 1

( )
� ∑M

k�1

pk
Mp

∑M
m�1,m≠k

pm + qm
M−1

Mp − pk + Mq−qk
M−1

pm + 2qm
M − 1

( )

≥ ∑M
k�1

1
M

∑M
m�1,m≠k

pm + qm
M−1

(M − 1)p + Mq−q
M−1

pm + 2qm
M − 1

( )

≥ ∑M
k�1

1
M

∑M
m�1,m≠k

p + q
M−1

(M − 1)p + Mq−q
M−1

p + 2q
M − 1

( )
� p + 2q

M − 1

( )
,

where the two inequalities follow from Lemma F.2. Therefore,∑M
k,m�1
m≠k

wk,m pk + pm + 2
qk + qm
M − 1

( )
≥ 2p + 4

q
M − 1

:

Hence, because G � 1− e−λt is monotonically increasing in λ, then using (F.5) and (F.6),

Fhet3 (t) < 1− e− (M−2)p+2qM−2
M−1( )t � Fhom3 (t), 0 < t < ∞:

Proceeding similarly, one can show that (36) also holds for k � 4, : : : ,M. w

Proof of Lemma 6. We need to prove that for any m ∈ {2, : : : ,M}, tm ∈ {thetm , thomm }, and {τ1, : : : ,τm} ∈ (R+)m,

Prob(tm ≤ τm) � Prob(tm ≤ τm |t1 ≤ τ1, : : : , tm−1 ≤ τm−1):

Fibich and Golan: Diffusion with Heterogeneous Consumers
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In the homogeneous case, the random variable thomm and the conditional random variable thomm |(thom1 ≤ τ1, : : : , thomm−1 ≤ τm−1)
are both exponentially distributed with parameter (M− (m− 1)) p+ (m− 1) q)

M−1
( )

. Hence,

Prob(thomm ≤ τm) � 1− e− (M−(m−1))p+(m−1)qM−(m−1)
M−1( )t � Prob(thomm ≤ τm |thom1 ≤ τ1, : : : , thomm−1 ≤ τm−1):

In the heterogeneous case, to simplify the calculations, we present the proof for m � 2, that is,

Prob(thet2 ≤ t) � Prob(thet2 ≤ t|thet1 ≤ τ1): (F.7)

The proof for the other cases is identical. Recall that

Prob(thet2 ≤ t) � ∑M
k�1

Prob(thet2 ≤ t|1st adopter was k) · Prob(1st adopter was k):

Therefore,

Prob(thet2 ≤ t|thet1 ≤ τ1) �
∑M
k�1

Prob(thet2 ≤ t|1st adopter was k, thet1 ≤ τ1) · Prob(1st adopter was k|thet1 ≤ τ1):

The conditional random variables thet2 |(1st adopter was k) and thet2 |(1st adopter was k, thet1 ≤ τ1) are both exponentially dis-
tributed with parameter (Mp− pk + q). Therefore,

Prob(thet2 ≤ t|1st adopter was k) � Prob(thet2 ≤ t|1st adopter was k, thet1 ≤ τ1)
In addition, by (F.3), Prob(1st adopter was k) � wk � pk∑M

j�1 pi
is independent of thet1 , and so

Prob(1st adopter was k) � Prob(1st adopter was k|thet1 ≤ τ1):
Therefore, we proved (F.7). w

Appendix G. Small-Time Analysis
Many results in this paper can be easily proven for t 1 using the explicit expressions for f ′(0), f ′′(0), and f ′′′(0) in
Section 3.2:

• Theorem 2:
By (26), when the network is heterogeneous in p and homogeneous in q, then

( f het)′(0) � 1
M

∑M
i�1

pi, ( f het)′′(0) � 1
M

∑M
i�1

pi(q− pi) � q
M

∑M
i�1

pi − 1
M

∑M
i�1

p2i ,

By (31), ( f hom)′(0) � p and ( f hom)′′(0) � qp− p2. Therefore, under the conditions of Theorem 26,

( f het)′(0) � ( f hom)′(0), ( f hom)′′(0) − ( f het)′′(0) � Var{p1, : : : ,pm} > 0:

Hence, f het(t) < f hom(t) for 0 < t 1.
• Theorem 3:

Under the conditions of Theorem 3, by (29) and (31), f ′(0) � p and f ′′(0) � p(q− p), both for the heterogeneous and homogeneous

networks. Furthermore, by (30) and (31), ( f het)′′′(0) � p3 + pq M(M−2)
(M−1)2 q− 4p
( )

− (2M−3)
M(M−1)2 p

∑M
i�1 q2i and ( f hom)′′′(0) � p3 + pq M(M−2)

(M−1)2 q− 4p
( )

−
(2M−3)
(M−1)2 pq

2: Therefore, ( f hom)′′′(0) − ( f het)′′′(0) � p (2M−3)
(M−1)2 Var q1, : : : ,qM

{ }
> 0. Hence, f het(t) < f hom(t) for 0 < t 1.

• Theorem 4:
Under the conditions of Theorem 4, by (26) and (31), ( f het)′(0) � 1

M
∑M

i�1 pi � p � ( f hom)′(0): By the Chebyshev sum inequality (see
(F.2)), because {pi} and {qi} are positively correlated, then

∑M
i�1 piqi ≥ 1

M
∑M

j�1 qj
∑M

i�1 pi ; so by (27),

( f het)′′(0) ≤ 1
M(M− 1)

∑M
j�1

qj
∑M
i�1

pi − 1
M

∑M
j�1

qj
∑M
i�1

pi

[ ]
− 1
M

∑M
i�1

p2i � pq− 1
M

∑M
i�1

p2i :

Therefore, because ( f hom)′′(0) � pq− p2 (see (31)), then ( f hom)′′(0) − ( f het)′′(0) ≥ Var{p1, : : : ,pm} > 0. Hence, f het(t) <
f hom(t) for 0 < t 1.

• Lemma 7:
By (26) and (31), ( f het)′(0) � ( f hom)′(0) � p. By (26) and (31), ( f het)′′(0) � 2p(q− p), and ( f hom)′′(0) � p(q− p): Therefore, the differ-
ence ( f het)′′(0) − ( f hom)′′(0) � p(q− p) is positive if q > p and negative if q < p, which implies Lemma 7 for 0 < t 1.
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• Level of heterogeneity (Section 9):
By Lemma 3 and Corollary 1, f ′(0) only depends on the mean of p, whereas f ′′(0) depends also on the variance of p. Similarly,
f ′′(0) only depends on the mean of q, whereas f ′′′(0) depends also on the variance of q. Hence, the effects of the variances are
much smaller than those of the parameters themselves.

Appendix H. Proof of Lemma 7
First, assume that p≠ q. By Equation (24),

f hom(t) � 1− p
p− q

( )
e−(p+q)t + q

p− q

( )
e−2pt: (H.1)

We cannot use (24) to obtain f het(t) because b1 � q2,1
p2−q2,1 � 0

0. Therefore, we solve (23) directly. By (20), [S1,S2](t) � e−2pt: By
(23a) and (19c),

d
dt

[S1](t) � −2p[S1](t), [S1](0) � 1,

d
dt

[S2](t) � −2q[S2](t) + 2qe−2pt, [S2](0) � 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Therefore,

[S1](t) � e−2pt, [S2](t) � q
q − p

e−2pt − p
q − p

e−2qt,

and so, by (22),

f het(t) � 1 − 2q − p
2(q − p) e

−2pt + p
2(q − p) e

−2qt: (H.2)

Hence,

g(t) :� f het(t) − f hom(t) � p
q − p

1
2
(e−2pt + e−2qt) − e−(p+q)t

( )
: (H.3)

For any strictly convex function (f ′′ > 0), we have that

f
x1 + x2

2

( )
<
1
2
( f (x1) + f (x2)): (H.4)

Because f � eat is convex, Equations (H.3) and (H.4) give that g(t) > 0 if q > p and g(t) < 0 if q < p. By continuity,
g(t) ≡ 0 if p � q.

Appendix I. Proof of Lemma 11
By (19a), for 1 ≤ n ≤M− 1,

d
dt

[Sjk](t) �
d
dt

[Sj−k+1,Sj−k+2, : : : ,Sj](t)

� − ∑j
i�j−k+1

pi

( )
+ ∑M

l�1
l∉{j− k+ 1, j− k+ 2, : : : , j}

∑j
i�j−k+1

ql,i

( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠[Sj−k+1,Sj−k+2, : : : ,Sj](t)

+ ∑M
l � 1

l∉{j− k+ 1, j− k+ 2, : : : , j}

∑j
i�j−k+1

ql,i

( )
[Sj−k+1,Sj−k+2, : : : ,Sj,Sl](t):

Because the network is a one-sided circle, ql,i ≠ 0 only if (i− l)mod M � 1. The only nonzero ql,i in the sum is qj−k,j−k+1
because i ∈ {j− k+ 1, j− k+ 2, : : : , j} and l ∉ {j− k+ 1, j− k+ 2, : : : , j}. Equations (42b) and (42c) follow directly from (19b) and
(19c), respectively.

Appendix J. Proof of Theorem 5
We can rewrite (42) as a system of M linear constant-coefficient ODEs

[Sj]
:

� Aj[Sj], (J.1a)
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where

[Sj] �

[Sj1](t)
[Sj2](t)

⋮

(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, [Sj]

:

�

[Sj1]
:

(t)

[Sj2]
:

(t)
⋮

[SjM]
:

(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:

and Aj is the bidiagonal matrix whose two nonzero diagonals are

a1,1
a2,2
⋮

ak,k
⋮

aM,M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

−pj − qj
−pj−1 − pj − qj−1

⋮

− ∑j
i�j−k+1

pi

( )
− qj−k+1

⋮

−∑M
i�1

pi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

a1,2
a2,3
⋮

ak−1,k
⋮

aM−1,M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

qj
qj−1
⋮

qj−k+1
⋮

qj−M+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

together with the initial condition

[Sj]|t�0 �
1
⋮
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠: (J.1b)

Lemma J.1. The solution of (J.1a,b) is

[Sj] � ∑M
k�1

cjkv
j
ke

λ
j
kt, (J.2)

where λj
k is given by (44a), cjk is given by (44c), and

vjk(n) �

∏j−n+1
m�j−k+2

−qm
(∑m−1

i�j−k+1pi) + qj−k+1 − qm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, if n ≤ k− 1, k � 1, : : : ,M− 1,

∏j−n+1
m�j−M+2

−qm
(∑m−1

i�j−M+1pi) − qm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, if n ≤M− 1, k �M,

1, if n � k,

0, otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Proof. The eigenvalues of Aj are its diagonal elements {λj

k}Mk�1. Hence, we can solve for their corresponding eigenvectors

{vjk}Mk�1. The coefficients {cjk}Mk�1 are determined from (J.2) and (J.1b), which gives
∑M

k�1 c
j
kv

j
k �

1
⋮
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠: w

Because Prob(Xj(t) � 0) � [Sj1](t), the expected fraction of adopters is given by (43).

Appendix K. Proof of Lemma 12
By (19a), for q ≤ n ≤M− 1,

d
dt

[Sjm,n](t) �
d
dt

[Sj−m, : : : ,Sj, : : : ,Sj+n](t) �

− ∑j+n
i�j−m

pi

( )
+ ∑M

l�1
l∉{j−m, : : : , j, : : : , j+ n}

∑n
i�1

ql,i

( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠[Sj−m, : : : ,Sj, : : : ,Sj+n](t)

+ ∑M
l � 1

l∉{j−m, : : : , j, : : : , j+ n}

∑j+n
i�j−m

ql,i

( )
[Sj−m, : : : ,Sj, : : : ,Sj+n,Sl](t):
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Because this network is a two-sided circle, ql,i ≠ 0 only if |i− l|mod M � 1. Because i ∈ {j−m, : : : , j, : : : , j+ n} and
l ∉ {j−m, : : : , j, : : : , j+ n}, the only non-zero ql,i are qj−m−1,j−m and qj+n+1,j+n. Equations (46b) and (46c) follow directly from
(19b) and (19c), respectively.

Appendix L. [Sj
0,0] in the Two-Sided Case

Equation (46) can be written as the system of M(M−1)
2 + 1 linear constant-coefficient ODEs

[Sj]
:

� Aj[Sj], (L.1a)

where

[Sj] �

[Sj0,0](t)
[Sj0,1](t)
[Sj1,0](t)
[Sj0,2](t)
[Sj1,1](t)
[Sj2,0](t)
[Sj0,3](t)

⋮

[SjM−2,0](t)
[SjM](t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, [Sj]
:

�

[Sj0,0]
:

(t)

[Sj0,1]
:

(t)

[Sj1,0]
:

(t)

[Sj0,2]
:

(t)

[Sj1,1]
:

(t)

[Sj2,0]
:

(t)

[Sj0,3]
:

(t)
⋮

[SjM−2,0]
:

(t)

[SjM]
:

(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,Aj �

a1 qj+1,j qj−1,j 0 : : : : : : : : : : : : 0

0 a2 0 qj+2,j+1 qj−1,j 0 ⋱ ⋱ ⋱

0 0 a3 0 qj+1,j qj−2,j−1 0 ⋱ ⋱

⋮ ⋱ 0 ⋱ : : : ⋱ ⋱ ⋱ 0

⋮ ⋱ 0 ⋱ a4 : : : qj+b+1,j+b qj−a−1,j−a 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ a5

0 ⋱ ⋱ : : : : : : : : : 0 0 −∑M
i�1

pi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

a1 � −pj − qj−1,j − qj+1,j, a2 � −pj − pj+1 − qj−1,j − qj+2,j+1, a3 � −pj−1 − pj − qj−2,j−1 − qj+1,j,

a4 � −∑j+b
i�j−a

pi

( )
− qj−a−1,j−a − qj+b+1,j+b, a5 � qj−M+1,j−M+2 + qj+1,j,

together with the initial conditions

[Sj]|t�0 �
1
⋮
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠: (L.1b)

The eigenvalues of Aj are its diagonal elements

λ
j
a,b � −∑j+b

i�j−a
pi

( )
− qj−a−1,j−a − qj+b+1,j+b, a,b � 0,1, : : : ,M− 2, a+ b ≤M− 2,

and λM � −∑M
i�1 pi.

We have not yet found a way to explicitly solve for the eigenvectors of Aj for a general M. Under the assumption that
all eigenvalues are unique, for M � 2, the two eigenvectors are

vj
0,0 � 1

0

( )
, vj

2 � − qj−1,j
pj−1 − qj−1,j

1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠:
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When M � 3, the four eigenvectors are

vj
0,0 �

1

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, vj

0,1 �

− qj+1,j
pj+1 + qj+2,j+1 − qj+1,j

1

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, vj
1,0 �

− qj−1,j
pj−1 + qj−2,j−1 − qj−1,j

0

1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

vj
3 �

qj+1,j
qj−1,j + qj+2,j+1

pj−1 − qj−1,j − qj+2,j+1

( )
+ qj−1,j

qj−2,j−1 + qj+1,j
pj+1 − qj−2,j−1 − qj+1,j

( )
pj+1 + pj−1 − qj−1,j − qj+1,j

− qj−1,j + qj+2,j+1
pj−1 − qj−1,j − qj+2,j+1

− qj−2,j−1 + qj+1,j
pj+1 − qj−2,j−1 − qj+1,j

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:

After solving for the eigenvectors of Aj, we get that

[Sj] � ∑
a+b≤M−1

a,b∈{0, : : : ,M−2}
cja,bv

j
a,be

λ
j
a,bt, (L.2)

where (ca,b,va,b,λa,b) � (cM,vM,λM) when a+ b �M− 1, and the coefficients cja,b are determined by (L.2) and (L.1b):

∑
a+b≤M−1

a,b∈{0, : : : ,M−2}
cja,bv

j
a,b �

1
⋮
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠:

Appendix M. Proof of Equation (50)
The equations for f ′D(0) and f ′′D (0) follow from (29) by letting M→ ∞. In order to derive f ′′′D (0), we first note that because
each node is connected to its 2D neighbors, then by (19a) and (49),

d
dt

[Si](t) � − p+∑2D
j�1

q
2D

( )
[Si](t) +∑D

j�1

q
2D

[Si,Si+ej ](t) +∑D
j�1

q
2D

[Si,Si−ej ](t),

where ej(i) is the unit vector in the j th coordinate. By translational invariance, [Si] and [Si,Si6ej ] are independent of i, ej,
and 6, and so

d
dt

[Si](t) � −(p+ q)[Si](t) + q[S2](t): (M.1)

Let (S−
3 )(t) denote the event that any configuration in which three adjacent nonadopters are colinear appears at time t, for

example, (Si,Si+ej ,Si+2ej )(t), and let (SL3)(t) denote the event that any configuration in which three adjacent nonadopters
form an L-shape appears at time t, for example, (Si,Si+ej ,Si+ej+ek )(t), where j≠ k. Let [S−

3 ](t) and [SL3](t) denote the proba-
bilities of these events, respectively. By translational invariance, [S−

3 ](t) is the same for any such configuration and simi-
larly for [SL3](t). Therefore, by (19a) and (49),

d
dt

[S2](t) � − 2p+ 2
q
2D

( )
+ (4D− 4) q

2D

( )( )
[S2](t) + 2

q
2D

( )
[S−

3 ](t) + (4D− 4) q
2D

( )
[SL3](t), (M.2)

because each node in the configuration (S2) is potentially influenced by 2D− 1 nodes, 2D− 2 of which form an L-shape
when added to (S2), and one of which forms a line. Differentiating (M.1) and using (19c) and (28) gives

d2

dt2
[S](0) � −(p+ q)[S]′(0) + q[S2]′(0) � p(p− q): (M.3a)

Furthermore, by (M.2),

d2

dt2
[S2](0) � 2p + (4D − 2) q

2D

( )( )
(2p) − (4D − 2) q

2D

( )
(3p) � p 4p − 2D − 1

D
q

( )
: (M.3b)
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Therefore, differentiating (M.1) twice and substituting in the right hand sides of Equations (M.3a,b) gives

d3

dt3
[S1](0) � − p + 2D

q
2D

( )( )
p(p − q) + (2D) q

2D

( )
p 4p − 2D − 1

D
q

( )
� −p p2 − 4pq +D − 1

D
q2

( )
,

and so we get the desired result.

Appendix N. Proof of Lemma 15
For any finite t, nodes whose distance from the interface between p1 and p2 is� qt only “see” a homogeneous environ-
ment. Therefore, as M→ ∞, the interaction between nodes with different pi values becomes negligible, and so

f hetA (t) ~
f 1-sidedline t;p1,q, M2

( )
+ f 1-sidedline t;p2,q, M2

( )
2

:

Because limM→∞ f 1-sidedline (t;p,q,M) � limM→∞ f 1-sidedcircle (t;p,q,M) (see Fibich et al. [12]) and limM→∞ f 1-sidedcircle (t;p,q,M) � f1D(t;p,q)
(see (18)), result (53) for fA follows.

In circle B, as M→ ∞, by translation symmetry, [Sik](t) ≡ [Si+2k ](t) for any i and k. Therefore,

f hetB (t) � 1− [S11](t) + [S21](t)
2

:

Let p :� p1+p2
2 . By (42a),

[S1k]
:

(t) � −((k− 1)p+ p1 + q)[S1k](t) + q[S1k+1](t), kodd,

−(kp+ q)[S1k](t) + q[S1k+1](t), keven,

{
where [S1k](0) � 1 for all k. The substitution

[S1k](t) �
e−(k−1)ptT1(t), kodd,

e−kptR1(t), keven,

{
reduces this infinite system of ODEs to the two coupled ODEs

R1
: (t) � −qR1(t) + qT1(t), R1(0) � 1,

T1
: (t) � −(p1 + q)T1(t) + qe−2ptR1(t), T1(0) � 1:

Furthermore, the substitutions R1(t) � e−qtU1(t) and T1(t) � e−(p1+q)tV1(t) yield system (54b) for U1(t) and V1(t), and so

[S11](t) � T1(t) � e−(p1+q)tV1(t) � 1
q
e−qt U1

: (t):

Repeating this procedure for the infinite system {[S2k](t)}k yields [S21](t) � 1
q e

−qt U2

: (t), where U2(t) is the solution of

U2
: (t) � qe−p2tV2(t), V2

: (t) � qe−p1tU2(t) U2(0) � V2(0) � 1:

Comparing this system with (54b) shows that V1(t) ≡U2(t), and so [S21](t) � 1
q e

−qt V1

: (t): Hence,

fB(t) � 1− 1
2
([S11](t) + [S21](t)) � 1− 1

2q
e−qt(V1

: (t) +U1
: (t)):

Endnotes
1 This is the case, for example, for homogeneous Cartesian networks, see Equation (49) in Section 7.
2 One motivation for asking this question is given in Section 4.1.
3 Here we use the conventions of Remark 1.
4 Note that (SjM)(t) � (SM)(t) is independent of j.
5 Here we also use the conventions of Remark 1.
6 Recall that 1

M
∑M

i�1 x2i −E[X]2 � 1
M
∑M

i�1 (xi −E[X])2 �Var(X).
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