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A B S T R A C T 

We analyze the Bass and SI models for the spreading of innovations and epidemics, respectively, on homogeneous complete networks, on one-dimensional networks, 
and on heterogeneous two-groups complete networks. We allow the network parameters to be time dependent, which is a prerequisite for the analysis of optimal 
promotional strategies on networks. Using a novel top-down analysis of the master equations, we present a simple proof for the monotone convergence of these 
models to their respective infinite-population limits. This leads to explicit expressions for the expected adoption or infection level in the Bass and SI models with 
time-dependent parameters on infinite homogeneous complete and circular networks, and on heterogeneous two-groups complete networks.

1. Introduction

Spreading processes on networks have attracted the attention of re

searchers in physics, mathematics, biology, computer science, social sci

ences, economics, and management science, as it concerns the spreading 
of ``items'' ranging from diseases and computer viruses to rumors, infor

mation, opinions, technologies, and innovations [1,18]. In this study, we 
focus on two prominent network models: The Bass model for the adop

tion of innovations [16,25] and the Susceptible-Infected (SI) model for 
the spread of epidemics [20]. These models were originally formulated 
as compartmental models, in which the population is divided into two 
compartments: adopters/infected and nonadopters/susceptible [3,4]. In 
recent years, research has shifted to studying these models on networks.

In the Bass and SI models on networks, the adoption/infection event 
by each node is stochastic. Since a direct analysis of stochastic particle 
models is hard, there has been a considerable research effort to rigor

ously derive a deterministic ODE for the macroscopic behavior of the 
expected adoption/infection level as a function of time. Niu [23] derived 
the ODE for the infinite-population limit of the Bass model on homo

geneous complete networks. The approach in [23], however, does not 
extend to other types of networks. Fibich and Gibori obtained an ex

plicit expression for the expected adoption level in the Bass model on 
infinite circles [7]. They did not prove rigorously, however, that this 
expression is the limit of the Bass model on circles with 𝑀 nodes as 
𝑀 →∞. In [10], Fibich et al. rigorously derived the infinite-population 
limit of the Bass model on homogeneous complete networks, on hetero

geneous complete networks with 𝐾 groups, and on circular networks, 
and also the rate of convergence for these three cases. We are not aware 
of similar convergence results for the SI model on networks.

The common theme of the above studies has been to derive an ex

plicit expression for the expected adoption/infection level as a function 
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of time, and use it to analyze the effect of the network structure and 
parameters. We note, however, that another important application of 
the Bass and SI models has been to compute optimal strategies that in

fluence the spreading process in a desired fashion. For example, one 
can use the Bass model to compute optimal promotional campaigns that 
maximize the profit [14,17]. So far, this optimal-control problem has 
only been analyzed in the context of the compartmental Bass model, 
which implicitly assume that the social network is a complete homoge

neous network. Similarly, the compartmental SI model has been used to 
compute optimal government restrictions that minimize disease spread 
while keeping the economy healthy [2].

To apply the machinery of optimal-control theory to stochastic 
spreading on networks, one first needs to derive deterministic ODEs 
for the macroscopic dynamics. Moreover, if one wants to allow for 
time-dependent optimal strategies, the network parameters should be 
time-dependent. In this paper, we present the first rigorous derivation of 
ODEs for the expected adoption/infection level in the Bass and SI models on 
infinite networks with time-varying parameters. These ODEs, in turn, are 
used in a companion study [8] to compute and analyze optimal promo

tional strategies in the Bass model on infinite networks.

To the best of our knowledge, this paper presents the first derivation 
of the infinite-population limit of the Bass model on networks with time

varying parameters, and of the SI model on networks, with and without 
time-varying parameters. From a methodological point of view, this pa

per presents a unified treatment of the Bass and SI models on networks 
and introduces a novel ``top-down'' analysis of the (bottom-up) master equa

tions, where one proves the monotonicity property at the ``top'' level of 
the master equation for the whole population, and then proves that this 
property remains valid as the number of nodes is reduced one at a time, 
until reaching the desired ``bottom'' level of the master equation for a 
single node.
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Once established, we can use the monotonicity property to obtain 
explicit lower and upper bounds for the expected adoption level on finite 
networks. Moreover, the monotonicity leads to pointwise convergence, 
which together with the dominated convergence theorem, proves the 
convergence of the expected adoption/infection level as the population 
becomes infinite. This convergence proof is much simpler than the one 
in [10] for networks with time-independent parameters that used space

time estimates. In addition, extending the proof in [10] to time-varying 
parameters is not as straightforward. As noted, this is a prerequisite for 
optimal-control applications on networks.

A frequently-used alternative approach to analyzing epidemiological 
models on networks and approximating them numerically is the mean

field approximation [20,24]. The advantage of the meanfield approach 
is that it yields relatively simple equations, whose solutions are there

fore amenable to analysis and numerical computation. However, the 
accuracy of the meanfield approximation has been questioned [15,22]. 
Recent results [19] show that it only yields a good approximation of 
the underlying stochastic dynamics when the number of nodes is large 
and the harmonic mean of the degrees of the nodes is small, which es

sentially means the network is dense. A related approach is to close the 
master equations at the level of pairs [20]. This approach is exact on 
loopless networks [21,26]. In that case, however, the dynamics is gov

erned by several ODEs, unlike our approach where it is governed by a 
single ODE. Moreover, in the case of network with cycles, this closure is 
not exact, and its accuracy is not clear. Finally, we note that the method

ology and results of this study have the potential to be extended to other 
types of networks (Cartesian, random, . . . ), to hypernetworks [12], and 
to other types of spreading models (SIS, SIR, Bass-SIR, etc.) [20,5,6].

To our knowledge, this is the first paper that highlights the role 
played by the monotonicity with respect to the network size. Although 
we only consider three network types, the monotonicity property seems 
to extend far more broadly. Indeed, in Appendix A we show that the 
expected adoption/infection level increases monotonically with 𝑀 in 𝑑

dimensional Cartesian networks, 𝑑-regular networks, and Erdős-Rényi 
networks. How to exploit the monotonicity property on these and other 
networks, however, is a matter of future research.

2. Bass/SI model on networks

The Bass model describes the adoption of new products or innova

tions within a population. In this framework, all individuals start as 
non-adopters and can transition to becoming adopters due to two types 
of influences: external factors, such as exposure to mass media, and in

ternal factors where individuals are influenced by their peers who have 
already adopted the product. The SI model is used to study the spreading 
of infectious diseases within a population. In this model, some individu

als are initially infected (the ``patient zero'' cases), all subsequent infec

tions occur through internal influences, whereby infected individuals 
transmit the disease to their susceptible peers, and infected individu

als remain contagious indefinitely. In both models, once an individual 
becomes an adopter/infected, it remains so at all later times. In particu

lar, she or he remain ``contagious'' forever. The difference between the 
SI model and the Bass model is the lack of external influences in the for

mer, and the lack of initial adopters in the latter. It is convenient to unify 
these two models into a single model, the Bass/SI model on networks, 
as follows. Consider 𝑀 individuals, denoted by  ∶= {1,… ,𝑀}. We 
denote by 𝑋𝑗 (𝑡) the state of individual 𝑗 at time 𝑡, so that

𝑋𝑗 (𝑡) =

{
1, if 𝑗 is adopter∕infected at time 𝑡,
0, otherwise,

𝑗 ∈.

The initial conditions at 𝑡 = 0 are stochastic, so that

𝑋𝑗 (0) =𝑋0
𝑗
∈ {0,1}, 𝑗 ∈, (2.1a)

where

ℙ(𝑋0
𝑗
= 1) = 𝐼0

𝑗
, ℙ(𝑋0

𝑗
= 0) = 1 − 𝐼0

𝑗
, 𝐼0

𝑗
∈ [0,1], 𝑗 ∈, (2.1b)

and

the random variables {𝑋0
𝑗
}𝑗∈ are independent. (2.1c)

Deterministic initial conditions are a special case where 𝐼0
𝑗
∈ {0,1}.

So long that 𝑗 is a nonadopter/susceptible, its adoption/infection 
rate at time 𝑡 is

𝜆𝑗 (𝑡) = 𝑝𝑗 (𝑡) +
∑
𝑘∈

𝑞𝑘,𝑗 (𝑡)𝑋𝑘(𝑡), 𝑗 ∈. (2.1d)

Here, 𝑝𝑗 (𝑡) is the rate of external influences on 𝑗, and 𝑞𝑘,𝑗 (𝑡) is the rate 
of internal influences by 𝑘 on 𝑗 at time 𝑡, provided that 𝑘 is already an 
adopter/infected. Once 𝑗 becomes an adopter/infected, it remains so at 
all later times.1 Hence, as Δ𝑡→ 0,

ℙ(𝑋𝑗 (𝑡+Δ𝑡) = 1 ∣𝐗(𝑡)) =
{

𝜆𝑗 (𝑡) Δ𝑡, if 𝑋𝑗 (𝑡) = 0,
1, if 𝑋𝑗 (𝑡) = 1,

𝑗 ∈, (2.1e)

where 𝐗(𝑡) ∶= {𝑋𝑗 (𝑡)}𝑗∈ is the state of the network at time 𝑡, and

the random variables {𝑋𝑗 (𝑡+Δ𝑡) ∣𝐗(𝑡)}𝑗∈ are independent. (2.1f)

In the Bass model there are no adopters when the product is first intro

duced into the market, and so 𝐼0
𝑗
≡ 0. In the SI model there are only 

internal influences for 𝑡 > 0, and so 𝑝𝑗 (𝑡) ≡ 0. The quantity of most in

terest is the expected adoption (infection) level 𝑓 (𝑡) ∶= 1 
𝑀

∑𝑀

𝑗=1 𝑓𝑗 (𝑡), 
where 𝑓𝑗 ∶= 𝔼[𝑋𝑗 ] in the adoption/infection probability of node 𝑗.

3. Bass and SI models on complete networks

Consider a complete homogeneous network where everyone is con

nected to each other, all the nodes have the same initial condition, and 
all the nodes and all the edges have the same weights. Thus,2

𝐼0
𝑗
≡ 𝐼0, 𝑝𝑗 (𝑡) ≡ 𝑝(𝑡), 𝑞𝑘,𝑗 (𝑡) ≡ 𝑞(𝑡) 

𝑀 − 1
1𝑘≠𝑗 , 𝑘, 𝑗 ∈.

(3.1a)

Hence, the adoption rate of each of the nonadopting nodes is, see (2.1d),

𝜆complete(𝑡) ∶= 𝑝(𝑡) + 𝑞(𝑡) 
𝑀 − 1

𝑁(𝑡), 𝑁 ∶=
∑
𝑘∈

𝑋𝑘, (3.1b)

where 𝑁(𝑡) is the number of adopters/infected in the network. Note that 
we allow the weights to be time-dependent, which is essential for the 
analysis of time-dependent promotional strategies on networks [8]. We 
assume that the parameters satisfy

0 ≤ 𝐼0 < 1, 𝑞(𝑡) > 0, 𝑝(𝑡) ≥ 0, 𝐼0 + 𝑝(𝑡) > 0, 𝑡 > 0. (3.1c)

Furthermore, we assume that 𝑝(𝑡) and 𝑞(𝑡) are piecewise continuous. We 
denote the expected adoption/infection level in the Bass/SI model on 
the complete network (3.1) by 𝑓 complete(𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0,𝑀). Specifically, 
in the case of the Bass model,

𝐼0 = 0, 𝑞(𝑡) > 0, 𝑝(𝑡) > 0, 𝑡 > 0, (3.2)

and the expected adoption level is 𝑓 complete
Bass (⋅) ∶= 𝑓 complete(⋅, 𝐼0 = 0). In 

the case of the SI model,

0 < 𝐼0 < 1, 𝑞(𝑡) > 0, 𝑝(𝑡) ≡ 0, 𝑡 > 0, (3.3)

and expected infection level is 𝑓 complete
SI (⋅) ∶= 𝑓 complete(⋅, 𝑝 = 0).

1 I.e., the only admissible transition is 𝑋𝑗 = 0→𝑋𝑗 = 1.
2 The internal influences are normalized, so that the maximal internal influ

ence ∑𝑘∈ 𝑞𝑘,𝑗 (𝑡) is independent of 𝑀 .
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3.1. Monotone convergence of 𝑓 complete

Consider the Bass/SI model (2.1), (3.1) on a complete network. As 
the network size 𝑀 increases, each nonadopter can be influenced by 
more and more adopters, but the influence rate 𝑞𝑘,𝑗 =

𝑞(𝑡) 
𝑀−1 of each 

adopter decays. Therefore, a priori, it is not clear whether 𝑓 complete

should be monotonically decreasing or increasing in 𝑀 . The following 
lemma settles this issue:

Lemma 3.1. Let 𝑡 > 0. Then 𝑓 complete(𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0,𝑀) is monotonically 
increasing in 𝑀 .

Proof. See Appendix C.2. □

Using the monotonicity in 𝑀 , we can prove the convergence of 
𝑓 complete as 𝑀 →∞ and compute its limit:

Theorem 3.2. Consider the Bass/SI model (2.1), (3.1) on a complete net

work. Then

lim 
𝑀→∞

𝑓 complete(𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0,𝑀) = 𝑓 compart (𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0), (3.4)

where 𝑓 compart is the solution of the equation

𝑑𝑓

𝑑𝑡 
= (1 − 𝑓 )

(
𝑝(𝑡) + 𝑞(𝑡)𝑓

)
, 𝑓 (0) = 𝐼0. (3.5)

Proof. See Appendix C.3. □

From Lemma 3.1 and Theorem 3.2 we have

Corollary 3.3. 𝑓 complete monotonically converges to 𝑓 compart as 𝑀 →∞.

Real networks are finite, yet are often approximated with compart

mental models that correspond to 𝑀 →∞. If we did not know that the 
convergence is monotone, we would not know that 𝑓 compart is below 
𝑓 complete. Furthermore, we can use the monotonicity to obtain a lower 
bound for 𝑓 complete:

Corollary 3.4. Consider the Bass/SI model (2.1), (3.1) on a complete net

work. Then

1 − (1 − 𝐼0)𝑒− ∫ 𝑡
0 𝑝 𝑑𝑠 < 𝑓 complete(𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0,𝑀)

< 𝑓 compart (𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0), 𝑡 > 0, 𝑀 = 2,3,…
(3.6)

Proof. This follows from Lemma 3.1, eq. (B.3), and Theorem 3.2. □

3.2. Time-independent parameters

When 𝑝 and 𝑞 are independent of time and 𝐼0 = 0, we obtain from 
Theorem 3.2 the well-known compartmental limit

lim 
𝑀→∞

𝑓
complete
Bass (𝑡;𝑝, 𝑞,𝑀) = 𝑓

compart
Bass (𝑡;𝑝, 𝑞), 𝑓

compart
Bass ∶= 1 − 𝑒−(𝑝+𝑞)𝑡

1 + 𝑞

𝑝 𝑒
−(𝑝+𝑞)𝑡

,

(3.7)

where 𝑓 compart
Bass is the solution of the compartmental Bass model [3]

𝑓 ′(𝑡) = (1 − 𝑓 )(𝑝+ 𝑞𝑓 ), 𝑓 (0) = 0.

The monotone convergence of 𝑓 complete
Bass to 𝑓 compart

Bass is illustrated in Fig. 1.

Similarly, when 𝑝 = 0 and 𝑞 is independent of time, we obtain

lim 
𝑀→∞

𝑓
complete
SI (𝑡; 𝑞, 𝐼0,𝑀) = 𝑓

compart
SI (𝑡; 𝑞, 𝐼0), 

𝑓
compart
SI ∶= 1 

1 + ( 1 
𝐼0

− 1)𝑒−𝑞𝑡
,

(3.8)

where 𝑓 compart
SI is the solution of the compartmental SI model

𝑓 ′(𝑡) = 𝑞(1 − 𝑓 )𝑓, 𝑓 (0) = 𝐼0.

The monotone convergence of 𝑓 complete
SI to 𝑓 compart

SI is illustrated in 
Fig. F.5 in Appendix F.

The limit (3.7) was proved in [10,23]. To the best of our knowledge, 
this is the first rigorous derivation of the limit (3.8). Furthermore, this 
is the first proof that 𝑓 complete

Bass and 𝑓 complete
SI converge monotonically to 

their respective limits.

4. Bass and SI models on circles

Consider now the Bass and SI models on the circle, where each node 
can only be influenced by its left and right neighbors. We can allow peer 
effects to be anisotropic, so that the influence rates of the left and right 
neighbors are 𝑞L and 𝑞R, respectively. Thus,

𝐼0
𝑗
≡ 𝐼0, 𝑝𝑗 ≡ 𝑝(𝑡), 

𝑞𝑘,𝑗 ≡ 𝑞L(𝑡) 1(𝑗−𝑘) mod𝑀=1 + 𝑞R(𝑡) 1(𝑗−𝑘) mod𝑀=−1, 𝑘, 𝑗 ∈. (4.1a)

Hence, the adoption rate of 𝑗 is

𝜆circle
𝑗

(𝑡) ∶= 𝑝+ 𝑞L(𝑡)𝑋𝑗−1(𝑡) + 𝑞R(𝑡)𝑋𝑗+1(𝑡), (4.1b)

where 𝑋0 ∶=𝑋𝑀 and 𝑋𝑀+1 ∶=𝑋1. The model parameters satisfy

0 ≤ 𝐼0 < 1, 𝑞L(𝑡), 𝑞R(𝑡) ≥ 0, 𝑞L(𝑡) + 𝑞R(𝑡) > 0, 𝑝(𝑡) ≥ 0, 

𝐼0 + 𝑝(𝑡) > 0, 𝑡 > 0.
(4.1c)

Furthermore, we assume that 𝑝(𝑡), 𝑞L(𝑡), and 𝑞R(𝑡) are piecewise contin

uous. We denote the expected adoption/infection level in the Bass/SI 
model (2.1), (4.1) on the circle by 𝑓 circle(𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0,𝑀). Specifi

cally, we denote the expected adoption level in the Bass model by 
𝑓 circle
Bass (⋅) ∶= 𝑓 circle(⋅, 𝐼0 = 0), and the expected infection level in the 

SI model by 𝑓 circle
SI (⋅) ∶= 𝑓 circle(⋅, 𝑝 = 0).

4.1. Monotone convergence of 𝑓 circle

Consider the Bass/SI model (2.1), (4.1) on a circle. Both the results 
and proofs are very similar to the complete network.

Lemma 4.1. Let 𝑡 > 0. Then 𝑓 circle(𝑡;𝑝, 𝑞, 𝐼0,𝑀) is monotonically increas

ing in 𝑀 .

Proof. See Appendix D. □

Using the monotonicity in 𝑀 , we can prove the convergence of 
𝑓 circle as 𝑀 →∞ and compute its limit:

Theorem 4.2. Consider the Bass/SI model (2.1), (4.1) on the circle. Then

lim 
𝑀→∞

𝑓 circle(𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0,𝑀) = 𝑓 1D(𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0), (4.2a)

where 𝑓 1D, the expected level of adoption/infection for the Bass/SI model on 
the one-dimensional lattice with nearest-neighbor interactions, is the solution 
of

𝑑𝑓

𝑑𝑡 
= (1 − 𝑓 )

(
𝑝(𝑡) + 𝑞(𝑡)

(
1 − (1 − 𝐼0)𝑒− ∫ 𝑡

0 𝑝(𝜏))), 𝑓 (0) = 𝐼0. (4.2b)

Proof. See Appendix D. □
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Fig. 1. Monotone convergence of 𝑓 complete
Bass (dashes) to 𝑓 compart

Bass (solid). Here 𝑞
𝑝 = 10, 𝐼0 = 0, and 𝑀 = 2,10,30,200. 

Fig. 2. Monotone convergence of 𝑓 circle
Bass (dashes) to 𝑓 1D

Bass (solid). Here 𝑞
𝑝 = 10, 

𝐼0 = 0, and 𝑀 = 2,4,8,16.

From Lemma 4.1 and Theorem 4.2 we have

Corollary 4.3. 𝑓 circle monotonically converges to 𝑓 1D as 𝑀 →∞.

Proof. This follows from Lemma 4.1 and Theorem 4.2. □

We can also use the monotonicity to obtain lower and upper bounds 
for 𝑓 circle:

Corollary 4.4. Consider the Bass/SI model (2.1), (4.1) on the circle. Then

1 − (1 − 𝐼0)𝑒− ∫ 𝑡
0 𝑝 𝑑𝑠 < 𝑓 circle(𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0,𝑀) < 𝑓 1D(𝑡;𝑝(𝑡), 𝑞(𝑡), 𝐼0),

𝑡 > 0, 𝑀 = 2,3,… , (4.3)

where 𝑓 1D is the solution of (4.2b).

Proof. This follows from Lemma 4.1, eq. (B.3), and Theorem 4.2. □

4.2. Time-independent parameters

When 𝑝 and 𝑞 are independent of time, we obtain from Theorem 4.2

the explicit limits

lim 
𝑀→∞

𝑓 circle
Bass (𝑡;𝑝, 𝑞,𝑀) = 𝑓 1D

Bass(𝑡;𝑝, 𝑞), 𝑓 1D
Bass ∶= 1 − 𝑒

−(𝑝+𝑞)𝑡+𝑞 1−𝑒−𝑝𝑡
𝑝 ,

and

lim 
𝑀→∞

𝑓 circle
SI (𝑡; 𝑞, 𝐼0,𝑀) = 𝑓 1D

SI (𝑡; 𝑞, 𝐼
0), 𝑓 1D

SI ∶= 1 − (1 − 𝐼0)𝑒−𝑞𝐼0𝑡.

The former limit was first derived in [7] and rigorously justified in [10], 
the latter limit is new. The monotone convergence of 𝑓 circle

Bass to 𝑓 1D
Bass is 

illustrated in Fig. 2, and of 𝑓 circle
SI to 𝑓 1D

SI in Fig. F.6.

Fig. 3. Monotone convergence of 𝑓 2−groups
Bass (dashes) to 𝑓 compart−het

Bass (solid). 
Here 𝑞1

𝑝1
= 𝑞2

𝑝2
= 10, 𝑝2 = 2𝑝1, 𝐼0 = 0, and 𝑀 = 2,8,20,80.

5. Heterogeneous complete networks with two groups

Consider now the Bass/SI model on a heterogeneous complete net

work with two groups, each of size 𝑀 . The parameters for node 𝑘𝑛 in 
group 𝑘 are3

𝐼0
𝑘𝑛

≡ 𝐼0
𝑘
, 𝑝𝑘𝑛

(𝑡) ≡ 𝑝𝑘(𝑡), 𝑞𝑚,𝑘𝑛
(𝑡) ≡ 𝑞𝑘(𝑡)

2𝑀 
, 

𝑚 ∈, 𝑛 = 1,… ,𝑀, 𝑘 = 1,2,

where  ∶= {1,… ,2𝑀}. Hence, the adoption rate of a node in group 
𝑘 is

𝜆𝑘(𝑡) = 𝑝𝑘(𝑡) +
𝑞𝑘(𝑡)
2𝑀 

2𝑀 ∑
𝑖=1 

𝑋𝑖(𝑡), 𝑘 = 1,2. (5.1a)

The model parameters satisfy

0 ≤ 𝐼0
𝑘
< 1, 𝑞𝑘(𝑡) > 0, 𝑝𝑘(𝑡) ≥ 0, 𝐼0

𝑘
+ 𝑝𝑘(𝑡) > 0, 𝑡 > 0, 𝑘 = 1,2.

(5.1b)

Furthermore, we assume that 𝑝𝑘(𝑡) and 𝑞𝑘(𝑡) are piecewise continu

ous. We denote the expected adoption/infection level in the Bass/SI 
model (2.1), (5.1) on a complete network with two groups by 
𝑓 2−groups(𝑡;𝑝1(𝑡), 𝑝2(𝑡), 𝑞1(𝑡), 𝑞2(𝑡), 𝐼01 , 𝐼

0
2 ,2𝑀). Specifically, we denote 

the expected adoption level in the Bass model by 𝑓 2−groups
Bass (⋅) ∶=

𝑓 2−groups(⋅, 𝐼01 = 𝐼02 = 0), and the expected infection level in the SI model 
by 𝑓 2−groups

SI (⋅) ∶= 𝑓 2−groups(⋅, 𝑝1 = 𝑝2 = 0).

5.1. Monotone convergence of 𝑓 2−groups

We can show the monotone convergence of the Bass/SI model (2.1), 
(5.1) on a complete network with two groups. In this case, both the re

sults and proofs are very similar to the homogeneous complete network.

Lemma 5.1. Let 𝑡 > 0. Then 𝑓 2−groups(𝑡;𝑝1(𝑡), 𝑝2(𝑡), 𝑞1(𝑡), 𝑞2(𝑡), 𝐼01 , 𝐼
0
2 ,2𝑀)

is monotonically increasing in 𝑀 .

3 There is no normalization for which the maximal internal influence ∑
𝑚∈ 𝑞𝑚,𝑘𝑛 (𝑡) is independent of 𝑀 .
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Proof. See Appendix E. □

Using the monotonicity in 𝑀 , we can prove the convergence of 
𝑓 2−groups as 𝑀 →∞ and compute its limit:

Theorem 5.2. Consider the Bass/SI model (2.1), (5.1) on a complete net

work with two groups. Then

lim 
𝑀→∞

𝑓 2−groups(𝑡;𝑝1(𝑡), 𝑝2(𝑡), 𝑞1(𝑡), 𝑞2(𝑡), 𝐼01 , 𝐼
0
2 ,2𝑀) = 𝑓 compart−het(𝑡),

(5.2a)

where 𝑓 compart−het ∶= 𝑓1 + 𝑓2, and 𝑓1, 𝑓2 are the solutions of

𝑑𝑓𝑘

𝑑𝑡 
=
(1
2
− 𝑓𝑘

)(
𝑝𝑘(𝑡) + 𝑞𝑘(𝑡)

(
𝑓1 + 𝑓2

))
, 𝑓𝑘(0) =

𝐼0
𝑘

2 
, 𝑘 = 1,2.

(5.2b)

Here 0 ≤ 𝑓𝑘 ≤ 1
2 denotes the fraction of adopters from group 𝑖 in the popu

lation.

Proof. See Appendix E. □

From Lemma 5.1 and Theorem 5.2 we have

Corollary 5.3. 𝑓 2−groups monotonically converges to 𝑓 compart−het as 𝑀 →
∞.

Proof. This follows from Lemma 5.1 and Theorem 5.2. □

The monotone convergence of 𝑓 2−groups
Bass to 𝑓 compart−het

Bass is illustrated 
in Fig. 3, and of 𝑓 2−groups

SI to 𝑓 compart−het

SI in Fig. F.7.
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Appendix A. Monotone convergence on various sparse networks

This work proves the monotonicity of the adoption/infection level in 
𝑀 for three types of networks. The monotonicity property, however, is 
much more widespread. For example, in [11], it was shown analytically 
and numerically that the adoption level in the Bass model on bounded 
one-dimensional and multi-dimensional Cartesian domains is monotoni

cally increasing with 𝑀 . In Fig. A.4, we show numerically the monotone 
convergence of 𝑓 (𝑡;𝑀) on a two-dimensional toroidal domain where 
each node is connected to its four nearest neighbors, and in sparse 𝑑

regular and Erdős-Rényi networks [13].

Appendix B. Master equations

The key tool in the analysis of the Bass/SI model (2.1) are the master 
equations. Let ∅ ≠Ω ⊂ be a nontrivial subset of the nodes, let Ωc ∶=
 ⧵Ω, and let

𝑆Ω(𝑡) ∶= {𝑋𝑚(𝑡) = 0,  ∀𝑚 ∈Ω}, [𝑆Ω](𝑡) ∶= ℙ(𝑆Ω(𝑡)), (B.1)

denote the event that all nodes in Ω are nonadopters at time 𝑡, and 
the probability of this event, respectively. To simplify the notations, we 
introduce the notation

𝑆Ω1 ,Ω2
∶= 𝑆Ω1∪Ω2

, Ω1,Ω2 ⊂.

Thus, for example, 𝑆Ω,𝑘 ∶= 𝑆Ω∪{𝑘}. We also denote the sum of the exter

nal influences on the nodes in Ω and the sum of the internal influences 
by node 𝑘 on the nodes in Ω by

𝑝Ω(𝑡) ∶=
∑
𝑚∈Ω

𝑝𝑚(𝑡), 𝑞𝑘,Ω(𝑡) ∶=
∑
𝑚∈Ω

𝑞𝑘,𝑚(𝑡),

respectively.

Theorem B.1 ([9]). The master equations for the Bass/SI model (2.1) are

𝑑[𝑆Ω]
𝑑𝑡 

= −
(
𝑝Ω(𝑡) +

∑
𝑘∈Ωc

𝑞𝑘,Ω(𝑡)
)
[𝑆Ω] +

∑
𝑘∈Ωc

𝑞𝑘,Ω(𝑡) [𝑆Ω,𝑘], (B.2a)

subject to the initial conditions

[𝑆Ω](0) = [𝑆0
Ω], [𝑆0

Ω] ∶=
∏
𝑚∈Ω

(1 − 𝐼0
𝑚
), (B.2b)

for all ∅ ≠Ω ⊂.

For example, the solution of (B.2) for 𝑀 = 1 is

[𝑆](𝑡;𝑝(𝑡), 𝐼0,𝑀 = 1) = (1 − 𝐼0)𝑒− ∫ 𝑡
0 𝑝, 𝑡 ≥ 0. (B.3)

For 𝑀 > 1, if we can solve the 2𝑀 −1 equations (B.2), then we have 𝑓 (𝑡)
from 𝑓 (𝑡) = 1 

𝑀

∑𝑀

𝑗=1 𝑓𝑗 (𝑡), and 𝑓𝑗 = 1 − [𝑆𝑗 ]. As noted, we do not com

pute the {[𝑆𝑗 ]} using the simpler meanfield approach, since it may lead 
to approximate results whose accuracy is not always clear, especially on 
sparse networks.

Appendix C. Proof of Lemma 3.1 and Theorem 3.2

C.1. Reduced master equations

As noted, there are 2𝑀 − 1 master equations for {[𝑆Ω]}Ω⊂, see 
Theorem B.1. Because of the symmetry of the complete network (3.1), 
however, [𝑆Ω] only depends on the number of nodes in Ω, and not on 
the identity of the nodes in Ω. Therefore, we can denote by

[𝑆𝑛] ∶= [𝑆Ω ∣ |Ω| = 𝑛] (C.1)

the probability that for any given subset of 𝑛 nodes, all its nodes are 
nonadopters at time 𝑡. This substitution replaces the 2𝑀 − 1 master 

Fig. A.4. Monotone convergence of 𝑓 (𝑡;𝑀). A) Bass model on a 
√
𝑀 ×

√
𝑀 toroidal domain. B) SI model on a 3-regular network. C) SI model on a sparse Erdős-Rényi 

network.
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equations (B.2) for {[𝑆Ω]}Ω⊂ with a reduced system of 𝑀 equations 
for {[𝑆𝑛]}𝑀

𝑛=1:

Lemma C.1. The reduced master equations for the Bass/SI model (2.1), 
(3.1) on a complete network are

𝑑[𝑆𝑛]
𝑑𝑡 

= −𝑛
(
𝑝(𝑡) + 𝑞(𝑡)𝑀 − 𝑛 

𝑀 − 1

)
[𝑆𝑛] + 𝑛𝑞(𝑡)𝑀 − 𝑛 

𝑀 − 1
[𝑆𝑛+1],

𝑛 = 1,… ,𝑀 − 1, (C.2a)

𝑑[𝑆𝑀 ]
𝑑𝑡 

= −𝑀𝑝(𝑡)[𝑆𝑀 ], (C.2b)

subject to the initial conditions

[𝑆𝑛](0) = (1 − 𝐼0)𝑛, 𝑛 ∈. (C.2c)

Proof. This follows from the substitution of (3.1) and (C.1) in the mas

ter equations (B.2). □

C.2. Monotonicity of {[𝑆𝑛]} in 𝑀

Let us recall the following auxiliary result:

Lemma C.2. Let 𝛼(𝑡) ∶ℝ→ℝ be piecewise continuous, and let 𝑦(𝑡) satisfy 
the differential inequality

𝑑𝑦

𝑑𝑡 
+ 𝛼(𝑡)𝑦 > 0, 𝑡 > 0, 𝑦(0) = 0.

Then 𝑦(𝑡) > 0 for 𝑡 > 0.

Proof. Multiplying the differential inequality by the integrating factor 
𝑒∫ 𝑡

0 𝛼(𝑠) 𝑑𝑠 gives

𝑑

𝑑𝑡

(
𝑒∫ 𝑡

0 𝛼(𝑠) 𝑑𝑠𝑦
)
> 0.

Integrating between zero and 𝑡 and using the initial condition gives the 
result. □

We are now ready to prove Lemma 3.1:

Proof of Lemma 3.1. Let

𝑦𝑛(𝑡) ∶= [𝑆𝑛](𝑡;𝑀) − [𝑆𝑛](𝑡;𝑀 + 1), 𝑛 = 1,… ,𝑀, (C.3)

where [𝑆𝑛](𝑡;𝑀) is the solution of the master equations (C.2). Then

𝑑𝑦𝑀

𝑑𝑡 
+𝑀𝑝𝑦𝑀 = 𝑧𝑀 (𝑡), 𝑦𝑀 (0) = 0, (C.4a)

where

𝑧𝑀 ∶= 𝑞

(
[𝑆𝑀 ](𝑡;𝑀 + 1) − [𝑆𝑀+1](𝑡;𝑀 + 1)

)
. (C.4b)

Note that [𝑆𝑀 ](𝑡;𝑀 + 1) − [𝑆𝑀+1](𝑡;𝑀 + 1) = [𝐼𝑆𝑀 ](𝑡;𝑀 + 1) > 0, 
where [𝐼𝑆𝑀 ](𝑡,𝑀 +1) denotes the probability that exactly one of 𝑀 +
1 nodes is an adopter/infected. Hence 𝑧𝑀 (𝑡) > 0 for 𝑡 > 0. Therefore, 
applying Lemma C.2 to (C.4) shows that

𝑦𝑀 (𝑡) > 0, 𝑡 > 0. (C.5)

We can rewrite the master equations (C.2) for 𝑛 = 1,… ,𝑀 − 1 as

𝑑[𝑆𝑛]
𝑑𝑡 

(𝑡;𝑀) = −𝑛
(
𝑝+ 𝑞𝑛

𝑀

)
[𝑆𝑛](𝑡;𝑀) + 𝑛𝑞𝑛

𝑀
[𝑆𝑛+1](𝑡;𝑀),

[𝑆𝑛](0;𝑀) = 1, 𝑞𝑛
𝑀

∶= 𝑞
𝑀 − 𝑛 
𝑀 − 1

.

Similarly,

𝑑[𝑆𝑛]
𝑑𝑡 

(𝑡;𝑀 + 1) = −𝑛
(
𝑝+ 𝑞𝑛

𝑀+1
)
[𝑆𝑛](𝑡;𝑀 + 1)

+ 𝑛𝑞𝑛
𝑀+1[𝑆

𝑛+1](𝑡;𝑀 + 1), [𝑆𝑛](0;𝑀 + 1) = 1.

Taking the difference of these two equations gives

𝑑𝑦𝑛

𝑑𝑡 
+ 𝑛

(
𝑝+ 𝑞𝑛

𝑀+1
)
𝑦𝑛 = 𝑛𝑞𝑛

𝑀+1𝑦𝑛+1 + 𝑧𝑛(𝑡),

𝑦𝑛(0) = 0, 𝑛 = 1,… ,𝑀 − 1, (C.6a)

where

𝑧𝑛 = 𝑛(𝑞𝑛
𝑀

− 𝑞𝑛
𝑀+1)

(
− [𝑆𝑛](𝑡;𝑀) + [𝑆𝑛+1](𝑡;𝑀)

)
. (C.6b)

Since

𝑞𝑛
𝑀

− 𝑞𝑛
𝑀+1 = 𝑞

𝑀 − 𝑛 
𝑀 − 1

− 𝑞
𝑀 + 1 − 𝑛

𝑀
= 𝑞

1 − 𝑛 
(𝑀 − 1)𝑀

≤ 0,

and

−[𝑆𝑛] + [𝑆𝑛+1] = −[𝐼𝑆𝑛] < 0, 𝑡 > 0,

we have that 𝑧𝑛 ≥ 0 for 𝑡 > 0. Therefore, applying Lemma C.2 to (C.6)

shows that

𝑦𝑛+1(𝑡) > 0, 𝑡 > 0 ⇒ 𝑦𝑛(𝑡) > 0, 𝑡 > 0, 𝑛 = 1,… ,𝑀 − 1.

(C.7)

From relations (C.5) and (C.7) we get by reverse induction on 𝑛 that

𝑦𝑛(𝑡) > 0, 𝑛 ∈, (C.8)

i.e., that {[𝑆𝑛](𝑡;𝑀)}𝑛∈ are monotonically decreasing in 𝑀 . In par

ticular,

0 < 𝑦1(𝑡) = [𝑆](𝑡;𝑀) − [𝑆](𝑡;𝑀 + 1)

= 𝑓 complete(𝑡;𝑀 + 1) − 𝑓 complete(𝑡;𝑀). □

C.3. Convergence of 𝑓 complete

Next, we utilize the monotonicity of {[𝑆𝑛]} in 𝑀 to prove the con

vergence of 𝑓 complete:

Proof of Theorem 3.2. Consider the master equations (C.2). If we for

mally fix 𝑛 and let 𝑀 →∞, we get the ODE

𝑑[𝑆𝑛
∞]

𝑑𝑡 
= −𝑛(𝑝+ 𝑞)[𝑆𝑛

∞]+ 𝑛𝑞[𝑆𝑛+1
∞ ], [𝑆𝑛

∞](0) = (1 − 𝐼0)𝑛, 𝑛 ∈ ℕ.

(C.9)

This does not immediately imply that lim𝑀→∞[𝑆𝑛] = [𝑆𝑛
∞]. Indeed, this 

limit does not follow from the standard theorems for continuous depen

dence of solutions of ODEs on parameters, because the number of ODEs 
in (C.2) increases with 𝑀 , and becomes infinite in the limit, and also be

cause of the presence of the unbounded factor 𝑛 on the right-hand sides 
of (C.2) and (C.9). In Lemma C.3 below, however, we will rigorously 
prove that

lim 
𝑀→∞

[𝑆𝑛](𝑡;𝑀) = [𝑆𝑛
∞](𝑡), 𝑛 ∈ℕ. (C.10)

Therefore, we can proceed to solve the infinite system (C.9). The ansatz

[𝑆𝑛
∞] = [𝑆∞]𝑛, 𝑛 ∈ ℕ (C.11)

transforms the system (C.9) into

𝑛[𝑆∞]𝑛−1
𝑑[𝑆∞]
𝑑𝑡 

= −𝑛(𝑝+ 𝑞)[𝑆∞]𝑛 + 𝑛𝑞[𝑆∞]𝑛+1, [𝑆∞](0) = 1 − 𝐼0.

Dividing by 𝑛[𝑆∞]𝑛−1, we find that the infinite system reduces to the 
single ODE

𝑑

𝑑𝑡
[𝑆∞] = −(𝑝+ 𝑞) [𝑆∞] + 𝑞[𝑆∞]2, [𝑆∞](0) = 1 − 𝐼0. (C.12)

Let 𝑓 compart = 1 − [𝑆∞]. Then 𝑓 compart satisfies (3.5). The limit (3.4)

follows from (C.10) and (C.11) with 𝑛 = 1. □
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In the proof of Theorem 3.2 we used the following convergence re

sult:

Lemma C.3. For any 𝑛 ∈ ℕ and 𝑡 ≥ 0, the solution [𝑆𝑛](𝑡;𝑀) of equa

tions (C.2) converges monotonically as 𝑀 → ∞ to the solution [𝑆𝑛
∞](𝑡)

of (C.9).

Proof. Let 𝑛 ∈ ℕ and let 𝑀 ≥ 𝑛. Taking the integral of ODE (C.2a) for 
[𝑆𝑛] from zero to 𝑡 and using the initial condition (C.2c) gives

[𝑆𝑛](𝑡;𝑀) − 1 = −𝑛

𝑡 

∫
0 

(
𝑝(𝑠) + 𝑞(𝑠)𝑀 − 𝑛 

𝑀 − 1

)
[𝑆𝑛](𝑠;𝑀) 𝑑𝑠

+ 𝑛
𝑀 − 𝑛 
𝑀 − 1

𝑡 

∫
0 

𝑞(𝑠)[𝑆𝑛+1](𝑠;𝑀) 𝑑𝑠. (C.13)

Let us consider the limit of (C.13) as 𝑀 →∞. Since [𝑆𝑛](𝑡;𝑀) is mono

tonically decreasing in 𝑀 , see (C.3) and (C.8), and since [𝑆𝑛] ≥ 0
as a probability, this implies that [𝑆𝑛](𝑡;𝑀) converges pointwise as 
𝑀 →∞ to some limit [𝑆𝑛

∞](𝑡). Therefore, as 𝑀 →∞, the left-hand side 
of (C.13) converges to [𝑆𝑛

∞]− 1. In addition, since [𝑆𝑛] is a probability, 
0 ≤ [𝑆𝑛](𝑡;𝑀) ≤ 1, and so by the dominated convergence theorem, the 
integrals of [𝑆𝑛] and [𝑆𝑛+1] on the right-hand side of (C.13) converge to 
the integrals of the limits. Since the coefficients also converge, the limit 
of (C.13) as 𝑀 →∞ is

[𝑆𝑛
∞](𝑡) − 1 = −𝑛

𝑡 

∫
0 

(𝑝(𝑠) + 𝑞(𝑠)) [𝑆𝑛
∞](𝑠) 𝑑𝑠+ 𝑛

𝑡 

∫
0 

𝑞(𝑠)[𝑆𝑛+1
∞ ](𝑠) 𝑑𝑠.

(C.14)

Since [𝑆𝑛
∞](𝑡) is the pointwise limit of a sequence of measurable func

tions, it is also measurable. Therefore, it follows from (C.14) that it 
is continuous, hence differentiable. Differentiating (C.14), we conclude 
that [𝑆𝑛

∞] satisfies the limit ODE (C.9). □

Appendix D. Proof of Lemma 4.1 and Theorem 4.2

Let

𝑆𝑛 ∶= 𝑆𝑗+1,…,𝑗+𝑛, 𝑛 ∈,

denote the event that the 𝑛 adjacent nodes {𝑗 + 1,… , 𝑗 + 𝑛} are non

adopters at time 𝑡, and let [𝑆𝑛] denote the probability of this event. Note 
that the probabilities {[𝑆𝑛]} are independent of 𝑗, because of translation 
invariance. Then we have

Lemma D.1 ([7]). The reduced master equations for the Bass/SI model 
(2.1), (4.1) on the circle are

𝑑[𝑆𝑛]
𝑑𝑡 

= −
(
𝑛𝑝(𝑡) + 𝑞(𝑡)

)
[𝑆𝑛] + 𝑞(𝑡)[𝑆𝑛+1], 𝑛 = 1,… ,𝑀 − 1, (D.1a)

𝑑[𝑆𝑀 ]
𝑑𝑡 

= −𝑀𝑝(𝑡)[𝑆𝑀 ], (D.1b)

where 𝑞(𝑡) = 𝑞R(𝑡) + 𝑞L(𝑡), subject to the initial conditions

[𝑆𝑛](0) = (1 − 𝐼0)𝑛, 𝑛 = 1,… ,𝑀. (D.1c)

D.1. Monotonicity of {[𝑆𝑛]} in 𝑀

Proof of Lemma 4.1. Let

𝑦𝑛(𝑡) ∶= [𝑆𝑛](𝑡;𝑀) − [𝑆𝑛](𝑡;𝑀 + 1), 𝑛 ∈.

By the master equations (D.1),

𝑑𝑦𝑀

𝑑𝑡 
+𝑀𝑝𝑦𝑀 = 𝑞𝑧𝑀 (𝑡), 𝑦𝑀 (0) = 0,

where

𝑧𝑀 ∶= [𝑆𝑀 ](𝑡;𝑀 + 1) − [𝑆𝑀+1](𝑡;𝑀 + 1) = [𝐼𝑆𝑀 ](𝑡;𝑀 + 1),

where [𝐼𝑆𝑀 ](𝑡;𝑀 + 1) is the probability that the nodes {1,… ,𝑀} are 
nonadopters and the remaining node is an adopter. Since 𝑧𝑀 (𝑡) > 0 for 
𝑡 > 0, we have from Lemma C.2 that

𝑦𝑀 (𝑡) > 0, 𝑡 > 0. (D.2a)

Similarly, by (D.1),

𝑑𝑦𝑛

𝑑𝑡 
+ (𝑛𝑝+ 𝑞)𝑦𝑛 = 𝑞𝑦𝑛+1(𝑡), 𝑦𝑛(0) = 0, 𝑛 = 1,… ,𝑀 − 1.

Therefore, by Lemma C.2,

𝑦𝑛+1(𝑡) > 0, 𝑡 > 0 ⇒ 𝑦𝑛(𝑡) > 0, 𝑡 > 0. (D.2b)

From relations (D.2), we get by reverse induction on 𝑛 that

𝑦𝑛(𝑡) > 0, 𝑛 ∈, (D.3)

i.e., that {[𝑆𝑛](𝑡;𝑀)}𝑛∈ are monotonically decreasing in 𝑀 . In par

ticular,

0 < 𝑦1(𝑡) = [𝑆](𝑡;𝑀) − [𝑆](𝑡;𝑀 + 1)

= 𝑓 circle(𝑡;𝑀 + 1) − 𝑓 circle(𝑡;𝑀). □

The result and proof of Lemma 4.1 are similar to those in Lemma 3.1

for a complete network. Note, however, that while the addition of nodes 
is accompanied by a reduction of the weight of the edges in a complete 
network, this is not the case on the circle.

We can motivate the result of Lemma 4.1 as follows. Any node 𝑗 ∈
adopts either externally or internally. In the latter case, the adoption 
of 𝑗 can be traced back to an adoption path that starts from another 
node 𝑖 that adopted externally, and progresses through a series of in

ternal adoptions that ultimately reach node 𝑗. The probability of 𝑗 to 
adopt either externally or internally due to some adoption path of length 
≤𝑀 − 1, is the same on circles with 𝑀 and with 𝑀 + 1 nodes. On the 
circle with 𝑀 + 1 nodes, however, 𝑗 can also adopt due to adoption 
paths of length 𝑀 . Therefore, its overall adoption probability on the 
larger circle is higher.

D.2. Convergence of 𝑓 circle

Proof of Theorem 4.2. The proof is similar to that for complete net

works (Theorem 3.2). Our starting point are the master equations (D.1). 
If we formally fix 𝑛 and let 𝑀 →∞ in (D.1), we get the limiting system

𝑑[𝑆𝑛
∞]

𝑑𝑡 
= −(𝑛𝑝+ 𝑞)[𝑆𝑛

∞] + 𝑞[𝑆𝑛+1
∞ ], [𝑆𝑛

∞](0) = (1 − 𝐼0)𝑛, 𝑛 ∈ℕ.

(D.4)

This does not immediately imply that lim𝑀→∞[𝑆𝑛] = [𝑆𝑛
∞]. Indeed, this 

limit does not follow from the standard theorems on continuous depen

dence of solutions of ODEs on parameters, because the number of ODEs 
in (D.1) increases with 𝑀 , and becomes infinite in the limit, and be

cause of the presence of the unbounded factor 𝑛 on the right-hand sides 
of (D.1) and (D.4). In Lemma D.2 below, however, we will rigorously 
prove that for any 𝑛 ∈ℕ,

lim 
𝑀→∞

[𝑆𝑛](𝑡;𝑀) = [𝑆𝑛
∞](𝑡). (D.5)

Therefore, we can proceed to solve the infinite system (D.4). To do that, 
we note that the ansatz

[𝑆𝑛
∞] =

(
(1 − 𝐼0)𝑒− ∫ 𝑡

0 𝑝(𝜏)
)𝑛−1

[𝑆1D] (D.6)

reduces the infinite system (D.4) to the single ODE
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𝑑[𝑆1D]
𝑑𝑡 

= −
(
𝑝+ 𝑞(1 − (1 − 𝐼0)𝑒− ∫ 𝑡

0 𝑝(𝜏))
)
[𝑆1D], [𝑆1D](0) = 1 − 𝐼0.

(D.7)

Since 𝑓 circle = 1 − [𝑆1] and 𝑓 1D = 1 − [𝑆1D], the result follows from 
relation (D.5) with 𝑛 = 1. The monotonicity in 𝑀 follows from 
Lemma 4.1. □

The proof of Theorem 4.2 makes use of

Lemma D.2. For any 𝑛∈ℕ and 𝑡≥ 0, the solution [𝑆𝑛](𝑡;𝑀) of the master 
equations (D.1) converges monotonically as 𝑀 →∞ to the solution [𝑆𝑛

∞](𝑡)
of equation (D.4).

Proof. The proof is nearly identical to that of Lemma C.3. Let 𝑛 ∈ ℕ
and 𝑀 ≥ 𝑛. Integrating the ODE (D.1a) for [𝑆𝑛](𝑡;𝑀) from zero to 𝑡
and using the initial condition (D.1c) gives

[𝑆𝑛](𝑡;𝑀) − (1 − 𝐼0)𝑛 = −

𝑡 

∫
0 

(𝑛𝑝(𝑠) + 𝑞(𝑠)) [𝑆𝑛](𝑠;𝑀) 𝑑𝑠

+

𝑡 

∫
0 

𝑞(𝑠)[𝑆𝑛+1](𝑠;𝑀) 𝑑𝑠. (D.8)

Let us consider the limit of (D.8) as 𝑀 →∞. Since [𝑆𝑛](𝑡;𝑀) is mono

tonically decreasing in 𝑀 , see (D.3), and since [𝑆𝑛] ≥ 0 as a probability, 
this implies that [𝑆𝑛](𝑡;𝑀) converges pointwise as 𝑀 → ∞ to some 
limit [𝑆𝑛

∞](𝑡). Therefore, as 𝑀 → ∞, the left-hand side of (D.8) con

verges to [𝑆𝑛
∞] − (1 − 𝐼0)𝑛. In addition, since [𝑆𝑛] is a probability, 

0 ≤ [𝑆𝑛](𝑡;𝑀) ≤ 1, and so, by the dominated convergence theorem, the 
integrals of [𝑆𝑛] and [𝑆𝑛+1] on the right-hand side of (D.8) converge to 
the integrals of the limits. Hence, the limit of (D.8) as 𝑀 →∞ is

[𝑆𝑛
∞](𝑡)− (1−𝐼0)𝑛 = −

𝑡 

∫
0 

(𝑛𝑝(𝑠) + 𝑞(𝑠)) [𝑆𝑛
∞](𝑠) 𝑑𝑠+

𝑡 

∫
0 

𝑞(𝑠)[𝑆𝑛+1
∞ ](𝑠) 𝑑𝑠.

(D.9)

Since a pointwise limit of a sequence of measurable functions is also 
measurable, [𝑆𝑛

∞](𝑡) is measurable. Hence, it follows from (D.9) that it 
is continuous, hence differentiable. Differentiating (D.9), we conclude 
that [𝑆𝑛

∞] satisfies the limit ODE (D.4). □

Appendix E. Proof of Lemma 5.1 and Theorem 5.2

Let

𝐴𝑀 ∶= {0,… ,𝑀}2 ⧵ (0,0),

and let [𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) denote the probability that 𝑘1 nodes in group 1 
and 𝑘2 nodes in group 2 are non-adopters at time 𝑡. Then

𝑓 2−groups = 𝑓1 + 𝑓2 = 1 − 1
2
(
[𝑆1,0] + [𝑆0,1]

)
.

Lemma E.1 ([10]). The reduced master equations for the Bass/SI model 
(2.1), (5.1) on a complete network with two groups are

𝑑[𝑆𝑘1 ,𝑘2 ]
𝑑𝑡 = −

(
𝑘1𝑝1(𝑡) + 𝑘2𝑝2(𝑡) +

2𝑀 − 𝑘1 − 𝑘2

2𝑀 
(
𝑘1𝑞1(𝑡) + 𝑘2𝑞2(𝑡)

))
[𝑆𝑘1 ,𝑘2 ]

+
(
𝑀 − 𝑘1

2𝑀 [𝑆𝑘1+1,𝑘2 ] +
𝑀 − 𝑘2

2𝑀 [𝑆𝑘1 ,𝑘2+1]
)(

𝑘1𝑞1(𝑡) + 𝑘2𝑞2(𝑡)
)
,

(𝑘1, 𝑘2) ∈𝐴𝑀,

(E.1a)

subject to the initial conditions

[𝑆𝑘1 ,𝑘2 ](0) = (1 − 𝐼01 )
𝑘1 (1 − 𝐼02 )

𝑘2 , (𝑘1, 𝑘2) ∈𝐴𝑀. (E.1b)

E.1. Monotonicity of [𝑆𝑘1,𝑘2 ](𝑡; 2𝑀)

Proof of Lemma 5.1. We proceed by reverse induction on 𝑛 = 𝑘1 + 𝑘2. 
Let

𝑦𝑘1 ,𝑘2
(𝑡) ∶= [𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) − [𝑆𝑘1 ,𝑘2 ](𝑡; 2(𝑀 + 1)), (𝑘1, 𝑘2) ∈𝐴𝑀,

(E.2)

where [𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) is the solution of the master equations (E.1). We 
begin with the induction base 𝑛 = 2𝑀 . Then

𝑑𝑦𝑀,𝑀

𝑑𝑡 
+𝑀

(
𝑝1(𝑡) + 𝑝2(𝑡)

)
𝑦𝑀,𝑀 = 𝑧𝑀,𝑀 (𝑡), 𝑦𝑀,𝑀 (0) = 0, (E.3a)

where

𝑧𝑀,𝑀 ∶=
𝑀

(
𝑞1 + 𝑞2

)
2(𝑀 + 1) 

((
[𝑆𝑀,𝑀 ](𝑡; 2(𝑀 + 1)) − [𝑆𝑀+1,𝑀 ](𝑡; 2(𝑀 + 1))

)
+
(
[𝑆𝑀,𝑀 ](𝑡; 2(𝑀 + 1)) − [𝑆𝑀,𝑀+1](𝑡; 2(𝑀 + 1))

))
.

(E.3b)

Since

[𝑆𝑀,𝑀 ](𝑡; 2(𝑀 + 1)) − [𝑆𝑀+1,𝑀 ](𝑡; 2(𝑀 + 1))

= [𝐼1,0𝑆𝑀,𝑀 ](𝑡; 2(𝑀 + 1)) > 0,

and

[𝑆𝑀,𝑀 ](𝑡; 2(𝑀 + 1)) − [𝑆𝑀,𝑀+1](𝑡; 2(𝑀 + 1))

= [𝐼0,1𝑆𝑀,𝑀 ](𝑡; 2(𝑀 + 1)) > 0,

where [𝐼𝑗1 ,𝑗2𝑆𝑘1 ,𝑘2 ] denotes the probability that there are 𝑗𝑚 adopters 
and 𝑘𝑚 nonadopters in group 𝑚 for 𝑚 = 1,2, then 𝑧𝑀,𝑀 (𝑡) > 0 for 𝑡 > 0. 
Therefore, applying Lemma C.2 to (E.3) shows that

𝑦𝑀,𝑀 (𝑡) > 0, 𝑡 > 0. (E.4)

Let 𝑛 ∈ {1,… ,2𝑀 − 1}. Then

𝑑[𝑆𝑘1 ,𝑘2 ]
𝑑𝑡 

(𝑡; 2𝑀)

= −
(
𝑘1𝑝1 + 𝑘2𝑝2 +

2𝑀 − 𝑘1 − 𝑘2
2𝑀 

(
𝑘1𝑞1 + 𝑘2𝑞2

))
[𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀)

+
(
𝑀 − 𝑘1
2𝑀 

[𝑆𝑘1+1,𝑘2 ](𝑡; 2𝑀) +
𝑀 − 𝑘2
2𝑀 

[𝑆𝑘1 ,𝑘2+1](𝑡; 2𝑀)
)

×
(
𝑘1𝑞1 + 𝑘2𝑞2

)
,

subject to

[𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀)(0) = (1 − 𝐼01 )
𝑘1 (1 − 𝐼02 )

𝑘2 .

Similarly,

𝑑[𝑆𝑘1 ,𝑘2 ]
𝑑𝑡 

(𝑡; 2(𝑀 + 1)) =

−
(
𝑘1𝑝1 + 𝑘2𝑝2 +

2𝑀 + 2 − 𝑘1 − 𝑘2
2𝑀 + 2 

(
𝑘1𝑞1 + 𝑘2𝑞2

))
× [𝑆𝑘1 ,𝑘2 ](𝑡; 2(𝑀 + 1))

+
(
𝑀 + 1 − 𝑘1
2𝑀 + 2 

[𝑆𝑘1+1,𝑘2 ](𝑡; 2(𝑀 + 1))

+
𝑀 + 1 − 𝑘2
2𝑀 + 2 

[𝑆𝑘1 ,𝑘2+1](𝑡; 2(𝑀 + 1))
)(

𝑘1𝑞1 + 𝑘2𝑞2
)
,

subject to

[𝑆𝑘1 ,𝑘2 ](𝑡; 2(𝑀 + 1))(0) = (1 − 𝐼01 )
𝑘1 (1 − 𝐼02 )

𝑘2 .

Taking the difference of these two equations gives
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𝑑𝑦𝑘1 ,𝑘2

𝑑𝑡 
+
(
𝑘1𝑝1 + 𝑘2𝑝2 +

2𝑀 + 2 − 𝑘1 − 𝑘2
2𝑀 + 2 

(
𝑘1𝑞1 + 𝑘2𝑞2

))
𝑦𝑘1,𝑘2

=
(
𝑘1𝑞1 + 𝑘2𝑞2

)(𝑀 + 1 − 𝑘1
2𝑀 + 2 

𝑦𝑘1+1,𝑘2 +
𝑀 + 1 − 𝑘2
2𝑀 + 2 

𝑦𝑘1,𝑘2+1

)
+ 𝑧𝑘1 ,𝑘2

(𝑡), 𝑦𝑘1 ,𝑘2
(0) = 0,

(E.5a)

where

𝑧𝑘1 ,𝑘2 =
(
𝑘1𝑞1 + 𝑘2𝑞2

)( −𝑘1
𝑀(2𝑀 + 2)

(
−[𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) + [𝑆𝑘1+1,𝑘2 ](𝑡; 2𝑀)

)
+

−𝑘2
𝑀(2𝑀 + 2)

(
−[𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) + [𝑆𝑘1 ,𝑘2+1](𝑡; 2𝑀)

))
.

(E.5b)

Since

−𝑘1
𝑀(2𝑀 + 2)

≤ 0, 
−𝑘2

𝑀(2𝑀 + 2)
≤ 0,

and

− [𝑆𝑘1 ,𝑘2 ] + [𝑆𝑘1+1,𝑘2 ] = −[𝐼1,0𝑆𝑘1 ,𝑘2 ] < 0, 

− [𝑆𝑘1 ,𝑘2 ] + [𝑆𝑘1 ,𝑘2+1] = −[𝐼0,1𝑆𝑘1 ,𝑘2 ] < 0 𝑡 > 0,

we have that 𝑧𝑘1 ,𝑘2 ≥ 0 for 𝑡 > 0.

Therefore, applying Lemma C.2 to (E.5) shows that for any (𝑘1, 𝑘2) ∈
𝐴𝑀 ⧵ (𝑀,𝑀),{
𝑦𝑘1+1,𝑘2 (𝑡) and 𝑦𝑘1,𝑘2+1(𝑡) > 0, 𝑡 > 0

}
⇒ 𝑦𝑘1 ,𝑘2

(𝑡) > 0, 𝑡 > 0.

(E.6)

From relations (E.4) and (E.6) we get by reverse induction on 𝑛 that

𝑦𝑘1 ,𝑘2
(𝑡) > 0, (𝑘1, 𝑘2) ∈𝐴𝑀, (E.7)

i.e., that {[𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀)} are monotonically decreasing in 𝑀 . □

E.2. Convergence of 𝑓 2−groups

Proof of Theorem 5.2. Let 𝑀 →∞. Then the master equations (E.1a)

converge to

𝑑

𝑑𝑡
[𝑆𝑘1 ,𝑘2

∞ ] = −
(
𝑘1

(
𝑝1 + 𝑞1

)
+ 𝑘2

(
𝑝2 + 𝑞2

))
[𝑆𝑘1 ,𝑘2

∞ ]

+ 1
2
(
𝑘1𝑞1 + 𝑘2𝑞2

)(
[𝑆𝑘1+1,𝑘2

∞ ] + [𝑆𝑘1 ,𝑘2+1
∞ ]

)
, (E.8a)

with the initial condition

[𝑆𝑘1 ,𝑘2
∞ ](0) = (1 − 𝐼01 )

𝑘1 (1 − 𝐼02 )
𝑘2 , (𝑘1, 𝑘2) ∈𝐴𝑀. (E.8b)

We will prove in Lemma E.2 below that lim𝑀→∞[𝑆𝑘1 ,𝑘2 ] = [𝑆𝑘1 ,𝑘2
∞ ]. Sub

stituting the ansatz

[𝑆𝑘1 ,𝑘2
∞ ] = [𝑆1,0

∞ ]𝑘1 [𝑆0,1
∞ ]𝑘2 ,

in (E.8) gives

𝑘1[𝑆0,1
∞ ] 𝑑

𝑑𝑡
[𝑆1,0

∞ ] + 𝑘2[𝑆1,0
∞ ] 𝑑

𝑑𝑡
[𝑆0,1

∞ ]

= −
(
𝑘1

(
𝑝1 + 𝑞1

)
+ 𝑘2

(
𝑝2 + 𝑞2

))
[𝑆1,0

∞ ][𝑆0,1
∞ ]

+ 1
2
(
𝑘1𝑞1 + 𝑘2𝑞2

)(
[𝑆1,0

∞ ]2[𝑆0,1
∞ ] + [𝑆1,0

∞ ][𝑆0,1
∞ ]2

)
.

(E.9)

Let [𝑆1,0
∞ ] and [𝑆0,1

∞ ] be the solutions of

𝑑

𝑑𝑡
[𝑆1,0

∞ ] = −
(
𝑝1 + 𝑞1

)
[𝑆1,0] +

𝑞1
2 
(
[𝑆1,0

∞ ]2 + [𝑆1,0
∞ ][𝑆0,1

∞ ]
)
,

[𝑆1,0
∞ ](0) = 1 − 𝐼01 , (E.10)

𝑑

𝑑𝑡
[𝑆0,1

∞ ] = −
(
𝑝2 + 𝑞2

)
[𝑆0,1

∞ ] +
𝑞2
2 
(
[𝑆0,1

∞ ]2 + [𝑆1,0
∞ ][𝑆0,1

∞ ]
)
,

[𝑆0,1
∞ ](0) = 1 − 𝐼02 .

Then [𝑆1,0
∞ ] and [𝑆0,1

∞ ] satisfy (E.9). Substituting 𝑓1 ∶=
1
2

(
1 − [𝑆1,0

∞ ]
)

and 𝑓2 ∶=
1
2

(
1 − [𝑆0,1

∞ ]
)

in (E.10) gives

𝑑𝑓1
𝑑𝑡 

=
(1
2
− 𝑓1

)(
𝑝1 + 𝑞1

(
𝑓1 + 𝑓2

))
, 𝑓1(0) =

𝐼01
2 
,

𝑑𝑓2
𝑑𝑡 

=
(1
2
− 𝑓2

)(
𝑝2 + 𝑞2

(
𝑓1 + 𝑓2

))
, 𝑓2(0) =

𝐼02
2 
.

(E.11)

Since 𝑓 compart−het ∶= 𝑓1 + 𝑓2, the result follows. □

Lemma E.2. For any 𝑡 ≥ 0, (𝑘1, 𝑘2) ∈ 𝐴𝑀 , the solution [𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) of 
the master equations (E.1a) converges monotonically as 𝑀 →∞ to the so

lution [𝑆𝑘1,𝑘2
∞ ](𝑡) of equation (5.2b)

Proof. The proof is nearly identical to that of Lemma C.3. Integrating 
the ODE (E.1a) for [𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) from zero to 𝑡 gives

[𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) − (1 − 𝐼01 )
𝑘1 (1 − 𝐼02 )

𝑘2 =

−

𝑡 

∫
0 

(
𝑘1𝑝1(𝑠) + 𝑘2𝑝2(𝑠) +

2𝑀 − 𝑘1 − 𝑘2
2𝑀 

(
𝑘1𝑞1(𝑠) + 𝑘2𝑞2(𝑠)

))
× [𝑆𝑘1 ,𝑘2 ](𝑠; 2𝑀) 𝑑𝑠

+

𝑡 

∫
0 

(
𝑘1𝑞1(𝑠) + 𝑘2𝑞2(𝑠)

)(𝑀 − 𝑘1
2𝑀 

[𝑆𝑘1+1,𝑘2 ](𝑠; 2𝑀)
)

𝑑𝑠

+

𝑡 

∫
0 

(
𝑘1𝑞1(𝑠) + 𝑘2𝑞2(𝑠)

)(𝑀 − 𝑘2
2𝑀 

[𝑆𝑘1 ,𝑘2+1](𝑠; 2𝑀)
)

𝑑𝑠.

(E.12)

Let us consider the limit of (E.12) as 𝑎 → ∞. Since [𝑆𝑘1,𝑘2 ](𝑡; 2𝑀) is 
monotonically decreasing in 𝑀 , see (E.7), and since [𝑆𝑘1 ,𝑘2 ] ≥ 0 as 
a probability, this implies that [𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) converges pointwise as 
𝑀 →∞ to some limit [𝑆𝑘1 ,𝑘2

∞ ](𝑡). Therefore, as 𝑀 →∞, the left-hand 
side of (E.12) converges to [𝑆𝑘1 ,𝑘2

∞ ] − 1. In addition, since [𝑆𝑘1 ,𝑘2 ] is a 
probability, 0 ≤ [𝑆𝑘1 ,𝑘2 ](𝑡; 2𝑀) ≤ 1, and so, by the dominated conver

gence theorem, the integrals of [𝑆𝑘1 ,𝑘2 ], [𝑆𝑘1+1,𝑘2 ] and [𝑆𝑘1,𝑘2+1] on the 
right-hand side of (E.12) converge to the integrals of the limits. Hence, 
the limit of (E.12) as 𝑀 →∞ is

[𝑆𝑘1 ,𝑘2
∞ ](𝑡;𝑀) − (1 − 𝐼01 )

𝑘1 (1 − 𝐼02 )
𝑘2 =

−

𝑡 

∫
0 

(
𝑘1𝑝1(𝑠) + 𝑘2𝑝2(𝑠) +

(
𝑘1𝑞1(𝑠) + 𝑘2𝑞2(𝑠)

))
[𝑆𝑘1 ,𝑘2

∞ ](𝑠) 𝑑𝑠

+ 1
2

𝑡 

∫
0 

(
𝑘1𝑞1(𝑠) + 𝑘2𝑞2(𝑠)

)
[𝑆𝑘1+1,𝑘2

∞ ](𝑠) 𝑑𝑠

+ 1
2

𝑡 

∫
0 

(
𝑘1𝑞1(𝑠) + 𝑘2𝑞2(𝑠)

)
[𝑆𝑘1 ,𝑘2+1

∞ ](𝑠) 𝑑𝑠.

(E.13)

Since a pointwise limit of a sequence of measurable functions is also 
measurable, [𝑆𝑘1 ,𝑘2

∞ ](𝑡) is measurable. Hence, it follows from (E.13) that 
it is continuous, hence differentiable. Differentiating (E.13), we con

clude that [𝑆𝑘1 ,𝑘2
∞ ] satisfies the limit ODE (5.2b). □
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Appendix F. Monotone convergence of 𝒇𝐒𝐈

In Figs. F.5--F.7, we illustrate numerically the monotone convergence 
of 𝑓SI on complete, circular, and 2-groups networks, respectively.

Fig. F.5. Monotone convergence of 𝑓 complete
SI (dashes) to 𝑓 compart

SI (solid). Here 𝑝=
0, 𝑞 = 0.1, 𝐼0 = 0.3, and 𝑀 = 2,10,30,200.

Fig. F.6. Monotone convergence of 𝑓 circle
SI (dashes) to 𝑓 1D

SI (solid). Here 𝑝 = 0, 
𝑞 = 0.1, 𝐼0 = 0.3, and 𝑀 = 2,4,8,16.

Fig. F.7. Monotone convergence of 𝑓 2−groups
SI (dashes) to 𝑓 compart−het

SI (solid). 
Here 𝑝1 = 𝑝2 = 0, 𝑞1 = 0.1, 𝑞2 = 0.2, 𝐼0

1 = 0.2, 𝐼0
2 = 0.4, and 𝑀 = 2,8,20,80.
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