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• We present new solitary wave solutions of the two-dimensional NLS on bounded domains.
• These necklace solitary waves become unstable well below the critical power for collapse.
• On the annulus they have a second stability regime well above the critical power.
• We introduce a non-spectral variant of Petviashvili’s renormalization method.
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a b s t r a c t

We present new solitary wave solutions of the two-dimensional nonlinear Schrödinger equation on
bounded domains (such as rectangles, circles, and annuli). These multi-peak ‘‘necklace’’ solitary waves
consist of several identical positive profiles (‘‘pearls’’), such that adjacent ‘‘pearls’’ have opposite signs.
They are stable at low powers, but become unstable at powers well below the critical power for
collapse Pcr. This is in contrast with the ground-state (‘‘single-pearl’’) solitarywaves on bounded domains,
which are stable at any power below Pcr.

On annular domains, the ground state solitarywaves are radial at lowpowers, but undergo a symmetry
breaking at a threshold powerwell below Pcr. As in the case of convex bounded domains, necklace solitary
waves on the annulus are stable at low powers and become unstable at powers well below Pcr. Unlike on
convex bounded domains, however, necklace solitarywaves on the annulus have a second stability regime
at powerswell above Pcr. For example,when the ratio of the inner to outer radii is 1:2, four-pearl necklaces
are stable when their power is between 3.1Pcr and 3.7Pcr. This finding opens the possibility to propagate
localized laser beams with substantially more power than was possible until now.

The instability of necklace solitary waves is excited by perturbations that break the antisymmetry
between adjacent pearls, and is manifested by power transfer between pearls. In particular, necklace
instability is unrelated to collapse. In order to compute numerically the profile of necklace solitary waves
on bounded domains, we introduce a non-spectral variant of Petviashvili’s renormalization method.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear Schrödinger equation (NLS) in free space

iψz(z, x, y)+1ψ + |ψ |
2ψ = 0, −∞ < x, y < ∞, z > 0, (1a)

ψ(0, x, y) = ψ0(x, y), −∞ < x, y < ∞ (1b)

is one of the canonical nonlinear equations in physics. In nonlinear
optics it models the propagation of intense laser beams in a bulk
Kerr medium. In this case, z is the axial coordinate in the direction
of propagation, x and y are the spatial coordinates in the transverse
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plane, 1ψ :=
∂2

∂x2
ψ +

∂2

∂y2
ψ is the diffraction term, and |ψ |

2ψ

describes the nonlinear Kerr response of the medium. For more
information on the NLS in nonlinear optics and on NLS theory in
free space and on bounded domains, see the recent book [1].

In some applications, it is desirable to propagate laser beams
over long distances. In theory, this can be done by the NLS solitary
waves ψsw = eiµzRµ(x, y), where Rµ is a solution of

1R(x, y)− µR + |R|2R = 0, −∞ < x, y < ∞. (2)

Unfortunately, the solitary wave solutions of (1) are unstable, so
that when perturbed, they either scatter (diffract) as z → ∞, or
collapse at a finite distance Zc < ∞.

In order to mitigate this ‘‘dual instability’’ limitation, Soljacic,
Sears, and Segev [2] proposed in 1998 to use a necklace configu-
ration that consists of n identical beams (‘‘pearls’’) that are located
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Fig. 1. A circular necklace beamwith 8 pearls (beams). Adjacent pearls are identical
but have opposite phases. The electric field vanishes on the rays (solid lines)
between adjacent pearls.

along a circle at equal distances, such that adjacent beams are out
of phase (i.e., have opposite signs), see Fig. 1. The idea behind this
setup is that the repulsion between adjacent out-of-phase beams
resists the diffraction of each beam, and thus slows down its ex-
pansion. Necklace beams in a Kerr mediumwere first observed ex-
perimentally by Grow et al. [3]. Necklace beams were also studied
in [4–7]. Recently, Jhajj et al. used a necklace-beam configuration
to set up a thermal waveguide in air [8].

As we shall see, there are no necklace solitary wave solutions of
the free-space NLS (1). Thus, in a bulk medium all necklace beams
ultimately collapse or scatter. Yang et al. [7] showed theoretically
and experimentally that solitary necklace solutions can exist in a
bulk medium with an optically-induced photonic lattice. Because
of the need to induce a photonic lattice, however, this approach
is not applicable to propagation is a Kerr medium. In this study we
show that necklace solitarywaves exist in a Kerrmedium, provided
the beam is confined to a bounded domain. This setup corresponds
to propagation in hollow-core fibers, and is therefore relatively
easy to implement experimentally.

In hollow-core fibers, beam propagation can bemodeled by the
NLS on a bounded domain

iψz(z, x, y)+1ψ + |ψ |
2ψ = 0, (x, y) ∈ D, z > 0, (3a)

subject to an initial condition

ψ0(0, x, y) = ψ0(x, y), (x, y) ∈ D, (3b)

and a Dirichlet boundary condition at the fiber wall

ψ(z, x, y) = 0, (x, y) ∈ ∂D, z ≥ 0. (3c)

Here D ⊂ R2 is the cross section of the fiber, which is typically a
circle of radius ρ, denoted henceforth by Bρ .

Eq. (3) admits the solitary waves ψsw = eiµzRµ(x, y), where Rµ
is a solution of

1R(x, y)− µR + |R|2R = 0, (x, y) ∈ D, (4a)
R(x, y) = 0, (x, y) ∈ ∂D. (4b)

In free space, the solitary-wave profile [i.e., the solution of (2)]
represents a perfect balance between the focusing nonlinearity and
diffraction. On a bounded domain, the reflecting boundary ‘‘works
with’’ the focusing nonlinearity and ‘‘against’’ the diffraction. In
fact, the reflecting boundary can support finite-power solitary
waves even in the absence of a focusing linearity. These linear
modes are solutions of the eigenvalue problem

1Q (x, y) = µQ , (x, y) ∈ D, Q (x, y) = 0, (x, y) ∈ ∂D. (5)

Of most importance is the first eigenvalue of (5) and its
corresponding positive eigenfunction, which we shall denote
by µlin and Q (1), respectively.
Solitary wave solutions of (3) were studied by Fibich and
Merle [9], Fukuizumi, Hadj Selem, and Kikuchi [10], and Noris,
Tavares, and Verzini [11], primarily when D is the unit circle B1

and Rµ is radial, i.e., Rµ = Rµ(r), r =

x2 + y2, and 0 ≤ r ≤ 1.

In that case, for any µlin < µ < ∞, there exists a unique positive
solution R(1)µ (r). This solution is monotonically decreasing in r , and
its power P(R(1)µ ) :=


B1

|R(1)µ |
2 dxdy is monotonically increasing

inµ from P = 0 atµ = µlin+ to P = Pcr asµ → ∞. In addition to
this ground state, there exist a countable number of excited radial
states {R(n)µ (r)}

∞

n=2, which are non-monotone and change their sign
inside B1. These excited states have a unique global maximum at
r = 0, and additional lower peaks on concentric circles inside B1.

The excited states {R(n)µ (r)}
∞

n=2 are the two-dimensional radial
analog of the excited states of the one-dimensional NLS on an inter-
val, see Eq. (26) below,whichwere studied by Fukuizumi et al. [10].
In our study here we consider a different type of solitary waves
of (3), which attain their global maximum at n distinct points in-
side D. These necklace solitary waves are thus the non-radial two-
dimensional analog of the one-dimensional excited states.

The paper is organized as follows. In Section 2 we briefly con-
sider necklace solutions in R2, which correspond to propagation in
a bulk medium. We illustrate numerically that their expansion is
slower than that of single-beam solutions, and provide an infor-
mal proof that there are no necklace solitary waves in free space.
In Section 3 we briefly review the theory for the NLS on bounded
domains. In Section 4 we construct necklace solitary waves with
n pearls (peaks), denoted by R(n)µ , on rectangular, circular, and
annular domains. To do that, we first compute the single-pearl
(single-peak/ground state) solitary wave of (4), denoted by R(1)µ , on
a square, a sector of a circle, and a sector of an annulus, respec-
tively. Our numerical results for single-pearl solutions of (4) sug-
gest that1:

1. R(1)µ exists for µ in the range µlin < µ < ∞.
2. As µ → µlin, R(1)µ approaches the positive linear mode Q (1),

i.e., R(1)µ ∼ c(µ)Q (1), where c(µ) → 0.
3. As µ increases, R(1)µ becomes more localized, the effect of

the nonlinearity becomes more pronounced, and that of the
reflecting boundary becomes less pronounced.

4. In particular, asµ → ∞, R(1)µ approaches the free-space ground
state R(1),freeµ,2D , which is the positive solution of (2).

5. The pearl power P(R(1)µ ) :=


|R(1)µ |
2 dxdy is monotonically

increasing in µ. In particular,

d
dµ

P(R(1)µ ) > 0, lim
µ→µlin

P(R(1)µ ) = 0,

lim
µ→∞

P(R(1)µ ) = Pcr,
(6)

where

Pcr =


R2

R(1),freeµ,2D

2 dxdy

is the critical power for collapse.
6. On an annular domain, the ground state solitary waves are

radial (ring-type) at low powers, but undergo a symmetry
breaking into a single-peak profile at a threshold power well
below Pcr. In particular, Eq. (4) on the annulus,
(a) does not have a unique positive solution.
(b) has a positive solution which is not a ground state.

1 These results are consistent with those obtained for radial positive solitary
waves on the circle [9] and for positive one-dimensional solitary waves on an
interval [10].
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Similar results were obtained by Kirr et al. [12] for the NLS-GP
equation with an inhomogeneous (e.g., double-well) potential.

Once we obtain the single-pearl profile, we construct the
necklace solitary wave R(n)µ from n identical pearls, such that
adjacent pearls have opposite signs. Therefore, by construction,

P(R(n)µ ) = nP(R(1)µ ). (7)

Hence, by (6),

d
dµ

P(R(n)µ ) > 0, lim
µ→µlin

P(R(n)µ ) = 0,

lim
µ→∞

P(R(n)µ ) = nPcr.
(8)

In Section 5 we study the stability of necklace solitary waves
on bounded domains, by (i) computing the eigenvalues and
eigenvectors of the associated linearized problem, and (ii) by
solving the NLS with an initial condition which is a perturbed
necklace solitary wave. These simulations show that:

1. Single-pearl (ground state) solitary waves ψ (1)
sw = eiµzR(1)µ on

bounded domains are stable for µlin < µ < ∞, i.e., for 0 <
P < Pcr.

2. For n ≥ 2, there exists µc, where µlin < µc < ∞, such
that the necklace solitary waves ψ (n)

sw = eiµzR(n)µ are stable for
µlin < µ < µc, i.e., for

0 < P(R(n)µ ) < Pnecklace
th (n), Pnecklace

th (n) := P(R(n)µcr
),

andunstable for 0 < µ−µc ≪ 1. Thus, the low-power necklace
solitary waves inherit the stability of the linear necklace modes
eiµlinzQ (n) from which they bifurcate.2

3. On convex domains such as rectangles and circles, necklace
solitary waves are unstable for µc < µ < ∞, i.e., for

Pnecklace
th (n) < P(R(n)µ ) < nPcr.

This may seem surprising, since R(n)µ satisfies the Vakhitov-
Kolokolov (VK) condition for stability d

dµP(Rµ) > 0, see (8).
We note, however, that the VK condition implies stability
for ground-state solitary waves, which is not the case for
necklace solitarywaves. Indeed, the VK condition tests whether
the solitary wave is susceptible to an amplitude (focusing)
instability, whereby the solitary wave amplitude increases
(decreases) as itswidth decreases (increases). The VK condition,
however, does not determine whether the solitary wave is
susceptible to other types of instabilities. See [13–15] for more
details.

4. The threshold power for necklace instability is substantially
smaller than the critical power for collapse, i.e.,

Pnecklace
th (n) < Pcr.

Thus, the necklace becomes unstable when the power of each
pearl is below Pcr/n. For example, the threshold power for
instability of a necklace solitary wave with n = 4 pearls
is ≈0.55Pcr on a square domain and ≈0.24Pcr on a circular
domain, i.e., when the power of each of the four pearls is
roughly 0.14Pcr and 0.06Pcr, respectively. As noted, single-pearl
solitary waves are stable for 0 < P < Pcr. Hence, power-wise,
necklace solitary waves on circular and rectangular domains are
considerably less stable than single-pearl solitary waves on these
domains.

2 Here Q (n) denotes a linear necklace solitary wave made out of n identical Q (1)

single pearls.
5. Necklace solitary waves on annular domains are also stable for
µlin < µ < µc and unstable for 0 < µ − µc ≪ 1. In addition,
Pnecklace
th ≈ 0.24Pcr for a 4-pearl necklace solitary waves on

an annular domain with a 1:2 ratio of the inner to outer radii,
which is the same as for a circular necklace. Thus, the addition
of a hole ‘‘fails’’ to increase the threshold power for necklace
instability.
Unlike on convex domains, however, necklace solitary waves
on the annulus have a second stability regime at powers well
above Pcr. For example, when the ratio of the inner to outer radii
is 1:2, 4-pearl necklaces are stable for powers between 3.1Pcr
and 3.7Pcr.

6. The instability of necklace solitary waves on circular, rectangu-
lar, and annular domains share many similar features. Thus, the
unstable modes are those which are symmetric with respect to
one or more interfaces between pearls. These modes break the
anti-symmetry between pearls, and thus allow for power trans-
fer between pearls. Another common feature is that the unsta-
ble modes for a necklace with 2×2 pearls are either symmetric
with respect to all four interfaces between pearls, or are sym-
metric in one direction and anti-symmetric in the perpendic-
ular direction. In the latter case, the unstable modes consist of
two identical unstable modes of a 2-pearl necklace on half the
domain.

7. In Section 5.6 we consider the stability of necklace solitary
waves of one-dimensional cubic and quintic NLS. We observe
that the (in)stability properties of necklace solitary waves in
the subcritical and critical cases are similar, in the sense that
the instability occurs above a certain power threshold, and is
related to power transfer between pearls. In particular, this
further shows that necklace instability is unrelated to collapse.

In Section 6wediscuss the numericalmethods. In particular,we
introduce a novel non-spectral variant of Petviashvili’s renormaliza-
tion method that can be used to compute multi-dimensional soli-
tary waves on bounded domains.

There are several unexpected results in this study:

1. The threshold power for instability of a necklace on a
rectangular domain is twice that on a circular domain.

2. The threshold power for instability of a necklace on a circular
domain is the same as that of an annular domain. This is
surprising, since the hole reduces the interaction between the
pearls, and so could be expected to have a stabilizing effect on
the necklace.

3. In the case of necklace solitary waves on the annulus, there
exists a second stability regime at powers above 3Pcr.

4. To the best of our knowledge, our results for an annular domain
provide the first example of a positive solitary wave of the
homogeneous two-dimensional cubic NLS which
(a) satisfies the VK condition for stability, yet is unstable,
(b) is not a ground state, and
(c) is not the unique positive solitary wave.
As noted, such results were observed for the NLS-GP equation
with an inhomogeneous potential [12].

The possibility to propagate stable necklace solitarywaveswith
powers well above Pcr may be important for applications. While
an annular domain does not correspond to a standard hollow-core
fiber, the NLS on an annular domain models beam propagation in
a step-index optical fiber with a linear index of refraction

n0 =


n(1)0 , if 0 ≤ r < r1,

n(2)0 , if r1 < r < r2,

n(3)0 , if r2 < r < r3,

where 0 < r1 < r2 < r3 and n(1)0 , n
(3)
0 < n(2)0 .
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Our results can be extended in several directions. For example,
NLS necklaces can be constructed on ‘‘irregular’’ two-dimensional
domains, see e.g., Fig. 5. Such necklace solitary waves may also be
stable at powers above Pcr. One can also construct necklace solitary
waves in dimensions higher than 2. For example, one can compute
a single-pearl solitary wave of the three-dimensional NLS on the
unit cube, and then use it to construct a necklace solitary wave
on a three-dimensional box. The question whether the NLS admits
necklace solitary waves made out of non-identical pearls is open.
A note on notations. In this study we denote the profile of a
necklace solitary wave with n peaks (pearls) by R(n)µ . In order to be
consistent with this notation:

1. The single-pearl profile, i.e., the positive (ground state) solution
of (4) is denoted by R(1)µ , in contrast to the general convention
of denoting the ground state by R(0)µ .

2. The free-space necklace solutions in Section 2 are parameter-
ized by n = 2m.

2. Necklace solutions in free space

The free space linear Schrödinger equation

iψz(z, x, y)+1ψ = 0, −∞ < x, y < ∞, z > 0 (9)

models the propagation of laser beams in a bulk linear medium.
This equation admits the Laguerre–Gaussian vortex solutions

ψvortex
LG (z, r, θ) :=

1
L(z)


r

L(z)

m

e
−

1−4iz
L2(z)

r2+i(m+1)ζ (z)
eimθ ,

m = 1, 2, . . . ,

where L(z) =
√
1 + 16z2, r =


x2 + y2, and ζ = − arctan(4z).

Since 1ψ = ψrr +
1
rψr +

1
r2
ψθθ , if ψ = A(z, r)eimθ is a solution

of (9), then so is ψ = A(z, r) cos(mθ), as in both cases ψθθ =

−m2ψ . Therefore,

ψnecklace
LG :=

1
L(z)


r

L(z)

m

e
−

1−4iz
L2(z)

r2+i(m+1)ζ (z)
cos(mθ),

m = 1, 2, . . .

are also solutions of (9). Whereas the amplitude ofψvortex
LG is radial,

that of ψnecklace
LG has a | cos(mθ)| dependence. Hence, |ψnecklace

LG |

attains its maximum at the n = 2m points

(rj, θj) =


rm(z),

jπ
m


,

rm(z) := argmax
r


r

L(z)

m

e
−

r2

L2(z)


, j = 1, . . . , n.

These n peaks are located at equal distances along an expanding
circle of radius rm(z) = rm(0)L(z), such that adjacent peaks have a
π phase difference.

The NLS (1) also admits vortex solutions of the form ψ =

A(z, r)eimθ [16]. In nonlinear propagation, however, it is no longer
true that if ψ = A(z, r)eimθ is a solution, then so is ψ =

A(z, r) cos(mθ). Nevertheless, the NLS admits solutions that have
a ‘‘necklace structure with n pearls’’:

Lemma 1. Let ψ(z, r, θ) be a solution of the NLS (1), let n be even,
and let

ψ0(r, θ) = f (r) cos
n
2
θ

. (10)

Then

1. ψ is invariant under rotations by 4π
n , i.e., ψ(z, r, θ) =

ψ(z, r, θ +
4π
n ).
2. ψ is antisymmetric with respect to the n rays θ ≡ Θj :=
(1+2j)π

n ,
i.e.,

ψ(z, r,Θj + θ) = −ψ(z, r,Θj − θ), j = 1, . . . , n. (11)

Proof. This is a standard result,which follows from the uniqueness
of NLS solutions. �

The repulsion between adjacent out-of-phase pearls (beams)
can be understood as follows. By (11),

ψ(z, r,Θj) ≡ 0, j = 1, . . . , n. (12)

Thus, as the necklace evolves, the electric field remains zero on
the rays that separate between adjacent beams (see Fig. 1). Hence,
the dynamics of the jth pearl is governed by the NLS (3) on the jth
sector Dj = {Θj < θ < Θj+1, 0 < r < ∞}, subject to Dirichlet
boundary conditions on the rays θ ≡ Θj and θ ≡ Θj+1. Because
a Dirichlet boundary condition is reflecting, there is no interaction
between adjacent pearls (beams).

Corollary 1. So long that it exists, the solution of theNLS (1)with the
necklace initial condition (10)maintains a necklace structure.

If the power of each pearl is sufficiently above the critical power
for collapse Pcr, then the solution collapses at a finite distance.3 In
that case, ψ collapses simultaneously at n points. If, however, the
pearl power is below Pcr, thenψ scatters as z → ∞. This scattering
is slower than for a single pearl, however, since the reflecting
boundaries (or equivalently, the repulsion by the adjacent out-
of-phase pearls) slow down the pearl expansion. In particular, if
the power of each pearl is slightly below Pcr, diffraction is almost
balanced by the focusing Kerr nonlinearity and the repulsion by the
adjacent pearls. Consequently, the pearl expansion is much slower
than in the single-pearl case, as is demonstrated numerically in
Fig. 2.

Let us briefly discuss the stability of necklace beams in
free space. By Lemma 1, as long as the initial condition is of
the form (10), the necklace structure is preserved. Hence, the
necklace structure can only be destroyed by perturbations that are
not of the form (10). Such ‘‘azimuthal’’ perturbations break the
antisymmetry with respect to the rays θ ≡ Θj, and lead to power
transfer between adjacent pearls. Generally speaking, numerical
simulations suggest that necklace beams in free-space are more
stable under random perturbations than vortex beams [2,3].

2.1. No necklace solitary waves in free space

Ideally, a stable necklace beam should neither expand nor
collapse, i.e., it should be a solitary wave. While the free-space
NLS admits necklace-type solutions, see Lemma 1, it does not admit
necklace-type solitary waves. This is easy to see for the one-
dimensional NLS4

iψz(z, x)+ ψxx + |ψ |
2σψ = 0, −∞ < x < ∞, z > 0. (13)

Indeed, the solitary waves of (13) are of the formψsw = eiµzRµ(x),
where Rµ is a solution of

R′′(x)− µR + |R|2σR = 0, R(±∞) = 0. (14)

The unique solution of (14) is

R(1),freeµ,1D (x) = µ
1
2σ R(1),free1D (µ

1
2 x),

3 This follows from the variance identity on a bounded domain.
4 In one dimension we consider both the subcritical case σ = 1 and the critical

case σ = 2.
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a b c d

e f g h

i

Fig. 2. Solution of the NLS (1). (a)–(d): Contour plots of |ψ | at different distances, forψ0 =
√
2 sech(r − 3.4) cos(2θ). (e)–(h): The same whenψ0 consists of a single pearl,

i.e., ψ0 =
√
2 sech(r − 3.4) cos(2θ) for −π/4 ≤ θ ≤ π/4 and ψ0 ≡ 0 otherwise. (i): Radius of a single pearl as a function of z, for the 4-pearl necklace (solid), and for the

single pearl (dashes).
where

R(1),free1D (x) := (1 + σ)
1
2σ sech

1
σ (σ x).

Since R(1),freeµ,1D has a single peak, there are no necklace solutions
of (14). In two dimensions, we have

Lemma 2. The free-space two-dimensional NLS (2) does not admit
necklace-type solitary waves.

Proof. We provide an informal proof. Assume by negation that
there is a necklace solution with e.g., n = 4 pearls. Without loss of
generality, their peaks are located at (±a,±a). By antisymmetry,
R ≡ 0 on the x-axis and y-axis. Therefore, there exists a nontrivial,
positive, single-peak solution of (4) on the positive quarter-plane
S∞ := {0 < x, y < ∞}, whose peak is at (a, a). By continuity, this
solution is the limit of positive, single-peak solutions of (4) on the
square SA := {0 < x, y < A}. By symmetry, however, the peak of
these solutions is at (A/2, A/2).5 Since limA→∞(A/2, A/2) ≠ (a, a),
we reach a contradiction. �

3. NLS on a bounded domain

In this section we briefly review the NLS on bounded domain.
See [9] and [1, Chapter 16] for further details. Solutions of (3)
conserve their power and Hamiltonian, i.e.,

P(ψ) ≡ P(ψ0), H(ψ) ≡ H(ψ0),

where

P(ψ) :=


D
|ψ |

2 dxdy,

H(ψ) :=


D
|∇ψ |

2 dxdy −
1
2


D
|ψ |

4 dxdy.

Recall that the free-space ground-state solitary waves6 depend
on µ through the scaling

R(1),freeµ,2D (x) = µ
1
2 R(1),free2D (µ

1
2 x), R(1),free2D := R(1),freeµ=1,2D.

5 This statement is further supported by Corollary 2.
6 i.e., the positive solutions of (2).
Consequently, their power is independent of µ, i.e.,

P(R(1),freeµ,2D ) ≡ P(R(1),free2D ) = Pcr, (15)
where Pcr is the critical power for collapse. On bounded domains,
however, there is no such scaling for R(1)µ . Indeed, numerical
simulations and some analytic results show that the power of R(1)µ
is strictly increasing in µ.

The absence of a scaling invariance can be used to give the
following variational characterization of the ground-state solitary
waves on bounded domains:

Conjecture 1. Let D be a regular bounded domain, and let µlin be the
first eigenvalue of (5). Then for all µ ∈ (µlin,∞),
1. Eq. (4) has minimal-power nontrivial solution, denoted by R(1)µ ,

which is positive and unique (up to symmetries that leave the
domain invariant).

2. R(1)µ is the unique real minimizer over all U(x, y) ∈ H1
0 (D) of

inf
∥U∥

2
2=∥R(1)µ ∥

2
2

H(U).

3. For all 0 < P < Pcr, there exists a uniqueµP ∈ (µ0,∞) such that
R(1)µP

is the unique real minimizer over all U(x, y) ∈ H1
0 (D) of

inf
∥U∥

2
2=P

H(U). (16)

Parts of Conjecture 1 were proved by Fibich and Merle [9]:
The existence of a minimizer of (16) was proved for any regular
bounded domain, and its uniquenesswas proved forD = B1.7 Since
H(|u|) ≤ H(u) for u ∈ H1

0 , the minimizer can be assumed to be
non-negative.

Corollary 2. Assume that Conjecture 1 holds for D = [−1, 1]2. Then
the maximum of R(1)µ (x, y) is attained at the origin.

Proof. We provide a sketch of a proof. Assume by negation that
the maximum of R(1)µ is not attained at the origin. If we apply
Steiner symmetrization to R(1)µ (x, y) in x and then in y, we obtain

7 Since then one can use Steiner symmetrization to conclude that the minimizer
is radial.
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a b c d

Fig. 3. A single pearl on a square, i.e., the solution of (17). (a) µ = 1. (b) µ = 10. (c) µ = 50. (d) The pearl power P(R(1)µ ) =
 1
−1

 1
−1 |R(1)µ |

2dxdy as a function of µ. Here,
µlin ≈ −5.
a function Sµ(x, y) which is symmetric in x and in y, and is
monotonically decreasing in |x| and in |y|. Therefore, its peak is at
the origin. Furthermore,

∥Sµ∥2 = ∥R(1)µ ∥2, ∥Sµ∥4 = ∥R(1)µ ∥4, ∥∇Sµ∥2 ≤ ∥∇R(1)µ ∥2.

In fact, we claim that ∥∇Sµ∥2 < ∥∇R(1)µ ∥2. Therefore, Sµ ∈ H1
0 (D),

∥Sµ∥2 = ∥R(1)µ ∥2 and H(Sµ) < H(R(1)µ ), which is in contradiction to
our assumption that R(1)µ is a minimizer.

Indeed, if ∥∇Sµ∥2 = ∥∇R(1)µ ∥2, then ∇R(1)µ vanishes on a set
of positive measure inside D (see e.g., [17, Theorem 2.6]). In that
case, however, by elliptic regularity, the unique continuation of
R(1)µ from the set of positive measure where ∇R(1)µ vanishes to D
is R(1)µ ≡ 0. �

4. Necklace solitary waves

In this section we construct necklace solitary waves on various
bounded domains. The numerical method used for computing
these solutions is discussed in Section 6.1.

4.1. Rectangular necklaces

To construct a necklace solitary wave on a rectangular domain,
we first consider a single pearl on a square.

4.1.1. Single pearl on a square
Let D be the square [−1, 1]2. Then Eq. (4) reads

1R(x, y)− µR + |R|2R = 0, −1 < x, y < 1, (17a)
R(x = ±1, y) = R(x, y = ±1) = 0. (17b)

Since we look for a positive solution, we add the requirement that

R(x, y) > 0, −1 < x, y < 1. (17c)

Following Fibich and Merle [9], the solutions of (17), which we
denote by R(1)µ , bifurcate from

Q (1)(x, y) := cos
πx

2


cos

πy
2


, µlin = −

π2

2
, (18)

which is the ground-state eigenpair of (5) with D = [−1, 1]2.
As µ increases from µlin, R(1)µ becomes more localized as its

power increases and the nonlinearity becomes more pronounced,
see Fig. 3. In particular, as µ → ∞, R(1)µ ‘‘does not feel’’ the
reflecting boundary, and so it approaches the corresponding free-
space solitary wave, i.e., R(1)µ ∼ R(1),freeµ,2D , where R(1),freeµ,2D is the
positive solution of (2). Hence, limµ→∞ P(R(1)µ ) = Pcr, where Pcr =

|R(1),free2D |
2 dxdy is the critical power for collapse [18].
4.1.2. Rectangular necklace solitary waves
We can use the single-pearl solution R(1)µ to construct a

rectangular necklace solitary wave with l × k pearls, by letting
adjacent pearls have opposite phases (signs). For example, Fig. 4
shows a rectangular necklace solitary wave with 2 × 3 pearls.

Lemma 3. R(l×k)
µ is a rectangular necklace solution of Eq. (4)with l×k

pearls.

Proof. Clearly, R(l×k)
µ is a smooth solution of (4a) inside each ‘‘cell’’,

and it satisfies the boundary conditions (4b). To show that R(l×k)
µ

satisfies Eq. (4a) at the interfaces between pearls, it is enough to
show that it is twice continuously differentiable there. Clearly,
R(l×k)
µ is continuous at the interfaces, since the pearls vanish there.

Consider, for example, the interface x ≡ 1 in Fig. 4(a). Note that
if R(1)µ (x, y) is a solution of (17), then so is R(1)µ (−x, y). Therefore,
R(1)µ (−x, y) = R(1)µ (x, y), and so

−
∂

∂x
R(l×k)
µ (x = −1+, y) =

∂

∂x
R(l×k)
µ (x = 1−, y). (19a)

In addition, by construction of R(l×k)
µ , we have that R(l×k)

µ (x, y) =

−R(l×k)
µ (x − 2, y). Hence,

∂

∂x
R(l×k)
µ (x = 1+, y) = −

∂

∂x
R(l×k)
µ (x = −1+, y). (19b)

Therefore, by (19), ∂
∂xR

(l×k)
µ is continuous at x ≡ 1. Since R(l×k)

µ ≡ 0

on the interface x ≡ 1, then ∂
∂yR

(l×k)
µ ≡ 0, ∂2

∂x∂yR
(l×k)
µ ≡ 0, and

∂2

∂y2
R(l×k)
µ ≡ 0 there. Therefore, ∂

2

∂x2
R(l×k)
µ = (µ − |R(l×k)

µ |
2)R(l×k)

µ −

∂2

∂y2
R(l×k)
µ ≡ 0 there. Hence, ∂

∂yR
(l×k)
µ , ∂2

∂x∂yR
(l×k)
µ , ∂2

∂y2
R(l×k)
µ and

∂2

∂x2
R(l×k)
µ are also continuous at x ≡ 1. �

Remark. Note that R(l×k)
µ is identically zero along the lines

separating adjacent pearls, and is antisymmetric with respect to
these lines.

Remark. The single-pearl solution can also be used to con-
struct necklace solitary waves on non-rectangular domains, see
e.g., Fig. 5.

4.2. Circular necklaces

To construct a necklace solitary wave on a circular domain, we
repeat the procedure for a rectangular domain (Section 4.1). Thus,
we first compute a single pearl solution on a sector of a circle, and
then use it to construct a circular necklace solitary wave.
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Fig. 4. (a) Construction of a rectangular necklace solitary wave with 2 × 3 pearls.
The ‘±’ symbols correspond to ±R(1)µ . Note that R(2×3)

µ is identically zero along the
dashed lines, and is antisymmetric with respect to these lines. (b) The rectangular
necklace solitary wave R(2×3)

µ=1 .

ba

Fig. 5. Same as Fig. 4 for a non-rectangular domain with 5 pearls.

4.2.1. Single pearl on a sector of a circle
Let D = {r ∈ [0, 1], θ ∈ [0, 2π

n ]} be the sector of the unit circle.
Then Eq. (4) reads

Rrr(r, θ)+
1
r
Rr +

1
r2

Rθθ − µR + |R|2R = 0,

0 < r < 1, 0 < θ <
2π
n
, (20a)

R(r = 1, θ) = R(r, θ = 0) = R

r, θ =

2π
n


= 0. (20b)

Since we look for a positive solution, we add the requirement that

R(r, θ) > 0, 0 < r < 1, 0 < θ <
2π
n
. (20c)

Solutions of (20) bifurcate from the positive eigenfunction of (5)
with D = {r ∈ [0, 1], θ ∈ [0, 2π

n ]}, which is given by

Q (1)
:= J n

2


k n

2
r

sin
n
2
θ

, µlin = −k2n

2
, (21)

where J n
2
is the Bessel function of order n

2 of the first kind, and k n
2
is

the first positive root of J n
2
. As µ increases from µlin, R(1)µ becomes

more localized as its power increases, see Fig. 6. In particular,R(1)µ ∼
R(1),freeµ,2D as µ → ∞. Consequently, limµ→∞ P(R(1)µ ) = Pcr.

4.2.2. Circular necklace solitary waves
When n is even, we can use the single-pearl solution R(1)µ to

construct a circular necklace solitary wave with n pearls, by letting
neighboring pearls have opposite signs. For example, Fig. 7 shows
a circular necklace solitary wave with 4 pearls. Note that R(n)µ is
identically zero along the rays that are half way through between
adjacent pearls, and is antisymmetric with respect to these rays.
Lemma 4. Let n be even. Then R(n)µ is a circular necklace solution of
Eq. (4) with n pearls.

Proof. The proof is the same as that of Lemma 3. �

4.3. Annular necklaces

To construct a necklace solitarywave on an annular domain, we
first consider a single pearl on a sector of an annulus, and then use
it to construct necklace solutions on the whole annular domain.

4.3.1. Single pearl on a sector of an annulus
Let D = {r ∈ [rmin, rmax], θ ∈ [0, 2π

n ]} be the sector of the
annulus. Then Eq. (4) reads

Rrr(r, θ)+
1
r
Rr +

1
r2

Rθθ − µR + |R|2R = 0,

rmin < r < rmax, 0 < θ <
2π
n
, (22a)

R(rmin, θ) = R(rmax, θ) = R(r, θ = 0)

= R

r, θ =

2π
n


= 0. (22b)

Since we look for a positive solution, we add the requirement that

R(r, θ) > 0, rmin < r < rmax, 0 < θ <
2π
n
. (22c)

Solutions of (22) bifurcate from the ground-state eigenfunction
of (5) with D = {r ∈ [rmin, rmax], θ ∈ [0, 2π

n ]}, which is given
by

Q (1)
=

J n
2


k n

2
r


−

J n
2


k n

2
rmin


Y n

2


k n

2
rmin

Y n
2


k n

2
r
 sin


nθ
2


,

µlin = −k2n
2
,

where J n
2
and Y n

2
are Bessel functions of order n

2 of the first and
second kind, respectively, and k n

2
is the smallest positive root of

J n
2


k n

2
rmax


Y n

2


k n

2
rmin


− Y n

2


k n

2
rmax


J n
2


k n

2
rmin


= 0. (23)

As µ increases from µlin, R(1)µ becomes more localized as its power
increases, see Fig. 8. In particular, R(1)µ ∼ R(1),freeµ,2D as µ → ∞.
Consequently, limµ→∞ P(R(1)µ ) = Pcr.

4.3.2. Annular necklace solitary waves
We can use R(1)µ as a ‘‘building block’’ to construct an annular

necklace solitary wave with n pearls, by letting neighboring pearls
have opposite signs. For example, Fig. 9 shows an annular necklace
solitary wave with 4 pearls.

Lemma 5. Let n be even. Then R(n)µ is an annular necklace solution of
Eq. (4) with n pearls.

Proof. The proof is the same as that of Lemma 3. �

4.3.3. Annular ground-state solitary waves (symmetry breaking)
Wecan look for positive radial solitarywavesψsw = eiµzRring

µ (r)
of the NLS (3) on the annulus. The profile of these ring-type solitary
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Fig. 6. A single pearl on a quarter of the unit circle, i.e., the ground-state solution of (20) with n = 4. (a) µ = 1. (b) µ = 10. (c) µ = 50. (d) The pearl power

P(R(1)µ ) =
 π

2
0

 1
0 r|R(1)µ |

2drdθ as a function of µ. Here, µlin ≈ −26.4.
Fig. 7. (a) Construction of the circular necklace solitary wave with 4 pearls. The
symbols ‘±’ correspond to ±R(1)µ . Note that R(4)µ is identically zero along the dashed
lines, and is antisymmetric with respect to these lines. (b) The circular necklace
solitary wave R(4)µ=1 .

waves satisfies

Rrr(r)+
1
r
Rr − µR + |R|2R = 0, rmin < r < rmax, (24a)

R(rmin) = R(rmax) = 0, (24b)
R(r) > 0, rmin < r < rmax. (24c)

Because of the hole and the requirement of radial symmetry, these
solitary waves cannot approach the free-space two-dimensional
ground-state R(1),freeµ,2D as µ → ∞. Rather,

Rring
µ ∼

√
µR(1),free1D (

√
µ(r − rM,µ)), µ → ∞, (25)
Fig. 9. (a) Construction of an annular necklace solitary wave with 4 pearls. The
symbols ‘±’ correspond to ±R(1)µ . Note that R(4)µ is identically zero along the dashed
lines, and is antisymmetric with respect to these lines. (b) The annular necklace
solitary wave R(4)µ=1 . Here rmin = 0.5 and rmax = 1.

where R(1),free1D is the positive solution of (14) and rM,µ :=

argmax Rring
µ (r). Hence,

P(Rring
µ ) = 2π

 rmax

rmin

|Rring
µ |

2 rdr

∼ 2π
 rmax

rmin

|
√
µR(1),free1D (

√
µ(r − rM,µ))|2 rdr ∼ c

√
µ,

where c = 2πrM,µ


∞

−∞
|R(1),free1D (x)|2 dx. Consequently, limµ→∞

P(Rring
µ ) = ∞.
Fig. 8. A single pearl on a quarter annulus, i.e., the solution of (22) with n = 4. (a) µ = 1. (b) µ = 10. (c) µ = 50. (d) The pearl power P(R(1)µ ) =
 2π

n
0 dθ

 rmax
rmin

r|R(1)µ |
2 dr as

a function of µ. Here rmin = 0.5, rmax = 1, and µlin ≈ −45.5.
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a b c d e

Fig. 10. Ground-state solutions of (4) on the annulus {rmin < |x| < rmax}, where rmin = 0.5 and rmax = 1. Here µcr = −38.2. (a) µ = −38.5. (b) µ = −37.9. (c) µ = −20.
(d) P(R(1)µ ) as a function of µ (solid blue line). The dashed red line is P(Rring

µ ). (e) Zoom in near the bifurcation at µc .
a b c d

Fig. 11. A single pearl on an interval, i.e., the ground-state solution of (28) with σ = 1. (a) µ = 1. (b) µ = 10. (c) µ = 50. (d) The pearl power P(R(1)µ ) =
 1
−1 |R(1)µ |

2dx as a
function of µ. Here, µlin ≈ −2.5.
In Fig. 10 we compute the ground-state solutions of (4) on the
annulus {0.5 < |x| < 1} using the non-spectral renormalization
method (Section 6.1) without imposing radial symmetry. These
positive solutions are radial forµlin < µ < µc,8 whereµlin ≈ −39
and µc ≈ −38.2. For µc < µ < ∞, they become non-radial.
In particular, R(1)µ ∼

√
µR(2),free1D (

√
µ(x − xM,µ)) as µ → ∞.9

Consequently, limµ→∞ P(R(1)µ ) = Pcr.
The symmetry-breaking at µc is related to the variational

characterization of the ground-state (see Conjecture 1). Indeed,
by (25), H(Rring

µ ) ∼ µ3/2 as µ → ∞. Therefore, high-power
solutions of (4) on D = {rmin < |x| < rmax} can achieve a smaller
Hamiltonian by ‘‘adopting’’ a non-radial profile.

Note that for µc < µ < ∞, Eq. (4) on the annulus admits both
a radial solution and a non-radial one. To the best of our knowledge,
this is the first example that Eq. (4) admits two different positive
solutions, and that a positive solution of (4) is not a ground state. As
noted above, such results were observed for the inhomogeneous
NLS [12].

4.4. One-dimensional necklaces

It is instructive to consider ‘‘necklace solutions’’ in one
dimension. While less of physical interest, they allow for simpler
analysis and simulations than their two-dimensional counterparts.

Let ψ(z, x) be the solution of the one-dimensional NLS on D =

[xL, xR]

iψz(z, x)+ ψxx + |ψ |
2σψ = 0, xL < x < xR, z > 0, (26a)

with the Dirichlet condition

ψ(z, xL) = ψ(z, xR) = 0, z ≥ 0. (26b)

8 i.e., R(1)µ = Rring
µ for µlin < µ < µc .

9 Non-radial ground states on the annulus are only determined up to a rotation
about the origin. Therefore, xM,µ = rM,µ(cos θ, sin θ), where θ is arbitrary.
Eq. (26) admits solitary wave solutionsψsw = eiµzRµ(x), where Rµ
is a solution of

Rxx(x)− µR + |R|2σR = 0, xL < x < xR,
R(xL) = R(xR) = 0.

(27)

Let D be the interval [−1, 1]. Then Eq. (27) reads

Rxx(x)− µR + |R|2σR = 0, −1 < x < 1, R(±1) = 0. (28)

The ground-state solitary waves R(1)µ (x) of (28) bifurcate from the
ground-state linear mode

Q (1)(x) := cos
πx

2


, µlin = −

π2

4
. (29)

As µ increases from µlin, R(1)µ becomes more localized as its power
increases and the nonlinearity becomes more pronounced, see
Fig. 11. In particular, R(1)µ ∼ R(1),freeµ,1D as µ → ∞, where R(1),freeµ,1D
is the positive solution of (14).

We can use R(1)µ to construct a one-dimensional necklace
solitary wave with n pearls on the interval [−n, n], by letting
adjacent pearls have opposite phases (signs). For example, Fig. 12
shows a one-dimensional necklace solitary wave with 3 pearls.

5. Stability

The appropriate notion for stability of NLS solitary waves is that
of orbital stability. On a bounded domain, orbital stability refers to
stability up to phase shifts:

Definition 3 (Orbital Stability). Letψsw = eiµzRµ be a solitarywave
solution of (3). We say that ψsw is orbitally stable, if for any ϵ > 0,
there exists δ > 0, such that if ∥ψ0 − Rµ∥H1

0 (D)
< δ, and ifψ is the

solution of (3) with the initial condition ψ0, then

inf
θ(z)∈R

∥ψ(z, x)− eiθ(z)ψsw(z, x)∥H1
0 (D)

< ϵ, 0 ≤ z < ∞.
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a b

Fig. 12. (a) Construction of a one-dimensional necklace solitarywavewith 3 pearls.
The symbols ′

±
′ correspond to ±R(1)µ . Note that R(3)µ is identically zero at x =

±1, and is antisymmetric with respect to these points. (b) The one-dimensional
necklace solitary wave R(3)µ=1 .

5.1. Stability of single-pearl (ground-state) solitary waves

We recall that in free space, the ground-state solitary waves of
the critical NLS (1) are unstable. A reflecting boundary, however,
has a stabilizing effect. Indeed, since the VK condition d

dµP(Rµ) >
0 holds for the ground state solitary waves on B1, these solitary
waves are orbitally stable for µlin < µ < ∞ (0 < P < Pcr). See [9,
10] for more details.

5.1.1. Convex domains
Our numerical simulations suggest that the VK condition holds

for the ground state solutions of (4) on a square, on a sector of a
circle, and on a sector of an annulus (see Fig. 3(d), Fig. 6(d), and
Fig. 8(d), respectively). In addition, solving the NLS (3) with an
initial condition which is a perturbed single pearl suggests that
single-pearl solitary waves are stable, see e.g., Fig. 13. Therefore,
based on this numerical evidence, we formulate

Conjecture 2. All single-pearl (positive, ground state) solitary waves
ψ
(1)
sw = eiµzR(1)µ (x, y) of the NLS (3) on a convex bounded domain are

orbitally stable.

5.1.2. Annular domain
In the case of an annular domain, there are two types of positive

solitary waves: Radial ring-type solutions ψ ring
sw = eiµzRring

µ (r),
which exist for µlin < µ < ∞, and nonradial single-peak
solutions ψ (1)

sw = eiµzR(1)µ (r, θ), which exist for µc < µ < ∞,
see Section 4.3.3. The ground states solutions (i.e., the minimizers
of the Hamiltonian, see Conjecture 1) are radial for µlin < µ < µc
and non-radial for µc < µ < ∞.

To test numerically for stability, we solve the NLSwith an initial
condition which is the solitary wave profile, multiplied by 1.05 in
the first quadrant. Thus, ψ0 = Rring

µ (r)H(θ) or ψ0 = R(1)µ (r)H(θ),
where

H(θ) =


1.05, for 0 < θ < π/2,
1, for π/2 < θ < 2π. (30)

Numerical simulations (Fig. 14 top and bottom rows) show that the
ground state solitary waves ψ (1)

sw are stable both below and above
the symmetry-breaking point µcr (i.e., for µlin < µ < ∞). The
ring-type solitary waves ψ ring

sw , however, are unstable for µcr <
µ < ∞, see Fig. 14 (middle row). Thus, as expected, the ground-
state solutions are stable, but the excited ones are not.10,11

10 A similar stability pattern, below and above the symmetry-breaking point, was
observed for the inhomogeneous NLS [12].
11 Intuitively, the high-power ring-type solitary waves inherit the azimuthal
instability of the free-space ring-type solutions.
5.2. Stability of necklace solitary waves

Since each pearl satisfies the VK condition (Section 5.1), so does
the necklace, see (7). This does not imply that the necklace is
stable, however, since the VK condition implies stability only for
ground states. Therefore, to check for necklace stability, we have
to ‘‘go back’’ to the original eigenvalue problem fromwhich the VK
condition was derived [19].

Let

ψ = eiµt(R(x)+ ϵh(z, x)), h(z, x) = eΩz(h(z, x)+ iv(x)).

Then the linearized equation for h reads
0 L+

−L− 0


v
u


= Ω


v
u


, (31)

where Ω ∈ C is the eigenvalue,

v
u


=


v(x, y)
u(x, y)


is the

eigenfunction, and

L+ := ∆− µ+ 3|Rµ|2, L− := ∆− µ+ |Rµ|2.

Note that if Ω is an eigenvalue with eigenvector

v
u


, then −Ω is

an eigenvaluewith eigenvector


−v
u


, andΩ∗ is an eigenvaluewith

eigenvector

v∗

u∗


. Therefore, the genuinely-complex eigenvalues

of (31) always come in quadruples. Consequently, without loss of
generality, we focus from now on eigenvalues with nonnegative
real and imaginary parts.

Necklace solitary waves are stable under perturbations that
preserve their symmetries (or, more precisely, their anti-
symmetries with respect to the interfaces between adjacent
pearls):

Lemma 6. Let ψ (n)
sw be a necklace solitary wave with n pearls. If

the single-pearl solitary wave is stable, then ψ
(n)
sw is stable under

perturbations that preserve the symmetries of ψ (n)
sw .

Proof. As in free space, see Lemma1 and (12), the solution remains
zero on the interfaces between pearls. Therefore, there is no
interaction between pearls. Hence, if the single pearl is stable, then
so is the necklace. �

Remark. As µ → ∞, the single pearl has the asymptotic scaling

R(1)µ ∼ R(1),freeµ,2D (r) = µ
1
2 R(1),free2D (µ

1
2 r).

Therefore, the necklace R(n)µ (x, y) has the same asymptotic

scaling. Hence, by (31), so does the eigenvector

v
u


, while the

eigenvalueΩ scales asymptotically as µ.

5.3. Rectangular necklaces

When Rµ = R(1)µ is a single pearl on the square D = [−1, 1]2,
there are no eigenvalues of (31) with a positive real part, see
Fig. 15(a). This is in agreementwith the observed stability ofψ (1)

sw =

eiµzR(1)µ in Fig. 13(a).
Next, we investigate the stability of ψ (2×1)

sw = R(2×1)
µ (x, y)eiµz ,

where R(2×1)
µ is a rectangular necklace with 2 pearls. Fig. 15(b)

shows that there are no eigenvalues of (31) with Re(Ω) > 0 for
µlin 6 µ < µcr, and that there is a simple eigenvalueΩ1(µ) with
Re(Ω1) > 0 for µcr < µ < ∞, where µlin = −

π2

2 ≈ −4.9,
see (18), and µcr ≈ −4. Hence, ψ (2×1)

sw is linearly stable for µlin 6
µ < µcr and unstable for µcr < µ < ∞. As noted, R(2×1) satisfies
the VK condition for all µ, since it is constructed from 2 identical
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a b c

Fig. 13. Contour plots of |ψ | at z = 0 (top) and z = 10 (bottom). Here ψ is the solution of the NLS (3) on a domain D, with the perturbed single-pearl initial condition
ψ0 = 1.05R(1)µ=1(x, y). (a) D is the square [−1, 1]2 . (b) D is the quarter circle {0 ≤ r ≤ 1 , 0 ≤ θ ≤

π
2 }. (c) D is the quarter annulus {

1
2 ≤ r ≤ 1 , 0 ≤ θ ≤

π
2 }.
Fig. 14. Solution of the NLS (3) on the annular domain D = {0.5 ≤ |x| ≤ 1}. Top
row: µ = µcr − 0.3 and ψ0 = Rring

µ (r)H(θ), where H(θ) is given by (30). Middle
row: µ = µcr + 0.3 and ψ0 = Rring

µ (r)H(θ). Bottom row: µ = µcr + 0.3 and
ψ0 = R(1)µ (r, θ)H(θ). Here µcr ≈ −38.2.

ground states, each of which satisfies the VK condition. This does
not lead to a contradiction, however, since the VK condition applies
to ground states, which is not the case for multi-pearl necklaces.

The change from stability to instability occurs as the necklace
power exceeds the threshold power

Pnecklace
th (n = 2 × 1) := P(R(2×1)

µcr
) ≈ 0.275Pcr, (32)

see Fig. 16(b), i.e., when the power of each pearl is ≈0.14Pcr. For
comparison, all single-pearl solitary waves with power below Pcr
are stable. From this perspective, 2-pearl necklace solitary waves
are considerably less stable than single-pearl ones.
a

b

c

Fig. 15. Re(Ω) as a function ofµ for all eigenvalues of (31) with a positive real part.
Here D is the rectangular domain shown on the right. (a) R = R(1)µ . (b) R = R(2×1)

µ .
The dashed line corresponds toΩ1 . (c) R = R(2×2)

µ . The dashed blue and dotted red
lines correspond toΩ1 , and the solid green line toΩ2 .

Following [20,14], in order to understand the instability
dynamics of ψ (2×1)

sw , in Fig. 17 we plot the eigenfunction f (2×1)
1 :=

v
u


that corresponds to the unstable eigenvalue Ω1 of (31)

with R = R(2×1)
µ .Weplot both the imaginary and real parts (and not

just the absolute value) since we want to check whether f (2×1)
1 is

symmetric or anti-symmetric. The unstable eigenfunction satisfies
f (2×1)
1 (x, y) = f (2×1)

1 (−x, y), in contrast to R(2×1)
µ that satisfies

R(2×1)
µ (x, y) = −R(2×1)

µ (−x, y). In other words, f (2×1)
1 is symmetric

with respect to the interface x = 0 between the pearls, whereas
R(2×1)
µ is antisymmetric with respect to x = 0. This shows that the

instability is related to the breaking of the anti-symmetry between
the two pearls. Since the addition of a symmetric perturbation to an
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b

c

Fig. 16. Same as Fig. 15, where the x-coordinate is the fractional necklace power
p = P(R(n)µ )/Pcr . Here pneckth := Pnecklace

th (n)/Pcr is ≈0.275 in (b) and ≈0.55 in (c).

anti-symmetric profile lowers one of the peaks while increasing the
other, the instability evolves as power flows from one pearl to the
other.
Next, we investigate the stability of ψ (2×2)
sw = R(2×2)

µ (x, y)eiµz ,
where R(2×2) is a square necklace with 2 × 2 pearls. Fig. 15(c)
shows that ψ (2×2)

sw is stable for µlin 6 µ < µcr and unstable for
µcr < µ < ∞, where µlin and µcr are as in the case of R(2×1)

µ .
Furthermore, ψ (2×2)

sw has an unstable eigenvalue Ω1(µ) of multi-
plicity 2 for µcr < µ < ∞, whose value is the same as for ψ (2×1)

sw ,
and an additional simple eigenvalue Ω2(µ) for µ

(2)
cr < µ < ∞,

where µcr < µ
(2)
cr ≈ 1.

In Fig. 18 we plot the eigenfunctions that correspond to the
unstable eigenvalues of R(2×2)

µ for µ = 20, which is in the
regime µ(2)cr < µ < ∞. One eigenfunction that corresponds to
Ω1(µ = 20) = 3.4 + 4.4i satisfies f (2×2)

1,1 (x, y) = f (2×2)
1,1 (−x, y)

and f (2×2)
1,1 (x, y) = −f (2×2)

1,1 (x,−y). In contrast, R(2×2)
µ (x, y) =

−R(2×2)
µ (−x, y) and R(2×2)

µ (x, y) = −R(2×2)
µ (x,−y). Thus, f (2×2)

1,1

breaks the anti-symmetry ofR(2×2)
µ in the x-direction, but preserves

it in the y-direction. It follows that there is a decoupling between
the top and bottom pair of pearls as the instability evolves. In fact,
as illustrated in Fig. 19(a), f (2×2)

1,1 (x, y) is nothing but f (2×1)
1 (x, y) for

0 ≤ y ≤ 2, and −f (2×1)
1 (x,−y) for −2 ≤ y ≤ 0, where f (2×1)

1 is
the unstable eigenfunction of (31) with R(2×1)

µ , which is plotted in
Fig. 17. This explain why the values ofµcr andΩ1(µ) for R(2×1)

µ and
Fig. 17. Real and imaginary parts of the eigenfunction f (2×1)
1 =


v

u


of (31) that corresponds to the unstable eigenvalueΩ1(µ = 20) = 3.4+4.4i. Here D = [−2, 2]×[0, 2]

and R = R(2×1)
µ=20 . The rightmost panel illustrates the directions in which the power flows as the instability evolves.
Fig. 18. Same as Fig. 17withD = [−2, 2]2 andR = R(2×2)
µ=20 . First row: The eigenfunction f (2×2)

1,1 ofΩ1 . Second row: The eigenfunction f (2×2)
1,2 ofΩ1 . Third row: The eigenfunction

f (2×2)
2 ofΩ2 .
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a b

Fig. 19. (a) Construction of f (2×2)
1,1 using f (2×1)

1 . (b) Construction of f (2×2)
1,2 using f (2×1)

1 . See details in text.
Fig. 20. Solution of the NLS (3) on the domain D = [−2, 2]2 at different distances.
Here ψ0 = R(2×2)

µ (x, y)H(θ), where H(θ) is given by (30). Top row: µ = µcr −
1
4 .

Bottom row: µ = µcr +
1
4 . Here µcr ≈ −4.

for R(2×2)
µ are identical, and also implies that

Pnecklace
th (n = 2 × 2) := P(R(2×2)

µcr
)

= 2 · Pnecklace
th (n = 2 × 1) ≈ 0.55Pcr, (33)

see Fig. 16(c), where Pnecklace
th (n = 2×2) is the threshold power for

instability of a 2 × 2 square necklace.
The second eigenfunction that corresponds to Ω1(µ = 20) =

3.4+4.4i is a 90◦ rotation of the first eigenfunction, i.e., f (2×2)
1,2 (x, y)

is f (2×1)
1 (−y, x) for −2 ≤ x ≤ 0 and −f (2×1)

1 (y,−x) for 0 ≤ x ≤ 2,
see Fig. 19(b). Thus, f (2×2)

1,2 preserves the antisymmetry in x, but
breaks it in y. Hence, in the instability dynamics which is excited
by this eigenfunction, there is a decoupling between the left and
right pairs of pearls.

The unstable eigenfunction which corresponds to Ω2(µ =

20) = 4.7+4.6i, which is denoted by f (2×2)
2 , satisfies f (2×2)

2 (x, y) =

f (2×2)
2 (−x, y) = f (2×2)

2 (x,−y) = f (2×2)
2 (−x,−y). Hence, it breaks

the antisymmetry between all pearls. Therefore, the power flows
between all 4 pearls.

5.3.1. Instability dynamics
In free space, unstable solitary waves either collapse or

scatter. On bounded domains, however, scattering is impossible.
In addition, since Pnecklace

th (n = 2 × 2) ≈ 0.55Pcr, see (33),
then for µ slightly above µcr we have that P(R(2×2)

µ ) < Pcr, and
so ψ (2×2)

sw cannot collapse under small perturbations. Indeed, the
change from stability to instability of ψ (2×2)
sw is associated with the

loss of the necklace structure,12 due to power flow between pearls, and
notwith collapse or scattering. To see this, in Fig. 20we solve theNLS
numerically with a perturbed R(2×2)

µ initial condition. In order to
excite the unstable modes, we multiply the top-right pearl by 1.05
and leave the other three pearls unchanged.13 Fig. 20 shows that
ψ
(2×2)
sw preserves its necklace shape till z = 10 for µ = µcr −

1
4 ,

but disintegrates before z = 3 for µ = µcr +
1
4 . This confirms that

there is a qualitative change in the necklace stability at µcr.

5.4. Circular necklaces

When Rµ = R(1)µ is a single pearl on the quarter circle {0 ≤ r ≤

1 , 0 ≤ θ ≤
π
2 }, there are no eigenvalues of (31)with a positive real

part, see Fig. 21(a). This is in agreement with the observed stability
of ψ (1)

sw = eiµzR(1)µ in Fig. 13(b).
Next, we investigate the stability ofψ (2)

sw = R(2)µ (x, y)e
iµz , where

R(2)µ is a 2-pearl necklace on the semi-circle. Fig. 21(b) shows that
there are no eigenvalues of (31) with Re(Ω) > 0 for µlin 6 µ <
µcr, and there is a single eigenvalue Ω1 with Re(Ω1) > 0 for
µcr < µ < ∞, where µlin = −k22 ≈ −26.4, see (21), and
µcr ≈ −24.3. Hence, ψ (2)

sw is linearly stable for µlin 6 µ < µcr
and unstable for µcr < µ < ∞.14

The change from stability to instability occurs as the necklace
power exceeds the threshold power

Pnecklace
th (n = 2) = P(R(2)µcr

) ≈ 0.12Pcr, (34)

see Fig. 22(b), i.e., when the power of each pearl is ≈0.06Pcr. Thus,
the threshold power for instability of a 2-pearl necklace on the semi-
circle is less than half of that on a rectangle, see (32). We have no
explanation for this surprising observation.

In Fig. 23 we plot the eigenfunction f (2)1 :=


v
u


that corre-

sponds to the unstable eigenvalue Ω1 associated with R(2)µ . The

12 I.e., the loss of antisymmetry between adjacent pearls.
13 Unlike Fig. 13,we do not test for stability bymultiplyingψ0 by 1.05, since in that
case ψ0 remains antisymmetric with respect to the interfaces between the pearls,
and hence so doesψ . Consequently,ψ ≡ 0 on the interfaces between pearls, which
thus act as reflecting boundaries that prevent the pearls from interacting with each
other. Since each pearl is stable, see Fig. 13(a), the necklace remains stable under
this antisymmetry-preserving perturbation (see Lemma 6).
14 As noted, R(2) satisfies the VK condition for allµ, since it is constructed from two
identical ground states, each of which satisfies the VK condition. This does not lead
to a contradiction, however, since the VK condition applies to positive solutions,
which is not the case for multi-pearl necklaces.
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Fig. 21. Same as Fig. 15, where D is the sector of a circle shown on the right.
(a) R = R(1)µ , (b) R = R(2)µ , (c) R = R(4)µ .

a

b

c

Fig. 22. Same as Fig. 21, where the x-coordinate is the fractional necklace power
p = P(R(n)µ )/Pcr . Here pneckth := Pnecklace

th (n)/Pcr is ≈0.12 in (b) and ≈0.24 in (c).

unstable eigenfunction satisfies f (2)1 (x, y) = f (2)1 (−x, y), in con-
trast to R(2)µ , which satisfies R(2)µ (x, y) = −R(2)µ (−x, y). This shows
that the instability of ψ (2)

sw is related to the breaking of the anti-
symmetry between the two pearls. Thus, the instability evolves as
power flows from one pearl to the other.

Next, we investigate the stability ofψ (4)
sw = R(4)µ (x, y)e

iµz , where
R(4) is a circular necklace with 4 pearls. Fig. 21(c) shows thatψ (4)

sw is
linearly stable for µlin 6 µ < µcr and unstable for µcr < µ < ∞,
where µlin and µcr are as in the case of R(2)µ . Furthermore, ψ (4)

sw has
an unstable eigenvalue Ω1 of multiplicity 2 for µcr < µ < ∞,
whose value is the same as for ψ (2)

sw , and an additional simple
eigenvalueΩ2 for µ(2)cr < µ < ∞, where µcr < µ

(2)
cr ≈ 4.
In Fig. 24 we plot the eigenfunctions that correspond to the
unstable eigenvalues for µ = 12, which is in the regime µ(2)cr <
µ < ∞. As in the rectangular case, one eigenfunction that
corresponds to Ω1(µ = 12) = 5 + 14i satisfies f (4)1,1 (x, y) =

f (4)1,1 (−x, y) and f (4)1,1 (x, y) = −f (4)1,1 (x,−y). In contrast, R(4)µ (x, y) =

−R(4)µ (−x, y) and R(4)µ (x, y) = −R(4)µ (x,−y). Thus, f (4)1,1 breaks the
anti-symmetry of R(4)µ in the x-direction, but preserves it in the y-
direction. Hence, there is decoupling between the top and bottom
pair of pearls as the instability evolves. In fact, as illustrated in
Fig. 25(a), f (4)1,1 (x, y) is nothing but f (2)1 (x, y) for 0 ≤ y ≤ 1,
and −f (2)1 (x,−y) for −1 ≤ y ≤ 0, where f (2)1 is the unstable
eigenfunction of (31) with R(2), which is plotted in Fig. 23. This
explain why the values of µcr and Ω1(µ) for R(2) and for R(4)µ are
identical, and also implies that the threshold power for instability
of a 4-pearl circular necklace satisfies

Pnecklace
th (n = 4) = 2Pnecklace

th (n = 2) ≈ 0.24Pcr, (35)

see Fig. 22(c).
The second eigenfunction that corresponds to Ω1(µ = 12) =

5 + 14i is a 90◦ rotation of the first eigenfunction, i.e., f (4)1,2 (x, y) is
−f (2)1 (y,−x) for −1 ≤ x ≤ 0, and f (2)1 (−y, x) for 0 ≤ x ≤ 1,
see Fig. 25(b). For this eigenfunction, there is decoupling between
the instability dynamics of the left and right pairs of pearls. The
unstable eigenfunction which corresponds to Ω2(µ = 12) =

6.7 + 19i is denoted by f (4)2 . It satisfies f (4)2 (x, y) = f (4)2 (−x, y) =

f (4)2 (x,−y) = f (4)2 (−x,−y), i.e., it breaks the antisymmetry
between all pearls. Therefore, the power flows between all 4 pearls.

5.4.1. Instability dynamics
As in the rectangular case, the change from stability to

instability of ψ (4)
sw is associated with the loss of the necklace

structure due to power flow between pearls, and not with collapse
or scattering. To see this, we solve the NLS numerically with a
perturbed R(4)µ initial condition. In order to excite the unstable
modes, we multiply the top-left pearl by 1.05 and leave the other
three pearls unchanged. Fig. 26 shows that ψ (4)

sw preserves its
necklace shape till z = 10 forµ = µcr −1, but that it disintegrates
before z = 3 for µ = µcr − 1. This confirms that there is a
qualitative change in the necklace stability at µcr.

5.5. Annular necklaces

When Rµ = R(1)µ is a single pearl on the quarter-annulus {0.5 ≤

r ≤ 1, 0 ≤ θ ≤
π
2 }, there are no eigenvalues of (31) with a positive

real part, see Fig. 27(a). This is in agreement with the observed
stability of ψ (1)

sw = eiµzR(1)µ in Fig. 13(c).

Next, we investigate the stability ofψ (2)
sw = eiµzR(2)µ (x, y), where

R(2)µ is a 2-pearl necklace on the half-annulus {0.5 ≤ r ≤ 1, 0 ≤

θ ≤ π}. Fig. 27(b) shows that there are no eigenvalues of (31) with
Re(Ω) > 0 for µlin 6 µ < µcr and for µ2 6 µ < µ4, and there
is a single eigenvalue Ω1 with Re(Ω1) > 0 for µcr < µ < µ2
and for µ4 < µ < ∞, where µlin = −k22 ≃ −46.4, see (23),
Fig. 23. Same as Fig. 17 with D being the upper half circle, R = R(2)µ=12 , andΩ1(µ = 12) = 5 + 14i.
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Fig. 24. Same as Fig. 17, with D being the unit circle and R = R(4)µ=12 . First row: The eigenfunction f (4)1,1 of Ω1 . Second row: The eigenfunction f (4)1,2 of Ω1 . Third row: The

eigenfunction f (4)2 ofΩ2 .
a b

Fig. 25. (a) Construction of f (4)1,1 using f (2)1 . (b) Construction of f (4)1,2 using f (2)1 . See details in the text.
Fig. 26. Same as Fig. 20 on a circular domain. Top row: µ = µcr − 1. Bottom
row: µ = µcr + 1. Here µcr ≈ −24.3.

µcr ≈ −43.6, µ2 ≈ 23, and µ4 ≈ 117. Hence, ψ (2)
sw is linearly

stable for µlin 6 µ < µcr and µ2 < µ < µ4, and unstable for
µcr < µ < µ2 and µ4 < µ < ∞.
The initial change from stability to instability occurs as the
necklace power exceeds

Pnecklace
th (R(2)µ ) = P(R(2)µcr

) ≈ 0.12Pcr,

see Fig. 28(b), i.e., when the power of each pearl is ≈0.06Pcr. Thus,
the threshold power for instability of a two-pearl necklace on the
half-annulus is the same as that on the half-circle, see (34). This is
surprising, since the necklace instability is associated with power
transfer between the pearls, and so the hole could be expected to
have a stabilizing effect.

The behavior of Re(Ω1) forµlin < µ < µ4 is different from that
for a two-pearl necklace on a rectangle and on a semi-circle, see
Figs. 15(b) and 21(b), respectively. It is, however, similar to that for
a two-pearl one-dimensional necklace, see Fig. 33(b). Intuitively,
this is because the Dirichlet boundary conditions at r = rmin and
r = rmax ‘‘clamp’’ the necklace profile in the radial direction.
Consequently, the dependence of R(1)µ on µ is predominantly one-
dimensional. Once µ > µ4, however, the pearls become so
narrow that they ‘‘do not feel’’ the radial walls. Therefore, they
approach the free-space two-dimensional ground state R(1),freeµ,2D .
Hence, Re(Ω1) increases linearly in µ (see Section 5.2).
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Fig. 27. Same as Fig. 15, where R = R(4)µ , and D is the sector of the annulus
0.5 < r < 1 shown on the right.

Wenowdiscuss the stability ofψ (4)
sw = R(4)µ (r, θ)e

iµz , where R(4)µ
is an annular necklace with 4 pearls, see Section 4.3.2. Fig. 27(c)
shows thatψ (4)

sw is linearly stable forµlin 6 µ < µcr andµ2 6 µ <
µ3, and unstable for µcr < µ < µ2 and µ3 < µ < ∞, where µlin,
µcr, and µ2 are the same as for ψ (2)

sw , and µ3 ≈ 73.15

In Fig. 29 we plot the eigenfunctions that correspond to the
unstable eigenvalues for µ = −28. One eigenfunction that
corresponds to Ω1(µ = −28) = 3 + 7.6i satisfies f (4)1,1 (x, y) =

f (4)1,1 (−x, y) and f (4)1,1 (x, y) = −f (4)1,1 (x,−y). In contrast, R(4)µ (x, y) =

−R(4)µ (−x, y) and R(4)µ (x, y) = −R(4)µ (x,−y). Thus, f (4)1,1 breaks the
anti-symmetry of R(4)µ in the x-direction, but preserves it in the y-
direction. Hence, there is decoupling between the top and bottom
pair of pearls as the instability evolves. As in the rectangular and
circular cases, f (4)1,1 (x, y) is nothing but f (2)1 (x, y) for 0 ≤ y ≤ 1,
and −f (2)1 (x,−y) for −1 ≤ y ≤ 0 see Fig. 30(a), where f (2)1 is the
unstable eigenfunction of (31) for a two-pearl necklace on the half-
annulus. The second eigenfunction that corresponds to Ω1(µ =

−28) = 3 + 7.6i is a 90◦ rotation of the first eigenfunction,
i.e., f (4)1,2 (x, y) is f (2)1 (−y, x) for −1 ≤ x ≤ 0, and −f (2)1 (y,−x)
for 0 ≤ x ≤ 1, see Fig. 30(b). For this eigenfunction, there
is decoupling between the instability dynamics of the left and
right pair of pearls. The unstable eigenfunction that corresponds
to Ω2(µ = −28) = 2.5 + 16i is denoted by f (4)2 . It satisfies
f (4)2 (x, y) = f (4)2 (−x, y) = f (4)2 (x,−y) = f (4)2 (−x,−y), i.e., it breaks
the antisymmetry between all pearls. Therefore, the power flows
between all 4 pearls.

The initial threshold power for the 4-pearl annular necklace
instability is

Pnecklace
th (n = 4) = P(R(4)µcr

) ≈ 0.24Pcr, (36)

15 The upper limit of the second stability regime is smaller than in the two-pearl
case (i.e.,µ3 < µ4), since it is determined by the unstable eigenfunction f (4)2 which
corresponds toΩ2 .
Fig. 28. Same as Fig. 27, where the x-coordinate is the fractional necklace power
p = P(R(n)µ )/Pcr . Here pneckth = Pnecklace

th (n)/Pcr and pi := P(R(n)µi
)/Pcr .

see Fig. 28(c), which is the same as in the circular case, see (35).
As noted, this result is surprising, as one could expect the hole to
stabilize the necklace.

As in the rectangular and circular cases, the initial change from
stability to instability of ψ (4)

sw is associated with the loss of the
necklace structure due to power flow between pearls, and notwith
collapse or scattering. To see this, we solve the NLS numerically
with a perturbed R(4)µ initial condition. In order to excite the
unstable modes, we multiply the upper-right pearl by 1.05 and
leave the other three pearls unchanged. Fig. 31 shows that ψ (4)

sw
preserves its necklace shape till z = 10 for µ = µcr − 1, but
disintegrates before z = 3 for µ = µcr + 1. This confirms that
there is a qualitative change in the necklace stability at µcr.

5.5.1. Second stability regime
Unlike the rectangular and circular cases, there is a second regime

in which the annular necklace becomes linearly stable. This regime is
µ2 < µ < µ3, see Fig. 27(c), which corresponds to

p2Pcr < P(R(4)µ ) < p3Pcr, p2 :=
P(R(4)µ2

)

Pcr
≈ 3.1,

p3 :=
P(R(4)µ3

)

Pcr
≈ 3.7,

see Fig. 28(c). In this regime the hole does stabilize the necklace.
Indeed, Fig. 32 shows that when perturbed by 5% random noise,
ψ
(4)
sw becomes unstable and collapses around z = 11.3 for µ = 10,

but remains stable until z = 15 for µ = 50, where P(R(4)µ=10) ≈

2.9Pcr and P(R(4)µ=50) ≈ 3.5Pcr.

5.6. One-dimensional necklaces

We now consider the stability of necklace solutions of the one-
dimensional NLS (26). We simultaneously consider the subcritical
case σ = 1 and the critical case σ = 2, in order to emphasize that,



G. Fibich, D. Shpigelman / Physica D 315 (2016) 13–32 29
Fig. 29. Same as Fig. 24 for the annular domain D = {0.5 ≤ r ≤ 1} and R = R(4)µ=−28 .
a b

Fig. 30. (a) Construction of f (4)1,1 using f (2)1 . (b) Construction of f (4)1,2 using f (2)1 . See details in text.
Fig. 31. Same as Fig. 20 for the annular domain 0.5 ≤ r ≤ 1. Top row:µ = µcr −1.
Bottom row: µ = µcr + 1. Here µcr ≈ −43.6.

as far as necklace stability is concerned, the subcritical and critical
cases are more similar than different.

Fukuizumi et al. [10] rigorously proved that when 0 < σ ≤ 2
and R(1)µ is a single pearl on the interval [−1, 1], the solitary waves
ψ
(1)
sw (z, x) = eiµzR(1)µ (x) of (26) are stable for all µlin < µ < ∞.

Indeed, there are no eigenvalues of (31) with a positive real part,
see Fig. 33(a) and Fig. 34(a).16

When R = R(2)µ , a one-dimensional necklacewith 2 pearls, there
are no eigenvalues of (31) with Re(Ω) > 0 forµlin 6 µ < µcr, and
there is a single eigenvalueΩ1 with Re(Ω1) > 0 forµcr < µ < ∞,
see Figs. 33(b) and 34(b), where µlin = −

π2

4 ≈ −2.5, see (29),
µcr ≈ −1.56 for σ = 1, and µcr ≈ −2.16 for σ = 2. Hence,
ψ
(2)
sw = R(2)µ (x)e

iµz is linearly stable forµlin 6 µ < µcr and unstable
for µcr < µ < ∞.

The eigenfunction f (2)1 :=


v
u


that corresponds to the unstable

eigenvalue Ω1 associated with R(2)µ satisfies f (2)1 (x) = f (2)1 (−x),
see Figs. 35 and 36, in contrast to R(2)µ , which satisfies R(2)µ (x) =

−R(2)µ (−x). Thus, the instability ofψ (2)
sw is related to the breaking of

the anti-symmetry between the twopearls, and it evolves as power
flows from one pearl to the other. As in the two-dimensional case,
the necklace instability is unrelated to collapse. This is obvious

16 In the one-dimensional case L+ :=
∂2

∂x2
− µ + (2σ + 1)|R|2 and L− :=

∂2

∂x2
− µ+ |R|2 .
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Fig. 32. Same as Fig. 31 forψ0 = (1 + 0.05 · noise (x, y))R(4)µ , where noise (x, y) is
uniformly distributed in [−1, 1]. Top row: µ = 10. Bottom row: µ = 50.

a

b

Fig. 33. Same as Fig. 15 for the one-dimensional NLS with σ = 1. (a) D = [−1, 1]
and R = R(1)µ . (b) D = [−2, 2] and R = R(2)µ .

a

b

Fig. 34. Same as Fig. 33 for σ = 2.

in the case of the one-dimensional cubic NLS, which is subcritical
and thus does not admit blowup solutions. In the one-dimensional
quinticNLS,which is critical, the change fromstability to instability
occurs as the power of R(2)µ exceeds Pnecklace

th (R(2)µ ) = P(R(2)µcr
) ≈

0.25Pcr,17,18 which is well below the critical power for collapse.

17 I.e., when the power of each pearl is ≈
1
8 Pcr .

18 This result was already observed in [10].
6. Numerical methods

The NLS (3) was integrated numerically using standard fourth-
order finite differencing in x, with an implicit Crank–Nicolson
method in z for the linear part, and a predictor–corrector
method for the nonlinear part. The eigenvalues and eigenvectors
of (31) were calculated using Matlab’s eig function. The only
numerical element which required a non-standard approach was
the calculation of the solitary necklace profiles.

6.1. Non-spectral renormalization method

A popular method for calculating multidimensional solitary
waves is Petviashvili’s spectral renormalization method [21,22].
This method, however, can only compute positive solutions,
which is not the case with necklace solutions. Therefore, we use
this method to compute a single pearl (which is positive), and
then ‘‘replicate’’ it into a necklace, as explained in Section 4.
In addition, since Petviashvili’s method is based on iterations in
Fourier space, it cannot be applied on bounded domains. Therefore,
following [23], we employ a non-spectral renormalizationmethod,
as follows.19 We first rewrite (4) as

L(R) = |R|2R, (x, y) ∈ D, L := −∆+ µ,

subject to R = 0 on ∂D. Thenwe consider the fixed-point iterations

Rk+1 = L−1 
|Rk|

2Rk

, k = 0, 1, . . . (37)

subject to R = 0 on ∂D, where Rk = Rk(x, y) is the kth itera-
tion. To implement (37), L is discretized using finite differences and
inverted (once) using the LU decomposition. We observe numeri-
cally that the iterations (37) diverge to zero for a small initial guess
R0 = R0(x, y), and to infinity for a large initial guess. To avoid this
divergence, we renormalize the solution at each iteration, so that
it satisfies the integral relation20,21

SL[R] = SR[R], SL[R] := ⟨R, R⟩,

SR[R] := ⟨R, L−1 
|R|2R


⟩,

(38)

which is obtained from multiplication of (37) by R and integration
over (x, y). Thus, we define Rk+ 1

2
:= ckRk, where ck is chosen so

that Rk+ 1
2
satisfies (38), i.e.,

c2k SL[Rk] = c4k SR[Rk].

Consequently, ck = (SL[Rk]/SR[Rk])
1
2 . Therefore, the non-spectral

renormalization method reads

Rk+1 = L−1

|Rk+ 1

2
|
2Rk+ 1

2


=


⟨Rk, Rk⟩

⟨Rk, L−1

|Rk|

2Rk

⟩

 3
2

L−1 
|Rk|

2Rk

, k = 0, 1, . . . .

(39)

To illustrate the convergence of this method, consider the
iterations (39) when D is the square [−1, 1]2, µ = 1, the
initial guess is R0 = sin


π( x−1

2 )

sin

π(

y−1
2 )

, L is discretized

using fourth-order center-difference scheme, and dx = dy =

0.05. Fig. 37(a) shows that after 40 iterations ck converges to 1
with machine accuracy, thus confirming the convergence of the
iterations. In order to check that the iterations converge to a

19 For additional inverse iteration methods, see e.g., [24,25].
20 Other integral relations can also be used.
21 Here, ⟨f , g⟩ :=


f ∗g dxdy denotes the standard inner product.
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Fig. 35. Same as Fig. 17 for the one-dimensional NLS with σ = 1, D = [−2, 2], R = R(2)µ=10 , andΩ1(µ = 10) = 0.59 + 2.2i.
Fig. 36. Same as Fig. 35 for σ = 2 andΩ1(µ = 10) = 4.3 + 5.4i.
a b

Fig. 37. Convergence of the non-spectral renormalization method. (a) |c2k − 1| as
a function of the iteration number k. (b) errPohozaev(Rk) as a function of the iteration
number.

solitary wave, we recall that the Pohozaev identities on a bounded
domain read

µ∥Rµ∥2
2 =

1
2
∥Rµ∥4

4 −
1
2


∂D
(x · n) (∇Rµ · n)2 ds,

∥∇Rµ∥2
2 =

1
2
∥Rµ∥4

4 +
1
2


∂D
(x · n) (∇Rµ · n)2 ds,

where n is the outward unit normal to ∂D. To avoid computing
boundary integrals, we check whether Rk satisfies the sum of these
Pohozaev identities, i.e., whether EPohozaev(Rk) → 0, where

EPohozaev(R) := µ∥R∥2
2 + ∥∇R∥2

2 − ∥R∥4
4.

Fig. 37(b) shows that EPohozaev converges to O(10−3), and not to
machine accuracy. This is because the iterations converge to a
solution of a discretized version of (4). In other words, the O(10−3)

error of the Pohozaev identities is determined by the discretization
error and not by the convergence of the iterations. Indeed, we
verified that if we use smaller values of dx and dy, the limiting
Pohozaev error reduces according to the order of the discretization
scheme being used.
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