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We analyze the Bass model and the susceptible-infected model on hypernetworks with three-body interactions.
We derive the master equations for general hypernetworks and use them to obtain explicit expressions for the
expected adoption-infection level on infinite complete hypernetworks, infinite Erdős-Rényi hypernetworks, and
on infinite hyperlines. These expressions are exact, as they are derived without making any approximation.
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I. INTRODUCTION

Spreading processes on networks have been studied in
various research areas, including mathematics, physics, mar-
keting, computer science, and sociology [1–3]. In marketing,
the study of the diffusion of innovations began with the sem-
inal work of Bass in 1969 [4], which inspired a huge body
of theoretical and empirical research [5]. In epidemiology,
mathematical models have been used to study the spread of
infectious diseases in social networks [6–9]. A key question
in these studies has been the role that the network structure
plays in the spreading process.

In the Bass and susceptible-infected (SI) models on net-
works, the overall rate of peer influences on a susceptible
individual is the sum of the influence rates exerted by their
peers which are adopters or infected. This assumption is a
reasonable starting point. In some cases, however, it is more
realistic to use a threshold model in which the decision to
adopt the product takes place only if the number of adopters
exceeds a certain threshold at which the net benefits for adopt-
ing the product begin to exceed the net costs [10]. In other
cases, the marginal influence of an adopter may be a decreas-
ing function of the number of adopters who have already
influenced the nonadopter.

In order to allow for a nonlinear dependence of the overall
rate of peer influence on the individual peer influences, it
is natural to model these processes on hypernetworks [11].
Indeed, in recent years, extensive research has been devoted
to spreading processes on hypernetworks [12–14]. For exam-
ple, Palafox-Castillo et al. [15] used the mean-field approach
to analyze the steady state of the SIR model on simplicial
complexes. Matamalas et al. [16] used a microscopic Markov
chain approximation to find abrupt phase transitions in the
SIS model on simplicial complexes. Kim et al. [17] used
the facet approximation on random nested hypernetworks to
compute the steady state in the SIS model and showed that the
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hyperedge-nestedness affects the phase diagram significantly.
Arenas et al. [18] used the triadic approximation in the SIS
model on hypernetworks to demonstrate the double-edged
effect of increased overlap between two- and three-body in-
teractions: it decreases the invasion threshold, but also results
in generally smaller outbreaks. Iacopini et al. [19] used the
mean-field approximation in the SIS model on simplicial com-
plexes and found discontinuous transitions in the steady state
and the emergence of bistable regions where both healthy and
endemic states coexist. Higham and de Kergorlay [20] used
the mean-field approximation in the SIS model on hypernet-
works to obtain spectral conditions for the local asymptotic
stability of the zero-infection state. Arruda et al. [21] used
the assumption that the variables describing the infected state
of the nodes are independent in the SIS model on hyper-
networks to show that the model exhibits a vast parameter
space, including first- and second-order transitions, bistability,
and hysteresis. Bianconi [22] used the mean-field approxi-
mation to derive macroscopic equations in the SIS model on
simplicial complexes and found discontinuous transitions and
bistability regions.

In this paper, we analyze the Bass and SI models on
hypernetworks. To simplify the presentation, we only con-
sider hypernetworks with pure three-body interactions. The
extension of our results and methodology to more general
hypernetworks is straightforward. We first derive the master
equations for general hypernetworks with pure three-body in-
teractions. We then solve these equations explicitly and obtain
explicit expressions for the expected adoption-infection level
as a function of time, for infinite complete hypernetworks,
infinite Erdős-Rényi hypernetworks, and infinite hyperlines.
These expressions are exact, as they are derived without
making any approximation. In all cases, we present careful
numerical simulations that confirm the validity of the explicit
expressions.

Our work differs from previous studies in several aspects.
(i) We obtain explicit expressions for the expected

adoption-infection level as a function of time, whereas pre-
vious studies focused more on the limiting steady state. These
expressions allow us to address questions such as, e.g., the
time for half of the population to become infected.
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(ii) The availability of explicit solutions simplifies the anal-
ysis, since it is much easier to analyze an explicit solution than
to analyze the original stochastic network model.

(iii) From a methodological perspective, we start from the
full system of the master equations, and solve it exactly, with-
out applying any approximate closure at the level of pairs or
triplets. As a result, the explicit solutions that we obtain are
exact and not approximate.

(iv) We analyze the SI model and the Bass model using a
unified framework.

The paper is organized as follows. In Sec. II we define the
Bass and SI models in three-body hypernetworks. In Sec. III
we derive the master equations that describe the dynamics of
diffusion and infection across hypernetworks. In Sec. IV we
derive explicit solutions to the master equations for complete
three-body hypernetworks. In Sec. V we explore the initial
dynamics of the expected adoption level in the Bass model
on arbitrary three-body hypernetworks and prove that the
adoption rate initially decreases, regardless of the hypernet-
work structure or parameters. This is the only case where
we observe a qualitative difference between the spreading
dynamics on networks and on hypernetworks. In Sec. VI we
examine the spreading dynamics on Erdős-Rényi hypernet-
works. In Sec. VII we derive explicit solutions to the master
equations for infinite three-body hyperlines, supplemented
by numerical simulations that validate the theoretical results.
Section VIII presents comparisons between our exact solu-
tions and a mean-field approximation. Section IX concludes

with some final remarks and suggestions for extensions of this
study.

II. BASS-SI MODEL ON THREE-BODY
HYPERNETWORKS

The Bass model describes the adoption of new products or
innovations within a population. In this framework, all indi-
viduals start as nonadopters and can transition to becoming
adopters due to two types of influences: external factors, such
as exposure to mass media, and internal factors where individ-
uals are influenced by their peers who have already adopted
the product. The SI model is used to study the spreading of
infectious diseases within a population. In this model, some
individuals are initially infected (the “patient zero” cases) and
all subsequent infections occur through internal influences,
whereby infected individuals transmit the disease to their
susceptible peers and infected individuals remain contagious
indefinitely. In both models, once an individual becomes an
adopter or infected, it remains so at all later times. In particu-
lar, she or he remain “contagious” forever. It is convenient to
unify these two models into a single model, the Bass-SI model
on networks, as follows. The difference between the SI model
and the Bass model is the lack of external influences in the
former and the lack of “adopters zero” in the latter.

Consider M individuals, denoted by M := {1, . . . , M}. We
denote by Xj (t ) the state of individual j at time t , so that

Xj (t ) =
{

1, if j is adopter or infected at time t,
0, otherwise, j ∈ M.

The initial conditions at t = 0 are stochastic, so that

Xj (0) = X 0
j ∈ {0, 1}, j ∈ M, (1a)

where

P
(
X 0

j = 1
) = I0

j , P
(
X 0

j = 0
) = 1 − I0

j , I0
j ∈ [0, 1],

j ∈ M, (1b)

and

the random variables
{
X 0

j

}
j∈M are independent. (1c)

Deterministic initial conditions are a special case where I0
j ∈

{0, 1}. As long as j is a nonadopter or susceptible, its adoption
or infection rate at time t is1

λ j (t ) = p j +
M∑

k1,k2=1

qk1,k2, jXk1 (t )Xk2 (t ), j ∈ M. (1d)

Here, p j � 0 is the rate of external influences on j and
qk1,k2, j � 0 is the rate of internal influences by k1 and k2 on
j, provided that k1 and k2 are already adopters or infected. In
addition, qk1,k2, j > 0 if k1, k2 and j are distinct and the direc-
tional hyperedge {k1, k2} → j exists. Otherwise, qk1,k2, j = 0.

1For comparison, the adoption-infection rate on two-body networks
is λ j = pj + ∑M

k=1 qk, jXk (t ).

Once j becomes an adopter or infected, it remains so at all
later time.2 Hence, as �t → 0,

P [Xj (t + �t ) = 1 | X(t )]

=
{

λ j (t ) �t, if Xj (t ) = 0,

1, if Xj (t ) = 1,
j ∈ M, (1e)

where X(t ) := {Xj (t )} j∈M is the state of the network at time
t and

the random variables {Xj (t +�t ) | X(t )} j∈M are independent.
(1f)

In the Bass model there are no adopters when the product
is first introduced into the market and so I0

j ≡ 0 and p j > 0
for j ∈ M. In the SI model there are only internal influences
for t > 0 and so pj ≡ 0 and I0

j > 0 for j ∈ M.
The quantity of most interest is the expected adoption-

infection level

f (t ) := 1

M

M∑
j=1

f j (t ), (2)

where f j := E[Xj] is the adoption-infection probability of
node j.

2That is, the only admissible transition is Xj = 0 → Xj = 1.
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III. MASTER EQUATIONS

The most important analytic tool for the Bass-SI model on
networks are the master equations, which were derived in [23].
In this section, we derive the master equations for general
hypernetworks with three-body interactions. Let � ⊂ M be
a nontrivial subset of the nodes, let �c := M \ �, and let

S�(t ) := {Xm(t ) = 0, m ∈ �}, [S�](t ) := P (S�(t ))

denote the event that all the nodes in � are nonadopters or
susceptibles at time t and the probability of this event, respec-
tively. In what follows, we will use the notations

[
S�,k1

]
:= [

S�∪{k1}
]
,

[
S�,k1,k2

]
:= [

S�∪{k1,k2}
]
,

p� :=
∑
m∈�

pm, qk1,k2,� :=
∑
m∈�

qk1,k2,m, (3)

where k1, k2 ∈ �c.
Theorem 1. The master equations for the Bass-SI

model (1) on three-body hypernetworks are

d[S�]

dt
= −

⎛
⎝p� +

∑
k1,k2∈�c

qk1,k2,�

⎞
⎠[S�]

+
∑

k1,k2∈�c

qk1,k2,�

([
S�,k1

] + [
S�,k2

] − [
S�,k1,k2

])
,

(4a)

subject to the initial conditions

[S�](0) =
∏
m∈�

(
1 − I0

m

)
, (4b)

for all ∅ �= � ⊂ M.
Proof. Consider the average over an infinite number of

realizations of the Bass-SI model (1). By definition, the event
S�(t ) occurs at a fraction [S�](t ) of these realizations. Since
the only allowed transition is S → I , new S� realizations can-
not be created and the existing S� realizations are destroyed
whenever any of the nodes in � adopts. The adoption rate of
node m ∈ � is λm(t ); see (1d).

(i) Thus an existing S� realization is destroyed if node m
adopts externally. Since there are [S�] such realizations, this
external influence leads to a reduction in [S�] at the rate of
pm[S�].

(ii) An existing S� realization is also destroyed if node
m adopts as a result of an internal influence by some nodes
k1, k2 ∈ �c. For this to occur, at time t all nodes of � should
be nonadopters and nodes k1, k2 ∈ �c should be adopters.
Denote this event by S�(t ) ∩ Ik1,k2 (t ) and the probability of
this event by [S� ∩ Ik](t ). Since there are [S� ∩ Ik1,k2 ](t ) such
realizations, this external influence leads to a reduction in [S�]
at the rate of qk1,k2,m[S� ∩ Ik1,k2 ].

Therefore, the rate of change in [S�] due to external or
internal influences on node m is

−pm[S�] −
∑

k1,k2∈�c

qk1,k2,m
[
S� ∩ Ik1,k2

]
.

The overall rate of change in [S�] is the sum of the rates of
change in [S�] due to the adoptions of all nodes m ∈ �. Hence

d[S�]

dt
= −p�[S�] −

∑
k1,k2∈�c

qk1,k2,�

[
S� ∩ Ik1,k2

]
. (5)

In order to express the master equations using only non-
adoption probabilities, we first write S� as the union of four
disjoint sets,

S� = S�,k1,k2 ∪ (
S�,k1 ∩ Ik2

) ∪ (
S�,k2 ∩ Ik1

) ∪ (
S� ∩ Ik1,k2

)
.

Therefore,

[S�] = [
S�,k1,k2

] + [
S�,k1 ∩ Ik2

] + [
S�,k2 ∩ Ik1

] + [
S� ∩ Ik1,k2

]
.

In addition, S�,k1 can be written as the union of two disjoint
sets,

S�,k1 = S�,k1,k2 ∪ (
S�,k1 ∩ Ik2

)
.

Hence [
S�,k1

] = [
S�,k1,k2

] + [
S�,k1 ∩ Ik2

]
.

Similarly, [
S�,k2

] = [
S�,k1,k2

] + [
S�,k2 ∩ Ik1

]
.

Combining the above, we have that[
S� ∩ Ik1,k2

] = [S�] − [
S�,k1

] − [
S�,k2

] + [
S�,k1,k2

]
. (6)

Equation (4a) follows from (5) and (6) and (4b) follows
from (1). �

In general, there are 2M − 1 master equations in (4), for
all possible subsets � ⊂ M. Therefore, obtaining an explicit
solution for general hypernetworks is not practical. In the fol-
lowing, we will obtain a considerably smaller reduced system
of master equations for some special hypernetworks.

IV. COMPLETE HYPERNETWORKS

In [24,25], it was shown that the expected adoption-
infection level in the Bass-SI model on infinite complete
homogeneous networks is the solution of the equation

df

dt
= (1 − f )(p + q f ), f (0) = I0, (7)

and is given by fBass(t ) := 1−e−(p+q)t

1+ q
p e−(p+q)t for the Bass model and

by fSI(t ) := I0

e−qt +(1−e−qt )I0 for the SI model. In this section,
we adopt a similar approach and compute explicitly, without
making any approximation, the infinite-population limit of the
Bass-SI model on complete three-body hypernetworks, where

I0
j ≡ I0, p j ≡ p, qk1,k2, j = q(M−1

2

)1k1 �=k2, j �=k1, j �=k2 ,

j, k1, k2 ∈ M, (8a)

p > 0, q > 0, and I0 = 0 in the Bass model and p = 0, q > 0,
and 0 < I0 < 1 in the SI model. The adoption rate of j is,
see (1d),

λ
complete
j (t ) = p + q(M−1

2

) M∑
k1,k2=1

1k1 �=k2, j �=k1, j �=k2 Xk1 (t )Xk2 (t )

= p + q(M−1
2

)(
N (t )

2

)
, (8b)
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where N (t ) = ∑M
j=1 Xj (t ) is the number of adopters or in-

fected in the population.
Theorem 2. Let f complete(t ; M ) denote the expected

adoption-infection level in the Bass-SI model [(1)
and (8)] on complete three-body hypernetworks. Then
limM→∞ f complete = f compart, where f compart is the solution of

the compartmental three-body Bass-SI model

df

dt
= (1 − f )(p + q f 2), f (0) = I0. (9)

Furthermore, f compart (t ) is given by the explicit inverse for-
mula

(p + q)t =
√

q

p

(
tan−1

(√
q

p
f compart

)
− tan−1

(√
q

p
I0

))
+ ln

(
1 − I0

1 − f compart

)
+ 1

2
ln

(
p + q

(
f compart

)2

p + q(I0)2

)
, if p > 0,

(10a)

and

qt = ln

(
f compart

1 − f compart

1 − I0

I0

)
+ 1

I0
− 1

f compart
, if p = 0. (10b)

Proof. Because of the symmetry of the hypernetwork, [S�] only depends on the number of nodes in � and not on the specific
choices of nodes in �. Therefore, we can denote by

[Sn] := [S� | |�| = n] (11)

the probability that all the nodes in any specific subset of n nodes are nonadopters (susceptibles) at time t . Substituting (8)
and (11) in the master Eq. (4a) gives

d[Sn]

dt
= −n(p + q

(M − n)(M − n − 1)

(M − 1)(M − 2)
)[Sn] + nq

(M − n)(M − n − 1)

(M − 1)(M − 2)
(2[Sn+1] − [Sn+2]), n = 1, . . . , M − 2, (12a)

d[Sn]

dt
= −np[Sn], n = M − 1, M. (12b)

Holding n fixed and letting M → ∞, Eq. (12) approaches

d[Sn]

dt
= −n(p + q)[Sn] + nq(2[Sn+1] − [Sn+2]), [Sn](0) = (1 − I0)n, n = 1, 2 . . . . (13)

The substitution [Sn] = [S]n reduces the infinite system (13) to the single ODE

d[S]

dt
= −(p + q)[S] + q(2[S]2 − [S]3) = −[S](p + q(1 − 2[S] + [S]2)), [S](0) = 1 − I0. (14)

Substituting f = 1 − [S] gives (9). Using partial fractions,

1

(1 − f )(p + q f 2)
= 1

p + q

(
q

1 + f

p + q f 2
+ 1

1 − f

)
.

Integrating and using f (0) = I0 gives (10a). Taking the limit p → 0+ in (10a) gives (10b). �
In Fig. 1(a) we compute numerically the expected adoption level in the Bass model on a complete three-body hypernetwork

with M = 5000 nodes. The result is nearly indistinguishable from the explicit solution (10a) on an infinite hypernetwork. A
similar agreement is observed in Fig. 1(b) for the expected infection level in the SI model.

We note that, from Eq. (10), it follows that the time for half of the population to become adopters (infected) in the Bass-SI
model on infinite complete hypernetworks is

T1
2

= 1

p + q

(√
q

p

[
tan−1

(
1

2

√
q

p

)
− tan−1

(√
q

p
I0

)]
+ ln

(
1 − I0

1 − 1
2

√
p + q

4

p + q(I0)2

))
.

For example, in the Bass model I0 = 0, and so

T Bass
1
2

= 1

p + q

(√
q̃

(
tan−1

(1

2

√
q̃
))

+ ln

(
2

√
1 + 1

4
q̃

))
, q̃ := q

p
.

In the SI model p = 0, and so

T SI
1
2

= 1

q

(
ln

(
1 − I0

I0

)
+ 1

I0
− 2

)
.
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(a) (b)

FIG. 1. (a) Expected adoption level f complete(t ) in the Bass
model (1, 8) on a complete three-body hypernetwork with M = 5000
nodes (solid red line) is nearly indistinguishable from the explicit
expression (10) for f compart (blue dashed line). Here p = 0.05, q = 1,
and I0 = 0. (b) Same as (a) for the SI model with p = 0 and I0 = 0.1.

V. INITIAL DYNAMICS (BASS MODEL)

The expected adoption level in the Bass model on infi-
nite complete hypernetworks is given by (9), with p, q > 0.
Therefore, df

dt initially decreases from df
dt (0) = p to a local

minimum, then increases to a global maximum, and finally de-
cays to zero [Fig. 2(a)]. This initial dynamics is qualitatively
different from that on two-body infinite complete networks,
where df

dt is an inverted parabola in f ; see (7). In particular, if

q > p, df
dt increases from df

dt (0) = p to a global maximum and
then decays to zero [Fig. 2(b)].

The initial decline of the adoption rate is not limited to
complete hypernetworks. Rather, it occurs for all three-body
hypernetworks.

Theorem 3. Consider the Bass model (1) on a three-body
hypernetwork. Then

f ′(0) > 0, f ′′(0) < 0.

Proof. Substituting � = { j} in the master Eq. (4a) gives

d[S j]

dt
= − p j[S j] −

M∑
k1,k2=1

qk1,k2, j
(
[S j] − [

Sk1, j
] − [

Sk2, j
]

+ [
Sk1,k2, j

])
. (15)

Substituting t = 0 in (15) and using the initial conditions
[S j](0) = [Sk1, j](0) = [Sk2, j](0) = [Sk1,k2, j](0) = 1 gives

d[S j]

dt
(0) = −p j . (16)

Similarly,

d
[
Sk1, j

]
dt

(0) = −pk1 − p j,
d
[
Sk2, j

]
dt

(0) = −pk2 − p j,

d
[
Sk1,k2, j

]
dt

(0) = −pk1 − pk2 − p j . (17)

(a) (b)

FIG. 2. (a) df
dt as a function of f for the Bass model (1,8) on an

infinite complete three-body hypernetwork. Here, q
p = 20 and I0 =

0. (b) Same as (a) on an infinite complete two-body network.

Differentiating (15), substituting t = 0, and using (16)
and (17) yields

d2[S j]

dt2
(0) = −p j

d[S j]

dt
(0) −

M∑
k1,k2=1

qk1,k2, j
d

dt

(
[S j] − [

Sk1, j
]

− [
Sk2, j

] + [
Sk1,k2, j

])∣∣
t=0

= p2
j −

M∑
k1,k2=1

qk1,k2, j
( − p j + pk1 + p j + pk2

+ p j − pk1 − pk2 − p j
) = p2

j .

Since f = 1 − 1
M

∑M
j=1[S j],

df

dt

∣∣∣∣
t=0

= − 1

M

M∑
j=1

d

dt
[S j]

∣∣∣∣
t=0

= 1

M

M∑
j=1

p j > 0

and

d2 f

dt2

∣∣∣∣
t=0

= − 1

M

M∑
j=1

d2

dt2
[S j]

∣∣∣∣
t=0

= − 1

M

M∑
j=1

p2
j < 0.

�
Since f ′(0) > 0 and f ′′(0) < 0, the adoption rate decreases

initially on all three-body hypernetworks, regardless of the
hypernetwork structure or of the ratio q

p .
In order to understand the difference in the initial dynamics

in the Bass model between networks and hypernetworks, we
note that as the adoption level f increases, the adoption rate
df
dt is influenced by two opposing mechanisms: (1) the rate
of internal influences increases and (2) the rate of external
influences decreases (since there are fewer nonadopters).

The initial decrease of external adoptions occurs on both
two-body and three-body networks and is captured by f ′′(0).
On two-body networks, the initial increase of internal adop-
tions is also captured by f ′′(0); see [23, Eq. (20)]. Therefore,
the sign of f ′′(0) depends on q

p . On three-body hypernetworks,
however, a hyperedge becomes active only after two nodes
adopt. Therefore, the initial increase of internal influence is
only captured by f ′′′(0). As a result, f ′′(0) is always negative.

To elucidate the underlying reasons for this differ-
ence between networks and hypernetworks, let us revisit
the spreading dynamics on infinite complete networks. In
the case of two-body networks df

dt = p − p f + q f − q f 2,

see (7), and for three-body hypernetworks df
dt = p − p f +

q f 2 − q f 3, see (9). Hence the internal adoptions are captured
by f ′′(0) on networks and by f ′′′(0) on hypernetworks. To the
best of our knowledge, the phenomenon of an initial decline
in the adoption rate on hypernetworks has not been observed
theoretically or empirically. This study shows that if this phe-
nomenon will be observed empirically, this will suggest the
presence of a hypernetwork structure.

VI. ERDŐS-RÉNYI HYPERNETWORKS

In Erdős-Rényi (ER) three-body hypernetworks with M
nodes, for any three distinct nodes k1, k2, k3 ∈ M, the hyper-
edge {k1, k2, k3} exists with probability α, independently of

054306-5
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(a) (b)

FIG. 3. (a) Expected adoption level f ER in the Bass model (1) on ER hypernetworks with α = 0.5 (dashed green line), α = 10−3 (red
dashed-dotted line), and α = 10−5 (blue dotted line). The explicit solution f compart(t ; p, αq) (black solid line), see (10), is nearly identical to
f ER with α = 0.5 and α = 10−3. Here, M = 1500, q = 1

α
, p = 0.05, and I0 = 0. (b) Same as (a) for the SI model with p = 0 and I0 = 0.1.

all other hyperedges. Consider the Bass-SI model (1) on ER
hypernetworks, such that

I0
k1

= I0, pk1 ≡ p, qk1,k2,k3 = q(M−1
2

) ek1,k2,k3 ,

k1, k2, k3 ∈ M, (18a)

where E = (ek1,k2,k3 ) is the adjacency tensor, such that
ek1,k2,k3 = 1 if there is a hyperedge connecting {k1, k2, k3} and
0 otherwise. The adoption rate of j is thus

λER
j (t ) = p + q(M−1

2

) ∑
{k1,k2}⊂M

ek1,k2, jXk1 (t )Xk2 (t ). (18b)

Lemma 1. Let f ER denote the expected adoption-infection
level in the Bass-SI model [(1) and (18)] on infinite ER three-
body hypernetworks. Then

f ER(t ; p, q, α, I0) = f compart (t ; p, αq, I0), (19)

where f compart is the solution of (9).
Informal proof. When the ER hypernetwork is large, we

can apply the mean-field approximation and replace ek1,k2, j

with its expected value E(ek1,k2, j ) = α, i.e.,∑
{k1,k2}⊂M

ek1,k2, jXk1 (t )Xk2 (t )

≈
∑

{k1,k2}⊂M
α Xk1 (t )Xk2 (t ) = α

(
N (t )

2

)
.

Therefore, using (8b) and (18b),

λER
j (t ; p, q) ≈ λ

complete
j (t ; p, αq).

Hence the result follows from Theorem 2. �
In Fig. 3 we compare the expected adoption-infection level

f ER in the Bass and SI models on ER hypernetworks with
M = 1500 nodes and the theoretical prediction (19). We let
q := 1

α
, so that f compart (t ; p, αq, I0) remains unchanged as we

vary α. These calculations show that f ER closely matches the
theoretical prediction (19) for α = 0.5, but not for α = 10−5.
This is to be expected, since the mean-field approximation
is derived for dense networks and not for sparse ones. At
α = 10−3 the hypernetwork is not dense, yet f ER is still in
good agreement with (19). This can be attributed to the aver-
age hyperdegree 〈k〉 = α

(M−1
2

) = 10−3
(1499

2

) ≈ 1100, which
is still large.

VII. INFINITE HYPERLINES

The expected adoption-infection level in the Bass-SI model on an infinite line satisfies [25,26]

df

dt
= (1 − f )(p + q(1 − e−pt )), f (0) = I0,

and is given by the explicit formula f 1D
Bass(t ; p, q) := 1 − e−(p+q)t+q 1−e−pt

p for the Bass model and by f 1D
SI (t ; q, I0) := 1 − (1 −

I0)e−I0qt for the SI model. In this section, we derive the corresponding expressions for the Bass-SI model on the infinite
homogeneous three-body hyperline, where

I0
j = I0, p j ≡ p, qk1,k2, j =

⎧⎨
⎩

qL, if j = k1 − 1 = k2 − 2,

qR, if j = k1 + 1 = k2 + 2,

0, otherwise,
k1, k2, j ∈ Z. (20a)

The adoption rate of j is, see (1d),

λ1D
j (t ) = p + qLXj−1(t )Xj−2(t ) + qRXj+1(t )Xj+2(t ). (20b)

Note that, when qL �= qR, the hyperline is anisotropic.
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FIG. 4. The set �6 = {3, 4, 6, 8, 9, 11}, where n = 6, m1 = 3, and m6 = 11. The nodes 5, 7, and 10 cannot affect [S�6 ].

Theorem 4. Let f 1D denote the expected adoption-infection level in the Bass-SI model (1,20) on the infinite three-body
hyperline. Then f 1D is the solution of

df 1D

dt
= (p + q[1 − (1 − I0)e−pt ]2)(1 − f 1D), f 1D(0) = I0, (21)

where q = qL + qR, and is given explicitly by

f 1D =
{

1 − [S0] exp
( − (p + q)t + q

2p (1 − e−pt )(4 − [S0] − [S0]e−pt )[S0]
)
, if p > 0,

1 − [S0]e−(1−[S0])2qt , if p = 0,
(22)

and [S0] = 1 − I0.
Proof. Let �n = {m1, . . . , mn} be a “cluster” of n nodes, such that m1 < · · · < mn and mi+1 − mi ∈ {1, 2} for i = 1, . . . , n −

1. Note that if k is a node such that mi < k < mi+1, then k cannot affect the adoption rate of the nodes in �n (see Fig. 4 for
an illustration). Therefore, [S�n ] only depends on n and not on the specific choices of nodes in �n. The master equation for �n

reads, see (4) and (20),

d[S�n ]

dt
= −(np + qL + qR)[S�n ] + qL([S�n,m1−1] + [S�n,m1−2] − [S�n,m1−2,m1−1])+qR([S�n,mn+1]+[S�n,mn+2]−[S�n,mn+1,mn+2]),

subject to [S�n ](0) = (1 − [I0])n. Therefore, if we denote [Sn] := [S�n ], then

d[Sn]

dt
= −(np + q)[Sn] + q(2[Sn+1] − [Sn+2]), [Sn](0) = (1 − I0)n, n = 1, 2, . . . . (23)

We introduce the ansatz

[Sn] = e−(n−1)pt (1 − I0)n−1[S1D], n = 1, 2, . . . ,

and substitute it in (23) to reduce the infinite system (23) to the single ODE

d[S1D]

dt
= −(p + q(1 − e−pt (1 − I0))2)[S1D], [S1D](0) = 1 − I0. (24)

Substituting f 1D = 1 − [S1D] in (24) gives (21). Solving (21) gives (22) for p > 0. Taking the limit p → 0+ of (22) yields (21)
for p = 0. �

Figure 5 confirms that the expected adoption level in the Bass and SI models on the three-body hyperline agrees with the
theoretical prediction f 1D; see (22).

VIII. MEAN-FIELD APPROXIMATION

Consider a homogeneous three-body hypernetwork, where

I0
j ≡ I0, p j ≡ p, qk1,k2, j ≡ q

〈k j〉ek1,k2, j, k1, k2, j ∈ M,

(a) (b)

FIG. 5. Expected adoption level (solid red line) in the Bass-SI model [(1) and (20)] on a three-body hyperline is indistinguishable from the
theoretical prediction f 1D (blue dashed line); see (22). In contrast, the mean-field approximation (black dashed line) provides a poor fit. Here,
M = 5000, qL = 2, qR = 3, and q = qL + qR. (a) Bass model: p = 0.05 and I0 = 0. (b) SI model: p = 0 and I0 = 0.1.
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and 〈k j〉 is the hyperdegree of j. By (4a), the nonadoption probability of node j is

d[S j]

dt
= −

⎛
⎝p + q

〈k j〉
∑

k1,k2 �= j

ek1,k2, j

⎞
⎠[S j] + q

〈k j〉
∑

k1,k2 �= j

ek1,k2, j
([

S j,k1

] + [
S j,k2

] − [
S j,k1,k2

])
, [S j](0) = 1 − I0. (25)

We apply the mean-field approximation by making the following assumptions.
(1) The states of different nodes are independent, so that [Sj,k] ∼ [S j][Sk] and [S j,k1,k2 ] ∼ [S j][Sk1 ][Sk2 ].
(2) [Sk] ∼ [S] for k �= j.
Applying these assumptions to (25) gives

d[S j]

dt
= −(p + q)[S j] + q(2[S j][S] − [S j][S]2), [S j](0) = 1 − I0.

Since this equation is independent of j, then [Sj] ≡ [S], where

d[S]

dt
= −(p + q)[S] + q(2[S]2 − [S]3), [S](0) = 1 − I0.

This is the equation for the compartmental three-body Bass-SI model; see (14). Therefore, the mean-field approximation is
given by f compart. Therefore, the mean-field approximation is exact on infinite complete hypernetworks and on dense ER
hypernetworks, but it performs poorly on sparse networks such as hyperlines, as shown in Fig. 5.

IX. FINAL REMARKS

In this study we derived the master equations for the Bass
and SI models on general hypernetworks with three-body
interactions. We then used these equations to obtain explicit
exact solutions for several types of hypernetworks. In general,
both the properties of explicit solutions and the techniques
used to derive them mimic those on two-body networks. In
fact, the only qualitative difference between the two cases is
the initial decline of the adoption rate.

Solving the master equations for large-scale general hy-
pernetworks can be challenging, since the number of master
equations grows exponentially with the number of nodes.

A potential approach to mitigate these computational chal-
lenges is to consider infinite hypernetworks with inherent
symmetries. This approach has been successfully applied in
this study to the hyperline, complete hypernetworks, and
dense ER hypernetworks. We believe that it can be extended
to other types of networks, e.g., scale-free, regular, and sparse
ER hypernetworks.

Extending our approach to hypernetworks with N-body
interactions is straightforward. It is also natural to apply our
approach to combinations of higher-order interactions (e.g.,
two- and three-body interactions). Finally, our methodology
can be extended to other models on hypernetworks, such as
SIS, SIR, and Bass-SIR; see [8,27,28].
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