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Abstract
We present new singular solutions of the biharmonic nonlinear Schrödinger
equation (NLS)
iψt(t, x) − �2ψ + |ψ |2σψ = 0, x ∈ R

d , 4/d � σ � 4.

These solutions collapse with the quasi-self-similar ring profile ψQB , where

|ψQB(t, r)| ∼ 1

L2/σ (t)
QB

(
r − rmax(t)

L(t)

)
, r = |x|,

L(t) is the ring width that vanishes at singularity, rmax(t) ∼ r0L
α(t) is the

ring radius, and α = (4 − σ)/(σ (d − 1)). The blowup rate of these solutions
is 1/(3 + α) for 4/d � σ < 4, and slightly faster than 1/4 for σ = 4. These
solutions are analogous to the ring-type solutions of the NLS.

Mathematics Subject Classification: 35Q55, 35G25

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The focusing nonlinear Schrödinger equation (NLS)

iψt(t, x) + �ψ + |ψ |2σψ = 0, ψ(0, x) = ψ0(x) ∈ H 1(Rd), (1)

where x ∈ R
d and � = ∂x1x1 + · · · + ∂xdxd

, admits solutions that become singular at a finite
time, i.e. limt→Tc ‖ψ‖H 1 = ∞, where 0 � t � Tc. Until a few years ago, all known singular
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solutions of the NLS were peak type. By this, we mean that if assume radial symmetry, and
denote the location of maximal amplitude by

rmax(t) = arg max
r

|ψ |, r =
√

x2
1 + · · · + x2

d ,

then rmax(t) ≡ 0 for 0 � t � Tc, i.e. the solution peak is attained at r = 0. In recent years,
however, new singular solutions of the NLS were found, which are ring type, i.e. rmax(t) > 0
for 0 � t < Tc.

In this study, we consider the focusing biharmonic nonlinear Schrödinger (BNLS) equation

iψt(t, x) − �2ψ + |ψ |2σψ = 0, ψ(0, x) = ψ0(x) ∈ H 2(Rd), (2)

where �2 is the biharmonic operator. Rigorous analysis of singular solutions of the BNLS is
harder than for the NLS, because it is a fourth-order equation, and because the BNLS analogs
of the variance identity, the lens transformation and the quadratic radial phase term are not
known. Singular peak-type solutions of the BNLS have been studied in [FIP02, BFM09, BF10].
Singular ring-type solutions of the BNLS with σ > 4 were studied in [BFG09]. The goal of this
work is to find and characterize singular ring-type solutions of the BNLS with 4/d � σ � 4.

1.1. Singular solutions of the nonlinear Schrödinger equation (NLS)—review

The NLS (1) is called subcritical if σd < 2. In this case, all solutions exist globally. In
contrast, solutions of the critical (σd = 2) and supercritical (σd > 2) NLS can become
singular at a finite time.

Until a few years ago, the only known singular NLS solutions were peak type. In the critical
case σd = 2, it has been rigorously shown [MR03] that peak-type solutions are self-similar
near the singularity, i.e. ψ ∼ ψR , where

ψR(t, r) = 1

Ld/2(t)
R

(
r

L(t)

)
ei

∫ t

0 ds/L2(s), (3)

and r = |x|. The self-similar profile R(ρ) is the ground state of the standing-wave equation

R′′(ρ) +
d − 1

ρ
R′ − R + |R|4/dR = 0.

Since R attains its global maximum at ρ = 0, ψR is a peak-type profile. The blowup rate
of L(t) is given by the loglog law

L(t) ∼
(

2π(Tc − t)

log log 1/(Tc − t)

)1/2

, t → Tc. (4)

In the supercritical case σd > 2, the rigorous theory is far less developed. Nevertheless,
formal calculations and numerical simulations [SS99] suggest that peak-type solutions of the
supercritical NLS collapse with the self-similar ψS profile, i.e. ψ ∼ ψS , where

ψS(t, r) = 1

L1/σ (t)
S (ρ) eiτ , (5a)

τ =
∫ t

0

ds

L2(s)
, ρ = r

L(t)
, (5b)

and S(ρ) is the zero Hamiltonian, monotonically decreasing solution of the nonlinear
eigenvalue problem

S ′′(ρ) +
d − 1

ρ
S ′ − S + i

κ2

2

(
1

σ
S + ρS ′

)
+ |S|2σ S = 0, S ′(0) = 0, (5c)
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Figure 1. Illustration of ring radius rmax(t) and width L(t).

where κ is the eigenvalue. Since |S(ρ)| attains its global maximum at ρ = 0, ψS is a peak-type
profile. The blowup rate of L(t) is a square root, i.e.

L(t) ∼ κ
√

Tc − t, t → Tc, (5d)

where κ > 0 is the eigenvalue of (5c). Recently Merle et al [MRS09] proved the existence
and stability of these self-similar blowup solutions in the slightly supercritical regime 0 <

σd − 2 � 1.
In the last few years, new singular solutions of the NLS were discovered, which are ring

type [FGW05, FGW07, Rap06, RS09, FG08]. In particular, in [FGW07], Fibich et al showed
that the NLS (1) with d > 1 and 2/d � σ � 2 admits singular ring-type solutions that collapse
with the ψQ profile, i.e. ψ ∼ ψQ, where

ψQ(t, r) = 1

L1/σ (t)
Q(ρ)eiτ+iαNLS(Lt /4L)r2+i(1−αNLS)(Lt /4L)(r−rmax(t))

2
, (6a)

τ =
∫ t

0

ds

L2(s)
, ρ = r − rmax(t)

L(t)
, rmax(t) ∼ r0L

αNLS(t) (6b)

and

αNLS = 2 − σ

σ(d − 1)
= 1 − σd − 2

σ(d − 1)
. (6c)

The self-similar profile Q attains its global maximum at ρ = 0. Hence, rmax(t) is the ring
radius and L(t) is the ring width, see figure 1.

A unique feature of the ψQ profile (6a) is the linear combination of the two radial
phase terms. The first phase term αNLS(Lt/4L)r2 describes focusing towards r = 0,
and is the manifestation of the shrinking of the ring radius rmax to zero. The second
term (1 − αNLS)(Lt/4L)(r − rmax(t))

2 describes focusing towards r = rmax, and is the
manifestation of the shrinking of the ring width L(t) to zero. The discovery of this ‘double-
lens’ ansatz was the key stage in the asymptotic analysis of the ψQ profile, which enabled the
calculation of the shrinking rate αNLS, see (6c) and the blowup rate p, see (8).

The NLS ring-type singular solutions can be classified as follows, see figure 2:

(A) In the subcritical case (σd < 2), all NLS solutions exist globally, hence no singular
ring-type solutions exist.

(B) The critical case σd = 2 corresponds to αNLS = 1. Since rmax(t) ∼ r0L(t), these solutions
undergo an equal-rate collapse, i.e. the ring radius goes to zero at the same rate as L(t).
The blowup rate of L(t) is a square root.
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Figure 2. Classification of singular ring-type solutions of the NLS, as a function of σ and d.
(A) subcritical case—no singular solutions exist. (B) σd = 2: equal-rate ψQ solutions [FGW05].
(C) 2/d < σ < 2: shrinking ψQ solutions [FGW07]. (D) σ = 2: standing ψQ

solutions [FGW07, Rap06, RS09]. (E) σ > 2: standing non-ψQ rings [BFG09].

(C) The supercritical case 2/d < σ < 2 corresponds to 0 < αNLS < 1. Therefore, the ring
radius rmax(t) ∼ r0L

αNLS(t) decays to zero, but at a slower rate than L(t). The blowup
rate of L(t) is

L(t) ∼ κ(Tc − t)p, (7)

where

p = 1

1 + αNLS
= 1

2 − σd−2
σ(d−1)

. (8)

(D) The supercritical case σ = 2 corresponds to αNLS = 0, i.e. limt→Tc rmax(t) = rmax(Tc) >

0. Therefore, the solution becomes singular on the d-dimensional sphere |x| = rmax(Tc),
rather than at a point. The blowup profile ψQ is equal to that of peak-type solutions of the
1D critical NLS, see equation (3), i.e.

ψQ(t, r) = ψR1D(t, r − rmax(t)) = 1

L1/2(t)
R1D(ρ)eiτ , (9)

and the blowup rate is given by the loglog law (4).
(E) The case σ > 2 also corresponds to a standing ring. The asymptotic profile is not given

by ψQ, however, but rather by the asymptotic profile of peak-type solutions of the 1D
supercritical NLS. The blowup rate is a square root [BFG09].

Thus, NLS ring-type singular solutions are shrinking (i.e. limt→Tc rmax(t) = 0) for
2/d � σ < 2 (cases B and C), and standing (i.e. 0 < limt→Tc rmax(t) < ∞) for σ � 2
(cases D and E).

Remark 1. When the blowup rate is faster than a square root, the radial phase terms ei(Lt /4L)r2

or ei(Lt /4L)(r−rmax(t))
2

approach 1 as t −→ Tc. For this reason, there is no radial phase term in
the asymptotic profile of critical peak-type solutions, see (3), and of standing-ring solutions
with σ = 2, see (9).
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1.2. Singular solutions of the biharmonic NLS—review

The BNLS equation (2) is called subcritical if σd < 4, supercritical if σd > 4, and critical if
σd = 4. In the critical case, equation (2) can be rewritten as

iψt(t, x) − �2ψ + |ψ |8/d ψ = 0, ψ(0, x) = ψ0(x) ∈ H 2(Rd). (10)

The BNLS conserves the ‘power’ (L2 norm), i.e.

P(t) ≡ P(0), P (t) = ‖ψ(t)‖2
2,

and the Hamiltonian

H(t) ≡ H(0), H [ψ(t)] = ‖�ψ‖2
2 − 1

1 + σ
‖ψ‖2(σ+1)

2(σ+1). (11)

In the radially symmetric case, the BNLS equation (2) reduces to

iψt(t, r) − �2
rψ + |ψ |2σ ψ = 0, ψ(0, r) = ψ0(r), (12)

where

�2
r = ∂4

r +
2(d − 1)

r
∂3
r +

(d − 1)(d − 3)

r2
∂2
r − (d − 1)(d − 3)

r3
∂r (13)

is the radial biharmonic operator. In particular, the radially symmetric critical BNLS is
given by

iψt(t, r) − �2
rψ + |ψ |8/d ψ = 0, ψ(0, r) = ψ0(r). (14)

All solutions of the subcritical BNLS exist globally in H 2 [FIP02]. In the critical case,
they exist globally if the input power is below the critical power:

Theorem 1 ([FIP02]). Let ‖ψ0‖2
2 < P B

cr , where P B
cr = ‖RB‖2

2, and RB(ρ) is the ground state
(i.e. the minimal L2 norm solution) of the standing-wave equation

− �2
ρRB(ρ) − RB + |RB|2σRB = 0, (15)

with σ = 4/d . Then, the solution of the critical focusing BNLS (10) exists globally.

Existence of the zero-Hamiltonian, critical ground-state standing-wave RB was recently proved
in [BFM09, YZZ10]. The question of uniqueness is open.

Numerical simulations [FIP02, BFM09, BF10] indicate that solutions of the critical and
supercritical BNLS can become singular at a finite time, i.e. limt→Tc ‖ψ‖H 2 = ∞, where
0 < Tc < ∞. At present, however, there is no rigorous proof that the BNLS admits singular
solutions, whether peak type or ring type.

In [BFM09], we rigorously proved that the blowup rate of all H 2 singular solutions of the
critical BNLS is bounded by a quartic root:

Theorem 2. Letψ be a solution of the critical BNLS (10) that becomes singular at t = Tc < ∞,
and let l(t) = ‖�ψ‖−1/2

2 . Then, ∃K = K(‖ψ0‖2) > 0 such that

l(t) � K(Tc − t)1/4, 0 � t < Tc.

We also proved that all singular solutions are quasi-self-similar:

Theorem 3. Let d � 2, and let ψ(t, r) be a solution of the radially symmetric critical
BNLS (14) with initial conditions ψ0(r) ∈ H 2

radial, which becomes singular at t = Tc < ∞.

Let l(t) = ‖�ψ‖−1/2
2 , and let

S(ψ)(t, r) = ld/2(t)ψ(t, l(t)r).
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Then, for any sequence t ′k → Tc, there is a subsequence tk , such that S(ψ)(tk, r) → 
(r)

strongly in Lq , for all q such that


2 < q < ∞ 2 � d � 4,

2 < q <
2d

d − 4
4 < d.

(16)

Since the L2-norm of S(ψ) is conserved, and the convergence of S(ψ) to 
 is in Lq

with q > 2, the solution becomes self-similar in the singular region (the collapsing core), but
not everywhere. Consequentially, the solution has the power-concentration property, whereby
a finite amount of power enters the singularity point, i.e.

lim
ε→0+

lim inf
t→Tc

‖ψ‖2
L2(r<ε) � P B

cr ,

where P B
cr is the critical power for collapse [BFM09, CHL09].

Peak-type singular solutions of the critical BNLS (14) were studied asymptotically and
numerically in [FIP02, BFM09]. The asymptotic profile of these solutions is2

ψRB(t, r) = 1

Ld/2(t)
RB

(
r

L(t)

)
ei

∫ t
(1/L4(s)) ds , (17)

where RB(ρ) is the ground state of (15). The blowup rate of L(t) is slightly faster than a
quartic root, i.e.

lim
t→Tc

L(t)

(Tc − t)p
=

{
0 p = 1

4 ,

∞ p > 1
4 .

(18)

Specifically, in the one-dimensional case, the quasi-self-similar profile is

ψRB,1D(t, x) = 1

L1/2(t)
RB,1D

(
x

L(t)

)
e
∫ t

(1/L4(s)) ds , (19a)

and RB,1D is the ground state of

− R′′′′
B (ξ) − RB + |RB|8RB = 0. (19b)

Peak-type solutions of the supercritical BNLS (12) were studied asymptotically and
numerically in [BF10]. The asymptotic profile of these solutions is

ψSB(t, r) = 1

L2/σ (t)
SB

(
r

L(t)

)
ei

∫ t
(1/L4(s)) ds , (20)

where SB(ρ) is the zero-Hamiltonian solution of a nonlinear eigenvalue problem

− SB(ρ) + i
κ4

4

(
2

σ
SB + ρS ′

B

)
− �ρSB + |SB|2σ SB = 0, S ′

B(0) = S ′′′
B (0) = SB(∞) = 0,

(21)

and κ is the eigenvalue. The blowup rate is exactly p = 1/4, i.e.

L(t) ∼ κ(Tc − t)1/4, (22)

where κ > 0 is the nonlinear eigenvalue of (21).
Ring-type singular solutions of the supercritical BNLS (12) with σ > 4 were studied

asymptotically and numerically in [BFG09]. These solutions are standing rings, i.e.
limt→Tc rmax(t) > 0. The self-similar profile of these standing-ring solutions is

ψB(t, r) = ψSB,1D(t, x = r − rmax(t)) = 1

L2/σ (t)
SB,1D

(
r − rmax(t)

L(t)

)
ei

∫ t
(1/L4(s)) ds , (23)

where ψSB,1D(t, x), see (20), is the profile of the peak-type singular solution of the one-
dimensional supercritical BNLS with the same value of σ . The blowup rate is given by (22).
2 As is the case with the NLS, see (3) and remark 1, the asymptotic profile in the critical case has no radial phase.
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Table 1. A comparison of the properties of singular solutions of the NLS and BNLS. These
properties are analogous, ‘up to the change 2 → 4’.

NLS BNLS

Peak-type solutions: critical case [BFM09]
σd = 2 σd = 4

Asymptotic profile
1

L1/σ (t)
R

(
r

L(t)

)
ei

∫ t
0 ds/L2(s) 1

L2/σ (t)
RB

(
r

L(t)

)
ei

∫ t
0 ds/L4(s)

Blowup rate Slightly faster than 1/2 Slightly faster than 1/4
Power concentration Yes Yes

Peak-type solutions: supercritical case [BF10]
σd > 2 σd > 4

Asymptotic profile
1

L1/σ (t)
S

(
r

L(t)

)
ei

∫ t
0 ds/L2(s) 1

L2/σ (t)
SB

(
r

L(t)

)
ei

∫ t
0 ds/L4(s)

Blowup rate = 1/2 = 1/4
Power concentration No No

‘Supercritical’ standing-ring solutions [BFG09]
σ > 2 σ > 4

Asymptotic profile Same as 1D peak Same as 1D peak
Blowup rate Same as 1D peak Same as 1D peak

1.3. Analogy of NLS and BNLS

Table 1 lists the major findings of the previous works [FIP02, BFM09, BFG09, BF10] on
singular solutions of the BNLS, side by side with their NLS counterparts. In all cases, the
results for the BNLS mirror those of the NLS exactly, ‘up to the change of 2 → 4’.

We note that current BNLS theory is still missing a key feature in NLS theory, which is
the BNLS analogue of the quadratic radial phase terms of the asymptotic profiles. Therefore,
our asymptotic analysis of the BNLS singular solutions produces weaker results than those
of [FGW07]. Hence, in this work we ‘fill in’ the missing results by relying on the above
analogy of the NLS and BNLS, up to the change 2 → 4.

1.4. Summary of results

In this study, we consider ring-type singular solutions of the BNLS (12) with 4/d � σ � 4.
We show numerically that such solutions exist, and are of the form ψ(t, r) ∼ ψQB(t, r), where

∣∣ψQB(t, r)
∣∣ = 1

L2/σ (t)
|QB(ρ)|, (24a)

ρ = r − rmax(t)

L(t)
, rmax(t) ∼ r0L

α(t) (24b)

and

α = αB = 4 − σ

σ(d − 1)
= 1 − σd − 4

σ(d − 1)
. (24c)

The ψQB profile is the BNLS analogue of the ψQ profile of the NLS. Unlike the ψQ profile,
however, we do not know the expression for double-lens phase term of ψQB . Therefore, QB is
not the analogue of Q, but rather of Q(ρ)ei(Lt /4L)(αr2+(1−α)(r−rmax(t))

2).
In section 2, we consider the case σ = 4. In this case α = 0, i.e. the solution is a singular

standing ring. Informal asymptotic analysis and numerical simulations show that the blowup
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Figure 3. Classification of singular ring-type solutions of the BNLS as a function of σ and d.
(A) subcritical case (no singularity). (B) critical case, with equal-rate collapse. (C) 4/d < σ < 4,
shrinking rings. (D) σ = 4, standing rings. (E) σ > 4, standing rings [BFG09].

profile is the self-similar profile3

ψQB(t, r; σ = 4) = 1

L1/2(t)
RB,1D

(
r − rmax(t)

L(t)

)
ei

∫ t
(1/L4(s)) ds , (25)

where RB,1D is the ground state of (14) with σ = 4 and d = 1, and that the blowup rate is
slightly faster than a quartic root. In other words, the blowup rate and profile are the same as
those of peak-type singular solutions of the one-dimensional critical BNLS, see (20).

In section 3, we consider the case 4/d < σ < 4, for which 0 < αB < 1, see (24c). From
power conservation we deduce that α � αB. By analogy with the NLS, we expect that α = αB.
Therefore, the ring radius rmax(t) ∼ r0L

α(t) decays to zero, but at a slower rate than L(t).
By analogy with the NLS, we also expect that the blowup rate of these ring solutions is given
by (7) with

p = 1

4 − σd−4
σ(d−1)

= 1

3 + αB
,

and that the self-similar profile QB is the solution of

− QB − i
(1 − α)r0

3 + α
κ3+α(QB)ρ − (QB)ρρρρ + |QB|2σQB = 0, (26)

where κ is the coefficient of the blowup rate (7).
In section 4, we consider the critical BNLS (σ = 4/d), which corresponds to αB = 1.

Since the singular part of the solution has to be self-similar in r/L, see theorem 3, α must be
equal to unity. By the analogy with the NLS, the blowup rate is conjectured to be 1/4.

In summary, the BNLS singular ring-type solutions can be classified as follows (see
figure 3):

(A) In the subcritical case (σd < 4), all BNLS solutions exist globally, hence no collapsing
ring solutions exist.

(B) The critical case σd = 4 corresponds to αB = 1 (equal-rate collapse). The blowup rate
is p = 1/4.

3 As is the case with the NLS, see (9) and remark 1, in the case σ = 4 the asymptotic profile has no radial phase.
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(C) The supercritical case 4/d < σ < 4 corresponds to 0 < αB < 1, hence the
ring radius rmax(t) decays to zero, but at a slower rate than L(t). The blowup rate
is p = 1/(4 − (σd − 4)/(σ (d − 1))).

(D) The case σ = 4 corresponds to αB = 0. Hence the solution is a singular standing ring.
The self-similar profile QB is equal to that of peak-type solutions of the 1D critical BNLS,
and the blowup rate is slightly above p = 1/4.

(E) The case σ > 4 was studied in [BFG09]. In this case, the solutions are of the standing-ring
type, the self-similar profile is equal to that of peak-type solutions of the 1D supercritical
BNLS, and the blowup rate is a quartic root.

Thus, up to the change 2 −→ 4, this classification is, indeed, completely analogous to that of
singular ring-type solutions of the NLS (see figure 2).

It is instructive to compare the singular solutions of the NLS and the BNLS with those
of the Keller–Segel equation, since although parabolic, it displays striking analogies with
the NLS [V06]. The Keller–Segel equation admits singular peak-type solutions in the two-
dimensional critical case, and singular shrinking-ring solutions in the three-dimensional
supercritical case [HMV97, HMV98]. No singular standing-ring solutions were found,
however, for the multidimensional Keller–Segel equation. This is to be expected, as the
one-dimensional Keller–Segel equation does not admit singular peak-type solutions.

1.5. Numerical methodology

The computations of singular BNLS solutions that focus by factors of 108 necessitated the
usage of adaptive grids. For our simulations we developed a modified version of the static grid
redistribution method [RW00, DG09], which is much easier to implement in the biharmonic
problem, and is easily extended to other evolution equations, such as the nonlinear heat
and biharmonic nonlinear heat equations [BFG09]. The method of [DG09] also includes
a mechanism for the prevention of under-resolution in the non-singular region. We extend
this mechanism to prevent under-resolution in the transition layer between the singular and
non-singular regions. See section 5 for further details.

1.6. Critical exponents of singular ring solutions

In figure 4(top) we plot the blowup rate p of singular ring solutions of the BNLS, see (7). As σ

increases from 4/d to 4−, p increases monotonically from 1
4 to 1

3−. At σ = 4, the blowup
rate is slightly faster than a quartic root, i.e. p ≈ 1

4 . Finally, p = 1/4 for σ > 4. Since

lim
σ→4−

p = 1
3 , lim

σ→4+
p = 1

4 ,

the blowup rate has a discontinuity at σ = 4.
The above results show that σ = 4 is a critical exponent of singular ring solutions of the

BNLS. Intuitively, this is because the blowup dynamics changes from a shrinking ring (σ < 4)

to a standing ring (σ � 4), see figure 4(bottom). We can understand why σ = 4 is a critical
exponent using the following argument. Standing-ring solutions are ‘equivalent’ to singular
peak solutions of the one-dimensional NLS with the same nonlinearity exponent σ [BFG09].
Since σ = 4 is the critical exponent for singularity formation in the one-dimensional NLS, it is
also the critical exponent for standing-ring blowup. An analogous picture exists for the NLS,
wherein the phase transition between standing and shrinking rings occurs at σ = 2 [BFG09].
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Figure 4. Top: blowup rate of singular ring solutions of the BNLS. The blowup rate increases
monotonically from p = 1/4 at σ = 4/d to p = (1/3)− at σ = 4−. For σ = 4 (full
circle) p = 1/4 (with a loglog correction?) and for σ > 4, p ≡ 1/4. Bottom: the shrinkage
parameter αB of singular ring solutions of the BNLS. For 4/d � σ < 4, αB decreases monotonically
from 1 to 0+ (shrinking rings). For σ � 4, αB ≡ 0 (standing rings).

2. Singular standing rings (σ = 4)

In what follows, we show that collapse of ring-type singular solutions of the BNLS with σ = 4
is ‘the same’ as collapse of peak-type singular solutions of the one-dimensional critical BNLS.

2.1. Informal analysis

We consider ring-type singular solutions of the supercritical BNLS (12) with σ = 4, which
undergo a quasi-self-similar collapse with the asymptotic profile

ψQB(t, r) = 1

L1/2(t)
QB(ρ)ei

∫ t
(1/L4(s)) ds ρ = r − rmax(t)

L
. (27)

Here and throughout this paper, by quasi-self-similar we mean that ψ ∼ ψQB in the singular
ring region r − rmax = O(L), or ρ = O(1), but not for 0 � r < ∞.

The asymptotic profile (27) describes a standing ring if limt→Tc rmax(t) > 0. We expect
ring-type singular solutions of the BNLS with σ = 4 to collapse as standing rings, for the
following two reasons:

(i) By continuity, since ring-type singular solutions of the BNLS with σ > 4 are standing
rings [BFG09].

(ii) By analogy with singular ring-type solutions of the NLS with σ = 2, which are standing
rings [FGW07, Rap06, RS09].

In the ring region r − rmax = O(L), as L → 0, the terms of the radial biharmonic
operator (13) behave as[

1

r4−k
∂k
r ψ

]
∼ [ψ]

Lk
, k = 0, . . . , 4.

Therefore, �2
rψ ∼ ∂4

r ψ . Hence, near the singularity, equation (12) reduces to

ψ(t, r) − ψrrrr + |ψ |8ψ = 0,
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which is the one-dimensional critical BNLS. Therefore, the singular solutions of the two
equations are asymptotically equivalent, i.e.

ψ
ring
σ=4,d (t, r) ∼ ψ

peak
σ=4,d=1(t, x = r − rmax(t)),

where ψ
peak
σ=4,d=1 is a peak-type solution of the one-dimensional critical BNLS.

The above informal analysis suggests that the blowup dynamics of singular standing-ring
solutions of the BNLS (12) with d > 1 and σ = 4 is the same as the blowup dynamics of
singular peak solutions of the one-dimensional critical BNLS:

Conjecture 1. Let d > 1 and σ = 4, and let ψ be a singular ring-type solution of the
BNLS (12). Then,

(i) The solution is a standing ring, i.e. limt→Tc rmax(t) > 0.
(ii) In the ring region, the solution approaches the ψQB self-similar profile, see (27).

(iii) The self-similar profile ψQB is given by

ψQB(t, r) = ψRB,1D (t, x = r − rmax(t)) , (28)

where ψRB,1D(t, x), see (19a) and (19b), is the asymptotic profile of the one-dimensional
critical BNLS.

(iv) Specifically, QB = RB,1D, where RB,1D is the ground state of (19b).
(v) The blowup rate of L(t) is slightly faster than a quartic root, see (18).

In section 2.2 we provide numerical evidence in support of conjecture 1.

2.2. Simulations

The radially symmetric BNLS (12) with d = 2 and σ = 4 was solved with the initial
condition ψ0(r) = 2e−(r−5)2

. The simulation was run up to L = O(10−8). Similar results
were obtained with d = 3 and σ = 4 (data not shown).

We next test each item of conjecture 1 numerically:

(i) The position of maximal amplitude rmax(t) = arg maxr |ψ | approaches a positive constant
as L → 0, see figure 5(a), indicating that the solution collapses as a standing ring.

(ii) The solution profiles, at the focusing levels of L = 10−4 and L = 10−8, rescaled
according to

ψrescaled(t, ρ) = L2/σ (t)ψ(t, rmax(t) + ρ · L), L(t) = ‖ψ‖−σ/2
∞ , (29)

are almost indistinguishable, see figure 5(b), indicating that the collapsing core is self-
similar according to (27).

(iii) Figure 5(b) also shows that the self-similar profile of the standing-ring solution is given
by RB,1D(ξ), the one-dimensional ground state of equation (19b).

(iv) To calculate the blowup rate of ψ , we first assume that L(t) ∼ κ(Tc − t)p, and find the
best fitting κ and p, see figure 6(a). In this case p ≈ 0.2523, indicating that the blowup
rate is a quartic root or slightly faster.

(v) In order to check whether the blowup rate of L is slightly faster than a quartic-root,
we compute the limit limt→TcL

3Lt . Recall that for a quartic-root blowup rate L(t) ∼
κ(Tc − t)1/4 with κ > 0,

lim
t→Tc

L3Lt = −κ4

4
< 0,

while for a faster than a quartic-root blowup rate, see (18), L3Lt goes to zero. figure 6(b)
shows that L3Lt does not approach a negative constant, but increases slowly towards 0−,
implying that the blowup rate is slightly faster than a quartic root.
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Figure 5. A singular standing-ring solution of the supercritical BNLS (12) with d = 2 and σ = 4.
(a) Ring radius rmax as a function of the focusing level 1/L. (b) The rescaled solution, see (29),
at L(t) = 10−4 (blue dashed–dotted line) and L(t) = 10−8 (black solid line). The two curves are
indistinguishable. Red dashed line is the rescaled one-dimensional ground state |RB,1D(x)|.

(a) (b)

Figure 6. Blowup rate of the solution of figure 5. (a) L as a function of (Tc − t) on a logarithmic
scale (circles). Solid line is L = 0.774(Tc − t)0.2523. (b) LtL

3 as a function of 1/L.

Note that the initial condition ψ0 = 2e−(r−5)2
is quite different from the asymptotic profile ψQB ,

indicating that the standing-ring ψQB profile (28) is an attractor in the radial case.

3. Shrinking-ring solutions of the supercritical BNLS (4/d < σ < 4)

In this section, we consider the regime 4/d < σ < 4. In the NLS analogue (2/d < σ < 2),
the asymptotic profile has a ‘double-lens’ radial phase term, see (6a), whose explicit form
is used in the asymptotic calculation of the blowup rate and shrinking rate. In contrast, for
the BNLS we do not know the corresponding ‘double-lens’ radial phase term, but only the
amplitude |ψQB |. Therefore, the results of the asymptotic analysis are weaker, and we need to
rely on the analogy between the NLS and the BNLS.

3.1. Informal analysis

We consider singular ring-type solutions of the supercritical BNLS with 4/d < σ < 4, which
undergo a quasi-self-similar collapse with the asymptotic profile ψQB , whose amplitude is
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given by

ψQB(t, r) = 1

L2/σ (t)
QB(ρ)ei

∫ t
(1/L4(s)) ds ,

ρ = r − rmax(t)

L
, rmax(t) ∼ r0L

α(t).

(30)

Substituting (30) in the BNLS shows that the profile QB satisfies

− QB − (QB)ρρρρ + |QB|2σQB = −i(1 − α)r0 LtL
2+α(QB)ρ. (31)

As before, we assume that ψ ∼ ψQB in the region rmax − r = O(L), i.e. for |ρ| � ρc = O(1).
We assume that α � 1, since otherwise the rings are unstable. Indeed, if α > 1,
then ρ = r/L + o(1), and the rings eventually evolve into a peak solution.

We first derive a lower bound for α:

Lemma 1. Let 4/d < σ < 4, and let ψ be a ring-type singular solution of the BNLS
equation (12), whose asymptotic profile is of the form (30) with α � 1. Then,

α � αB,

where

αB = 4 − σ

σ(d − 1)
> 0.

Therefore, the ring is shrinking, i.e. limt→Tc rmax(t) = 0.

Proof. First, since 4/d < σ < 4, then 0 < αB < 1. The power of the collapsing core ψQB is

∥∥ψQB

∥∥2
2 = L−4/σ

∫ rmax+ρc ·L(t)

r=rmax−ρc ·L(t)

∣∣∣∣QB

(
r − rmax

L

)∣∣∣∣
2

rd−1 dr

= L−4/σ

∫ ρc

ρ=−ρc

|QB(ρ)|2(Lρ + r0L
α)d−1(Ldρ).

In the case α < 1, we have that L|ρ| � Lρc � r0L
α , hence Lρ + r0L

α ∼ r0L
α . Therefore,

‖ψQB‖2
2 ∼ L1−4/σ+α(d−1)(t) · r

α(d−1)
0

∫ ρc

ρ=−ρc

|QB(ρ)|2dρ.

In the case α = 1, we have that Lρ + r0L
α = (r0 + ρ)L, hence

‖ψQB‖2
2 ∼ L1−4/σ+α(d−1)(t)

∫ ρc

ρ=−ρc

|QB(ρ)|2(r0 + ρ)d−1 dρ.

In both cases ‖ψQB‖2
2 = O(L1−4/σ+α(d−1)). Since ‖ψQB‖2

2 � ‖ψ‖2
2 = ‖ψ0‖2

2 < ∞,
then L1−4/σ+α(d−1) has to be bounded as L → 0. Therefore, 1 − 4/σ + α(d − 1) � 0,
from which the result follows. �

Let

Pcollapse = lim inf
ε→0+

lim
t→Tc

∫
r<ε

|ψ |2rd−1 dr

be the amount of power that collapses into the singularity. We say that the solution ψ undergoes
a strong collapse if Pcollapse > 0, and a weak collapse if Pcollapse = 0.

Corollary 1. Under the conditions of lemma 1, ψQB undergoes a strong collapse if α = αB,
and a weak collapse if α > αB.
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Proof. This follows directly from the proof of lemma 1. �

In the NLS with 2/d < σ < 2, the shrinking rings undergo a strong collapse
with α = αNLS, see (6c). Therefore, by analogy, we expect that the shrinking rings of the
BNLS will also undergo a strong collapse, in which case α = αB.

We now derive a lower bound for the blowup rate:

Lemma 2. Under the conditions of lemma 1, if the blowup rate is of the form L(t) ∼ κ(Tc−t)p,
then

p � 1

3 + αB
.

Proof. This follows from the condition that LtL
2+α in equation (31) should be independent

of t and finite. �

The blowup rate of singular shrinking-ring solutions of the NLS with 2/d < σ < 2
is [FGW07]

p = 1

1 + αNLS
= 1

2 − (σd − 2)/(σ (d − 1))
.

From the analogy of the BNLS with the NLS (up to the change 2 → 4), we expect that the
blowup rate of singular shrinking rings of the BNLS is

L(t) ∼ κ(Tc − t)p, p = 1

3 + αB
= 1

4 − (σd − 4)/(σ (d − 1))
. (32)

Therefore, equation (31) reduces to

− QB − i
(1 − α)r0

3 + α
κ3+α(QB)ρ − (QB)ρρρρ + |QB|2σQB = 0. (33)

where κ is the coefficient of the blowup rate (32).
Therefore, we have the following conjecture:

Conjecture 2. Let d > 1 and 4/d < σ < 4, and let ψ be a singular ring-type solution of the
BNLS (12). Then,

(i) The solution is quasi-self-similar, i.e. ψ ∼ ψQB for r − rmax = O(L), where ψQB is given
by (30).

(ii) The solution is a shrinking ring, i.e. limt→Tc rmax(t) = 0.
(iii) The shrinking rate is

α = αB = 4 − σ

σ(d − 1)
. (34)

Specifically, 0 < α < 1.
(iv) The blowup rate is given by (32). Specifically, 1

4 < p < 1
3 .

(v) The self-similar profile QB(ρ) is the solution of equation (33), where κ > 0 is the
coefficient in (32). In particular, QB is different from RB,1D, the one-dimensional ground-
state solution of

− (RB)ξξξξ − RB(ξ) + |RB|2σRB = 0. (35)

In section 3.2 we provide numerical evidence in support of conjecture 2.
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Figure 7. Ring-type singular solution of the supercritical BNLS (12) with d = 2 and σ = 8/3.
(a) rmax as a function of the focusing factor 1/L. Solid line is rmax = 14.9L0.496. (b) The rescaled
solution, see (29), at L(t) = 10−1 (blue dashed–dotted line) and L(t) = 10−2 (black solid line).
Red dashed line is the rescaled one-dimensional ground state |RB,1D(x)|.

3.2. Simulations

The supercritical BNLS equation with d = 2 and σ = 8/3 was solved with the initial
condition ψ0 = 2e(r−10)2

. The simulation was run up to a focusing level of L(t) = 104.
We next test conjecture 2 numerically, clause by clause.

(i) Figure 7(a) shows that the ring shrinks at a rate of rmax(t) ∼ 14.9Lα(t) with α ≈ 0.496,
which is close to the predicted value of

αB = 4 − 8
3

8
3 (2 − 1)

= 1

2
.

(ii) In figure 7(b) we plot the solution, rescaled according to (29), at the focusing levels 1/L =
10 and 1/L = 100. The two curves are indistinguishable for ρ = O(1), but not for all ρ,
showing that the solution undergoes a quasi-self-similar collapse with the ψQB profile (30).

(iii) Figure 7(b) shows that collapsing solution is indeed self-similar according to (30). The
self-similar profile is close to RB,1D, the one-dimensional ground-state of equation (35),
only near the peak, and not as we had in figure 5(b). Therefore, this supports the Conjecture
that the self-similar profile is different from RB,1D.

(iv) Figure 8(a) shows that L(t) ∼ 0.662(Tc − t)0.2844. Therefore, the calculated blowup
rate p = 0.282 is close to the predicted value of p = 1/(3 + αB) = 1/3.5 ≈ 0.2857.

(v) In order to check whether the blowup rate of L is exactly p = 1/3.5, we compute the
limit limt→TcL

2.5Lt . Recall that if L(t) ∼ κ(Tc − t)1/3.5, then

lim
t→Tc

L2.5Lt = −κ3.5

3.5
< 0,

while for a faster blowup rate, L2.5Lt → 0, and for a slower blowup rate, L2.5Lt → −∞.
Figure 8(b) shows that L2.5Lt converges to a negative constant, implying that the blowup
rate is exactly p = 1/3.5.

In figure 9 we present the numerical values of the shrinking parameter α, defined
by rmax(t) ∼ cLα for ten different values of (σ, d). In all cases, the value of α is very close
to αB, see (34). In figure 10 we present the numerical values of the blowup rate p for the same
simulations, and find that they are close to p = 1/(3+αB) for αB > 0. At αB = 0+, p has a jump
discontinuity to 1/4, in accordance with conjecture 1. The discontinuity at αB = 0 (σ = 4) is
a manifestation of the phase transition from shrinking to standing rings, see section 1.4.
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Figure 8. Blowup rate of the solution of figure 7. (a) Solution width L as a function of (Tc − t)

on a logarithmic scale (circles). Solid line is L = 0.662(Tc − t)0.2844. (b) L2.5Lt as a function
of 1/L.

Figure 9. The numerical shrinking rate α (circles) for ring-type singular solutions of the BNLS
with 4/d � σ � 4. The solid line is α = αB(σ, d), see (34). (a) d = 2 and σ =
2, 16/7, 8/3, 16/5 and 4. (b) d = 3 and σ = 4/3, 8/5, 2, 8/3 and 4.

4. Equal-rate shrinking rings (critical BNLS)

4.1. Informal analysis

We consider singular ring-type solutions of the critical BNLS, which undergo a quasi-self-
similar collapse with the asymptotic profile

ψQB(t, r) = 1

Ld/2(t)
QB

(
r − rmax(t)

L(t)

)
ei

∫ t
(1/L4(s)) ds , rmax ∼ r0L

α. (36)

Lemma 3. Let ψQB(t, r), see (36), be the asymptotic profile of singular ring-type solutions of
the critical BNLS (14). Then, α = 1.

Proof. Theorem 3 implies that the collapsing core of singular solutions of the critical BNLS
is self-similar in r/L, i.e.

|ψ(t, r)| ∼ 1

Ld/2

∣∣∣
 ( r

L

)∣∣∣ .
Therefore, a singular solution of the critical BNLS is ring type if and only if |
(ρ)| attains its
maximum at some ρmax > 0. Hence, rmax(t) = ρmax · L(t). Therefore, α = 1. �
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(a) (b)

Figure 10. Same as figure 9, for the numerical blowup rate p, defined by L(t) ∼ c(Tc − t)p , as a
function of αB. Solid line is p = 1/(3 + αB). The calculated values of p for 1/2 � αB � 1 are
slightly lower than the predicted value 1/(3 + αB).

By theorem 2, the blowup rate is lower bounded by 1/4. We recall that ring-type singular
solutions of the critical NLS have a square-root blowup rate [FGW05]. Therefore, we expect
that ring-type singular solutions of the critical BNLS have a quartic-root blowup rate.

In summary, we conjecture the following:

Conjecture 3. Let ψ be ring-type singular solution of the critical BNLS (14). Then,

(i) The solution undergoes an equal-rate collapse, i.e. rmax(t) ∼ r0L(t).
(ii) The solution undergoes a quasi-self-similar collapse with the asymptotic profile

ψQB(t, r) = 1

Ld/2(t)
QB

(
r − r0L

L

)
ei

∫ t

s=0(1/L4(s)) ds . (37a)

(iii) The blowup rate is exactly a quartic root, i.e.

L(t) ∼ κ
4
√

Tc − t, κ > 0. (37b)

4.2. Simulations

The critical BNLS (14) with d = 2 was solved with the initial condition ψ0 = 2.5e(r−10)2
.

The simulation was run up to a focusing level of L(t) = 10−6. We next test conjecture 3
numerically, clause by clause.

(i) Figure 11(a) shows that the ring shrinks at a rate of rmax(t) ∼ cLα(t) with α ≈ 1.02,
which is close to the predicted value of α = 1.

(ii) In figure 11(b) we plot the solution, rescaled according to (29), at the focusing levels 1/L =
103 and 1/L = 106. The two curves are indistinguishable, showing that the solution
undergoes a quasi-self-similar collapse with the ψQB profile (37a).

(iii) Figure 12(a) shows that L(t) ∼ 0.433(Tc − t)0.2477. Therefore, the calculated blowup rate
is close to a quartic root.

(iv) By conjecture 3, the blowup rate of L(t) should be exactly 1/4, hence L3L(t) should
converge to a negative constant. However, in figure 12(b), L3Lt does not converge to a
constant, but rather slowly decreases away from zero. This indicates that the blowup rate
is slower than a quartic root, which is in contradiction with theorem 2. There are two
possible explanations for this:

(a) It may be that the numerical finding that α is slightly above 1 and p is slightly
below 1/4 is an artefact of our numerical method, see section 5. Indeed, in all
our simulations for 1/2 � α < 1 in figures 9 and 10, the calculated values of
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(a)

(b)

Figure 11. Ring-type singular solution of the critical BNLS (14) with d = 2. (a) rmax as a function
of 1/L. Solid line is rmax = 79.5L1.02. (b) The rescaled solution, see (29), at L(t) = 10−3 (blue
dashed line) and L(t) = 10−6 (black solid line).

(a) (b)

Figure 12. Blowup rate of the solution of figure 11. (a) Solution width L as a function of (Tc − t)

on a logarithmic scale (circles). Solid line is L = 0.433(Tc − t)0.2476. (b) LtL
3 as a function

of 1/L.

the shrinking rate α were all slightly above αB, and the blowup rates were slightly
below 1/(3 + αB). In those cases, however, these small differences did not change
the qualitative behaviour of the solution. In contrast, a small increment (whether
numerical or genuine) from α = 1 will drastically change the dynamics, from equal-
rate ring-type solutions into peak-type solutions.

(b) It may be that ring-type solutions of the critical BNLS are only meta-stable, having
shrinking rates α > 1 and a blowup rate slower than 1/4. This does not contradict
with theorem 2, since in this case the ring-type solutions will eventually evolve into
peak-type solutions with a different blowup rate.

We do not know which of the two options is true.

5. Numerical method: adaptive mesh construction

In this study, we computed singular solutions of the BNLS equation (12). These solutions
become highly localized, so that the spatial scale difference between the singular region
r − rmax = O(L) and the exterior regions can be as large as O(1/L) ∼ 1010. In order to
resolve the solution at both the singular and non-singular regions, we use an adaptive grid.
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We generate the adaptive grids using the static grid redistribution (SGR) method, which
was first introduced by Ren and Wang [RW00], and later simplified and improved by Gavish
and Ditkowsky [DG09]. Using this approach, the solution is allowed to propagate (self-focus)
until it becomes under-resolved. At this stage, a new grid, with the same number of grid
points, is generated using De’Boors ‘equidistribution principle’, wherein the grid points {rm}
are spaced such that a certain weight function w1[ψ] is equidistributed, i.e. that∫ rm+1

r=rm

w1 [ψ(r)] dr = const,

see [RW00, DG09] for details.

Algorithm 1. The SGR method, as implemented in [DG09].

(i) Find a nonlinear coordinate transformation r(x) : [0, 1] → [0, R], under which the weight
function w[ψ(r(x))] becomes uniformly distributed.

(ii) Transform the solution and equation to the new coordinate system. For example, the
second spatial derivative in the NLS transforms as

ψrr �→ ψxxr
2
x + ψxrxx.

(iii) Approximate the equation on a uniform grid {xm}, using standard finite-differences
(or another method of choice).

The method of [DG09] is given in algorithm 1. Note that, since r(x) is nonlinear, the
mapping of the derivatives of ψ (step 2) involves nonlinear combinations of the derivatives
of r . This is not a great problem for the NLS, which has only second-order derivatives, but
becomes much messier for the biharmonic operator (13), with its many high-order derivatives
of ψ .

Therefore, in this study we implement a simplified version of the method of [DG09],
which is given in algorithm 2, which uses a non-uniform grid in the old-coordinate system,
and thereby dispenses with the need for transforming the equation, and is much easier to
implement in the biharmonic case.

Algorithm 2. The SGR method, as implemented in this work.

(i) Find a nonlinear coordinate transformation r(x) : [0, 1] → [0, R], under which the weight
function w [ψ(r(x))] becomes uniformly distributed.

(ii) Create the uniform grid in the transformed system {xm}.
(iii) Create the (highly) non-uniform grid rm = r(xm) in the original (physical) coordinate

system.
(iv) On the non-uniform grid, approximate the equation using standard (non-uniform) finite

differences.

We use a third-order accurate finite-difference approximation of the radial biharmonic
operator (13), with a seven-point stencil.

The method in [DG09] allows control of the fraction of grid points that migrate into the
singular region, preventing under-resolution at the exterior regions. This is done by using a
weight function w2, which penalizes large inter-grid distances. However, we found that this
numerical mechanism, while necessary, is insufficient for our purposes. In order to understand
the reason, let us consider the grid-point spacings �rm = rm+1 − rm. Using the method
of [DG09] with both w1 and w2 causes a very sharp bi-partition of the grid points—to those
inside the singular region, whose spacing is determined by w1 and is �rm = O(L), and to
those outside the singular region, whose spacing is determined by w2 and is �rm = O(1),
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Figure 13. The grid spacing �rm obtained using the SGR method of [DG09] for a peak-type
singular solution of the BNLS. (a) The grid generated the original method of [DG09] at focusing
level of L = 10−6. The Singular and non-singular regions are well resolved, but the transition
region �rm displays a discontinuity. At this point, the finite-difference operator becomes ill-
conditioned. (b) same as (a), after adding the new penalty function w3, at focusing level L = 10−12.
Even at this much larger focusing level, the transition region is now well resolved.

see figure 13(a). Inside each of these regions, the finite-difference approximation we use is
well conditioned. However, at the transition between these two regions, the finite-difference
stencil, seven-points in width, spans grid spacings with O(1/L) scale difference—leading to
under-resolution which completely violates the validity of the finite-difference approximation.

In order to overcome this limitation, we improve the algorithm of [DG09] by adding a
third weight function

w3(rm) =
√

1 +

∣∣�2rm

∣∣
�rm

,

which penalizes the second-difference �2rm = �rm+1 − �rm operator of the grid locations,
allowing for a smooth transition between the singular region and the non-singular region, see
figure 13(b).

On the sequence of grids, the equations are solved using a predictor–corrector Crank–
Nicholson scheme, which is second order in time.
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