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Abstract. One of the most important results in auction theory is that when bidders are symmet-
ric (homogeneous), then under quite general conditions, the seller's expected revenue is independent
of the auction mechanism (Revenue Equivalence Theorem). More often than not, however, bidders
are asymmetric, and so revenue equivalence is lost. Previously, it was shown that asymmetric auc-
tions become revenue equivalent as n \rightarrow \infty , where n is the number of bidders. In this paper, we go
beyond the limiting behavior and explicitly calculate the revenue to O(1/n3) accuracy, essentially
with no information on the auction payment rules or bidders' equilibrium strategies, for a large
class of asymmetric auctions that includes first-price, second-price, and optimal auctions. These
calculations show that the revenue differences among asymmetric auctions scale as \epsilon 2/n3, where \epsilon 
is the level of asymmetry (heterogeneity) among the bidders. Therefore, bidders' asymmetry has a
negligible effect on revenue ranking of auctions with as few as n = 6 bidders.

Key words. auction theory, game theory, asymmetric auction, first-price auction, second-price
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1. Introduction. The auction is an important economic mechanism which is
central to the modern economy. For example, in 2016 the US treasury auctioned
securities in a total sum of 8.1 trillion dollars. Google makes most of its profits by
selling sponsored links via online auctions. The first systematic analysis of auctions
was done in 1961 by Vickrey [30]. Since then, auctions have been the subject of intense
study. A brief theoretical background on auction theory is provided in section 2. For
an introduction to auction theory, see, e.g., [16, 18].

When selling an object through an auction, the seller has the prerogative to choose
the auction mechanism. In most cases, the key determinant for the seller is her ex-
pected revenue. By the Revenue Equivalence Theorem [25, 27], when all n bidders
are symmetric (homogeneous), i.e., when their private values for the object (i.e., the
price at which each bidder values the object) are distributed according to a com-
mon cumulative distribution function (CDF) F (v) in [0, 1], then under quite general
conditions the seller's expected revenue in equilibrium is independent of the auction
mechanism. More often than not, however, bidders are asymmetric (heterogeneous),
i.e., the value of bidder i for the object is distributed according to the CDF Fi(v)
in [0, 1], where i = 1, . . . , n. In this case, the revenue depends on the auction mech-
anism. As a result, revenue ranking of asymmetric auctions attracted considerable
research effort [12, 3, 23, 15, 19, 7, 2, 6].

Most studies on the revenue of asymmetric auctions have adopted a yes/no
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1490 GADI FIBICH, ARIEH GAVIOUS, AND NIR GAVISH

approach to the question of revenue equivalence (``symmetric auctions are revenue
equivalent,"" ``second-price auctions yield more/less revenue than first-price auctions,""
etc.) [23, 15, 19, 2, 12, 3]. In this study we adopt a more nuanced approach by
quantifying the level of revenue inequivalence. Another difference from most previous
studies is that they considered specific auctions for which the equations for the bidding
strategies were known, whereas we consider a large class of asymmetric auctions. This
approach was previously applied in [4, 7, 20] to weakly asymmetric auctions, where
it was shown that if \epsilon denotes the level of asymmetry among \{ Fi(v)\} ni=1,

1 if A and B
are two auction mechanisms, and if RA and RB are the corresponding revenues, then

(1) RA(\epsilon ) - RB(\epsilon ) \sim c \epsilon 2, \epsilon \ll 1.

While the numerical simulations in [4, 7] confirmed that the revenue differences scale
as O(\epsilon 2), it was not noted at the time that the revenue differences were much smaller
than what one may expect from (1), i.e., that the constant c in (1) was very small. Sim-
ilarly, other studies numerically tested the revenue ranking of first-price and second-
price auctions [22, 14, 13, 21] but did not pay much attention to the fact that the
revenue differences were typically less than 1\%, and in most cases in the third or
fourth digit, even when \epsilon was not small. Until now, these numerical observations had
no theoretical explanation.

The standard approach in auction theory for analyzing large auctions has been
to consider the limit as n \rightarrow \infty [31, 26, 28, 17]. Using this approach, it has been
shown [1, 29] that under quite general conditions, the seller's revenue approaches the
maximal value for the object vmax = 1, i.e.,

(2) lim
n\rightarrow \infty 

R(n) = 1.

Consequently, asymmetric auctions become revenue equivalent as n \rightarrow \infty , i.e.,

(3) lim
n\rightarrow \infty 

RA(n) = lim
n\rightarrow \infty 

RB(n).

This limiting revenue equivalence result is intuitive. Indeed, as the number of asym-
metric bidders increases, the competition that different bidders face becomes more
and more similar, since any two bidders face the same n  - 2 bidders and only one
different bidder. Hence, there is an O(1/n) difference between the competition that
bidders face. Therefore, as n \rightarrow \infty , asymmetric auctions ``become symmetric"" and
in particular become revenue equivalent. If we continue with the intuitive argument
above, the O(1/n) level of asymmetry in the competition that bidders face can be
expected to lead to O(1/n) revenue inequivalence among asymmetric auctions. The
limit (3), however, does not provide any information on the level of revenue inequiv-
alence among asymmetric auctions for a finite n.

To go beyond limiting behavior, in Theorem 3.1 we write the revenues in second-
price, first-price, and optimal auctions as one-dimensional integrals and expand these
three integrals for n \gg 1 using the Laplace method for integrals. These asymptotic
calculations yield R = Rasymp +O

\bigl( 
1
n3

\bigr) 
, where

(4) Rasymp = 1 - 1

n - 1

2

fG(1)
 - 1

(n - 1)2

\biggl[ 
3f \prime 

G(1)

f3
G(1)

 - 4

fG(1)
+

Var[f1(1), . . . , fn(1)]

f3
G(1)

\biggr] 
,

1E.g., \epsilon = max0\leq v\leq 1
1\leq i\leq n

| Fi  - 1
n

\sum n
i=1 Fi| .
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REVENUE EQUIVALENCE OF LARGE ASYMMETRIC AUCTIONS 1491

fg = F \prime 
G, FG is the geometric mean of \{ Fi\} ni=1, and fi = F \prime 

i . Therefore, we have
the unexpected result that the revenue inequivalence between asymmetric first-price,
second-price, and optimal auctions is O(1/n3) small.

The asymptotic computations in Theorem 3.1 make use of the explicit expressions
for the corresponding equilibrium bidding strategies. More generally, when asymmet-
ric bidders are in a Nash equilibrium (i.e., when no single bidder will benefit from
deviating from her equilibrium strategy), the seller's expected revenue is given by [7]

R =  - 
n\sum 

i=1

\int 1

ri

\left(  n\prod 
j=1

Fj(b
 - 1
j (bi(v))

\right)  1 - Fi(v) - vfi(v)

Fi(v)
dv,

where bi(v), the equilibrium bidding strategy of bidder i, depends on the auction
mechanism and on the CDFs of all other players. In the symmetric case Fi = F and

b - 1
j (bi(v)) \equiv v, and so R =  - n

\int 1

r
Fn(v) 1 - F (v) - vf(v)

F (v) dv is independent of the auction

mechanism (the Revenue Equivalence Theorem). In the general asymmetric case,
there is essentially no information on the auction payment rule, let alone on the bid-
ding strategies. Therefore, it seems unlikely that we can expand this integral beyond
the leading order. Nevertheless, we show this integral can be expanded to O(1/n3),
leading to one of the key results of this study (Theorem 3.2), that R = Rasymp+O

\bigl( 
1
n3

\bigr) 
under quite general conditions. The result that all asymmetric auctions that satisfy
the conditions of Theorem 3.2 are O(1/n3) asymptotically revenue equivalent is highly
surprising, since a priori one would expect only O(1/n) asymptotic revenue equiva-
lence. Yet, miraculously, being in a Nash equilibrium induces a ``universality"" on the
revenue, which makes it completely auction-independent in the symmetric case, and
O(1/n3) auction-independent in the asymmetric case.

Since R = Rasymp + O
\bigl( 

1
n3

\bigr) 
, the revenue differences among large asymmetric

auctions are at most O(1/n3); see Corollary 4.1. This result is optimal in the sense
that there exist asymmetric auctions for which we can prove analytically (Lemma 4.2)
or observe numerically (section 4) that the revenue differences decay as 1/n3, i.e.,

RA(n) - RB(n) \sim c3
n3

, n \gg 1.

Moreover, if the bidders are weakly asymmetric, it follows from (1) that c3 \sim \epsilon 2.
Therefore, we get our main result (Theorem 5.1), that

(5) RA(n, \epsilon ) - RB(n, \epsilon ) \sim \~c3
\epsilon 2

n3
, n \gg 1, \epsilon \ll 1.

Thus, there are two forces that simultaneously act to decrease the revenue inequivalence
among asymmetric auctions: The large number of players and the weak asymmetry
among bidders' CDFs. This insight provides the first theoretical explanation for the
smallness of the revenue differences among asymmetric auctions, which was observed
numerically in previous studies (see the paragraph following (1).)

Our numerical simulations (sections 5 and 6) confirm that the revenue difference
decays as \epsilon 2/n3 for n \gg 1 and \epsilon \ll 1 and suggest that relation (5) remains valid even
for as few as n = 6 players and \epsilon = 0.5. Therefore, more often than not, revenue
ranking of asymmetric auctions is only of theoretical interest. Additional conclusions
are given in section 7.

2. Theoretical background. In what follows we provide a brief introduction
to auction theory. For more information, see, e.g., [18].
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1492 GADI FIBICH, ARIEH GAVIOUS, AND NIR GAVISH

2.1. Auction mechanisms. Consider n bidders that compete for a single in-
divisible object. Each player has its own valuation vi for the object. Player i places
a bid bi(vi) that depends on her value but also on the auction mechanism and her
beliefs about other players; see section 2.2. A bidding strategy is a function bi(v)
for all admissible values of v. The bidding strategies are assumed to be in a Nash
equilibrium so that no single bidder can benefit from deviating from her equilibrium
strategy. In many auctions, the equilibrium bidding strategies are strictly increasing,
and so one can consider the inverse equilibrium strategies vi(b) = b - 1

i (v).
In standard auctions, the player with the highest bid wins the object and pays

according to the payment rule of the auction he participated in. The most common
mechanisms are the first-price and second-price auctions, in which the highest bidder
wins the object and pays the highest or the second-highest bid, respectively, and all
other bidders pay nothing. The auctioneer can also set a reserve price r, i.e., a lower
bound for the admissible bids.

The seller would like to choose the auction mechanism that would maximize her
expected revenue. Myerson [25] computed the auction format which yields the highest
expected revenue for the seller. Myerson's optimal mechanism is not practical to
implement, except in the case of symmetric bidders (see section 2.2), where it reduces
to a second-price auction with an optimal reserve price. Nevertheless, this mechanism
is important theoretically, since it provides an upper bound for the expected revenue
under any auction mechanism.

2.2. Assumptions on players. We assume that bidder i has its own private
value vi for the object, which is distributed according to a cumulative distribution
function (CDF) Fi(vi), where i = 1, . . . , n. This value is private to i, i.e., it is unknown
to all other bidders. The CDFs \{ Fi(vi)\} ni=1, however, are known to all other bidders.
We compute the seller's revenue as n \rightarrow \infty under the following assumptions:

Condition 1. All players are risk neutral.

Condition 2. For any given n, player i's valuation for the object is private in-
formation to i and is drawn independently by a continuously differentiable, strictly

increasing, distribution function F
(n)
i (v) from a support [0, 1]. Therefore, the n play-

ers have the CDFs \scrF (n) = \{ F (n)
1 , . . . , F

(n)
n \} . We assume that F

(n)
i is three times

continuously differentiable near v = 1 and that 0 < f
(n)
i (1) \leq M for i = 1, . . . , n,

where f
(n)
i = (F

(n)
i )\prime is the corresponding density function and M is independent of i

and n.2

Condition 3. The geometric mean FG[\scrF (n)] of the CDFs is independent of n,
where

(6) FG[F1(v), . . . , Fn(v)] :=

\Biggl( 
n\prod 

i=1

Fi(v)

\Biggr) 1/n

.

Condition 3 is needed in order to make sense of the limit of the CDFs \{ \scrF (n)\} 
as n \rightarrow \infty . Indeed, we shall see that the geometric mean FG[\scrF (n)] arises naturally
in the asymptotic analysis of large auctions. Condition 3 holds, for example, when

2The first two derivatives at v = 1 are needed for computation of the O( 1
n - 1

) and O( 1
(n - 1)2

)

terms in the asymptotic expansion (see (4)), and the third derivative at v = 1 is needed so that the
O( 1

(n - 1)3
) error term will be uniformly bounded.
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REVENUE EQUIVALENCE OF LARGE ASYMMETRIC AUCTIONS 1493

there are K ``types"" of bidders, such that there are \beta kn bidders with the CDF Fk(v),
where k = 1, . . . ,K and \{ \beta k\} Kk=1 are integers.3'4

For future reference, we note the following technical identities.

Lemma 2.1. Let fG(v) := F \prime 
G(v) denote the density of geometric mean. Then

(7) fG(1) =
1

n

n\sum 
i=1

fi(1), f \prime 
G(1) = f2

G(1) +
1

n

n\sum 
i=1

\bigl( 
f \prime 
i(1) - f2

i (1)
\bigr) 
.

In addition, let Var[f ] := E[f2] - (E[f ])2, where f = [f1, . . . , fn] and E[f ] := 1
n

\sum n
i=1 fi.

Then

(8) Var[f1(1), . . . , fn(1)] =
1

n

n\sum 
i=1

f2
i (1) - f2

G(1).

Proof. Differentiation of (6) and substitution of Fi(1) = 1 yield relations (7).
Relation (8) follows from (7).

2.3. Weakly asymmetric auctions. Consider the case where

(9) Fi = Fi(v; \epsilon ), Fi is smooth in \epsilon , Fi(v; \epsilon = 0) = F (v), i = 1, . . . , n.

Since

Fi(v; \epsilon ) = F (v) + \epsilon Hi(v) +O(\epsilon 2), Hi(v) =
\partial Fi

\partial \epsilon 

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

,

\epsilon = 0 is the symmetric case, and \epsilon \ll 1 corresponds to a weak asymmetry.
Since there is revenue equivalence when \epsilon = 0, and since an O(\epsilon ) change in the

CDFs leads to an O(\epsilon ) change in the revenue, one could expect that weakly symmetric
auctions are O(\epsilon ) revenue equivalent. Fibich and Gavious [4] showed, however, that

(10) R1st[F1(v; \epsilon ), . . . , Fn(v; \epsilon )] - R2nd[F1(v; \epsilon ), . . . , Fn(v; \epsilon )] = O(\epsilon 2), \epsilon \ll 1.

This result was generalized to any two asymmetric auction mechanisms that satisfy
the conditions of the classical Revenue Equivalence Theorem [7]. It is a consequence
of the facts that the seller's revenue (i) is differentiable in \epsilon and (ii) remains unchanged
if we permute the identities (indices) of the bidders [8, 20].

2.4. Asymmetric second-price, first-price, and optimal auctions. In asym-
metric second-price auctions, the optimal bidding strategy for any player is to bid his
true value, i.e., b2ndi (vi) = vi, and so the seller's revenue can be written as [4]

(11) R2nd[F1, . . . , Fn] = 1 - (1 - n)

\int 1

0

n\prod 
i=1

Fi(v) dv  - 
n\sum 

i=1

\int 1

0

\prod 
j \not =i

Fj(v) dv.

In Myerson's optimal auction,5 the seller's revenue can be written as

(12) Ropt = 1 - 
\int 1

0

\Biggl( 
n\prod 

i=1

Fi

\bigl( 
\Psi  - 1

i (v)
\bigr) \Biggr) 

dv, \Psi i(v) := v  - 1 - Fi(v)

fi(v)
,

3This setup is motivated by a tradition in economics to consider what happens when an economy
is ``replicated,"" i.e., when one proportionally adds ``clones"" to the population.

4In this case FG[\scrF (n)] = (
\prod K

k=1 F
\beta k
k )1/

\sum K
k=1 \beta k is indeed independent of n.

5We only consider the regular case where the virtual valuations are strictly monotonically in-
creasing functions.
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1494 GADI FIBICH, ARIEH GAVIOUS, AND NIR GAVISH

where \Psi i(v) is the virtual valuation of bidder i. Finally, in asymmetric first-price
auctions, the revenue can be written as [4]

(13) R1st[F1, . . . , Fn] = \=b - 
\int \=b

0

n\prod 
i=1

Fi(vi(b)) db,

where vi(b) is the inverse equilibrium strategy of the ith bidder and \=b is the common
maximal bid of all bidders. Therefore, obtaining an asymptotic expansion for R1st

requires having an explicit expression for \{ vi(b)\} ni=1. These functions satisfy the
nonstandard, free-boundary, nonlinear boundary value problem [20, 24]

(14) v\prime i(b) =
Fi(vi(b))

fi(vi(b))

\left[  \left(  1

n - 1

n\sum 
j=1

1

vj(b) - b

\right)   - 1

vi(b) - b

\right]  , i = 1, . . . , n,

for 0 < b < \=b, subject to the 2n boundary conditions vi(0) = 0 and vi(b) = 1
for i = 1, . . . , n, where the location \=b of the right boundary is unknown. Recently,
Fibich and Gavish [10] showed that when n \gg 1, \{ v\prime i(b)\} ni=1 (but not \{ vi(b)\} ni=1) have
a boundary layer of O(1/n2) width near the common maximal bid \=b. Although the
width of the boundary layer shrinks to zero as n \rightarrow \infty , one has to resolve the behavior
of vi(b) in the boundary layer region in order to compute the revenue (13) to O(1/n3),
since most of the revenue comes from bids near \=b (i.e., from bidders with v \approx 1).

3. Asymptotic calculation of the revenue. In the section, we expand the
seller's revenue (18) in large asymmetric auctions asymptotically using the Laplace
method for integrals.

3.1. \bfitR \bftwo \bfn \bfd , \bfitR \bfone \bfs \bft , and \bfitR \bfo \bfp \bft .. We begin with the two most common auction
mechanisms: First-price and second-price. We also consider Myerson's optimal mech-
anism which provides an upper bound to the seller's revenue.

Theorem 3.1. Consider a sequence \{ \scrF (n)\} , with an increasing n, of sets of

n players with CDFs \scrF (n) = \{ F (n)
1 , . . . , F

(n)
n \} , such that Conditions 1--3 hold. Let

R denote the revenue in a second-price auction, a first-price auction, or in Myerson's
optimal mechanism. Then

(15) R[F
(n)
1 , . . . , F (n)

n ] = Rasymp[F
(n)
1 , . . . , F (n)

n ] +O

\biggl( 
1

n3

\biggr) 
, n \gg 1,

where

(16) Rasymp[F1, . . . , Fn] = 1 - 1

n - 1

2

fG(1)
 - 3f \prime 

G(1) - 4f2
G(1) + Var[f1(1), . . . , fn(1)]

(n - 1)2f3
G(1)

and FG, fG(1), and Var[f1(1), . . . , fn(1)] are given by (6), (7), and (8), respectively.

Proof. The results for second-price auctions and the optimal mechanism will fol-
low from Theorem 3.2 below. For completeness, we also provide direct calculations for
second-price auctions (supplementary SM1 and for the optimal mechanism supplemen-
tary SM2). The calculations for the first-price auction are presented in Appendix A.

Since the asymptotic approximation in Theorem 3.1 has an O(1/n3) accuracy,
one can expect it to become accurate already at moderate values of n. We illustrate
this in the following example.
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Example 1. Consider n/2 players whose CDF is F1(v), and n/2 players whose
CDF is F2(v), where

(17) F1 = v2, F2 =
1 - ev/2

1 - e1/2
.

Since FG =
\sqrt{} 
v2 1 - ev/2

1 - e1/2
, then fG(1) \approx 1.635, f \prime 

G(1) \approx 1.184, and Var[f1(1), . . . , fn(1)] \approx 
0.132 for all n. Therefore, by (16),

Rasymp[F1, . . . , Fn] = 1 - c1
n - 1

+
c2

(n - 1)2
, c1 \approx 1.223, c2 \approx 1.603.

To check the accuracy of approximating R with Rasymp, we computed R2nd

and Ropt from (11) and (12), respectively, using standard quadrature methods, and
computed the inverse equilibrium strategies (14) andR1st from (13) using the boundary-
value method from [9]. These calculations (see Figure 1) show that

Rasymp  - R2nd \sim 2.34

n3
, Rasymp  - Ropt \sim 2.30

n3
, Rasymp  - R1st \sim 2.34

n3
,

thus confirming the O(1/n3) accuracy predicted in Theorem 3.1. Notably, the approx-
imation error is less than 0.01 already for n = 6 bidders, and below 0.001 for n = 12.

n
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Fig. 1. The revenue difference Rasymp  - R (circles) as a function of n for n =
2, 4, 6, 10, 14, 20, 30, and 40 players from Example 1. Both axes are on a log scale. A: R = R2nd.
The solid curve is 2.34/n3. B: R = Ropt. The solid curve is 2.30/n3. C: R = R1st. The solid
curve is 2.34/n3.

3.2. The general case. Since the asymptotic expansions in first-price, second-
price, and optimal auctions turned out to be identical up to O(1/n3), it is natural
to ask whether this result can be extended to a broader class of auctions, e.g., all-
pay auctions in which all players pay their bid, k-price auctions in which the winner
pays the kth largest bid, auctions which introduce a reserve price, etc. The following
theorem suggests that this is indeed the case.

Theorem 3.2. Consider a sequence \{ \scrF (n)\} , with an increasing n, of sets of

n players with CDFs \scrF (n) = \{ F (n)
1 , . . . , F

(n)
n \} , such that Conditions 1--3 hold. Con-

sider an auction mechanism for which the following 6 conditions also hold:
4. The object is allocated to the player with the highest bid.
5. Let ri \geq 0 be the reservation price of bidder i. Then, any player i with

valuation ri expects a zero surplus.
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6. The equilibrium bidding strategies bi(v) are strictly monotonically increasing
in [ri, 1].

7. The equilibrium bidding strategies bi(v) are three times continuously differen-
tiable near v = 1.

8. The maximal bid is identical for all bidders; i.e., for a given n, bi(1) = bj(1)
for 1 \leq i, j \leq n.

9. The asymmetry among the derivatives of the equilibrium bids at the maximal
value is at most O(1/n), i.e., b\prime i(1) - b\prime j(1) = O

\bigl( 
1
n

\bigr) 
for 1 \leq i, j \leq n as n \rightarrow \infty .

Then the seller's expected revenue satisfies (15).

Proof. From Conditions 1, 2, 4, and 5 it follows that the expected revenue can
be written as [7]

(18) R =  - 
n\sum 

i=1

\int 1

ri

\left(  n\prod 
j=1

Fj(b
 - 1
j (bi(v))

\right)  1 - Fi(v) - vfi(v)

Fi(v)
dv,

where Fj(b
 - 1
j (bi)) := Fj(rj) for bi < rj . Since essentially all the contributions to the

revenue come from bidders with nearly maximal valuation (v \approx 1), we can expand
R asymptotically using the Laplace method for integrals. The resulting expressions,
however, are long and cumbersome, making the analysis intractable. The key to the
proof is, therefore, a series of identities (Lemmas B.2--B.4) that significantly reduce
the intermediate resulting expressions. See Appendix B for details.

It is remarkable that we can compute the revenue without any information on the
payment rule. As in the case of symmetric auctions [25, 27], this is because expres-
sion (18) incorporates the payment rule implicitly though the condition of incentive
compatibility. In the symmetric case b - 1

j (bi(v)) = v, and so revenue equivalence
follows immediately from (18). This is not the case, however, when bidders are asym-
metric, which therefore requires considerable more work.

Conditions 1, 2, 4, and 5 of Theorem 3.2 are the same as those of the classical
revenue equivalence theorem for symmetric auctions [25, 27], except that in Condi-
tion 2 the CDFs are not identical. Condition 6 is the same as in Riley and Samuelson
[27] and is required to ensure that the inverse bidding strategies b - 1

i (v) in (18) are
well defined. Condition 3 is needed in order to make sense of the limit of the CDFs as
n \rightarrow \infty ; see section 2.2. Condition 7 is needed in order to expand the bids in a Taylor
series around v = 1. Condition 8 is satisfied by asymmetric first-price and all-pay
auctions (see, e.g., [11]), by asymmetric second-price auctions (since b2ndi (vi) = vi),
and by Myerson's optimal mechanism (since \Psi i(1) = 1; see (12)). In addition, it was
shown that limn\rightarrow \infty bi(v) = v under quite general conditions [1, 29].

The motivation for Condition 9 is as follows. Since the environment (competition)
that players i and j face differs by one out of n  - 1 players (i is facing j but not i
and vice versa), one could expect the resulting asymmetry among the equilibrium
bids to be O(1/n). Indeed, Condition 9 is satisfied for second-price auctions (since
(b2ndi )\prime (1) = 1) and for Myerson's optimal mechanism (since \Psi \prime 

i(1) = 2; see (12)). In

first-price auctions, however, the equilibrium bids satisfy
b\prime i(1)
b\prime k(1)

= fi(1)
fk(1)

(see [10]), and

so Condition 9 is not satisfied.6 Note that in contrast to Theorem 3.1, Theorem 3.2
applies to Myerson's optimal mechanism also in the nonregular case where the virtual
valuations may not be strictly monotonically increasing outside a region near v = 1.

6Indeed, by (20), v\prime i(1)  - v\prime k(1) = (vinnerk )\prime (\xi = 0)  - (vinneri )\prime (\xi = 0) =
\sum n - 1

j=1 \lambda j(akj  - aij) \not =
O(1/n).
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4. \bfitO (1/\bfitn \bfthree ) asymptotic revenue equivalence. As noted in section 1, the
limiting revenue equivalence result (3) suggests that if A and B are two auction
mechanisms, then RA  - RB \sim c1/n. Theorems 3.1 and 3.2, however, lead to the
following much stronger result.

Corollary 4.1. Let A and B be a first-price auction, second-price auction, My-
erson optimal auction, or any auction mechanism for which Theorem 3.2 holds. Con-

sider an increasing sequence of sets of n players with CDFs \scrF (n) = \{ F (n)
1 , . . . , F

(n)
n \} ,

such that Conditions 1--3 hold. Then, the corresponding revenue difference satisfies

RA[F
(n)
1 , . . . , F

(n)
n ] - RB[F

(n)
1 , . . . , F

(n)
n ] = O

\bigl( 
1
n3

\bigr) 
, where n \gg 1.

A natural question is whether we might get an O
\bigl( 

1
n4

\bigr) 
revenue equivalence if we

continue the asymptotic calculations to the next order. The answer to this question
is negative.

Lemma 4.2. Corollary 4.1 is optimal in the sense that there exist cases for which
the revenue differences between two large auctions scale as c/n3, where c \not = 0.

Proof. Consider n/2 players whose CDF is F1(v) = v, and n/2 players whose CDF
is F2(v) = v2. A direct calculation gives R2nd \sim 1 - 4

3
1

n - 1 +
52
27

1
(n - 1)2  - 

252
81

1
(n - 1)3 and

Ropt \sim 1 - 4
3

1
n - 1 +

52
27

1
(n - 1)2  - 

244
81

1
(n - 1)3 (supplementary SM3). Hence, Ropt - R2nd \sim 

8
81

1
(n - 1)3 .

Similarly, in Figure 2 we observe numerically for the bidders from Example 1 that

(19) R2nd  - R1st \sim c3
n3

, c3 \approx 0.008.

In most other cases that we tested, we also observe numerically that R2nd - R1st decays
as 1/n3. Interestingly, however, in [9] we observed numerically that R1st - R2nd \sim c/n4

for the bidders from the proof of Lemma 4.2. We leave as an open problem the
characterization of conditions under which R1st  - R2nd decays faster than 1/n3.

n

5 10 20 40

R
2
n
d
-R

1
s
t

10
-7

10
-6

10
-5

Fig. 2. R2nd  - R1st (\circ ) as a function of n for n = 6, 10, 14, 20, 30, and 40 players from
Example 1. The dashed curve is 0.0082/n3. Both axes are on a log scale.

4.1. Effect of asymmetry on the revenue. The first question in homoge-
nization theory is to find the correct average. Our results show that in large auctions,
it is given by the geometrical average. The second question in homogenization the-
ory is whether the homogeneous solution lies above or below the inhomogeneous one.
This problem was first considered by Cantillon [2], who showed that in the second-
price auction and in certain cases also in the first-price auction, the revenue in the
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asymmetric case is smaller than in the symmetric case with F = FG. We now ex-
tend this result and quantify its extension to a wide class of large auctions. Indeed,
since Var[f1(1), . . . , fn(1)] is equal to zero in the symmetric case and is positive in
the asymmetric case, Theorems 3.1 and 3.2 show that asymmetry always hurts the
revenue in large auctions.

Corollary 4.3. Let Var[f1(1), . . . , fn(1)] > 0. Then asymmetry decreases the
revenue in large second-price auctions, regular optimal auctions, first-price auctions,
and auctions that satisfy the conditions of Theorem 3.2. Moreover, the leading-order
effect of asymmetry on the revenue is given by

R[F1, . . . , Fn] - R[FG, . . . , FG] \sim  - 1

n2

Var[f1(1), . . . , fn(1)]

f3
G(1)

, n \gg 1.

Proof. The revenue in the symmetric case can be expanded as [5]

R[F, . . . , F ] = 1 - 1

n - 1

2

f(1)
 - 1

(n - 1)2

\biggl[ 
3f \prime (1)

f3(1)
 - 4

f(1)

\biggr] 
+O

\biggl( 
1

n3

\biggr) 
, n \gg 1.

Hence, the result follows from Theorems 3.1 and 3.2.

5. \bfitO (\bfitepsilon \bftwo /\bfitn \bfthree ) asymptotic revenue equivalence. The fitted constant c3 in (19)
is very small. Thus, while we expected the revenue difference with, e.g., n = 10
bidders to be in the third digit, it turns out to be in the fifth digit. We observed a
similar behavior, namely, that R2nd  - R1st \sim c3/n

3 with c3 \ll 1 in numerous other
simulations (data not shown). To understand why c3 \ll 1, we recall that there are two
mechanisms which act to decrease the revenue difference R2nd - R1st. The first one is
the asymptotic revenue equivalence of large auctions (Corollary 4.1). The second one
is the asymptotic revenue equivalence of a weakly asymmetric auction (section 2.3).
Indeed, combining Corollary 4.1 and relation (10) yields our main result.

Theorem 5.1 (asymptotic revenue equivalence). Assume the conditions of Cor-

ollary 4.1, and let F
(n)
i = F

(n)
i (v; \epsilon ), such that (9) holds. Then

RA[F
(n)
1 , . . . , F (n)

n ] - RB[F
(n)
1 , . . . , F (n)

n ] = O

\biggl( 
\epsilon 2

n3

\biggr) 
, n \gg 1, \epsilon \ll 1.

Example 2. We reinterpret relation (19) in light of Theorem 5.1. Since ``there is
no \epsilon "" in Example 1, we ``introduce"" it into the problem as follows. Let

\=F :=
F1 + F2

2
=

1

2

\biggl( 
v2 +

1 - ev/2

1 - e1/2

\biggr) 
, \epsilon 0 := max

i=1,2
max
0\leq v\leq 1

| Fi  - \=F | \approx 0.094.

Then we can rewrite (17) as

F1 = \=F + \epsilon 0H, F2 = \=F  - \epsilon 0H, H :=
F1  - F2

2\epsilon 0
=

1

2\epsilon 0

\biggl( 
v2 +

1 - ev/2

1 - e1/2

\biggr) 
.

Therefore, if we define F1,2(v; \epsilon ) = \=F (v)\pm \epsilon H(v), the CDFs (17) correspond to F1,2(v; \epsilon 0).
Figure 3A shows that for a fixed \epsilon , R2nd(n, \epsilon )  - R1st(n, \epsilon ) \sim c3(\epsilon )/n

3. To show that
c3(\epsilon ) \sim \~c3 \cdot \epsilon 2, in Figure 3B we plot (R2nd - R1st)/\epsilon 2 as a function of n and observe that
for all \epsilon , it scales as \~c3/n

3, where \~c3 \approx 2. Therefore, we conclude that, as predicted
in Theorem 5.1,

R2nd  - R1st \sim \~c3
\epsilon 2

n3
,

D
ow

nl
oa

de
d 

04
/2

1/
19

 to
 1

32
.6

6.
40

.5
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REVENUE EQUIVALENCE OF LARGE ASYMMETRIC AUCTIONS 1499

where \~c3 \approx 2. The fact that \~c3 is of order 1 provides strong support that this
is, indeed, the ``correct"" scaling. In particular, for the CDFs (17) we have that
\~c3\epsilon 

2
0 \approx 2 \cdot 0.152 = 0.045, explaining the smallness of c3 in (19).

n
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n
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BBB

Fig. 3. A: R2nd  - R1st as a function of n for n = 4, 6, 10, 20, and 40 players from Example 2.
Here \epsilon = \epsilon 0 \approx 0.094 (\diamond ), \epsilon = \epsilon 0/2 (\circ ), and \epsilon = \epsilon 0/4 (\cdot ). The dashed curve is 0.0082/n3, the
dash-dotted curve is 0.0023/n3, and the dotted curve is 0.0006/n3. B: The normalized difference
(R2nd  - R1st)/\epsilon 2 as a function of n for the same data as in A. Both subplots are on a loglog scale.

Theorem 5.1 implies, in particular, that large asymmetric auctions are O(\epsilon 2/n3)
asymptotically optimal.

Corollary 5.2 (O(\epsilon 2/n3) asymptotic optimality). Let A be an auction mech-
anism that satisfies the conditions of Theorem 5.1. Then

Ropt[F
(n)
1 , . . . , F (n)

n ] - RA[F
(n)
1 , . . . , F (n)

n ] = O

\biggl( 
\epsilon 2

n3

\biggr) 
, n \gg 1, \epsilon \ll 1.

Example 3. Consider n/2 players with F1(v) = v + \epsilon v(1  - v) and n/2 players
with F2(v) = v  - \epsilon v(1  - v). Figure 4 shows that Ropt  - R1st \sim 4.61\epsilon 2/n3 and
Ropt  - R2nd \sim 5.13\epsilon 2/n3, in agreement with Corollary 5.2. In particular, for n \geq 20
the revenue ``losses"" Ropt  - R1st and Ropt  - R2nd are below 0.01\%.

10 20

n
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s
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Fig. 4. A: The normalized difference (Ropt  - R)/\epsilon 2 for n = 10, 14, 20, and 30 players from
Example 3 with \epsilon = 0.4 (\diamond ), \epsilon = 0.2 (\circ ), and \epsilon = 0.1 (\cdot ). A: R = R1st. The dashed curve is 4.61/n3.
B: R = R2nd. The dashed curve is 5.13/n3. Both subplots are on a loglog scale.

6. How small can a large auction be? The asymptotic approximation R =
Rasymp+O(1/n3) was derived for n \gg 1. To test the regime for which this approxima-
tion is valid, in Table 1 we compute the accuracy of Rasymp for several examples with
few (5 \leq n0 \leq 10) asymmetric bidders. Since in each example we are given a single
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set of payers \scrF (n0), in order to relate it to the asymptotic analysis, we can think of it
as belonging to a sequence \{ \scrF (n)\} whose geometrical mean is constant. Therefore, we
can approximate the corresponding revenue R[\scrF (n0)] using the asymptotic expansions
for R[\scrF (n)], which was derived for n \rightarrow \infty . For example, the CDFs in the top line
can be embedded in the sequence

\bigl\{ 
v, v3, v5

\bigr\} 
,
\bigl\{ 
v, v2, v3, v4, v5

\bigr\} 
, . . . .

Table 1
The asymptotic approximation Rasymp and its relative accuracy

Rasymp - R

R
for various auctions

and bidders.

CDFs Rasymp
Rasymp - R1st

R1st

Rasymp - R2nd

R2nd

Rasymp - Ropt

Ropt

Fi = vi, i = 1, . . . , 5 0.8703 1.09\% 1.11\% 0.91\%

F1,2 = v+v2

2
, F3,4 = 1 - ev

1 - e
, F5,6 = v3 0.8449 1.05\% 1.06\% 0.93\%

F1,2 = 1 - ev

1 - e
, F3,4 = 1 - ev/2

1 - e1/2
, F5,6 = v2 0.81345 1.50\% 1.50\% 1.38\%

F1,2 = 1 - ev

1 - e
, F3,4 = 1 - ev/2

1 - e1/2
, F5,6 = v 0.7733 2.12\% 2.12\% 1.86\%

F1,2 = v+v2

2
, F3,4 = 1 - ev

1 - e
, F5,...,10 = v3 0.91856 0.14\% 0.14\% 0.13\%

Fi = vi, i = 1, . . . , 10 0.9624 0.041\% 0.041\% -0.002\%

Table 1 shows that already for as few as 5 bidders, the accuracy of Rasymp is
1\%--2\%. In contrast, the accuracy of the limiting result limn\rightarrow \infty R = 1 is only 10\%--
20\%. With 10 bidders, the accuracy of Rasymp improves to 0.002\%--0.14\%, whereas
that of the limiting result limn\rightarrow \infty R = 1 is only 4\%--8\%. This data, together with
Figures 3 and 4 and additional numerical examples (data not shown), suggests that our
asymptotic expressions provide a good estimate for the revenue, even with relatively
few bidders and not-so-small asymmetry. This suggests, therefore, that the revenue
difference between asymmetric auctions is generically small, even in small auctions.

To illustrate the last point, consider a small auction with 2 players with F1,2(v) =
v\pm \epsilon v(1 - v). Previously, Fibich, Gavious, and Sela [7] showed that R1st - R2nd \sim c\epsilon 2

for 0 \leq \epsilon \leq 0.4, where c \approx 0.06, thus confirming the O(\epsilon 2) revenue equivalence.
At that time, however, we did not pay attention to the smallness of c. Motivated
by Theorem 5.1, we now observe that R1st  - R2nd \sim \~c3\epsilon 

2/n3, where \~c3 \approx 1/2; see
Table 2. Since \~c3 is O(1), this appears to be the ``correct"" scaling. In particular, we
observe that the scaling R1st  - R2nd \sim \~c3\epsilon 

2/n3 is valid for n as small as 2 and \epsilon as
large as 0.4.

Table 2
The revenue difference for n = 2 players with F1,2(v) = v \pm \epsilon v(1 - v) is well approximated by

1
2

\epsilon 2

n3 . Data in first row are taken from [7].

\epsilon 0 0.1 0.2 0.3 0.4

R1st  - R2nd 0 0.006 0.0025 0.0057 0.01
1
2

\epsilon 2

n3 0 0.006 0.0025 0.0055 0.01

7. Final remarks. The key result of this study is Theorem 3.2---the O(1/n3)
asymptotic computation of the revenue of asymmetric auctions, without any infor-
mation on the payment rules. Theorem 3.2 presents a significant improvement over
the current o(1) limiting revenue result for asymmetric auctions; see (2). Moreover,
this theorem shows that the revenue of large auctions is asymptotically independent
of the reserve price. This is intuitive, since the revenue depends ``only"" on the high-
valuation players. Unfortunately, Theorem 3.2 is far from optimal, predominantly
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because of Condition 9 on the derivatives of the unknown bidding strategies. This
condition, however, is probably not essential. Indeed, the result of Theorem 3.2 holds
for first-price auctions which satisfy all conditions except Condition 9. Thus, it seems
that Theorem 3.2 should be applicable to a larger class of auctions. We leave this
open question for a future study.

The assumption that the supports of \{ Fi\} are common to all players can be re-
laxed. For example, if the number of players for which the right boundary point is
maximal is unbounded as n \rightarrow \infty , then it is possible to neglect the revenue contribu-
tions of all other players (whose right boundary point is less than maximal).

An immediate consequence of the asymptotic revenue equivalence is asymptotic
optimality. Indeed, Corollary 5.2 shows that large auctions such as first-price or
second-price auctions are nearly optimal. Hence, the additional revenue that may be
generated by ``modifying"" these suboptimal auction mechanisms (e.g., by imposing a

reserve price) is at most O( \epsilon 2

n3 ) and so may not be worth the effort.
Symmetric auctions are significantly easier to study than asymmetric auctions.7

Therefore, it is convenient to assume that bidders are symmetric, as is indeed done
in almost all studies in auction theory. Until now, however, the validity of this as-
sumption was not analyzed. Theorem 3.2 quantifies the error introduced by this
approximation and shows that it is justified even for auctions with as little as 5--6
bidders.

From an economics perspective, this study provides a quantitative meaning to the
terminology ``large auction."" Until now, the limiting revenue equivalence result, equa-
tion (3), implicitly implied that asymmetric auctions are essentially revenue equivalent
only when there are hundreds of players. Our surprising result that large asymmetric
auctions are O(\epsilon 2/n3) revenue equivalent shows that auctions with several bidders
are already essentially revenue equivalent. This insight is important for experimental
economists who study large auctions. In these experiments, knowing that the auction
is already large with 5 instead of 50 bidders means that with the same budget, one
can conduct 10 times the number of experiments.

Appendix A. Asymptotic expansion of \bfitR \bfone \bfs \bft . To evaluate (13) for n \gg 1,
we use the asymptotic expansion for \{ vi(b)\} and \=b (see [10]):
(20a)

vi(b) = vouteri (b)+
vinneri (\xi (b))

(n - 1)2
+O

\biggl( 
1

(n - 1)3

\biggr) 
, \xi (b) = (n - 1)2

\bigl( 
\=b - b

\bigr) 
, n \rightarrow \infty .

Here the outer solution and its derivatives are O(1) for 0 \leq b \leq \=b:
(20b)

vouteri (b) = b+
u(b)

n - 1
+

wi(b)

(n - 1)2
, u(b) =

FG(b)

fG(b)
, wi(b) =

\biggl( 
F 2
G(b)

f2
G(b)

fi(b)

Fi(b)
 - FG(b)

fG(b)

\biggr) 
.

The O(1/n2) inner solution is given by

(20c) vinneri (\xi ) =
1

(n - 1)2

n - 1\sum 
j=1

aije
 - \lambda j\xi ,

7For example, in an asymmetric first-price auction, the equilibrium bidding strategies satisfy a
nonstandard, free-boundary, nonlinear boundary value problem of n coupled equations (see (14)),
while in the symmetric case this system reduces to a single first-order initial value problem that can
be solved explicitly.
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1502 GADI FIBICH, ARIEH GAVIOUS, AND NIR GAVISH

where \=b has the expansion

(20d) \=b = 1 - 1

n - 1

1

fG(1)
+

\=b2
(n - 1)2

+O

\biggl( 
1

n3

\biggr) 
, \=b2 =

2

fG(1)
 - 1

f3
G(1)

1

n

n\sum 
i=1

f \prime 
i(1).

Unlike in second-price auctions (see (11)), the right boundary point \=b of the inte-
gral in (13), where the maximum of the integrand is attained, varies with n. Therefore,
we expand R1st using the Laplace method for integrals with a moving maximum point,
as follows. By (13), R1st = \=b - I1st, where

(21) I1st :=

\int \=b

0

n\prod 
i=1

Fi(vi(b))db =

\int \=b

0

exp

\Biggl[ 
n\sum 

i=1

logFi(vi(b))

\Biggr] 
db.

To expand I1st in 1
n - 1 , we first substitute vi(b) (see (20)) into Fi(vi(b)). This yields

Fi(vi(b)) = Fi(b)+
fi(b)u(b)

n - 1
+

1

(n - 1)2

\biggl[ \bigl( 
wi(b) + vinneri (\xi )

\bigr) 
fi(b) +

f \prime 
i(b)

2
u2

\biggr] 
+O

\biggl( 
1

n3

\biggr) 
.

Hence, logFi(vi(b)) = logFi(b) +
u(b)
n - 1

fi(b)
Fi(b)

+ gi(b)
(n - 1)2 +O

\bigl( 
1
n3

\bigr) 
, where

gi(b) =
1

Fi(b)

\biggl[ \bigl( 
wi(b) + vinneri (\xi )

\bigr) 
fi(b) +

f \prime 
i(b)

2
u2  - f2

i (b)u
2(b)

2Fi(b)

\biggr] 
.

Thus, using (6),

n\sum 
i=1

logFi(vi(b)) =

n\sum 
i=1

logFi(b) +
u(b)

n - 1

n\sum 
i=1

fi(b)

Fi(b)
+

1

(n - 1)2

n\sum 
i=1

gi(b) +O

\biggl( 
1

n2

\biggr) 

= log

n\prod 
i=1

Fi(b) +
n

n - 1
+

1

(n - 1)2

n\sum 
i=1

gi(b) +O

\biggl( 
1

n2

\biggr) 
= logFn

G(b) + 1 +
1

n - 1
g(b) +O

\biggl( 
1

n2

\biggr) 
,

(22)

where g(b) = 1 + 1
n - 1

\sum n
i=1 gi(b). Hence

exp

\Biggl[ 
n\sum 

i=1

logFi(vi(b))

\Biggr] 
= exp

\biggl[ 
logFn

G(b) + 1 +
1

n - 1
g(b) +O

\biggl( 
1

n2

\biggr) \biggr] 
(23)

= e \cdot Fn
G(b) \cdot exp

\biggl[ 
g(b)

n - 1
+O

\biggl( 
1

n2

\biggr) \biggr] 
= e \cdot Fn

G(b)

\biggl[ 
1 +

g(b)

n - 1
+O

\biggl( 
1

n2

\biggr) \biggr] 
,

where in the last equality we used that ex = 1 + x+O(x2) for x \ll 1.
Substituting (23) into (21) yields

(24) I1st = e

\int \=b

0

Fn
G(b)

\biggl[ 
1 +

g(b)

n - 1
+O

\biggl( 
1

n2

\biggr) \biggr] 
db.

To expand this integral asymptotically using the Laplace method for integrals, let t =

 - log h(b) where h(b) := FG(b)/FG(\=b).
8 Then Fn

G(b) = en logFG(b) = e - n(t - logFG(\=b)) =

8The division by FG(\=b) maps the moving maximum point \=b = \=b(n) to a stationary point t = 0.
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REVENUE EQUIVALENCE OF LARGE ASYMMETRIC AUCTIONS 1503

Fn
G(

\=b)e - nt. In addition, since e - t = h(b) and b(t) = h - 1(e - t), then dt =  - fG(b)
FG(b)db =

 - fG(b(t))

FG(\=b)e - t db. Therefore,

I1st = eFn+1
G (\=b)

\int \infty 

0

e - (n+1)t

fG(b(t))

\biggl[ 
1 +

g(b(t))

n - 1
+O

\biggl( 
1

n2

\biggr) \biggr] 
dt.

To expand the integrand about t = 0, we first note that

(25) fG(b(t)) = fG(b(0)) + tf \prime 
G(b(0))b

\prime (0) +O(t2) = fG(\=b) - t
f \prime 
G(

\=b)

fG(1)
FG(\=b) +O(t2),

where in the last equality we used the fact that b(0) = \=b and

(26) b\prime (0) =
db

dt

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - FG(\=b)

fG(\=b)
.

Thus, using (20d) and (25) gives

1

fG(b(t))
=

1

fG(\=b)
+

f \prime 
G(

\=b)FG(\=b)

fG(1)f2
G(

\=b)
t+O(t2)

=
1

fG(1)
+

1

n - 1

f \prime 
G(1)

f3
G(1)

+
f \prime 
G(1)FG(1)

f3
G(1)

t+O

\biggl( 
t

n
, t2,

1

n2

\biggr) 
,

(27)

where in the last equality we used that \=b - b(t) = O(t), since by (26), b\prime (0) is bounded.
Similarly,

1 +
g(b(t))

n - 1
= 1 +

g(\=b)

n - 1
+O

\biggl( 
t

n

\biggr) 
= 1 +

g(1)

n - 1
+O

\biggl( 
t

n
,
1

n2

\biggr) 
.

Overall,

I1st = e \cdot Fn+1
G (\=b)

\int \infty 

0

\biggl[ 
A0 +

A1

n - 1
+B0t+O

\biggl( 
t

n
, t2,

1

n2

\biggr) \biggr] 
e - (n+1)tdt,

where A0 = 1
fG(1) , A1 = g(1)

fG(1) +
f \prime 
G(1)

f3
G(1)

, and B0 =
f \prime 
G(1)

f3
G(1)

. Therefore, using the relation\int \infty 

0

n\ell tke - (n+1)t dt =
n\ell k!

(n+ 1)k+1
,

we have

I1st = e \cdot Fn+1
G (\=b)

\biggl[ 
A0

n - 1
+

A1 +B0  - 2A0

(n - 1)2
+O

\biggl( 
1

n3

\biggr) \biggr] 
.

Substituting \=b (see (20d)) into FG(\=b) yields FG(\=b) = 1 - 1
n - 1 + a0

(n - 1)2 + O
\bigl( 

1
n3

\bigr) 
,

where a0 =
2f3

G
\=b2+f \prime 

G(1)

2f2
G

. Since ln(1 + x) = x  - x2/2 + O(x3) for x \ll 1, one obtains

lnFG(\=b) =  - 1
n - 1 +

a0

(n - 1)2  - 
1

2(n - 1)2 +O
\bigl( 

1
n3

\bigr) 
, and so (n+1) lnFG(\=b) =  - 1+

a0 - 5
2

n - 1 +

O
\bigl( 

1
n2

\bigr) 
and Fn+1

G (\=b) = e(n+1) lnFG(\=b) = 1
e (1 +

a0 - 5
2

n - 1 ) +O
\bigl( 

1
n2

\bigr) 
. Therefore,

I1st =
A0

n - 1
+

1

(n - 1)2

\biggl[ \biggl( 
a0  - 

5

2

\biggr) 
A0 +A1 +B0  - 2A0

\biggr] 
+O

\biggl( 
1

n3

\biggr) 
=

1

n - 1

1

fG(1)
+

1

(n - 1)2

\biggl[ 
a0

fG(1)
+

g(1)

fG(1)
+ 2

f \prime 
G(1)

f3
G(1)

 - 9

2fG(1)

\biggr] 
+O

\biggl( 
1

n3

\biggr) 
=

1

n - 1

1

fG(1)
+

1

(n - 1)2

\biggl[ 
\=b2 +

2g(1) - 9

2fG(1)
+

5

2

f \prime 
G(1)

f3
G(1)

\biggr] 
+O

\biggl( 
1

n3

\biggr) 
.

(28)
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1504 GADI FIBICH, ARIEH GAVIOUS, AND NIR GAVISH

Finally, to evaluate g(1) = 1 + 1
n - 1

\sum n
i=1 gi(1), we recall that wi(1) + vinneri (0) =

1
fG(1)  - 

f \prime 
G(1)

f3
G(1)

 - \=b2; see [10]. Therefore, by (20d),

gi(1) = gi(\=b) +O

\biggl( 
1

n

\biggr) 
=
\bigl( 
wi(\=b) + vinneri (\xi (\=b))

\bigr) 
fi(\=b) +

f \prime 
i(
\=b) - f2

i (
\=b)

2
u2(\=b) +O

\biggl( 
1

n

\biggr) 
=

\Biggl[ 
1

f3
G(1)

1

n

n\sum 
i=1

f2
i (1) - 

1

fG(1)

\Biggr] 
fi +

f \prime 
i(1) - f2

i (1)

2
u2(1) +O

\biggl( 
1

n

\biggr) 
,

where we used that \xi (\=b) = 0. Consequently,

1

n

n\sum 
i=1

gi(1) =
1

f2
G

1

n

n\sum 
i=1

f2
i (1) - 1 +

1

2nf2
G

n\sum 
i=1

[f \prime 
i(1) - f2

i (1)] +O

\biggl( 
1

n

\biggr) 

=
1

f2
G

1

n

n\sum 
i=1

f2
i (1) - 1 +

1

2

\biggl( 
f \prime 
G(1)

f2
G(1)

 - 1

\biggr) 
+O

\biggl( 
1

n

\biggr) 
,

where in the last equality we used (7). Hence,

g(1) =
1

f2
G

1

n

n\sum 
i=1

f2
i (1) +

f \prime 
G(1)

2f2
G(1)

 - 1

2
+O

\biggl( 
1

n

\biggr) 
.

Substituting g(1) into (28) yields

I1st =
1

n - 1

1

fG(1)
+

1

(n - 1)2

\biggl[ 
\=b2 +

1
n

\sum 
f2
i (1)

f3
G(1)

+ 3
f \prime 
G(1)

f3
G(1)

 - 5

fG(1)

\biggr] 
.

Substituting \=b (see (20d)) and I1st into R1st = \=b  - I1st and using relation (8) yields
the result.

Appendix B. Proof of Theorem 3.2. Let

(29) Gi(v) =

\left(  n\prod 
j=1

Fj(b
 - 1
j (bi(v))

\right)  1/n

, gi(v) =
d

dv
Gi(v).

By Condition 6, bi(v), and hence Gi(v), is strictly monotonically increasing. Since

(30) Gi(1) = 1

(see Condition 8), Gi(v) < 1 for v < 1. Hence,

R =  - 
n\sum 

i=1

\int 1

v=ri

en lnGi(v)

\biggl( 
1 - Fi(v) - vfi(v)

Fi(v)

\biggr) 
dv

=  - 
n\sum 

i=1

\int 1 - ri

s=0

en lnGi(1 - s)

\biggl( 
1 - Fi(1 - s) - (1 - s)fi(1 - s)

Fi(1 - s)

\biggr) 
ds,(31)

=  - 
n\sum 

i=1

\int  - lnGi(ri)

x=0

e - nxi

\biggl( 
1 - Fi(1 - s(xi)) - (1 - s(xi))fi(1 - s(xi))

Fi(1 - s(xi))

\biggr) 
ds

dxi
dxi,

where we made the changes of variables s = 1  - v and xi(s) =  - lnGi(1  - s). To
approximate R for large n using the Laplace method for integrals, we replace the
integrand with its Taylor expansion near xi = 0 and also extend the domain of
integration from [0, - lnGi(ri)] to [0,\infty ). Throughout the proof, existence of the
various Taylor expansions is ensured by Conditions 2 and 7.
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Lemma B.1. Let xi(s) =  - lnGi(1 - s). Then for 0 \leq xi \ll 1,

s =
1

gi(1)
xi - 

g2i (1) - g\prime i(1)

2g3i (1)
x2
i+

g4i (1) - 3g2i (1)g
\prime 
i(1) - g\prime \prime i (1)gi(1) + 3(g\prime i(1))

2

6g5i (1)
x3
i+O

\bigl( 
x4
i

\bigr) 
and

ds

dxi
=

1

gi(1)
 - g2i (1) - g\prime i(1)

g3i (1)
xi+

g4i (1) - 3g2i (1)g
\prime 
i(1) - g\prime \prime i (1)gi(1) + 3(g\prime i(1))

2

2g5i (1)
x2
i+O

\bigl( 
x3
i

\bigr) 
.

Proof. See Appendix B.1.

In addition, by Taylor expansion and Lemma B.1,

1 - Fi(1 - s) - (1 - s)fi(1 - s)

Fi(1 - s)
=  - fi(1)+\alpha 1s+\alpha 2s

2+O(s3) =  - fi(1)+\beta 1xi+\beta 2x
2
i+O(x3

i ),

where

\alpha 1 = 2fi(1) + f \prime 
i(1) - f2

i (1), \alpha 2 =
3

2
f \prime 
i(1)fi(1) - 

3

2
f \prime 
i(1) - 

1

2
f \prime \prime 
i (1) + 2f2

i (1) - f3
i (1),

\beta 1 =
\alpha 1

gi(1)
, \beta 2 =

\alpha 2

g2i (1)
 - (g2i (1) - g\prime i(1))\alpha 1

2g3i (1)
.

Since xi is a dummy variable, we can rename xi = x. Substituting the above in (31)
gives R =

\int \infty 
0

\sum n
i=1 e

 - nx
\bigl[ 
Ai,0 +Ai,1x+Ai,2x

2 +O(x3)
\bigr] 
dx, where

Ai,0 =
fi(1)

gi(1)
, Ai,1 =

\Biggl[ 
f2
i (1) - f \prime 

i(1) - 2fi(1)

g2i (1)
 - 
\bigl( 
g2i (1) - g\prime i(1)

\bigr) 
g3i (1)

fi(1)

\Biggr] 
,

Ai,2 =
fi(1)[g

4
i (1) - 3g2i (1)g

\prime 
i(1) - gi(1)g

\prime \prime 
i (1) + 3(g\prime i(1))

2]

2g5i (1)
+

3(g2i (1) - g\prime i(1))(2fi(1) + f \prime 
i(1) - f2

i (1))

2g4i (1)

 - 
3f \prime 

i(1)fi(1) - 3f \prime 
i(1) - f \prime \prime 

i (1) + 4f2
i (1) - 2f3

i (1)

2g3i (1)
.

Since
\int \infty 
0

e - nxxk dx = k!
nk+1 for k = 0, 1, . . . , we have that

(32) R =
1

n

n\sum 
i=1

Ai,0 +
1

n2

n\sum 
i=1

Ai,1 +
2

n3

n\sum 
i=1

Ai,2 +O

\biggl( 
1

n3

\biggr) 
.

We first compute the leading-order term 1
n

\sum n
i=1 Ai,0 = 1

n

\sum n
i=1

fi(1)
gi(1)

.

Lemma B.2. Let Gi(v) and gi(v) be defined by (29). Then

(33)
1

n

n\sum 
i=1

fi(1)

gi(1)
= 1.

Proof. See Appendix B.2.

Therefore, 1
n

\sum n
i=1 Ai,0 = 1. The first-order correction term reads

1

n2

n\sum 
i=1

Ai,1 =
1

n2

n\sum 
i=1

\biggl( 
fi(1)g

\prime 
i(1)

g3i (1)
+

f2
i (1) - f \prime 

i(1)

g2i (1)

\biggr) 
 - 1

n2

n\sum 
i=1

fi(1)

gi(1)
 - 2

n2

n\sum 
i=1

fi(1)

g2i (1)
.

To evaluate this term, we make use of the following lemma.
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Lemma B.3. The following relations hold:

gi(1) = fG(1) +O

\biggl( 
1

n

\biggr) 
,(34)

1

n

n\sum 
i=1

\biggl( 
fi(1)g

\prime 
i(1)

g3i (1)
+

f2
i (1) - f \prime 

i(1)

g2i (1)

\biggr) 
= 1,(35)

1

n

n\sum 
i=1

fi(1)

g2i (1)
=

1

fG(1)
+O

\biggl( 
1

n2

\biggr) 
.(36)

Proof. See Appendix B.3.

Remark 1. The only place where we make use of Condition 9 of Theorem 3.2 is
in the proof of relations (34) and (36).

Therefore, 1
n2

\sum n
i=1 Ai,1 =  - 2

nfG(1) + O
\bigl( 

1
n3

\bigr) 
. Since the approximation error

is O(1/n3), it does not contribute to the next-order term in (32), which is O(1/n2).
Using relations (33) and (35),

2

n

n\sum 
i=1

Ai,2 =  - 
1

n

n\sum 
i=1

fi(1)g
\prime \prime 
i (1)

g4i (1)
 - 2 +

1

n

n\sum 
j=1

f \prime \prime 
j (1) - 3f \prime 

j(1)fj(1) + 2f3
j

g3j (1)
 - 

3

n

n\sum 
j=1

[f \prime 
j(1) - f2

j (1)]g
\prime 
i(1)

g4j (1)

+ 3
1

n

n\sum 
j=1

fj(1)[g
\prime 
i(1)]

2

g5j (1)
+

6

n

n\sum 
i=1

fi(1)

g2i (1)
 - 

6

n

n\sum 
i=1

fi(1)g
\prime 
i(1)

g4i (1)
+

1

n

n\sum 
i=1

 - 4f2
i (1) + 3f \prime 

i(1)

g3i (1)
.

Lemma B.4. The following relation holds:

1

n

n\sum 
i=1

fi(1)g
\prime \prime 
i (1)

g4i (1)
= - 2 +

1

n

n\sum 
j=1

f \prime \prime 
j (1) - 3f \prime 

j(1)fj(1) + 2f3
j

g3j (1)
 - 3

n

n\sum 
j=1

[f \prime 
j(1) - f2

j (1)]g
\prime 
i(1)

g4j (1)

+ 3
1

n

n\sum 
j=1

fj(1)[g
\prime 
i(1)]

2

g5j (1)
.

Proof. See Appendix B.4.

Therefore,

2

n

n\sum 
i=1

Ai,2 =
6

n

n\sum 
i=1

fi(1)

g2i (1)
 - 6

n

n\sum 
i=1

fi(1)g
\prime 
i(1)

g4i (1)
+

1

n

n\sum 
i=1

 - 4f2
i (1) + 3f \prime 

i(1)

g3i (1)
.

Using relations (34) and (35), we obtain

1

n

n\sum 
i=1

fi(1)g
\prime 
i(1)

g4i (1)
=

1

fG(1)

1

n

n\sum 
i=1

fi(1)g
\prime 
i(1)

g3i (1)
+O(1/n) =

1

fG(1)

\Biggl[ 
1 +

1

n

n\sum 
i=1

f \prime 
i(1) - f2

i (1)

g2i (1)

\Biggr] 

=
1

f3
G(1)

\Biggl[ 
f2
G(1) +

1

n

n\sum 
i=1

(f \prime 
i(1) - f2

i (1))

\Biggr] 
++O

\biggl( 
1

n

\biggr) 
.

Therefore, using again relation (34),

2

n

n\sum 
i=1

Ai,2 =
1

f3
G(1)

\Biggl[ 
3

n

n\sum 
i=1

\bigl( 
f2
i (1) - f \prime 

i(1)
\bigr) 
 - 1

n

n\sum 
i=1

f2
i (1) + f2

G(1)

\Biggr] 
+O

\biggl( 
1

n

\biggr) 
=

2f2
G(1) - 3f \prime 

G(1) - Var[f1, . . . , fn]

f3
G(1)

+O

\biggl( 
1

n

\biggr) 
,
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where in the last equality we used (7) and (8). Therefore,

R = 1 - 2

fG(1)

1

n
+

2f2
G(1) - 3f \prime 

G(1) - Var[f1, . . . , fn]

f3
G(1)

1

n2
+O

\biggl( 
1

n3

\biggr) 
= 1 - 2

fG(1)

1

n - 1
+

4f2
G(1) - 3f \prime 

G(1) - Var[f1, . . . , fn]

f3
G(1)

1

(n - 1)2
+O

\biggl( 
1

n3

\biggr) 
.

B.1. Proof of Lemma B.1. Let xi(s) =  - lnGi(1 - s). Since Gi is continuous
and since Gi(1) = 1 (see (30)), 0 \leq xi \ll 1 implies that 0 \leq s \ll 1. Taylor expansion
of xi(s) about s = 0 gives

(37) xi = sgi(1) +
s2

2

\bigl( 
g2i (1) - g\prime i(1)

\bigr) 
+

s3

6

\bigl( 
g\prime \prime i (1) - 3gi(1)g

\prime 
i(1) + 2g3i (1)

\bigr) 
+O

\bigl( 
s4
\bigr) 
.

To invert this relation, we substitute s = a0 + a1xi + a2x
2
i + a3x

3
i +O

\bigl( 
x4
i

\bigr) 
into (37)

and compute the coefficients by equating powers of xi. This yields

a0 = 0, a1 =
1

gi(1)
, a2 =  - 

\bigl( 
g2i (1) - g\prime i(1)

\bigr) 
2g3i (1)

, a3 =
g4i (1) - 3g2i (1)g

\prime 
i(1) - g\prime \prime i (1)gi(1) + 3(g\prime i(1))

2

6g5i (1)
.

Differentiation of s with respect to xi gives
ds
dxi

.

B.2. Proof of Lemma B.2. By (29),

gi(v) =
d

dv
Gi(v) =

d

dv

\left(  n\prod 
j=1

Fj(b
 - 1
j (bi(v))

\right)  1/n

=
1

n

\Biggl( 
n\prod 

k=1

Fk(b
 - 1
k (bi(v))

\Biggr) 1/n - 1 n\sum 
j=1

\left(  n\prod 
k \not =j

Fk(b
 - 1
k (bi(v))

\right)  fj(b
 - 1
j (bi(v))

b\prime i(v)

b\prime j(b
 - 1
j (bi(v))

= Gi(v)
1

n
b\prime i(v)

n\sum 
j=1

fj(b
 - 1
j (bi(v))

Fj(b
 - 1
j (bi(v))

1

b\prime j(b
 - 1
j (bi(v))

.

(38)

Since all bidders have the same maximal bid, b - 1
j (bi(1)) = 1. Therefore, by (30),

(39) gi(1) =
b\prime i(1)

n

n\sum 
j=1

fj(1)

b\prime j(1)
.

From this, it follows that

(40) gi(1) = \alpha b\prime i(1),

where \alpha is independent of i. Substituting (40) into (39) yields (33).

B.3. Proof of Lemma B.3. Substituting Condition 9 into (39) and using (7)
gives relation (34). To prove relation (35), we differentiate (38) and use b - 1

j (bi(1)) = 1
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to obtain

g\prime i(1) =
1

n2
(b\prime i(1))

2

\left(  n\sum 
j=1

fj(1)

b\prime j(1)

\right)  2

+
1

n
b\prime \prime i (1)

n\sum 
j=1

fj(1)

b\prime j(1)

+
1

n
b\prime i(1)

n\sum 
j=1

\Biggl( 
f \prime 
j(1)

b\prime j(1)
 - 

f2
j (1)

b\prime j(1)
 - 

fj(1)b
\prime \prime 
j (1)

(b\prime j(1))
2

\Biggr) 
b\prime i(1)

b\prime j(1)

= g2i (1) +
b\prime \prime i (1)

b\prime i(1)
gi(1) +

1

n
b\prime i(1)

n\sum 
j=1

\Biggl( 
f \prime 
j(1)

b\prime j(1)
 - 

f2
j (1)

b\prime j(1)
 - 

fj(1)b
\prime \prime 
j (1)

(b\prime j(1))
2

\Biggr) 
b\prime i(1)

b\prime j(1)
.(41)

Multiplying by fi(1) and using (40) gives

fi(1)g
\prime 
i(1) = fi(1)g

2
i (1)+\alpha b\prime \prime i (1)fi(1)+

1

n
fi(1)g

2
i (1)

n\sum 
j=1

\Biggl( 
f \prime 
j(1)

g2j (1)
 - 

f2
j (1)

g2j (1)
 - 

\alpha fj(1)b
\prime \prime 
j (1)

g3j (1)

\Biggr) 
.

Dividing by g3i (1), summing, and using (33) gives

n\sum 
i=1

\biggl( 
fi(1)g

\prime 
i(1)

g3i (1)

\biggr) 
=

n\sum 
i=1

fi(1)

gi(1)\underbrace{}  \underbrace{}  
=n

+

��
���

��
\alpha 

n\sum 
i=1

b\prime \prime i (1)fi(1)

g3i (1)
+

\Biggl( 
1

n

n\sum 
i=1

fi(1)

gi(1)

\Biggr) 
\underbrace{}  \underbrace{}  

=1

n\sum 
j=1

\Biggl( 
f \prime 
j(1)

g2j (1)
 - 

f2
j (1)

g2j (1)
 - 
���

��\alpha fj(1)b
\prime \prime 
j (1)

g3j (1)

\Biggr) 
.

Therefore, relation (35) follows.
To prove relation (36), let

(42) hi :=
1

gi(1)
 - 1

fG(1)
.

By (33) and (7),

1

n

n\sum 
i=1

hifi(1) =
1

n

n\sum 
i=1

fi(1)

gi(1)
 - 1

fG(1)

1

n

n\sum 
i=1

fi(1) = 0.

Therefore, the left-hand side of (36) can be written as

1

n

n\sum 
i=1

fi(1)

g2i (1)
=

1

n

n\sum 
i=1

fi(1)

\biggl( 
1

fG(1)
+ hi

\biggr) 2

=
1

n

n\sum 
i=1

fi(1)

\biggl( 
1

f2
G(1)

+ 2hifG(1) + h2
i

\biggr) 

=
1

fG(1)
+ 0 +

1

n

n\sum 
i=1

fi(1)h
2
i .

Finally, by relation (34), hi = O
\bigl( 
1
n

\bigr) 
. Therefore, relation (36) follows.
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B.4. Proof of Lemma B.4. Differentiating (38) twice and using b - 1
j (bi(1)) = 1

gives

g\prime \prime i (1) = [g\prime i(1)b
\prime 
i(1) + 2gi(1)b

\prime \prime 
i (1) + b\prime \prime \prime i (1)]

1

n

n\sum 
j=1

fj(1)

b\prime j(1)

+ [gi(1)b
\prime 
i(1) + b\prime \prime i (1)]b

\prime 
i(1)

1

n

n\sum 
j=1

f \prime 
j(1) - f2

j (1)

[b\prime j(1)]
2

 - 
fj(1)b

\prime \prime 
j (1)

[b\prime j(1)]
3

+
\bigl[ 
gi(1)[b

\prime 
i(1)]

2 + 2b\prime \prime i (1)b
\prime 
i(1)

\bigr] 1

n

n\sum 
j=1

f \prime 
j(1) - f2

j (1)

[b\prime j(1)]
2

+
1

n
[b\prime i(1)]

3
n\sum 

j=1

f \prime \prime 
j (1) - 3f \prime 

j(1)fj(1) + 2f3
j (1)

[b\prime j(1)]
3

 - 2[b\prime i(1)]
3 1

n

n\sum 
j=1

f \prime 
j(1) - f2

j (1)

[b\prime j(1)]
4

b\prime \prime j (1)

 - 
\bigl[ 
gi(1)[b

\prime 
i(1)]

2 + 2b\prime \prime i (1)b
\prime 
i(1)

\bigr] 1

n

n\sum 
j=1

fj(1)b
\prime \prime 
j (1)

[b\prime j(1)]
3

 - 1

n
[b\prime i(1)]

3
n\sum 

j=1

[f \prime 
j(1) - f2

j (1)]b
\prime \prime 
j (1)

[b\prime j(1)]
4

 - 1

n
[b\prime i(1)]

3
n\sum 

j=1

fj(1)(b
\prime \prime \prime 
j (1)b\prime j(1) + 3[b\prime \prime j (1)]

2)

[b\prime j(1)]
5

.

By (39) and (41)

(43a) gi(1) = \alpha b\prime i(1), g\prime i(1) = \alpha b\prime \prime i (1) + \beta g2i (1),

where

(43b) \alpha =
1

n

\sum fj(1)

b\prime j(1)
, \beta = 1 +

1

n

n\sum 
j=1

\Biggl[ 
f \prime 
j(1) - f2

j (1)

g2j (1)
 - \alpha 

fj(1)b
\prime \prime 
j (1)

g3j (1)

\Biggr] 
.

Using relations (43), as well as relation (35), yields

g\prime \prime i (1) = (2 + \beta )g\prime i(1)gi(1) - (\beta 2 + 1)g3i + \alpha b\prime \prime \prime i (1) +
\bigl[ 
(1 - 2\beta )g3i (1) + 2g\prime i(1)gi(1)

\bigr] 1
n

n\sum 
j=1

f \prime 
j(1) - f2

j (1)

g2j (1)

+
1

n
g3i (1)

n\sum 
j=1

f \prime \prime 
j (1) - 3f \prime 

j(1)fj(1) + 2f3
j

g3j (1)
+ 2\beta g3i (1)

1

n

n\sum 
j=1

f \prime 
j(1) - f2

j (1)

g2j (1)

 - 2g3i (1)
1

n

n\sum 
j=1

f \prime 
j(1) - f2

j (1)

g4j (1)
g\prime i(1)

 - 
\bigl[ 
(1 + 3\beta )g3i (1) + 2g\prime i(1)gi(1)

\bigr] 1
n

n\sum 
j=1

fj(1)g
\prime 
i(1)

g3i (1)
 - \beta 

\bigl[ 
\beta g3i (1) + 2g\prime i(1)gi(1)

\bigr] 
 - g3i (1)

1

n

n\sum 
j=1

[f \prime 
j(1) - f2

j (1)]g
\prime 
i(1)

g4j (1)
+

\alpha 

n
g3i (1)

n\sum 
j=1

fj(1)b
\prime \prime \prime 
j (1)

g4j (1)
+

3

n
g3i (1)

n\sum 
j=1

fj(1)[g
\prime 
i(1)]

2

g5j (1)
.

Multiplying both sides by fi(1)
ng4

i (1)
, summing, and using (33) and (35) yields the result.
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