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Abstract. This paper is devoted to the study of a stochastic epidemiological
model which is a variant of the SIR model to which we add an extra factor

in the transition rate from susceptible to infected accounting for the inflow of

infection due to immigration or environmental sources of infection. This factor
yields the formation of new clusters of infections, without having to specify a

priori and explicitly their date and place of appearance.

We establish an exact deterministic description for such stochastic processes
on 1D lattices (finite lines, semi-infinite lines, infinite lines) by showing that

the probability of infection at a given point in space and time can be obtained

as the solution of a deterministic ODE system on the lattice. Our results allow
stochastic initial conditions and arbitrary spatio-temporal heterogeneities on

the parameters.
We then apply our results to some concrete situations and obtain useful

qualitative results and explicit formulae on the macroscopic dynamics and also

the local temporal behavior of each individual. In particular, we provide a fine
analysis of some aspects of cluster formation through the study of patient-zero

problems and the effects of time-varying point sources.

Finally, we show that the space-discrete model gives rise to new space-
continuous models, which are either ODEs or PDEs, depending on the rescaling

regime assumed on the parameters.

1. Introduction.

1.1. Goal of the paper. This paper is devoted to the study of a stochastic epi-
demic model on 1D (directed or undirected) lattices with a general epidemic source
term and arbitrary heterogeneity on the parameters and initial conditions. Our
model is a variant of the stochastic SIR model, originally introduced in its deter-
ministic version by Kermack and McKendrick [30], which forms the framework of
almost any model used in epidemiology. Despite the extensive literature on the SIR
model (see, e.g., the books of Bailey [5], Anderson and May [1], Mollison [34] and
the review of Heathcote [24]), some fundamental and practical questions remain
open. In the current context of the propagation of the COVID-19, an in-depth
study of this model and its variants is a major challenge.

In addition to the usual mechanism of contagion occurring in epidemics, we
also assume the presence of an epidemiological source term, qualified as “external
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influences”. This term acts as an additional mechanism that leads to the transition
from susceptible to infected, which does not depend on the level of infection in
the population, and accounts for the inflow of infection due to immigration or
environmental sources of infection. In our framework, it is allowed to depend on
space and time. From a modeling point of view, dealing with external influences
is important since they yield the formation of new clusters of infections, without
having to specify a priori and explicitly their date and place of appearance. Such
external influences are not traditionally included in the SIR model and refer more to
the Bass model [8], originally introduced to describe the diffusion of new products.
In the marketing context, external influences account for the spontaneous adoptions
of the product induced by advertising or mass media, while “social imitation” and
“word of mouth” are formally regarded as a “contagion” mechanism. In turn,
the population of potential adopters of a product (resp. adopters) are seen as
formal analogs of the population of susceptible (resp. infected) in the epidemiology
context. Although each modeling situation has its own specificities, we keep a
unified approach to both phenomena. In what follows, we use more frequently the
terminology borrowed from epidemiology, but our considerations can be transposed
to the context of the adoption of a new product. Let us mention that the recovery
of infected individuals operating in the SIR model is also relevant in the marketing
context even though it has not been included in the Bass model until recently [17].
Similar models are also used in other social situations: propagation of riots [9],
rumours [15], etc.
. The main goal of the present paper is to establish an exact deterministic descrip-
tion for such stochastic SIR-Bass epidemics on 1D lattices. Specifically, we show
that the probability of infection at a given point in space and time can be obtained
as the solution of a deterministic ODE system on the lattice. We then apply our
results to some concrete situations and obtain useful qualitative results and explicit
formulae. In particular, we provide a fine analysis of some aspects of cluster for-
mation through the study of patient-zero problems and the effects of time-varying
point sources.

For simplicity and a clear presentation of our results and methodology, we focus
in this paper on 1D lattices (i.e., finite, semi-infinite, and infinite lines) where the
infection only occurs from a node to its direct neighbors. Our approach can be
adapted without difficulties to the case where the contact network is a tree (i.e., a
graph with no cycles). Some of our ideas may also apply to a more general context,
which will be the subject of future works.

As a counterpart to the strong assumption on the structure of the graph, we
try to keep the assumptions on the parameters and initial conditions as broad as
possible by allowing any type of spatial-temporal heterogeneity of the coefficients.
Understanding the effect of such local heterogeneities, even for simple networks, is
still a major challenge in epidemiology [35, Section 1].

We emphasize that our results provide an exact description of the process at
the individual-scale, that is, we describe both the macroscopic dynamics of the
epidemics and the local temporal behavior of each individual. This takes us one
step further than the usual description at the population-scale through aggregate
quantities such as the expected fraction of infected individuals in the population.
Such a spatial-temporal description at the local scale is required for predicting
population-level dynamics from individual-level observations, all the more in the
situation of strong heterogeneities.
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Outline. We give a brief state of the art of the mathematical epidemiology literature
in Section 1.2, which allow us to present the context of our study, to motivate it,
and to highlight the novelty of our results. Our mathematical framework and its
link with classical models are presented in Sections 2 and 3.

We first present and prove our results dealing with 1D one-sided lattices in which
the contagion can only occur in one direction. We focus in Section 4 on the Bass
model when there is no recovery. Section 5 deals with the full SIR-Bass model.
Our main results (Theorem 4.1, Theorem 5.1) establish that the probability of a
certain node to be susceptible at some time satisfies a differential equation which is
continuous in time and discrete in space. This provides an exact spatial-temporal
deterministic description of the stochastic process, for any type of heterogeneity
on the parameters and stochastic initial conditions. We then use these results to
perform a further analysis and derive explicit formulae in several typical situations,
such as the spatially homogeneous case (Proposition 1, Proposition 5), the patient-
zero problem (Proposition 2, Proposition 7), and the case of a time-varying point
sources (Proposition 4, Proposition 6). We also propose a further analysis on the
speed of propagation of epidemics (Proposition 3) as well as a detailed comparison
of our model with the classical aggregate SIR model (Section 5.3).

In Section 6, we extend our results to two-sided 1D lattices (corresponding to an
undirected underlying graph) in which epidemics can propagate in both directions.
We derive a new useful formula that expresses the probability of infection in a
two-sided lattice in terms of the probabilities of infections in one-sided lattices. In
Section 7, we discuss two different space rescalings giving rise to either a limiting
space-continuous ODE or a limiting PDE coupling time and space. Finally, we give
some concluding remarks in Section 8.

1.2. Context and motivation. To present the context of our work, we provide a
brief overview of the mathematical study of epidemiological models. Most epidemi-
ological models proposed in the literature fall into two broad categories: a determin-
istic approach using either ODEs [25] or PDEs of the reaction-diffusion type [13,36],
and a stochastic approach using individual-centered Poisson processes (agent-based
models) [1, 5]. The deterministic and stochastic approaches have mostly developed
in parallel in the literature. In general, deterministic models can be obtained as
the “mean-field” limits [31, 39] of stochastic models. Mean-field models describe
the average dynamics and typically apply to sufficiently large populations where
stochastic fluctuations and individual variabilities are negligible [32]. They have
the advantage of being more amenable to analysis and to give a clear idea of some
qualitative aspects of epidemic dynamics. Deterministic models are particularly
useful to study the spatial speed of propagation and the shape of the propagation
front of epidemics [14]. On the other hand, stochastic models are capable of repro-
ducing observed data way more accurately, both quantitatively and qualitatively,
see, e.g., [5, Section 5.1 & 7] and [34]. The main reasons for this are, firstly, that
stochasticity may have a dramatic influence on the overall dynamics since small
populations are involved (for example during the outbreak of an epidemic) and,
secondly, that the stochastic framework is readily well suited for the incorporation
of strong heterogeneities or complex social structures which are known to be of
tremendous importance in epidemics propagation.

The simplest models, referred to as aggregate or compartmental models, assume
that the population is homogeneously mixed [5, Section 5.10], that is, the connec-
tivity between two individuals is constant among all pairs of individuals. In this
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situation, individuals are interchangeable and so the behavior of the system can be
described by aggregate quantities (such as the expected fraction of infected individ-
uals). The classical analysis of these models relies on strong symmetry assumptions
on the parameters and initial conditions [31,32].

However, many studies reveal that homogeneous mixing only holds in small
groups but not in large populations, see e.g. [5, Section 5.10] and [29]. Intuitively,
at the scale of a city, it does not make sense to assume that an individual interacts
as much with members of his family as with a socially unrelated individual living
on the other side of the city. The limited number of interactions of each individ-
ual tends to hinder the spread of infection and to cause the formation of localized
clusters. For these reasons, the network within which social interactions occur has
a dramatic impact on the epidemic propagation, and so aggregate models turn out
to be inaccurate to describe the spatial-temporal dynamics of the epidemics.

A more elaborate approach is to consider that each individual interacts only with
a relatively small subset of the population. The connectivity between individuals
is usually encoded by a weighted graph, called contact network in the epidemiol-
ogy context [3]. We point out that this formalism assumes that social interactions
are fixed once and for all, which is not a problem when considering a sufficiently
short epidemic episode (evolving networks have also been proposed, see [16] and
references therein). Contact networks are typically sparse and may embed vari-
ous social variables such as place of residence, age, profession, etc. The different
classes of contact networks considered in the literature can be roughly classified
according to their clustering level [4, 27] reflecting the extent to which the system
is capable of generating and maintaining localized clusters of infections. For exam-
ple, lattice networks [33, 37] regard the population as placed on a regular grid of
points with spatially localized connections, yielding a high clustering level; on the
contrary, random networks [2,6,12] have a low clustering level since connections be-
tween individuals occur randomly regardless of their locations. Lattices and random
networks appear as two opposite extreme instances, each one focusing on certain
aspects of the dynamics observed in epidemics and discarding others. Small-world
or scale-free networks have been proposed as examples of more realistic configu-
rations, combining both localized and rare long-range connections, which display
intermediate clustering levels. For more details, we refer the reader to the reviews
of Keeling & Eames [29], Britton [10] and Danon et. al. [11]. Let us emphasize here
that lattices, especially 2D lattices, are the physically relevant contact networks
when considering contagion phenomena that primarily depend on the physical dis-
tance between the infected and susceptible individuals, which happens to be the
case in the propagation of some diseases such as Measles [23] or the diffusion of
some products such as solar panels [22].

Most of the approaches developed for studying complex networks make strong
assumptions of homogeneity and symmetry at the individual-scale and are mainly
concerned with aggregate quantities (such as the total number of infected) which
describe the dynamics at the population level but fail to precisely grasp the dynam-
ics at the individual-scale. It remains nevertheless a major challenge to understand
the local behavior and the effects of strong heterogeneity [35, Section 1]. For exam-
ple, the study of the patient-zero problem (where the epidemics spread from a single
infected individual at initial time) or the influence of a spatially localized source of
infection gives significant insights into the spatial propagation of epidemic clusters.
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Several approximation methods have been proposed to deal with complex net-
works with a high level of heterogeneity. The goal of these approaches is to provide
deterministic approximations that go beyond the insufficient mean-field approxi-
mation, but that are still less computationally demanding and more amenable to
analysis than the full stochastic models. The pair-approximation method [28] con-
sists in formally neglecting the possible intercorrelation between the nodes induced
by cycles in the contact network. Under this formal approximation, the dynam-
ics can be described by a system of ODEs featuring aggregate quantities such as
the average number of neighbors per node and the ratio of triples of nodes which
form an interconnected triangle (this quantity reflects the level of clustering of the
contact network). While this method offers great flexibility and results which are
quite in agreement with numerical simulations of the stochastic process, its theo-
retical ground is far from being completely understood. Other approximations have
been proposed [7,26], such as degree-based models, probability generating function
(PGF) formalism, edge-based compartment modeling, but all these methods can be
derived from the pair-approximation method [26].

Regarding theoretical results and exact deterministic descriptions of the stochas-
tic process, most of the studies, if not all, assume a tree-like structure on the contact
network at some level. If the contact network is a tree-graph (i.e. a loopless graph),
it is well known that the pair-wise approximation is exact [38] and yields an exact
description of the stochastic process, namely, the probabilities of infection satisfy a
system of ODEs. This allows a fine theoretical analysis of the dynamics. Results
are also available when the graph has a local tree-like structure (such as random
configuration networks [11]) at the limit as the population size becomes large and
under homogeneity assumptions [11,12].

As mentioned in the introduction, the present paper deals with 1D lattices, which
are particular cases of tree-graphs, and for which exact equations are available. The
novelty of our approach is in the combination of the following ingredients. Firstly,
we study the SIR-Bass model, that is, we add to the classical SIR model an external
source term accounting for a spontaneous inflow of infection; secondly we allow any
heterogeneity on the coefficients and allow stochastic initial conditions; thirdly, we
use the obtained exact deterministic description to perform a further analysis at
a local scale and derive explicit formulae on some specific typical epidemiological
instances; finally we show that the space-discrete model gives rise to new space-
continuous models, which are either ODEs or PDEs, depending on the rescaling
regime assumed on the parameters.

2. Framework. In this paper, we consider time-discrete stochastic processes that
converge to time-continuous processes as the time step tends to zero. Discrete and
continuous models each have their own advantages: the former can be simulated
numerically directly, while the latter is more amenable for analysis.

Time-discrete process. Let us fix a time-step 0 < ∆t� 1 and consider random
processes represented by a family of random variables ((xnk )k∈K)n∈N, where xnk rep-
resents the state of individual k ∈ K at time tn := n∆t. The set K can be finite
K = {1, . . . ,K}, infinite K = Zd, or semi-infinite K = N. The state of individ-
ual/node k at time tn can be susceptible (xnk = s), infected (xnk = i), or recovered
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(xnk = r). We define the following events:

Snk is the event that xnk = s,

Ink is the event that xnk = i,

Rnk is the event that xnk = r,

and denote their probabilities by

[Snk ] = P(Snk ), [Ink ] = P(Ink ), [Rnk ] = P(Rnk ).

The events Snk , Ink , Rnk are disjoint and complementary, and so

[Snk ] + [Ink ] + [Rnk ] ≡ 1, ∀n ≥ 0, k ∈ K. (1)

We assume that the stochastic dynamics in the time-interval

(tn, tn+1) = (n∆t, (n+ 1)∆t)

is governed by the following mechanisms:

• If node k is susceptible at tn, it can become infected
- by a source term (“external influence”) at a rate of pnk ,
- and by contagion from infected individual i (“internal influence”) at a

rate of qnik.
These effects are additive.

• If a node k is infected at tn, it can recover at a rate of rnk .
• If node k is recovered at tn, it remains so for all later times.

The transition probabilities are thus given by

P
(
In+1
k

∣∣Xn
)

=


∆t

(
pnk +

∑
i∈K

qnik1Ini

)
, if xnk = s,

1− rnk∆t, if xnk = i,

0, if xnk = r,

(2a)

where Xn = (xnk )k∈K is the state of the network at time tn,

1Ini =

{
1, if xni = i,

0, else,

and by

P
(
Rn+1
k

∣∣Xn
)

=


0, if xnk = s,

rnk∆t, if xnk = i,

1, if xnk = r.

(2b)

The parameters pnk , qnik, rnk are nonnegative and may depend on space k and time
n. We also assume that Xn+1 is a family of random variables that are mutually
independent when conditioned with respect to Xn. This way, the process is well
defined. The matrix (qik)K represents the weighted directed edges of the contact
graph between the nodes.

The state variables (xnk ) are coupled through the sum
∑
i∈K q

n
ik1Ini , see (2a). This

term, which embeds the structure of the graph, has a central role in the analysis. As
noted previously, in this paper we focus on the case of 1D (directed or undirected)
lattices, where qnik ≡ 0 when i 6= k ± 1.



SIR-BASS EPIDEMICS ON 1D LATTICES 511

Initial conditions. The starting point of the stochastic dynamics (2) is the initial
conditions

(x0
k)k∈K, x0

k := xk(t = 0),

which are assumed to be uncorrelated random variables taking values in {s, i, r}.
Thus, in terms of the probabilities [Snk ], [Ink ] and [Rnk ], we consider the initial con-
ditions 

[S0
k], [I0

k ], [R0
k] ∈ [0, 1], k ∈ K,

[S0
k] + [I0

k ] + [R0
k] ≡ 1, k ∈ K,

x0
k ⊥⊥ x0

l k 6= l ∈ K.
(3)

In some applications, it is natural to consider deterministic (pure) initial condi-
tions, where the initial state of each node is given in a deterministic way. This is
a special case of (3), when x0

k is determined with probability 1 among the possible
states {s, i, r}. For example, in the SIR model, it is standard to assume that the
epidemics start from “patients zero”, and so that initially, all nodes are susceptible,
except for a few which are infected. In the Bass model, the standard assumption
is that the whole population is susceptible (non-adopters) when the new product is
first introduced into the market.

In this paper, we analyze the more general case (3) where the initial state of
each node is given by a random variable. In addition to being more general from a
mathematical point of view, dealing with stochastic initial conditions is important
from an application point of view. For example, in the context of epidemiology,
it may be that the only available information is the percentage of the population
in each area which are infected. Similarly, in the context of the diffusion of a
new product, sometimes only the fraction of the population that has adopted the
product in each area is available, rather than a precise description of the state of
each individual.

Time-continuous limit. As noted, the n superscript denotes a state variable
evaluated at the discrete time tn = n∆t. Throughout the paper, we assume the
following:
Time-continuous limit assumptions. The parameters pnk , qnk and rnk in (2) converge
to some functions pk(t), qk(t) and rk(t) respectively, as ∆t → 0 and n → +∞ so
that t = n∆t is constant.
. Then, we classically have that the time-discrete process (xnk ) converges to a time-
continuous Poisson-type process (xk(t)). We use the same notations as in the time-
discrete setting, by replacing the dependence on n with a dependence on t. Thus,

Sk(t) is the event that xk(t) = s,

Ik(t) is the event that xk(t) = i,

Rk(t) is the event that xk(t) = r,

and

[Sk](t) = P(Sk(t)), [Ik](t) = P(Sk(t)), [Rk](t) = P(Sk(t)).

The time-continuous process is a Poisson-type process, defined as follows. The
transition of individual k from susceptible to infected at time t occurs through an
exponential law with the rate λs→ik (t) = pk(t)+

∑
i∈K qik(t)1Ii(t), and from infected

to recovered with the rate λi→rk (t) = rk(t).
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3. Aggregate models. The aggregate version of the above model (2) is obtained
when the parameters and initial conditions do not depend on k, which corresponds
to the case where the underlying graph is homogeneous and complete. In this case,
in the limit as the population size becomes infinite, the dynamics is governed by
the aggregate SIR-Bass model [17] which is given by the system of ODEs

S′(t) = −S(p+ qI),

I ′(t) = S(p+ qI)− rI,
R′(t) = rI,

(4)

where S, I, and R represent the fraction of susceptible, infected, and recovered,
respectively (or equivalentely the probability that any node is susceptible, infected,
or recovered respectively). Similarily to (1), we have that

S(t) + I(t) +R(t) ≡ 1, t ≥ 0. (5)

If we take p = 0 in (4), i.e., we assume that there is no source term, then the
SIR-Bass model reduces to the classical aggregate SIR model (see e.g. [25])

S′(t) = −qSI,
I ′(t) = qSI − rI,
R′(t) = rI.

(6)

To have a non-trivial dynamics in (6), we need to assume the presence of patient(s)
zero, i.e., I(0) > 0.

Alternatively, if we take r = 0 and R(t = 0) = 0 (i.e. assume that there is no
recovery), then R(t) ≡ 0 and so by (5) we have I = 1 − S. Hence, (4) reduces to
the original Bass model [8]:

I ′(t) = (1− I)(p+ qI). (7)

If we further assume that I(0) = 0, this leads to the Bass formula

IBass(t) =
1− e−(p+q)t

1 + q
pe
−(p+q)t

. (8)

Finally, assuming no recovery (r = R(t = 0) = 0) and no source term (p = 0),
the SIR-Bass model (4) reduces to the classical SI model{

S′(t) = −qSI,
I ′(t) = qSI.

(9)

4. Bass model on 1D one-sided lattices. We begin our analysis with the case
of a 1D one-sided lattice, that is, when

qik = 0 if i 6= k − 1. (10)

Therefore, infection of node k at time-step n can be caused either by a source term
at the rate pnk , or by contagion from its left neighbor at the rate qnk . Hence, (2a)
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reduces to1

P
(
In+1
k

∣∣Xn
)

=


(
pnk + qnk1Ink−1

)
∆t, if xnk = s,

1− rnk∆t, if xnk = i,

0, if xnk = r,

(12a)

and (2b) remains unchanged, that is:

P
(
Rn+1
k

∣∣Xn
)

=


0, if xnk = s,

rnk∆t, if xnk = i,

1, if xnk = r,

(12b)

In this section, we focus on the Bass model case when there is no recovery, i.e.,
when

rnk ≡ 0 and [R0
k] ≡ 0, ∀k ∈ K. (13)

This implies that [Rnk ] ≡ 0 and so by (1),

[Snk ] + [Ink ] ≡ 1, ∀k, n. (14)

Therefore, (12a) and (12b) reduce to

P
(
In+1
k

∣∣Xn
)

=

{
∆t
(
pnk + qnk1Ink−1

)
, if xnk = s,

1, if xnk = i.
(15)

4.1. Deterministic description. In what follows, we show that the probability
[Snk ](t) of node k to be susceptible at time tn satisfies a deterministic discrete PDE
(here, the term “discrete” means that the time and space derivatives are replaced
by finite differences). We then let ∆t → 0 to deduce that the probabilities [Sk](t)
satisfy a system of differential equations.

Theorem 4.1. Assume that the nodes are placed on a 1D one-sided graph, see (10),
that the initial conditions are stochastic and uncorrelated, see (3), and that there is
no recovery, see (13), so that the stochastic dynamics are governed by (15) where
K is either a finite, semi-infinite or infinite line. Then for all k ∈ K, as ∆t → 0,
[Sk] satisfies the differential equation

[Sk]′(t) + (pk(t) + qk(t))[Sk](t)− qk(t)e−
∫ t
0
pk(s)ds[S0

k][Sk−1](t) = 0,

[Sk](t = 0) = [S0
k].

(16)

In particular, if p ≡ pnk and q ≡ pnk are independent of k and n, then (16) reads

[Sk]′ + (p+ q)[Sk]− qe−pt[S0
k][Sk−1] = 0, [Sk](t = 0) = [S0

k]. (17)

1In the case of the semi-infinite line K = N, the transition probability for the boundary node
k = 0 is

P
(
In+1
0

∣∣Xn
)

=


pn0 ∆t, if xn

0 = s,

1− rn0 ∆t, if xn
0 = i,

0, if xn
0 = r,

(11)
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Proof. A straightforward computation gives

P(Snk )− P(Sn+1
k )

= P(In+1
k ∩ Snk ) = P(In+1

k ∩ Snk ∩ Snk−1) + P(In+1
k ∩ Snk ∩ Ink−1)

= P(In+1
k |Snk ∩ Snk−1)︸ ︷︷ ︸

=pnk∆t

P(Snk ∩ Snk−1) + P(In+1
k |Snk ∩ Ink−1)︸ ︷︷ ︸
=(pnk+qnk )∆t

P(Snk ∩ Ink−1).

Since P(Snk ∩ Ink−1) = P(Snk )− P(Snk ∩ Snk−1), we obtain that

P(Sn+1
k )− P(Snk )

∆t
+ (pnk + qnk )P(Snk )− qnkP

(
Snk ∩ Snk−1

)
= 0. (18)

In principle, we now have to deal with the term P(Snk ∩Snk−1) which involves the
2-marginals of the process through the joint laws of xnk−1 and xnk . The 2-marginals,
however, can be expressed through the 1-marginal ([Sk])k∈K as follows. Let us write

P(Snk ∩ Snk−1) = P(Snk ∩ S0
k ∩ Snk−1) = P(Snk |S0

k ∩ Snk−1)P(S0
k ∩ Snk−1) (19)

and compute each term of the product separately. First, since the initial conditions
are uncorrelated, the variables x0

k and xnk−1 are independent, hence

P(S0
k ∩ Snk−1) = P(S0

k)P(Snk−1). (20)

This identity follows from the fact that there is no path from k to k−1, therefore the
computation of the probability P(Snk−1) through (15) does not involve x0

k. Second,
if k is not infected at initial time and k − 1 is not infected by tn, then k can only
become infected through the source term pk. In this case, node k remains susceptible
during the time interval (tn, tn+1) with a probability 1− pnk , i.e.,

P(Snk |S0
k ∩ Snk−1) =

n−1∏
i=0

(
1− pik∆t

)
= e−

∑n−1
i=0 pik∆t(1 +O(∆t))

= e−
∫ t
0
pk(·)(1 +O(∆t)).

(21)

Note by the way that identities (20)-(21) does not hold if the graph is a circle (i.e.
K = Z/KZ) since, roughly speaking, node k−1 can become infected by an epidemic
starting from k. Substituting (21) and (20) in (19), we derive the closure identity

P(Snk ∩ Snk−1) = e−
∫ tn
0

pk(s)dsP(S0
k)P(Snk−1)(1 +O(∆t)). (22)

Finally, plugging (22) into (18), one gets

P(Sn+1
k )− P(Snk )

∆t
+ (pnk + qnk )P(Snk )− qnk e−

∫ tn
0

pk(s)dsP(S0
k)P(Snk−1) = O(∆t). (23)

Letting ∆t→ 0 gives the result.

Remark 1. The key element in the proof is the closure identity (22). This identity
holds pointwise whenever a node is only influenced by a single node. Therefore, even
if we drop the assumption that the graph is 1D and let it be general, relation (16)
still holds pointwise at any node which is only influenced by a single node.

Remark 2. The initial conditions [S0
k] explicitely appear in ODE (16) for [Sk], and

not just in the initial conditions. As mentioned already, the case of deterministic
initial conditions is a special case where [S0

k] ∈ {0, 1}.
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Theorem 4.1 provides a spatial-temporal deterministic description of the stochas-
tic dynamics (15). Once compute the solution [Sk](t) through equation (16), we
can complete the description of the stochastic process, as follows: [Ik] is deduced
from (14), the second-order marginals can be computed using the closure iden-
tity (22), and any higher-order marginal can be computed using the same method-
ology.

We emphasize that equation (16) on [Sk](t) is exact and does not result from
any approximation (such as the mean-field approximation) or from the assumption
that the population is infinite.

4.2. Explicit solutions. In the spatially-homogeneous case, one can obtain ex-
plicit solutions of (16):

Proposition 1 (Spatially-homogeneous Bass solution). Assume the conditions of
Theorem 4.1. If the initial condition [S0

k] ≡ [S0] and the parameters pk(t) ≡
p(t), qk(t) ≡ q(t) do not depend on space k (we allow, however, p and q to depend
on time t), then [Sk](t) = [S](t) does not depend on k, and is given by

[S](t) = [S0]e−
∫ t
0

(p(s)+q(s))ds+[S0]
∫ t
0
q(s)e−

∫ s
0 pds. (24)

Proof. By translation symmetry, [Sk](t) does not depend on k. Hence, equation (16)
reads

[S]′ +
(
p(t) + q(t)

(
1− [S0]e−

∫ t
0
p(s)ds

))
[S] = 0, [S](t = 0) = [S0].

Expression (24) follows from a straightforward integration of the above equation.

If, in addition to the assumptions of Proposition 1, p and q do not depend on t,
then

[S](t) =

[S0]e−(p+q)t+q[S0] 1−e−pt
p , if p > 0,

[S0]e−q(1−[S0])t, if p = 0.
(25)

This expression was already obtained in [19] for p > 0 and [S0] ≡ 1.
Another situation where an explicit solution can be calculated is that of a semi-

infinite line when the boundary node is infected at t = 0 and all other nodes are
initially susceptible:

Proposition 2 (Patient-zero Bass problem). Assume the conditions of Theorem 4.1,
let pk(t) ≡ p and qk(t) ≡ q be independent of k and t, and let the nodes be placed
on the semi-inifinite line K = {0, 1, 2, . . . }, such that

x0
0 = i, x0

k = s, k = 1, 2, . . .

Then the solution [Sk](t) of (17) is given by

[S0](t) ≡ 0, [Sk](t) = e−(p+q)t
k−1∑
l=0

(
q 1−e−pt

p

)l
l!

, k = 1, 2, . . . (26)

In addition, if we denote by NK(t) =
∑K
k=1 1xk(t)=i the total number of infected

nodes among nodes {1, . . . ,K}, then

E[Nn
K ] = K − e−(p+q)t

K∑
l=1

l

(
q 1−e−pt

p

)K−l
(K − l)!

. (27)
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Proof. Expression (26) can be verified by direct substitution in (17). Expres-

sion (27), follows from E[Nn
K ] =

∑K
k=1[Ik](t), (14), (26) and some elementary com-

putations detailed in Appendix A.1

Let us briefly justify the importance of the patient-zero Bass problem considered
in Proposition 2. When the source term p is much smaller than the contagion term
q, the dynamics of the population can be formally described in two time scales:
propagation of clusters through contagion in a fast time-scale, and spontaneous
creation of new seeds in a slow time-scale [19]. The patient-zero Bass problem thus
models the fast time-scale evolution of clusters.

Passing to the limit in (26), we have that

lim
k→+∞

[Sk](t) = e−(p+q)t+q 1−e−pt
p , k = 1, 2, . . . (28)

This limit coincides with the expression for [Sk] in the homogeneous case with
[S0
k] ≡ 1, see (25), since the effect of patient zero vanishes as k → +∞. Note also

that, as K → +∞, the expected fraction of infected nodes is given by, see (27),

lim
K→+∞

E[Nn
K ]

K
= 1− e−(p+q)t+q 1−e−pt

p (29)

which expresses again the fact that the solution of the patient zero problem con-
verges to the homogeneous solution given by (25) as K → +∞.

In Proposition 2, the epidemic is triggered by two distinct mechanisms: firstly, by
contagion from “patient-zero” located at k = 0, secondly, by spontaneous infection
from the source term p. Expression (26) indicates how these two effects combine
nonlinearly. To focus on the effect of the source term, we may remove “patient zero”
and assume that all the individuals on the half-line are initially susceptible. In this
case, it can be shown that the probability [Sk](t) coincides with the probability of a
node to be susceptible on a finite circle of length k. Therefore, it can be computed
explicitly, see [21] for more details. If, on the other hand, we only focus on the effect
of contagion from “patient-zero”, we may discard the source term by letting p→ 0
in (26). This gives the solution of the patient-zero SI problem

[Sk](t) = e−qt
k−1∑
l=0

(qt)
l−1

(l − 1)!
, k = 1, 2, . . . (30)

By (30), for any k ≥ 1 and t > 0, we have on the one hand that Sk(t) > 0,
implying that the epidemics propagates instantaneously from “patient zero” to any
other node. On the other hand, limk→+∞ Sk(t) = 1 for any t > 0 implying that
the propagation occurs at a finite asymptotic speed. In fact, we can show that the
asymptotic speed of propagation is q:

Proposition 3 (Speed of propagation). Assume the conditions of Proposition 2
and assume furthermore that p = 0 (SI patient-zero problem). Denote by k(t) =
sup{k ≥ 0 : xk(t) = i} the location of the propagation front of the epidemic. Then,
for all α ∈ R,

lim
t→+∞

P
(
k(t) ≤ qt+ α

√
t
)

=
1√
2πq

∫ α

−∞
e−

τ2

2q dτ.

Proof. The process k(t) is equivalent to a standard Poisson process with parameter
q. It is then classical that the mean value of k(t) is t. Then, by the central limit
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theorem, we have that k(t)−t√
t

converges in probability when t→ +∞ to a Gaussian

with mean 0 and variance q
√
t, hence the result.

Thus the epidemics propagate through space at an average speed q, such that
the exact location of the front has a variance q

√
t around its mean value. Therefore,

we can make a formal analogy between the propagation of the epidemics and the
propagation of particles whose density u(t, x) is given by the advection-diffusion
equation [40]

∂tu+ q∂xu−
q

2
∂2
xxu = 0.

This equation describes the evolution of a density of particles subject to advection
towards x > 0 at speed q (resulting in propagation at average speed q) and to
diffusion (i.e., each particle follows a Brownian motion) with diffusivity q

2 (resulting
in a variance q for the location of the propagation front).

Finally, we compute an explicit solution for a time-varying source term located
at the boundary of a semi-infinite line:

Proposition 4 (Time-varying point source). Assume that the individuals are placed
on a semi infinite line K = {0, 1, 2, . . . } and that all individuals are initially suscep-
tible, i.e., x0

k = s for k ∈ K. Assume that qk(t) ≡ q > 0 is constant, that pk(t) ≡ 0
for all k ≥ 1, and allow a single time-varying source term p0(t) ≥ 0 at k = 0. Then

[S0](t) = e−
∫ t
0
p0(τ)dτ ,

[Sk](t) = 1−
∫ t

0

(qτ)k−1

(k − 1)!
qe−qτ

(
1− e−

∫ t−τ
0

p0(τ ′)dτ ′
)
dτ, k = 1, 2 . . .

(31)

In particular,

lim
t→+∞

[Sk](t) = e−
∫ +∞
0

p0(τ)dτ , k = 0, 1, . . . (32)

Proof. Under the above assumptions, equation (16) reduces to

[S0]′(t) + p0(t)[S0](t) = 0, S0(0) = 1, (33)

and

[Sk]′(t) + q ([Sk](t)− [Sk−1](t)) = 0, Sk(0) = 1, k = 1, 2 . . . (34)

The expression of [S0](t) in (31) is obtain by a straightforward integration of (33).
Using (14), equation (34) yields

[Ik]′(t) + q ([Ik](t)− [Ik−1](t)) = 0, Ik(0) = 0, k = 1, 2 . . .

Hence,

[Ik](t) = qe−q· ?t [Ik−1](·), e−q· ?t [Ik−1](·) :=

∫ t

0

e−q(t−τ)[Ik−1](τ)dτ. (35)

By induction, we infer that

[Ik](t) = qk e−q· ?t · · · ?t e−q·︸ ︷︷ ︸
k terms

?t[I0](·), (36)

where we have used the associativity of the convolution product. Now,

[I0](t) = 1− [S0](t) = 1− e
∫ t
0
p0(τ)dτ . (37)
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In addition, a straightforward induction shows that

qk e−q· ?t · · · ?t e−q·︸ ︷︷ ︸
k terms

=
(qt)k−1

(k − 1)!
qe−qt. (38)

Plugging (37) and (38) into (36) gives (31).
Let us now prove (32). For a fixed k ∈ {0, 1, . . . }, by the dominated convergence

theorem, we have

lim
t→+∞

∫ t

0

(qτ)k−1

(k − 1)!
qe−qτ

(
1− e−

∫ t−τ
0

p0

)
dτ

=
(

1− e−
∫ +∞
0

p0

)∫ +∞

0

(qτ)k−1

(k − 1)!
qe−qτdτ.

Since ∫ +∞

0

(qτ)k−1

(k − 1)!
qe−qτdτ = 1,

this concludes the proof of (32).

The limit (32) does not depend on k and, in particular, coincides with the limit

as t → +∞ of [S0](t) = e−
∫ t
0
p0 . This limit can be obtained formally by passing

to the limit in (16). Note also that, for a fixed t ≥ 0, as k → +∞ in (31), we
get that [Sk](t) → 1. This expresses the fact that, with probability 1, the source
term located at k = 0 does not influence far-away nodes in finite time, since the
epidemics propagates at a finite speed (see Proposition 3).

Note that by formally putting p0(t) := Kδt=0 in (31), where K > 0 and δt=0

denotes the Dirac mass centered at 0, then we recover the formula (26) with p = 0
for the patient-zero problem as K → +∞.

5. SIR-Bass model on 1D one-sided lattices. We now consider the more gen-
eral 1D one-sided case, when recovery is not neglected, see (12).

5.1. Deterministic desciption. We begin by deriving from the discrete stochastic
model (12) a system of differential equations for [Sk](t):

Theorem 5.1. Assume that the nodes are placed on a 1D one-sided lattice, see (10),
that the stochastic dynamics are governed by (12), and that the initial conditions
are stochastic and uncorrelated, see (3). For any k ∈ K, if qk(t) > 0 for all t ≥ 0,
then [Sk](t) satisfies

[Sk]′ +
(
pk + qk + rk

)
[Sk]

= qke
−

∫ t
0
pk [S0

k]

(
[Sk−1] + [R0

k−1] +
rk(0)

qk(0)
+

∫ t

0

(
rk
qk

)′
(s)

[Sk](s)

[S0
k]

ds

)
,

[Sk](0) = [S0
k],

(39a)
and [Rk] satisfies

[Rk]′(t)− rk
(
1− [Sk]− [Rk]

)
= 0, [Rk](0) = [R0

k]. (39b)

Proof. In the following calculations, we frequently make use of the identities

P(A ∩B) = P(A|B)P(B), P(A1 ∩A2|B) = P(A1|A2 ∩B)P(A2|B),

P(A1 ∩A2|B)P(B) = P(A1|A2 ∩B)P(A2 ∩B).
(40)
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We have that

P (Snk )− P
(
Sn+1
k

)
= P

(
In+1
k ∩ Snk

)
= P

(
In+1
k ∩ Snk ∩ Snk−1

)
+ P

(
In+1
k ∩ Snk ∩ Ink−1

)
+ P

(
In+1
k ∩ Snk ∩Rnk−1

)
= P

(
In+1
k

∣∣Snk ∩ Snk−1

)︸ ︷︷ ︸
=pnk∆t

P
(
Snk ∩ Snk−1

)
+ P

(
In+1
k

∣∣Snk ∩ Ink−1

)︸ ︷︷ ︸
=(pnk+qnk )∆t

P
(
Snk ∩ Ink−1

)
+ P

(
In+1
k

∣∣Snk ∩Rnk−1

)︸ ︷︷ ︸
=pnk∆t

P
(
Snk ∩Rnk−1

)
.

and so
P
(
Sn+1
k

)
− P (Snk )

∆t
+ pnkP(Snk ) + qnkP

(
Snk ∩ Ink−1

)
= 0. (41)

Using the closure relation (22), we deduce that

P
(
Snk ∩ Ink−1

)
= P(Snk )− P

(
Snk ∩ Snk−1

)
− P

(
Snk ∩Rnk−1

)
= P(Snk )− e−

∫ tn
0

pk(s)dsP(S0
k)P(Snk−1)(1 +O(∆t))− P

(
Snk ∩Rnk−1

)
.

(42)

Substituting this expression into (41), we deduce

P
(
Sn+1
k

)
− P (Snk )

∆t
+ (pnk + qnk )P(Snk )

− qnk e−
∫ tn
0

pk(s)dsP(S0
k)P(Snk−1)− qnkP

(
Snk ∩Rnk−1

)
= O(∆t).

(43)

Letting ∆t→ 0, we finally deduce

d[Sk]

dt
(t) + (pk(t) + qk(t))[Sk]− qke−

∫ t
0
pk [S0

k][Sk−1]− qk[Sk ∩Rk−1](t) = 0. (44)

Next, let us derive an equation for [Sk ∩Rk−1]:

P
(
Sn+1
k ∩Rn+1

k−1

)
− P

(
Snk ∩Rnk−1

)
= P

(
Sn+1
k ∩Rn+1

k−1

)
− P

(
Sn+1
k ∩Rnk−1

)
+ P

(
Sn+1
k ∩Rnk−1

)
− P

(
Snk ∩Rnk−1

)
= P

(
Sn+1
k ∩ Ink−1 ∩Rn+1

k−1

)
− P

(
In+1
k ∩ Snk ∩Rnk−1

)
= P

(
Rn+1
k−1

∣∣Sn+1
k ∩ Ink−1

)︸ ︷︷ ︸
=rnk∆t

P
(
Sn+1
k ∩ Ink−1

)
− P

(
In+1
k

∣∣Snk ∩Rnk−1

)︸ ︷︷ ︸
=pnk∆t

P
(
Snk ∩Rnk−1

)
= rnk∆tP

(
Sn+1
k ∩ Ink−1

)
− pnk∆tP

(
Snk ∩Rnk−1

)
= rnk∆tP

(
Snk ∩ Ink−1

)
− pnk∆tP

(
Snk ∩Rnk−1

)
+ rnk∆t

[
P
(
Sn+1
k ∩ Ink−1

)
− P

(
Snk ∩ Ink−1

)]
= rnk∆t

[
P (Snk )− P

(
Snk ∩ Snk−1

)
− P

(
Snk ∩Rnk−1

)]
− pnk∆tP

(
Snk ∩Rnk−1

)
− rnk∆tP

(
In+1
k ∩ Snk ∩ Ink−1

)
Using (22) and the relation

P
(
Sn+1
k ∩ Snk ∩ Ink−1

)
= P

(
In+1
k ∩ Snk ∩ Ink−1

)
= P

(
In+1
k |Snk ∩ Ink−1

)
P
(
Snk ∩ Ink−1

)
= (pnk + qnk )∆tP

(
Snk ∩ Ink−1

)
,
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we deduce that

P
(
Sn+1
k ∩Rn+1

k−1

)
− P

(
Snk ∩Rnk−1

)
∆t

− rnkP (Snk ) + rnk (1− pnk∆t)
n P(S0

k)P
(
Snk−1

)
+ (pnk + rnk )P

(
Snk ∩Rnk−1

)
= −rnk (pnk + qnk )∆tP

(
Snk ∩ Ink−1

)
.

(45)
Letting ∆t→ 0, we deduce

d[Sk ∩Rk−1]

dt
(t)− rk(t)[Sk](t) + rke

−
∫ t
0
p(s)ds[S0

k][Sk−1] + (pk + rk)[Sk ∩Rk−1] = 0.

(46)
At this stage, equations (44) and (46) form an autonomous system of ODEs

governing the evolution of the family of probabilities {[Sk], [Sk ∩ Rk−1]}k∈K. This
system can actually be reduced to an autonomous system involving only the prob-
abilities {[Sk]}k∈K. Let us set

wk(t) :=

(
rk(t)

qk(t)
[Sk](t) + [Sk ∩Rk−1](t)

)
e
∫ t
0
pk .

Using equations (44) and (46) satisfied by [Sk] and [Sk ∩ Rk−1], we find that wk
satisfies satisfies

w′k(t) =

(
rk
qk

)′
(t)[Sk](t).

Therefore,

wk(t) = w0
k +

∫ t

0

(
rk
qk

)′
(s)[Sk](s)ds,

and so

[Sk∩Rk−1] = −rk
qk

[Sk]+e−
∫ t
0
pk

(
rk(0)

qk(0)
[S0
k] + [S0

k][R0
k−1] +

∫ t

0

(
rk
qk

)′
(s)[Sk](s)ds

)
.

(47)
Substituting the above expression in (43), we find (39a).

To derive equation (39b) for [Rk](t), we note that

P
(
Rn+1
k

)
− P (Rnk ) = P

(
Rn+1
k ∩ Ink

)
= P

(
Rn+1
k |Ink

)
P (Ink ) = rnk∆tP (Ink ) .

Therefore,

P
(
Rn+1
k

)
− P (Rnk )

∆t
− rnkP (Ink ) = 0.

Using (1) and letting ∆t→ 0 in the above equality gives (39b).

Remark 3. Equations (39a) form a system of integrodifferential equation that only
involves the probabilities {[Sk](t)}t≥0,k∈K}. If the ratio rk

qk
does not depend on t, it

boils down to the system of ODEs

[Sk]′+
(
pk+qk+rk

)
[Sk] = e−

∫ t
0
pk [S0

k]
(
qk[Sk−1] + qk[R0

k−1] + rk
)
, [Sk](0) = [S0

k].
(48)

An apparently different system of ODEs for [Sk] and [Rk] was derived in [17] for
the case of the deterministic initial conditions [S0

k] ≡ 1. In that system, however,
the equation for [Sk] was not decoupled from that for [Rk].

Theorem 5.1 gives a complete deterministic description of the stochastic process,
since once [Sk] and [Rk] are computed through equations (39a)-(39b), [Ik] is deduced
from (1).
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5.2. Explicit solutions. We can solve equations (39a)-(39b) explicitely in the ho-
mogeneous case.

Proposition 5 (Spatially homogeneous solution). Assume the conditions of The-
orem 5.1, and assume further that the initial conditions [S0

k] ≡ [S0] do not depend
on the space variable k and that the parameters pk(t) ≡ p, qk(t) = q > 0 and rk(t)
do not depend on the time variable t nor the space variable k. Then the solutions
[Sk] = [S] and [Rk] = [R] of (39a)-(39b) do not depend on k, and are given by

[S](t) = [S0]e−(p+q+r)t+[S0]q 1−e−pt
p

(
1 +

(
r + q[R0]

) ∫ t

0

e(q+r)τ−q[S0] 1−e−pτ
p dτ

)
,

(49)

[R](t) = 1− (1− [R0])e−rt − re−rt
∫ t

0

erτ [S](τ)dτ. (50)

Proof. By translation symmetry, [Sk] and [Rk] do not depend on k. The result
follows from a straighforward integration of equations (39a)-(39b).

Remark 4. Expression (49) was already obtained in [18, Lemma 4.2] for [S0] ≡ 1
and [R0] ≡ 0.

We can also explicitely solve the case of a time-dependent source term located
at k = 0.

Proposition 6 (SIR-Bass time-varying point source). Assume the conditions of The-
orem 5.1, that the individuals are placed on a semi infinite line K = {0, 1, 2, . . . },
that qk(t) ≡ q > 0 is constant, that pk(t) ≡ 0 for all k > 0, and allow a source term
p0(t) ≥ 0 at k = 0. Then

[S0](t) = e−
∫ t
0
p0 ,

[Sk](t) = 1−
∫ t

0

(qτ)k−1

(k − 1)!
qe−(q+r)τ

(
1− e−

∫ t−τ
0

p0

)
dτ, k = 1, 2 . . .

(51)

In particular,

lim
t→+∞

[Sk](t) = 1−
(

q

q + r

)k (
1− e−

∫ +∞
0

p0

)
, k = 0, 1, 2, . . . (52)

Proof. Under our assumptions, equation (39a) reduces to

[S0]′(t) + p0(t)[S0](t) = 0, [S0](0) = 1,

and

[Sk]′(t)+q ([Sk](t)− [Sk−1](t))+r ([Sk](t)− 1) = 0, [Sk](0) = 0, k = 1, 2 . . .

Therefore, [S0](t) = e−
∫ t
0
p0 and it can be verified by direct substitution that the

solution for k ≥ 1 is given by

[Sk](t) = e−(q+r)t + e−(q+r)· ?t (r + q[Sk−1](·)) , (53)

where

f(·) ?t g(·) :=

∫ t

0

f(t− τ)g(τ)dτ.

Note also that the constant 1 is a fixed point of the recursion relationship (53),
namely,

1 = e−(q+r)t + e−(q+r)· ?t (r + q) ,
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Therefore, for all k > 0,

[Sk](t)− 1 = qe−(q+r)· ?t ([Sk−1](·)− 1) .

By induction, we infer

[Sk](t) = 1 + qk e−(q+r)· ?t · · · ?t e−(q+r)·︸ ︷︷ ︸
k terms

?t ([S0](·)− 1) ,

where we have used the associativity of the convolution product. A straightforward
induction shows that

qk e−(q+r)· ?t · · · ?t e−(q+r)·︸ ︷︷ ︸
k terms

=
(qt)k−1

(k − 1)!
qe−(q+r)t.

Therefore

[Sk](t) = 1 +

(
τ 7→ (qτ)k−1

(k − 1)!
qe−(q+r)τ

)
?t ([S0](·)− 1) .

Using [S0](t) = e−
∫ t
0
p0 , we deduce that

[Sk](t) = 1 +

(
τ 7→ (qτ)k−1

(k − 1)!
qe−(q+r)τ

)
?t

(
τ 7→ e−

∫ τ
0
p0 − 1

)
.

which proves (51).
Let us now prove (52). For a fixed k ∈ {0, 1, . . . }, by the dominated convergence

theorem,

lim
t→+∞

∫ t

0

(qτ)k−1

(k − 1)!
qe−(q+r)τ

(
1− e−

∫ t−τ
0

p0

)
dτ

=
(

1− e−
∫ +∞
0

p0

)∫ +∞

0

(qτ)k−1

(k − 1)!
qe−(q+r)τdτ.

Using the relation ∫ +∞

0

(qτ)k−1

(k − 1)!
qe−(q+r)τdτ =

(
q

q + r

)k
completes the proof of (52).

Thus, the limit (52) depends on space k if and only if r > 0. Note also that, for
a fixed t ≥ 0, as k → +∞ in (51), we get that [Sk](t)→ 1. This expresses again the
fact that a source term located at k = 0 cannot influence far nodes in finite time.

From (52), we observe that

1− lim
t→+∞

[Sk+1](t)

1− lim
t→+∞

[Sk](t)
=

q

q + r
. (54)

This expression is actually equal to the probability that node k + 1 will eventually
become infected knowing that node k has been infected.
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5.3. SIR model on 1D one-sided lattices. When pnk ≡ 0, i.e., when there are no
source terms, the model (12) reduces to the SIR model on a 1D one-sided lattice.
Assuming that the parameters and initial conditions are homogeneous (they do not

depend on time nor space), if we let p → 0 in (49)-(50), then 1−e−pt
p → t, and so

we obtain

[S](t) =
[S0]

r + q(1− [S0])

(
r + q[R0] + q[I0]e−(r+q(1−[S0]))t

)
,

and

[R](t) = 1− [S0]
r + q[R0]

r + q(1− [S0])
− [I0]

1− [S0]
e−rt

+
r[S0][I0]

r + q(1− [S0])(1− [S0])
e−(r+q(1−[S0]))t.

Therefore,

[S∞] := lim
t→+∞

[S](t) = [S0]
r + q[R0]

r + q(1− [S0])
, (55)

and

[R∞] := lim
t→+∞

[R](t) = 1− [S0]
r + q[R0]

r + q(1− [S0])
= 1− [S∞],

and so, by (1), we deduce that [I∞] := lim
t→+∞

[I](t) = 0.

The SIR model on a 1D one-sided lattice (12) satisfies a threshold phenomenon
for the initial outbreak of an epidemic, namely, an initially small number of infected
(S0 ≈ 1, 0 < I0 � 1, R0 = 0) triggers an epidemic if and only if

q − r > 0. (56)

Indeed, under the same conditions as in Proposition 5, if we further assume that
p = 0 and [R0] = 0, using (1), (39a) and (39b), we find that [I] satisfies

[I]′ −
(
r + q(1− [S0])

)
(1− [I]) + r[S0] + r[I] = 0,

i.e.,

[I]′ − (r + q)[I0] +
(
2r + q[I0]

)
[I] = 0.

If we linearize this equation around 0 < [I] ≈ [I0]� 1, we find that [I] increases in
small time if and only if (56) holds.

Let us now solve explicitely the “patient-zero” problem for the SIR model:

Proposition 7 (Patient-zero SIR problem). Assume that pnk ≡ 0, qnk ≡ q and
rnk ≡ r in (12), that the nodes are placed on a semi-inifinite line K = {0, 1, 2, . . . }
and that, initially,

x0
k=0 = i, x0

k = s, k = 1, 2, . . . (57)

Then, the solution of (39a) is given by

[S0](t) ≡ 0,

[Sk](t) = 1−
(

q

q + r

)k(
1− e−(q+r)t

k−1∑
l=0

((q + r)t)
l

l!

)
, k = 1, 2, . . .

(58)
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If we denote by NK(t) =
∑K
k=1 1xk(t)=s the total number of susceptibles on a

finite line of length K + 1 > 0, then

E[Nn
K ] = K− q

r

(
1−

(
q

q + r

)K)
− q + r

r
e−(q+r)t

K∑
l=1

(qt)
K−l

(K − l)!

(
1−

(
q

q + r

)l+1
)
.

(59)

Proof. See Appendix A.2.

We see from (58) that limk→+∞[Sk(t)] = 1, i.e., that the effect of patient-zero
vanishes as we move far away from k = 0.

It is instructive to compare the SIR model on a 1D-one sided lattice to the
classical aggregate SIR model (6). Since (6) corresponds to a complete graph
whereas (12) corresponds to a structured sparse graph, this comparison reveals the
effect of the network structure on the dynamics.

• First, we emphasize that equation (39a) for [Sk] does not include [Ik] and
[Rk], or higher-order marginals such as [Sk ∩ Sk−1]. This property is unique
to 1D one-sided graphs. Indeed, for the aggregate SIR model (6), it is not
possible to derive an equation on S which does not involve I and R.

Let us mention that the system (4), and therefore also (6) obtained from (4)

by taking p = 0, can also be reduced to a single equation on u(t) :=
∫ t

0
I.

Indeed, integrating the equation for S in (4), we obtain S(t) = S0e−pt−q
∫ t
0
I .

Injecting this expression into the equation for I in (4), integrating the equation
on (0, t), we obtain

u′(t) = I0 + S0
(

1− e−pt−qu(t)
)
− ru(t).

• The aggregate SIR model satisfies the same threshold condition (56) for the
outbreak of an epidemic from a small initial number of infected, see [25].

• When (56) holds, the behavior after the outbreak of an epidemic can be quite
different for the 1D one-sided case (12) and the aggregate model (6). In
particular, a remarkable difference is the dependence of the final state on the
initial conditions. From (55), we observe that

1. [S∞] is an increasing function of [S0]: the more susceptible individuals at
initial time, the more for large times,

2. If 0 < [I0], [R0]� 1 then [S∞] ≈ [S0] ≈ 1.
In contrast, for the aggregate SIR model (6), we have that

1. [S∞] is a nonincreasing function [S0], see [25],
2. [I0], [R0]� 1 does not imply that [S∞] ≈ [S0] ≈ 1.

6. SIR-Bass model on 1D two-sided lattices. We now allow both the left
and the right neighbors to spread the infection. We denote byqL,nk := qk−1,k and

qR,nk := qk+1,k the influence of the left and right neighbors on node k, respectively,
and we assume that

qik = 0 if |i− k| 6= 1. (60)

Hence, (2a) becomes

P
(
In+1
k

∣∣Xn
)

=


∆t
(
pnk + qL,nk 1Ink−1

+ qR,nk 1Ink+1

)
, if xnk = s,

1− rnk∆t, if xnk = i,

0, if xnk = r,

(61a)
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The transition rates (2b) from i to r remain unchanged, that is:

P
(
Rn+1
k

∣∣Xn
)

=


0, if xnk = s,

rnk∆t, if xnk = i,

1, if xnk = r,

(61b)

6.1. Deterministic description.

Theorem 6.1. Assume that the individuals are placed on a 1D two-sided lattice K
(which is either a finite, semi-infinite, or infinite line), see (60), that the dynamics
are governed by (61), and that the initial conditions are uncorrelated, see (3). Let
pnk , qnk and rnk converge as ∆t→ 0 to pk(t), qk(t) and rk(t). Then for all k ∈ K,

[Sk](t) =


[SLk ](t)[SRk ](t)

[S0
k]e−

∫ t
0
pk(·)

, if [S0
k] > 0,

0, if [S0
k] = 0,

(62a)

where [SRk ](t) (resp. [SLk ](t)) is the probability that node k is susceptible by time t

if we discard the influences of the left neighbors by setting qL,nk ≡ 0 in (61a) (resp.

the influences of the right neighbors by setting qR,nk ≡ 0). In addition, [Rk(t)] is
given by

[Rk]′(t)− rk(t)
(
1− [Sk]− [Rk]

)
= 0. (62b)

Proof. Let us first introduce some notations. We denote by [Sk|qLk = 0] the proba-

bility of the event S̃k(t) := {x̃k(t) = s} where x̃k is the process defined identically
as xk but in which we put qLk ≡ 0 in (61a). We use the name notation if Sk
is replaced by any event or intersection of events, and if qL,nk = 0 is replaced by
other conditions on the parameters. For example, with these notations, we have[
SRk
]

=
[
Sk|(qLk )k∈K ≡ 0

]
.

First, notice that

[Sk−1 ∩ Sk] =
[
Sk−1 ∩ Sk|qRk−1 = qLk = 0

]
=
[
Sk−1|qRk−1 = qLk = 0

] [
Sk|qRk−1 = qLk = 0

]
=
[
Sk−1|qRk−1 = 0

] [
Sk|qLk = 0

]
=
[
Sk−1|(qRk )k∈K ≡ 0

] [
Sk|(qLk )k∈K ≡ 0

]
.

We deduce that
[Sk−1 ∩ Sk] =

[
SLk−1

] [
SRk
]
. (63)

Similarily, we have

[Sk−1 ∩ Sk ∩ Sk+1] =
[
Sk−1 ∩ Sk ∩ Sk+1|qRk−1 = qLk = qRk = qLk+1 = 0

]
=
[
Sk−1|qRk−1 = 0

] [
Sk|qLk = qRk = 0

] [
Sk+1|qLk+1 = 0

]
=
[
Sk−1|(qRk )k∈K ≡ 0

]
[S0
k]e−

∫ t
0
p
[
Sk+1|(qLk )k∈K ≡ 0

]
,

and so
[Sk−1 ∩ Sk ∩ Sk+1] =

[
SLk−1

] [
SRk+1

]
[S0
k]e−

∫ t
0
p. (64)

Relations (63) and (64) can also be proved using the indifference principle of [21].
The last ingredient in our proof is a spatial Markovian property establishing that

the state of nodes k−1 and k+1 are independent if conditioned with respect to Sk.
This is where the assumption on the graph (namely that it is 1D with no cylces)
comes into play.
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Lemma 6.2.
xnk−1 ⊥⊥ xnk+1|Snk . (65)

This standard result is proved separately in a slightly more general form, see
Theorem A.1 in appendix A.3. Theorem 6.2 can also be deduced from the funnel
node theorem [20].

Using Theorem 6.2, we have that

[Sk−1 ∩ Sk ∩ Sk+1] = [Sk−1 ∩ Sk+1|Sk][Sk] = [Sk−1|Sk][Sk+1|Sk][Sk]

=
[Sk−1 ∩ Sk][Sk ∩ Sk+1]

[Sk]
.

(66)

Substituting (63) and (64) in the right and left hand-side of the above equation
yields equation (62a) on [Sk].

Equation (62b) on [Rk] is obtained similarily to equation (39b) in Theorem 5.1.

Remark 5. In the case without recovery, ([Sk])k∈K and ([Sk ∩ Sk−1])k∈K satisfy a
closed system of ODEs. More precisely, under the same conditions as in Theorem 6.1
and if we further assume that there is no recovery (13), then

[Sk]′(t)+
(
pk+qRk +qLk

)
[Sk]−e−

∫ t
0
pk [S0

k]
(
qRk [Sk∩Sk+1]+qLk [Sk∩Sk−1]

)
= 0, (67a)

and

[Sk ∩ Sk−1]′(t) = −(pk + pk−1 + qLk−1 + qRk )[Sk ∩ Sk−1]

+ qRk
[Sk−1 ∩ Sk][Sk ∩ Sk+1]

[Sk]
+ qLk−1

[Sk−2 ∩ Sk−1][Sk−1 ∩ Sk]

[Sk−1]
.

(67b)
To prove this, first recall that from Theorem 5.1 we have

[SRk ]′ +
(
pk + qRk + rk

)
[SRk ]− e−

∫ t
0
pk [S0

k]
(
qRk [SRk+1] + qRk [R0

k+1] + rk
)

= 0, (68)

[SLk ]′ +
(
pk + qLk + rk

)
[SLk ]− e−

∫ t
0
pk [S0

k]
(
qLk [SLk−1] + qLk [R0

k−1] + rk
)

= 0 (69)

Then, we derive (67) from the identities (62a) and (63). Note also that

[Sk−1 ∩ Sk][Sk ∩ Sk+1]

[Sk]
= e−

∫ t
0
pk [S0

k][SLk−1][SRk+1]. (70)

6.2. Explicit solutions. Using Theorem 6.1, the results of the previous sections
dealing with the spatially homogeneous case, the patient zero problem, and time-
varying point sources can be adapted to the case of a two-sided 1D lattice. We now
briefly present the obtained explicit formula. For simplicity, we focus on the Bass
model, i.e., we assume that there is no recovery.

Corollary 1 (Spatially-homogeneous two-sided Bass solution). Assume the condi-
tions of Theorem 6.1. If the initial condition [S0

k] ≡ [S0] and the parameters pk(t) ≡
p(t), qRk (t) ≡ qR(t), qLk (t) ≡ qL(t) do not depend on space k, then [Sk](t) = [S](t)
does not depend on k, and is given by

[S](t) = [S0]e−
∫ t
0 (p(s)+qR(s)+qL(s))ds+[S0]

∫ t
0

(qR(s)+qL(s))e−
∫ s
0 pds. (71)

Proof. The result is proved by a direct application of Theorem 6.1 and (24).

Note that expression (71) coincides with (24) in the one-sided case by setting
q(t) := qR(t) + qL(t).

We now turn to the patient-zero problem.
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Corollary 2 (Two-sided patient-zero Bass problem). Assume the conditions of
Theorem 6.1, let rk(t) ≡ 0, pk(t) ≡ p, qRk (t) ≡ qR, qLk (t) ≡ qL, be independent of
k and t, and let the nodes be placed on a semi-inifinite line K = N. Assume that,
initially, we place a patient zero at k = 0, i.e.,

[I0
0 ] = 1, [S0

k] = 1, k = 1, 2, . . .

Then, [Sk] is given by

[Sk](t) = e−(p+qR+qL)t+qR 1−ept
p

k−1∑
l=0

(
qL 1−e−pt

p

)l
l!

, ∀k = 1, 2, . . .

Proof. Note that [SRk ] is given by the solution (24) of the one-sided Bass homo-
geneous problem with q = qR, and that [SLk ] is given by the solution (26) of the
one-sided Bass patient-zero problem with q = qL. We conclude by using (62a).

We now present the solution in the case of a time-varying point source.

Corollary 3 (Time-varying point source). Assume the conditions of Theorem 6.1,
that the individuals are placed on a semi infinite line K = {0, 1, 2, . . . } and that all
individuals are initially susceptible, i.e., x0

k = s for k ∈ K. Assume that qk(t) ≡ q >
0 is constant, that pk(t) ≡ 0 for all k ≥ 1, and allow a single time-varying source
term p0(t) ≥ 0 at k = 0. Then

[Sk](t) ≡ [SLk ](t), (72)

where [SLk ] is given by (31).

Proof. The proof follows from (62a), the fact that [SRk ] ≡ 1 and that [SLk ] is given
by (31).

7. Space-continuous limits. In this section, we discuss the space-continuous
models that can be obtained after a space rescaling in our space-discrete process.
Since we have shown in Theorem 6.1 that 1D two-sided lattices reduce to 1D one-
sided lattices, we focus on the latter case to make the presentation clearer.

Equation (39a) can be rewritten as

[Sk]′ + qke
−

∫ t
0
pk [S0

k] ([Sk]− [Sk−1]) +
(
pk + qk

(
1− e−

∫ t
0
pk [S0

k]
)

+ rk

)
[Sk]

= qke
−

∫ t
0
pk [S0

k]

(
[R0
k−1] +

rk(0)

qk(0)
+

∫ t

0

(
rk
qk

)′
(s)

[Sk](s)

[S0
k]

ds

)
.

(73)

Since the term [Sk] − [Sk−1] is a discrete spatial derivative, this suggests that we
can derive a space-continuous PDE by a proper space rescaling. To do that, assume
that the individuals are placed on the inifinite line K = Z, fix 0 < ∆x � 1, and
proceed to the space-rescaling

[S](t, x) :=
[
Sk=b x∆x c

]
(t), ∀x ∈ ∆x Z.

Similarily, we define p(t, x) = pk=b x∆x c(t), q(t, x) = qk=b x∆x c(t), r(t, x) = rk=b x∆x c(t),

[S0](x) =
[
S0
k= x

∆x

]
, [R0](x) =

[
R0
k= x

∆x

]
.

The limit of (73) as ∆x→ 0 depends on some additional assumptions on how the
parameters rescale. In the present paper, we shall only discuss the formal passage
to the limit and leave the rigorous proof to future works.
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7.1. Limiting integrodifferential ODE. First, let us make the following assump-
tions:
Rescaling Assumption 1. the parameters pk(t), qk(t), rk(t) and the initial conditions
[S0
k], [R0

k] converge as ∆x → 0 locally uniformly in C1 in time and space to some
smooth functions p(t, x), q(t, x) > 0, r(t, x), [S0(x)], and [R0(x)], respectively.

Under these assumptions, we have that [Sk]− [Sk−1] = O(∆x) and so

[S](t, x)− [S](t, x−∆x) = O(∆x). (74)

Hence, S(t, x; ∆x) converges to the solution of the (integrodifferential) ODE
∂t[S](t, x) +

[
p(t, x) + q(t, x)

(
1− [S0](x)e−

∫ t
0
p(·,x)

)
+ r(t, x)

]
[S]

= q(t, x)e−
∫ t
0
p(·,x)[S0](x)

(
[R0
k−1] +

r(0, x)

q(0, x)
+

∫ t

0

∂t

[
r

q

]
(s, x)

[S](s, x)

[S0](x)
ds

)
,

S(0, x) = [S0(x)].

(75)
In particular, if p, q, and r do not depend on time (but are allowed to depend

on space), we can integrate the above ODE and get the explicit expression

[S](t, x) = [S0](x)e−(p+q+r)t+[S0]q 1−e−pt
p

(
1 + (r + q[R0])

∫ t

0

e(q+r)τ−[S0]q 1−e−pτ
p dτ

)
.

(76)
Note that the solution (76) is equal pointwise to the spatially-uniform solution (49).
Intuitively, this is because under Rescaling Assumptions 1, the spatial heterogeneity
becomes locally uniform as ∆x → 0 and there are infinitely many nodes between
two distinct points x, x′ ∈ R. Therefore, the solution can be computed at each point
as a spatially constant solution.

The solution (76) is thus spatially homogeneous in the short spatial scale O(dx),
but inhomogeneous on the long spatial scale x = O(1). This multiple-scale prop-
erty occurs in many situations, e.g., the slowly-varying amplitude approximation in
optics.

The convergence of the solution of (73) to the solution of the limiting ODE (75)
as ∆x→ 0 under Rescaling Assumptions 1 is illustrated in Figure 1.

Remark 6. Solution (76) can be derived if the initial condition S0, I0, R0 and the
parameters p, q, r are only piecewise smooth. It allows us to include discontinu-
ous coefficients (we can then solve the equation in each of the continuous piece
separately). This may be interesting for several problems:

• The Riemann problem where the initial condition is a step function [S0](x) = 0
when x < 0 and [S0](x) = 1 when x > 0.

• The gap problem, when q(x) and p(x) are spatially compactly supported or
periodic

• The time-control (or “optimal duration campaign” problem) when p and q
are piecewise constant with respect to time and change value at some time
t0 > 0.

7.2. Limiting PDE.. The former rescaling gives a limiting ODE for which space
can be viewed as a parameter since there is no derivative with respect to the variable
x. In other words, there is no spatial coupling in the system as ∆x→ 0, as expressed
in (74). Intuitively, this is because the influence of any node on its right neighbors

propagates at the speed c(t, x) := [S0]qe−
∫ t
0
p∆x, see (73). Thus, c(t, x) → 0 as
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Figure 1. Convergence to the (integrodifferential) ODE limit (75)
under Rescaling Assumptions 1. Snapshot at t = 2 of [Sk(t)] on
a segment k = 0, . . . , b 5

∆xc so that x ∈ (0, 5). Blue solid line
represents the explicit solution (76) of the limiting ODE (75) ;
Green dotted line and orange dashed line represent the solution
[Sk](t) of (73) for ∆x = 0.5 and ∆x = 0.1 respectively. Choice of
parameters and initial conditions : p(x) = 1 − x

5 , q(x) = 5 + x,

r(x) = 2− 2x
5 , [S0](x) = 0.2− x

25 , [R0](x) = 0.2 + 3x
50

∆x → 0 and so the limiting equation is spatially decoupled. Therefore, in order
to get a limiting equation that includes space derivative, one has to rescale q by
a factor of 1/∆x, namely, to assume that q = q̃

∆x for a function q̃ independent
of ∆x (or which converges locally uniformly as ∆x → 0). This way, the term
q ([S](t, x)− [S](t, x−∆x)) is of order 1 and converges to q̃∇x[S] as ∆x→ 0.

If we assume, however, that the contagion coefficient becomes large as the space-
step ∆x vanishes, i.e., that q is of order 1/∆x, we also need to rescale the other
parameters. Indeed, we see from equation (73) that, in order not to get the singular
limit S(t, x) ≡ 0 as ∆x→ 0 and q = O(1/∆x), we need the term 1− [S0]e−pt to be
of order O(∆x) as ∆x→ 0. To fullfill thoses conditions, we make the following

Rescaling Assumption 2. Assume that qk(t) > 0 and that the ratio rk(t)
qk(t) does not

depend on time. Further assume that the parameters and initial conditions scale as

q =
q̃(t, x; ∆x)

∆x
> 0, p = p̃(t, x; ∆x)∆x, r = r̃,

[I0(x)] = [Ĩ0(x; ∆x)]∆x, [R0(x)] = [R̃0(x; ∆x)]∆x,

(77)

where the “tilde functions” are assumed to converge locally uniformly as ∆x→ 0.

Since we assume that r(t,x)
q(t,x) does not depend on time, equation (73) boils down

to

[Sk]′ + qke
−

∫ t
0
pk [S0

k] ([Sk]− [Sk−1]) +
(
pk + qk

(
1− e−

∫ t
0
pk [S0

k]
)

+ rk

)
[Sk]

= e−
∫ t
0
pk [S0

k]
(
qk[R0

k−1] + rk
)
.

(78)
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Figure 2. Convergence towards PDE limit (79) under Rescal-
ing Assumptions 2. Snapshot at t = 2 of [Sk(t)] on a segment
k = 0, . . . , b 10

∆xc, with ∆x > 0, so that x ∈ (0, 10). Blue solid line
represents the solution S(t, x) of the limiting PDE (79) ; Green
dotted line and orange dashed line represent the solution [Sk](t)
of (78) for ∆x = 0.1 and ∆x = 0.01 respectively. Choice of pa-
rameters and initial conditions : p̃(x) = 0.1 + 0.2x

10 , q̃(x) = 1 + x
10 ,

r̃(x) = 0.3 + 0.5x
10 , [Ĩ0](x) = 0.2 + 0.5x

10 , [R̃0](x) = 0.5 − 0.3x
10 . The

parameters p, q, r and initial conditions [S0], [I0], [R0] are then
defined by the rescaling (77).

Under Rescaling Assumptions 2, the terms in (78) have the following limit for any
fixed t ≥ 0 as ∆x→ 0:

[S0] ∼ 1

q[S0]e−
∫ t
0
p
(
[S](t, x)− [S](t, x−∆x)

)
∼ q̃∂x[S](t, x),

p+ q
(
1− e−

∫ t
0
p[S0]

)
+ r ∼ q̃([Ĩ0(x)] + [R̃0(x)] +

∫ t

0

p̃) + r̃,

e−
∫ t
0
p[S0]

(
q[R0] + r

)
∼ q̃[R̃0] + r̃,

and so the limiting equation satisfied by [S(t, x)] is
∂t[S](t, x) + q̃(t, x)∂x[S]

+

[
q̃

(
[Ĩ0](x) + [R̃0](x) +

∫ t

0

p̃(t, x)

)
+ r̃(t, x)

]
[S] = q̃[R̃0] + r̃,

[S](0, x) = 1.

(79)

The convergence of the solution of (78) to the solution of the limiting PDE (79)
as ∆x→ 0 under Rescaling Assumptions 2 is illustrated in Figure 2. The PDE (79)
is solved numerically using a standard explicit finite-difference Euler scheme.

Equation (79) can be solved using the method of the caracteristics. For example,

assuming for simplicity that there is no recovery (i.e., [R̃0] ≡ r̃ ≡ 0), no source term
(i.e., p ≡ 0) and that q̃(t, x) ≡ q̃ is contant, the solution reads

S(t, x) = e−
∫ x
x−q̃t[Ĩ

0](s)ds. (80)
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7.3. Discussion. The two space-continuous models proposed above are obtained
by different rescalings, each of which corresponding to a different modeling situation:

• The (integrodifferential) ODE limit (75) discussed in Section 7.1 corresponds
to the case where the contagion between two consecutive nodes is driven by
their discrete distance on the graph rather than by their metric distance on
the line. In this case, the propagation of the epidemic propagates at finite
speed q on the graph. When the rescaling factor ∆x goes to 0, any interval
on the real line contains infinitely many nodes, therefore the epidemics do not
propagate on the line in finite time. This explains why the obtained limiting
(integrodifferential) ODE (75) is spatially decoupled. The (integrodifferential)
ODE limit (75) is relevant from the modeling point of view when the contagion
phenomenon occurs at a small space-scale.

• In contrast, the PDE limit (79) obtained in Section 7.2 corresponds to a conta-
gion phenomenon that is driven by the metric distance between nodes rather
than on their discrete distance on the graph. In this case, the propagation
of the epidemic occurs at a finite speed q̃ on the line, as expressed by the
explicit form of the solution in (80). It is then natural to consider the param-
eter p and initial conditions [I0] and [R0] as space-densities, as suggested by
the Rescaling Assumptions (77). The PDE limit (79) has the advantage to
qualitatively reproduce the spatial propagation at finite speed occurring in the
discrete model (73). This PDE rescaling is also relevant when the contagion
rate outweighs the source term (i.e., p� q).

Acknowledgments. The authors are deeply thankful to Professor Steven Schochet
and Professor Eitan Tadmor for useful discussions.

8. Final remarks. In the present paper, we establish an exact deterministic de-
scription of stochastic SIR-Bass epidemics on 1D lattices by showing that the prob-
ability of infection at a given point in space and time can be obtained as the solution
of a deterministic ODE system on the lattice. Our framework allows any type of
heterogeneity on the parameters and initial conditions. In addition, our results pre-
cisely describe the spatio-temporal dynamics at a local scale, which is still a major
challenge in epidemiology.

Our results focus on 1D lattices (i.e., finite, semi-infinite, and infinite lines) where
the infection only occurs from a node to its direct neighbors. This is the first step
towards more realistic contact networks, such as 2D lattices, scale-free networks,
small-world networks, as well as other types of networks that are relevant from the
application point of view in the context of epidemiology or marketing. Most likely,
an exact deterministic description such as the one obtained in this paper cannot
be obtained for 2D lattices or other contact networks2. We believe however that
the analytical tools introduced in the present paper will be useful for further anal-
ysis of epidemiological models in complex networks under the pair-approximation
assumption [26].
Acknowledgement. The authors are deeply thankful to Professor Steven Schochet
and Professor Eitan Tadmor for useful discussions.

2When the underlying undirected graph contain loops, such as in nD lattices for n ≥ 2, it
is not possible even for the Bass model to find a finite system of equations on the marginals as

in Theorem 4.1, see [38].
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tution in (17). To show (27), we first notice that E[Nn
K ] =

∑K
k=1[Ik](t). Using

[Ik](t) = 1− [Sk](t) and expression (26), we compute

E[Nn
K ] =

K∑
k=1

1− e−(p+q)t
k−1∑
l=0

(
q 1−e−pt

p

)l
l!
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= K − e−(p+q)t

K∑
k=1

k−1∑
l=0

(
q 1−e−pt

p

)l
l!

= K − e−(p+q)t
K−1∑
l=0

K∑
k=l+1

(
q 1−e−pt

p

)l
l!

= K − e−(p+q)t
K−1∑
l=0

(K − l)

(
q 1−e−pt

p

)l
l!

.

We obtain (27) from the change of variable l′ = K − l in the above expression.
To show (29), note that above expression gives

E[Nn
K ]

K
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+
1

K
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l

(
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p

)l
l!
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Then, we conclude that, as K → +∞,

K−1∑
l=0

(
q 1−e−pt

p

)l
l!

∼ eq
1−e−pt

p ,

and that

1

K

K−1∑
l=0

l

(
q 1−e−pt

p

)l
l!

=
q 1−e−pt

p

K

K−1∑
l=1

(
q 1−e−pt

p

)l−1

(l − 1)!︸ ︷︷ ︸
=O(1)

→ 0.

A.2. Proof of Proposition 7. A straightforward substitution shows that expres-
sion (58) solves equation (39a) and satisfies the initial conditions (57).

To prove (59), first note that E[Nn
K ] =

∑K
k=1[Sk(t)], and so, using (58), we find

E[Nn
K ]

=

K∑
k=1

(
1−

(
q

q + r

)k(
1− e−(q+r)t

k−1∑
l=0

((q + r)t)
l

l!

))

= K − q

q + r

1−
(

q
q+r

)K
1− q

q+r

− e−(q+r)t
K∑
k=1

k−1∑
l=0

(
q

q + r

)k
((q + r)t)

l

l!

= K − q

r

(
1−

(
q

q + r

)K)
− e−(q+r)t

K−1∑
l=0

((q + r)t)
l

l!

(
q

q + r

)l 1−
(

q
q+r

)K−L+1

1− q
q+r

.

Then, we get (59) from a change of variable l′ = K − l in the above expression.

A.3. Spatial Markovian property - proof of Theorem 6.2. The proof of The-
orem 6.1 relies on the spatial Markovian property stated in Theorem A.1. This
section is devoted to the proof of this result. For the sake of generality, we actually
prove the following more general statement.

Lemma A.1. Assume that the individuals are placed on a 1D two-sided lattice
(see (60)) and that the initial conditions are uncorrelated, see (3).

For any integer k ∈ Z, denote by Xn
k− := (xnl )l<k and Xn

k+ := (xnl )l>k the left
and right neighbors of k. We have that

xnk−1 ⊥⊥ xnk+1|(xmk )0≤m<n, ∀k ∈ Z, (81)

meaning that the state of the left and right neighbors of k are independent under the
conditioning with respect to the state of k for all preceeding times. In particular,

xnk−1 ⊥⊥ xnk+1|Snk . (82)

Proof. Let (x̃nk−1, x̃
n
k+1) ∈ {s, i, r}2 be a possible realization of (xnk−1, x

n
k+1), and

let us denote by Y n− :=
{
xnk−1 = x̃nk−1

}
and Y n+ :=

{
xnk+1 = x̃nk+1

}
the events that

xnk+1 and xnk−1 equal this realization respectively. For clarity, we also dentote by
Xn
k := (xmk )0≤m<n.
Let us prove by induction on n ≥ 0 that

P
(
Y n− ∩ Y n+ |Xn

k

)
= P

(
Y n− |Xn

k

)
P
(
Y n+ |Xn

k

)
. (83)
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By assumption on the initial conditions, this property holds for n = 0. Assume
that the above property holds for some n ≥ 0. Then, conditionning with respect to
Y n− ∩ Y n+ and using (40), we have

P
(
Y n+1
− ∩ Y n+1

+ |Xn+1
k

)
= P

(
Y n+1
− ∩ Y n+1

+ |Xn+1
k , Y n− ∩ Y n+

)
P
(
Y n− ∩ Y n+ |Xn+1

k

)
(84)

From the assumption that the (xn+1
k )k∈K are all independent if we condition by

(xnk )k∈K, we deduce

P
(
Y n+1
− ∩ Y n+1

+ |Xn+1
k , Y n− ∩ Y n+

)
= P

(
Y n+1
− |Xn+1

k , Y n− ∩ Y n+
)
P
(
Y n+1

+ |Xn+1
k , Y n− ∩ Y n+

)
.

Moreover, from the assumption that K is a 1D two-side lattice, we further deduce
that

P
(
Y n+1
− ∩ Y n+1

+ |Xn+1
k , Y n− ∩ Y n+

)
= P

(
Y n+1
− |Xn+1

k , Y n−
)
P
(
Y n+1

+ |Xn+1
k , Y n+

)
.
(85)

Besides, the induction assumption (83) implies that

P
(
Y n− ∩ Y n+ |Xn+1

k

)
= P

(
Y n− |Xn+1

k

)
P
(
Y n+ |Xn+1

k

)
. (86)

Injecting (85) and (86) into (84), we derive

P
(
Y n+1
− ∩ Y n+1

+ |Xn+1
k

)
= P

(
Y n+1
− |Xn+1

k , Y n−
)
P
(
Y n− |Xn+1

k

)
P
(
Y n+1

+ |Xn+1
k , Y n+

)
P
(
Y n+ |Xn+1

k

)
= P

(
Y n+1
− |Xn+1

k

)
P
(
Y n+1

+ |Xn+1
k

)
,

which proves that (83) holds at the rank n+ 1.
We have thus proved that (83) holds for all n ≥ 0, from which we immediately

deduce (81).
Property (82) is deduced as a particular instance of (81).

Remark 7. In constrast with Theorem A.1, we have that

xnk−1 6⊥⊥ xnk+1|Ink .
The reason is that the condition Ink only prescribes the state of xnk at time tn and
not the states (xmk )0≤m<n at the preceeding times since it does not indicate at what
time xk becomes infected.
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