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Abstract. The effect of uncertainties and noise on a quantity of interest (model output) is often better described
by its probability density function (PDF) than by its moments. Although density estimation is a
common task, the adequacy of approximation methods (surrogate models) for density estimation has
not been analyzed before in the uncertainty-quantification literature. In this paper, we first show
that standard surrogate models (such as generalized polynomial chaos), which are highly accurate
for moment estimation, might completely fail to approximate the PDF, even for one-dimensional
noise. This is because density estimation requires that the surrogate model accurately approximate
the gradient of the quantity of interest and not just the quantity of interest itself. Hence, we develop
a novel spline-based algorithm for density estimation whose convergence rate in Lq is polynomial in
the sampling resolution. This convergence rate is better than that of standard statistical density
estimation methods (such as histograms and kernel density estimators) at dimensions 1 \leq d \leq 5

2
m,

where m is the spline order. Furthermore, we obtain the convergence rate for density estimation
with any surrogate model that approximates the quantity of interest and its gradient in L\infty . Finally,
we demonstrate our algorithm for problems in nonlinear optics and fluid dynamics.
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1. Introduction. Uncertainties and noise are prevalent in mathematical models in all
branches of science. In such cases, the solution of the (otherwise deterministic) model be-
comes random, and so one is interested in computing its statistics. This problem, some-
times known as forward uncertainty propagation, arises in various areas such as biochemistry
[32, 34], fluid dynamics [6, 21, 30, 34], structural engineering [47], hydrology [7], and nonlinear
optics [41].

In many applications, one is interested in computing the probability density function (PDF)
of a certain ``quantity of interest"" (output) of the model [1, 6, 7, 21, 32, 41, 53]. Often, den-
sity estimation is performed using standard uncertainty propagation methods and surrogate
models [22, 47], such as stochastic finite element and generalized polynomial chaos (gPC)
[23, 35, 46, 59], hp-gPC [56], and Wiener--Haar expansion [31], since these methods can
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approximate moments with spectral accuracy [60, 61]. In this paper we show, however, that
methods which are robust and highly accurate for moment approximation are not necessarily
so for density estimation. To the best of our knowledge, this observation has not been made
before in the UQ literature.

Why is it then that robust moment approximation does not imply robust density estima-
tion? This is because the quantity of interest f(\alpha ) and its PDF pf (\alpha ) are explicitly related
by (see Lemma 4.1)

pf (y) =
\sum 

\alpha \in f - 1(y)

c(\alpha )

| f \prime (\alpha )| 
,

where \alpha is the one-dimensional random parameter and c(\alpha )d\alpha is its distribution. This formula
and its multidimensional counterpart (Lemma 5.2) show that even if f is well approximated
by a function g in Lq, the corresponding density pg might not be a good approximation of pf .
Indeed, for pg to approximate pf , then g\prime needs to be close to f \prime , and g\prime (\alpha ) should also vanish
if and only if f \prime (\alpha ) does. These conditions might not be satisfied by some of the above-
mentioned standard UQ methods. In contrast, spline interpolation approximates both the
function and its gradient [3, 25, 40, 44] and does not tend to produce spurious extremal points.
Therefore, we construct a novel algorithm for density estimation in uncertainty propagation
problems using splines as our surrogate model. With cubic splines, our density-estimation
algorithm has a guaranteed convergence rate of at least h3, where h is the maximal sampling
spacing (resolution). More generally, with splines of order m, the convergence rate is at
least hm. These rates are superior to those of the standard kernel density estimators (KDEs)
[51, 58] for noise dimension 1 \leq d \leq 5

2m. Our choice of splines is motivated by the availability
and efficiency of one- and multidimensional spline toolboxes. Nevertheless, other surrogate
models can be used in this algorithm, and indeed this paper lays the theoretical framework for
deriving the convergence rate of such methods (Corollaries 4.8 and 5.5). We show, essentially,
that density estimation convergence can be performed with any surrogate model for which
the L\infty error of both the function and its gradient converge to zero as the spacing resolution h
vanishes. Because we only rely on solving the underlying deterministic model (i.e., our method
is nonintrusive), and because interpolation by spline is a standard numerical procedure, our
proposed method is very easy to implement.

While the focus of this paper is on density estimation, we also consider the problem of
moment estimation using a small sample size. Traditionally, the error bounds of moment
estimation for spectral methods (e.g., gPC) are obtained asymptotically as N , the number of
samples, goes to infinity. In some applications, however, each solution of the deterministic
model is computationally expensive and so the number of samples is limited to, e.g., N<100.
Hence, spectrally convergent methods might fail to attain the desired accuracy due to in-
sufficient sampling resolution, even for one-dimensional noise. In contrast, the spline-based
method approximates moments accurately even when the sample size is small. In addition,
high derivatives and discontinuities have little effect on our method's accuracy, due to the fact
that spline interpolation is predominantly local (see section 4). Another advantage over gPC
is that splines are not limited to a specific choice of sampling points.

The paper is organized as follows. Section 2 introduces the general settings and notation
and presents several density-estimation applications from the forward uncertainty propagationD

ow
nl

oa
de

d 
02

/0
4/

20
 to

 1
60

.3
9.

60
.5

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



© 2020  and American Statistical Association

DENSITY ESTIMATION USING A SURROGATE MODEL 263

literature. Section 3 reviews standard statistical density-estimation methods (histogram,
KDEs) and the gPC method for moment and density estimation. In section 4 we present
our spline-based algorithm for moment and density estimation in the one-dimensional case.
We then prove that the density-estimation error scales as N - m, where N is the number of
samples and m is the order of the splines (Theorem 4.7). Section 5 generalizes our algorithm
to d-dimensional noises using tensor-product splines of order m. This section also contains our
key theoretical result (Theorem 5.3), that the density-estimation error in the d-dimensional
case scales as N - m

d .
In section 7 we compare numerically the moment-estimation and density-estimation accu-

racy of our spline-based method with that of gPC and KDE in one dimension. In addition, in
section 6.4 we show that both gPC and our spline-based method can approximate moments
and the PDF of certain nonsmooth quantities of interest. We conclude this section with two-
and three-dimensional numerical examples (section 6.5). In all cases, the density-estimation
errors are consistent with our error estimates (Theorems 4.7 and 5.3). We use our method to
compute the PDF of the rotation angle of the polarization ellipse in nonlinear optics (section
7) and the PDF of the shock location in the Burgers equation (section 8). In all these cases,
we confirm that the spline-based density estimation converges at least at a cubic rate and
observe that the spline-based moments are more accurate than the gPC ones for small sample
sizes. Section 9 concludes with open questions and future research directions.

2. Settings and computational goals. We consider initial value problems of the form

ut(t,x;\alpha \alpha \alpha ) = Q(u,x;\alpha \alpha \alpha )u , u(t = 0,x;\alpha \alpha \alpha ) = u0(x;\alpha \alpha \alpha ) ,(2.1)

where x \in \BbbR d, Q is a possibly nonlinear differential operator, and \alpha \alpha \alpha \in \Omega \subset \BbbR m is a random
variable which is distributed according to a continuous weight function c(\alpha \alpha \alpha ), the PDF of
the input parameters, such that

\int 
\Omega c(\alpha \alpha \alpha ) d\alpha \alpha \alpha = 1. The randomness of u(t,x;\alpha \alpha \alpha ) is due to the

dependence of Q and/or u0 on \alpha \alpha \alpha .
For a given quantity of interest f(\alpha \alpha \alpha ) := f(u(t,x));\alpha \alpha \alpha )), we may wish to perform the

following:
1. Moment estimation. Compute the mean, variance, or standard deviation of f(\alpha \alpha \alpha ):

\BbbE \alpha \alpha \alpha [f ] :=

\int 
\Omega 
f(\alpha \alpha \alpha ) c(\alpha \alpha \alpha )d\alpha \alpha \alpha , Var [f ] := | \BbbE \alpha \alpha \alpha [f ]| 2  - \BbbE \alpha \alpha \alpha 

\bigl[ 
| f | 2

\bigr] 
, \sigma (f) :=

\sqrt{} 
Var [f ] .

(2.2)

2. Density estimation. Compute the PDF of f(\alpha \alpha \alpha ):

p(y) :=
dP (y)

dy
, y \in \BbbR ,(2.3a)

where P is the cumulative distribution function (CDF),

P (y) := Prob\{ f(\alpha \alpha \alpha ) < y\} .(2.3b)D
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2.1. Applications. Two examples of density estimation in UQ which will be discussed
in this paper are the effect of shot-to-shot variation in nonlinear optics (section 7) and hy-
drodynamical shock formation (section 8). We briefly present two other examples of density
estimation in the UQ literature, for which our method can also be applied:

1. Out-of-equilibrium chemical reactions. Belosouv--Zhabotinsky type systems model
out-of-equilibrium chemical reactions. One concrete system is the Oregonator [18],

dX

dt
= k1Y  - k2XY + k3X  - k4X

2 ,

dY

dt
=  - k1Y  - k2XY + k5Z ,

dZ

dt
= k3X  - k5Z ,

where X, Y , and Z are the concentrations of three different chemical species, and
\{ ki\} 5i=1 are the rate parameters, often estimated empirically [34]. For large val-
ues of t, this system exhibits sustained, temporal oscillations with a frequency F =
F (k1, . . . , k5). To deal with an uncertainty in the parameters k4 and k5, the authors
of [32] computed the moments of X,Y, Z, and the PDF of the oscillations frequency
F . This is an example of (2.1)--(2.3) with \alpha \alpha \alpha = (k4, k5) and f = X, Y , Z, and F .

2. Heat convection. Consider the flow of a fluid in a two-dimensional box x = (x, y) \in 
[x1, x2]\times [y1, y2], which is modeled by the Navier--Stokes like equations

\nabla \cdot u = 0 ,
\partial \theta 

\partial t
+ u \cdot \nabla \theta = \nabla 2\theta ,

\partial u

\partial t
+ u \cdot \nabla u =  - \nabla p+ Pr\nabla 2u+ F (u, \theta ) ,

where u(t,x;\alpha \alpha \alpha ) is the fluid velocity, p(t,x;\alpha \alpha \alpha ) is the pressure, \theta (t,x;\alpha \alpha \alpha ) is the temper-
ature, Pr is the Prandtl number, and F is the buoyant force [21]. The temperature is
a known constant \theta 0 on one side of the box but is random on the other side, i.e.,

\theta (t, x1, y) \equiv \theta 0 , \theta (t, x2, y) = \theta 1(y;\alpha \alpha \alpha ) .

The PDF of the pressure and of the velocity were computed in [53] when \theta 1(y;\alpha ) =
\theta 1(\alpha ) and \alpha is uniformly distributed in [\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}] and in [21] when \theta 1(y;\alpha \alpha \alpha ) is a
Gaussian random process.

3. Review of existing methods. We briefly present the standard methods in the literature
for (2.1)--(2.3).

3.1. Monte Carlo method, the histogram method, and kernel density estimators.
Given N independently and identically distributed (i.i.d.) samples \{ \alpha \alpha \alpha j\} Nj=1, the simplest mo-

ment estimator is the Monte Carlo approximation E\alpha \alpha \alpha [f ] \approx 1
N

\sum N
n=1 f(\alpha \alpha \alpha n). The Monte Carlo

method is intuitive and easy to implement. The main drawback of this method is its slow
convergence rate of O(N - 1/2). In cases where each computation of f(\alpha \alpha \alpha j) is expensive (e.g.,
when it requires to solve numerically (2.1) with \alpha \alpha \alpha = \alpha \alpha \alpha j), this slow convergence rate can make
the Monte Carlo method impractical.D
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Density estimation using N i.i.d. samples of f(\alpha \alpha \alpha ), denoted by \{ fj\} Nj=1, is a fundamental
problem in nonparametric statistics. A widely used method for density estimation is the
histogram method, in which one partitions the range of f(\alpha \alpha \alpha ) into L disjoint bins \{ B\ell \} L\ell =1 and
approximates the PDF p with the histogram estimator

p\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{t}(y) :=
1

N

L\sum 
\ell =1

(\# of samples for which fj \in B\ell ) \cdot 1B\ell 
(y) ,(3.1)

where 1B\ell 
is the characteristic function of bin B\ell [58]. An alternative family of estimators,

unlike the histogram method that can provide a smooth PDF, is KDEs

p\mathrm{k}\mathrm{d}\mathrm{e}(y) :=
1

Nh

N\sum 
j=1

K

\biggl( 
y  - fj

h

\biggr) 
,(3.2)

where h > 0 is the ``window size"" and K is the kernel function (e.g., K(t) = (2\pi ) - 1/2e - t2/2);
see [51, 58]. The L1 error of the KDE method asymptotically scales as N - 2/5 [13].1 As with
the Monte Carlo method, this rate is too slow when each evaluation of fj is computationally
expensive.

3.2. Generalized polynomial chaos. The Monte Carlo method, the histogrammethod, and
KDE are all statistical methods, in the sense that they only rely on the sampled values \{ fj\} Nj=1.

Much more information can be extracted from \{ fj\} Nj=1 if the two following conditions hold:

1. The ``original"" \{ \alpha \alpha \alpha j\} Nj=1 for which f(\alpha \alpha \alpha j) = fj are known.

2. f(\alpha \alpha \alpha ) is smooth.2

These two conditions often hold in the general settings of section 2. In such cases, a powerful
numerical approach, gPC, can be applied [22, 23, 35, 59]. For clarity, we review the gPC
method for a one-dimensional random variable \alpha , i.e., \Omega \subseteq \BbbR .

We define the set of orthogonal polynomials \{ pn(x)\} \infty n=0 with respect to c(\alpha ) by the con-
ditions [48]

Deg(pn) = n ,

\int 
\Omega 
p\ast n(\alpha )pm(\alpha ) c(\alpha )d\alpha = \delta n,m ,(3.3)

where p\ast n denotes the complex conjugation of pm. This family of orthogonal polynomials
constitutes an orthonormal basis of the space of square integrable functions, i.e., for all
f \in L2(\Omega , c),

f(\alpha ) =

\infty \sum 
n=0

\^f(n)pn(\alpha ) , \^f(n) :=

\int 
\Omega 
f(\alpha )pn(\alpha )c(\alpha ) d\alpha , n = 0, 1, . . . .(3.4)

This expansion converges spectrally for the classical families of orthogonal polynomials, e.g.,
the normalized Hermite and Legendre polynomials.3 Specifically, if f is analytic, the truncated
expansion (3.4) has the exponential accuracy

1The mean L2 error (the squared root of the ``MISE"") also asymptotically scales as N - 2
5 [51, 58].

2In section 6.4 we show how our method can be extended to nonsmooth functions.
3That is, if f is in Cr, then \{ \^f(n)\} \leq cn - r, and if f is analytic, then | \^f(n)| \leq ce - \gamma n, for some c, \gamma > 0.D
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\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| f(\alpha ) - 
N - 1\sum 
n=0

\^f(n)pn(\alpha )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\sim Ce - \gamma N , N \gg 1 ,(3.5)

for some constants C, \gamma > 0 [50, 57, 59].
The expansion coefficients \{ \^f(n)\} (see (3.4)) can be approximated using the Gauss quad-

rature formula \BbbE \alpha [g] \approx 
\sum N

j=1 g(\alpha j)wj , where \{ \alpha j\} Nj=1 are the distinct and real roots of pN (\alpha ),

wj :=
\int 
\Omega lj(\alpha ) d\mu (\alpha ) are the weights, and lj(\alpha ) are the Lagrange interpolation polynomials

with respect to \{ \alpha j\} Nj=1 [9], yielding

\^f(n) \approx \^fN (n) :=
N\sum 
j=1

f (\alpha j) pn (\alpha j)wj , n = 0, 1, . . . , N  - 1 .(3.6)

The gPC collocation approximation is defined by

f\mathrm{g}\mathrm{p}\mathrm{c}
N (\alpha ) :=

N - 1\sum 
n=0

\^fN (n)pn(\alpha ) ,(3.7)

where \{ \^fN (n)\} N - 1
n=0 are given by (3.6); see [60].

The spectral accuracy of the gPC approximation in L2 implies a similar accuracy for the
approximation of moments.

Corollary 3.1. Let f be analytic, and let f\mathrm{g}\mathrm{p}\mathrm{c}
N be its gPC collocation approximation of or-

der N ; see (3.7). Then the moments (2.2) of f can be approximated by the respective moments
of f\mathrm{g}\mathrm{p}\mathrm{c}

N with exponential accuracy as N \rightarrow \infty .

Proof. See Appendix A.

For a smooth quantity of interest f , this spectral convergence rate is superior to the Monte
Carlo's 1/

\surd 
N convergence rate, which explains the popularity of the gPC collocation method.

In [41] we used the gPC approximation for moments and density estimation. Because of
its spectral accuracy (Corollary 3.1), the number of sample points that is required for gPC to
achieve a certain precision is considerably smaller than for Monte Carlo. To the best of our
knowledge, however, there is no convergence result for density estimation using gPC which is
analogous to Corollary 3.1.

Algorithm 3.1 can also approximate nonsmooth quantities of interest f(\alpha ), as long as
u(\cdot ;\alpha ) is smooth; see section 7 and [41]. The choice of the histogram method in step 4 is
discussed in section 9.

The evaluation of
\bigl\{ 
f(u\mathrm{g}\mathrm{p}\mathrm{c}N (\cdot , \~\alpha m))

\bigr\} M

m=1
in step 3 is computationally cheap, as it amounts

to a substitution in a polynomial. Therefore, there is essentially no computational cost for
choosing M to be sufficiently high for the histogram method. This algorithm is also nonintru-
sive, in the sense that it only requires direct simulations of the deterministic system (2.1) with
specific \alpha j values (as opposed to, e.g., Galerkin-type methods [12, 31, 61]). Our choice of the
histogram method for density estimation will be explained in section 4.1.

4. Density estimation and spline-based UQ. Despite the prevalence of surrogate models
in numerical methods and of density estimation in UQ applications [1, 6, 7, 21, 32, 41, 53], to
the best of our knowledge, the adequacy of surrogate models for density estimation has not

D
ow

nl
oa

de
d 

02
/0

4/
20

 to
 1

60
.3

9.
60

.5
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



© 2020  and American Statistical Association

DENSITY ESTIMATION USING A SURROGATE MODEL 267

Algorithm 3.1. gPC-based estimation [41].

Let \{ \alpha j , wj\} Nj=1 be the points and weights of the Gaussian quadrature rule of order N that

correspond to the weight function c(\alpha ), and let \{ pn(\alpha )\} \infty n=0 be the respective orthogonal
polynomials.

1: For j = 1, . . . , N , solve (2.1) with \alpha = \alpha j to obtain u (t,x;\alpha j).
2: Approximate

u(t, x;\alpha ) \approx u\mathrm{g}\mathrm{p}\mathrm{c}N (t,x;\alpha ) ,

where

u\mathrm{g}\mathrm{p}\mathrm{c}N (t,x;\alpha ) :=
N - 1\sum 
n=0

\^uN (t,x;n)pn(\alpha )

and

\^uN (u,x;n) =
N\sum 
j=1

pn(\alpha j)u (t,x;\alpha j)wj , n = 0, . . . , N  - 1 .

3: Approximate f(\~\alpha m) \approx f(u\mathrm{g}\mathrm{p}\mathrm{c}N (\cdot , \~\alpha m)) on a sample of M \gg N points \{ \~\alpha m\} Mm=1 which are
i.i.d. according to c(\alpha ).

4: if goal is moment estimation: then
5: Use the trapezoidal integration rule with \{ f(\~\alpha m)\} Mm=1 to approximate \BbbE \alpha [f ].

4

6: else if goal is density estimation: then
7: Use the histogram method (3.1) with \{ f(\~\alpha m)\} Mm=1 to estimate the PDF of f .
8: end if

been addressed in the UQ literature. To study this problem, we first write an explicit relation
between a function f : \Omega \rightarrow \BbbR and the PDF that it induces on \BbbR .

Lemma 4.1. Let f be a real, piecewise monotone, continuously differentiable function
on [a, b], where  - \infty \leq a < b \leq \infty , and let \mu be an absolutely continuous probability mea-
sure on [a, b], i.e., there is c \in L1 ([a, b]) such that d\mu (\alpha ) = c(\alpha )d\alpha . Then

pf (y) =
\sum 

f(\alpha j)=y

c(\alpha j)

| f \prime (\alpha j)| 
,(4.1)

where p(y) is the PDF of f .

Proof. See Appendix C.

Because polynomial approximations (e.g., gPC) tend to be oscillatory, they ``add"" many
artificial extremal points. Hence, by Lemma 4.1, the PDFs that they induce might deviate
considerably from the exact one. To elucidate this point, in Lemma 4.2 we consider a smooth
function f which is approximated by a highly oscillatory function g. In this example, having
an upper bound on \| f  - g\| r for some r \geq 1 does not yield an upper bound on \| pf  - pg\| q,

4Any standard integration technique could work here, provided sufficient smoothness. If f(\alpha ) is smooth,
one can approximate \BbbE \alpha = \^f(0) \approx \^fN (0); see [59].D
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where pf and pg are the PDFs induced by f(\alpha ) and g(\alpha ), respectively, and q \geq 1, because of
the numerous ``artificial"" extremal points of g.

Lemma 4.2. Let \Omega = [0, 1] equipped with the Lebesgue measure. Under the above notation,
for every \epsilon > 0, there exist two functions f and g such that \| f - g\| \infty \leq \epsilon , but \| pf - pg\| \infty \geq 1/2.

Proof. Let f(\alpha ) = \alpha and g(\alpha ) = \alpha + \delta sin((2\delta ) - 1\alpha ). By direct differentiation g\prime (\alpha ) =
1 + 2 - 1 cos((2\delta ) - 1\alpha ) and f \prime (\alpha ) \equiv 1. Since f is monotone, and since g is monotone for
sufficiently small \delta , then by Lemma 4.1 with c(\alpha ) \equiv 1, and so pf (y) = 1/f \prime (f - 1(y)) \equiv 1
and pg(y) = 1/g\prime (g - 1(y)). Specifically, there exists y \in \BbbR such that pg(y) = 1/2, and so
\| pf  - pg\| \infty \geq 1/2, irrespective of \| f  - g\| \infty = \delta , which can be made arbitrarily small.

Remark 4.3. A similar argument also shows that \| f  - g\| r does not control \| pf  - pg\| q for
any 1 \leq q, r \leq \infty .

To propose a surrogate model for which accurate density estimation is guaranteed, we first
note that f\mathrm{g}\mathrm{p}\mathrm{c}

N (\alpha ) is the interpolating polynomial of f of order N  - 1 at the Gauss quadrature

points \{ \alpha j\} Nj=1 [8, 27]. This suggests that other interpolants of f(\alpha ) can be used in Algorithm
3.1. In what follows, we argue that for our computational tasks, splines provide a better way
to approximate f(\alpha ) and its associated PDF.

We recall that splines are piecewise polynomials of degree m, with k < m smooth de-
rivatives. Given an interval \Omega = [\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}] and a grid \alpha \mathrm{m}\mathrm{i}\mathrm{n} = \alpha 1 < \alpha 2 < \cdot \cdot \cdot < \alpha N =
\alpha \mathrm{m}\mathrm{a}\mathrm{x}, the interpolating cubic spline sN (\alpha ) is a C2, piecewise-cubic polynomial that interpo-
lates f(\alpha ) at \{ \alpha j\} Nj=1, endowed with two additional boundary conditions. Three standard

choices are (i) the natural cubic spline, for which d2

d\alpha 2 f
\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (\alpha 1) =

d2

d\alpha 2 f
\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (\alpha N ) = 0, (ii) the

``not-a-knot"" spline, for which d3

d\alpha 3 f
\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N is continuous at \alpha 2 and \alpha N - 1, and (iii) the clamped

spline, for which d
d\alpha f

\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (\alpha j) =

d
d\alpha f(\alpha j) for j = 1, N . Our decision to use splines is motivated

by the following reasons:
1. The error of spline interpolation is guaranteed to be ``small"" for any sample size, in

the following sense.

Theorem 4.4 (see [3, 25]). Let f \in Cm+1 ([\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}]), and let f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N be its ``not-a-knot,""

clamped or natural mth-order spline interpolant. Then

\bigm\| \bigm\| \bigl( f(\alpha ) - f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (\alpha )

\bigr) (j)\bigm\| \bigm\| 
L\infty [\alpha \mathrm{m}\mathrm{i}\mathrm{n},\alpha \mathrm{m}\mathrm{a}\mathrm{x}]

\leq C
(j,m)
\mathrm{s}\mathrm{p}\mathrm{l}

\bigm\| \bigm\| \bigm\| f (m+1)
\bigm\| \bigm\| \bigm\| 
\infty 
hm+1 - j
\mathrm{m}\mathrm{a}\mathrm{x} , j = 0, 1, . . . ,m - 1 ,

(4.2)

where C
(j,m)
\mathrm{s}\mathrm{p}\mathrm{l} > 0 is a universal constant that depends only on the type of boundary condition,

m, and j, and h\mathrm{m}\mathrm{a}\mathrm{x} = max
1<j\leq N

| \alpha j  - \alpha j - 1| .

2. Spline interpolation is predominantly local. For further details, see Appendix B.
Thus, although f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}

N (\alpha ) depends on \{ f(\alpha 1), . . . , f(\alpha N )\} , it predominantly depends on
the few values f(\alpha j) for which \alpha j is adjacent to \alpha . Therefore, large derivatives and

discontinuities of f(\alpha ) may impair the accuracy of f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (\alpha ) only locally.5 This is in

contrast to gPC (and polynomial interpolation in general), where discontinuities and

5For a review of cubic splines that are strictly local, see [4].D
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Algorithm 4.1. Spline-based estimation.

Let \Lambda = \{ \alpha 1, . . . , \alpha N\} be a uniform grid on [\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}].

1: For each \alpha j \in \Lambda , solve (2.1) with \alpha = \alpha j to obtain u (t,x;\alpha j).

2: Approximate u(t, x;\alpha ) \approx u\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}N (t,x;\alpha ), where u\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}N is a cubic spline interpolant on \Lambda .

3: Approximate f(\~\alpha m) \approx f(u\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}N (\cdot , \~\alpha m)) on a sample of M \gg N points \{ \~\alpha m\} Mm=1 which
are i.i.d. according to c(\alpha ).

4: if goal is moment estimation: then
5: Use the trapezoidal integration rule with \{ f(\~\alpha m)\} Mm=1 to approximate \BbbE \alpha [f ].
6: else if goal is density estimation: then
7: Use the histogram method (3.1) with \{ f(\~\alpha m)\} Mm=1 to approximate the PDF of f .
8: end if

large derivatives of f decrease the approximation accuracy across the entire domain.
In addition, splines can be constructed using any choice of sampling points.

In light of these considerations, we propose to replace the gPC interpolant with a spline.

Remark 4.5. See Appendix D for a MATLAB implementation of this algorithm.
Which cubic spline should be used in line 2? If f \prime (\alpha \mathrm{m}\mathrm{i}\mathrm{n}) and f \prime (\alpha \mathrm{m}\mathrm{a}\mathrm{x}) are known, then one

should use the clamped cubic spline (or the natural cubic spline if these derivatives are zero).
When the boundary derivatives are unknown, however, the ``not-a-knot"" interpolating cubic
spline should be used (as indeed was done in this manuscript). See [4] for further discussion.

Algorithm 4.1 is identical to Algorithm 3.1, except for two substantial points:
1. The sampling grid is uniform, rather than the Gauss quadrature grid.6

2. The gPC interpolant u\mathrm{g}\mathrm{p}\mathrm{c}N is replaced by a cubic spline interpolant u\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}N .

Remark 4.6. This method is not to be confused with spline-smoothing, in which one ap-
proximates the PDF p with splines [15, 55]. Thus, Algorithm 4.1 approximates u with a spline,
but the resulting approximation of the PDF p is not a spline.

4.1. Accuracy of Algorithm 4.1 for density estimation. The density estimation error of
Algorithm 4.1 has two components---the error of the spline approximation (line 3) and that
of the histogram method (line 7).7

The accuracy of the histogram method in line 7 depends on the number of bins L and on
the number of samples M at lines 3 and 7. If the number of bins is chosen to be

L\mathrm{o}\mathrm{p}\mathrm{t} = KfM
 - 1

3 , Kf =

\biggl( 
\| f \prime \| 22[max f  - min f ]

6

\biggr) 1
3

,(4.3)

6Algorithm 4.1 can be performed with any choice of grid points. For clarity, we present it only with a
uniform grid.

7In terms of density estimators, this can be explained by the following argument. Denote by p, pN , and \^pN,M

the density of f , fN and the density estimator of Algorithm 3.1 or 4.1, respectively. Then the approximation
error (in any norm) satisfies \| p - \^pN,M\| \leq \| p - pN\| + \| pN  - \^pN,M\| . The second term vanishes as M \rightarrow \infty and
L is given by (4.3), in which case the density estimation error is roughly the bias incurred from approximating
f by fN .D
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the mean squared L2 error (MISE) of the histogram method decays as M - 2
3 [58].8 Because

the computational cost of increasing L and M is negligible, they can be set sufficiently large
so that the accuracy of Algorithm 4.1 mainly depends on the difference between the PDFs of
f and f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}

N , denoted by pf and pfN , respectively. We motivate the choice of the histogram
method to estimate the density by four factors:

1. Implementing the histogram method is straightforward and can be done with a few
lines of code (see Appendix D).

2. The accuracy of the histogram method can be improved and controlled by varying the
number of samples M , with a negligible computational cost.

3. The histogram method can be used even when the quantity of interest f is not smooth.
4. The histogram method can be used for a multidimensional random parameter \alpha \alpha \alpha .

In principle, we could have used the explicit relation (4.1) to compute the PDF. Because this
approach does not have the above advantages, however, the histogram method was chosen.

4.2. Accuracy of spline-based density estimation. In section 4.1 we showed that the
accuracy of density estimation of Algorithms 3.1 and 4.1 is determined by the error of approx-
imating the density with that of the surrogate model, and not by the error of the histogram
method. By Lemma 4.1, if f \prime (\alpha ) is bounded away from zero, then p is smooth. As noted,
however, the gPC polynomial interpolant f\mathrm{g}\mathrm{p}\mathrm{c}

N (\alpha ) tends to be oscillatory, and so it might add
artificial extermal points where d

d\alpha f
\mathrm{g}\mathrm{p}\mathrm{c}
N (\alpha ) = 0; see, e.g., Figure 2(c). At every such point

where d
d\alpha f

\mathrm{g}\mathrm{p}\mathrm{c}
N (\alpha ) = 0, the PDF approximation becomes unbounded, and so a large error in

the PDF estimation occurs. This is seldom the case with the spline interpolant, which due
to its local nature (see Lemma B.2) does not produce numerical oscillations throughout its

domain \Omega . Indeed, the natural cubic spline f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (\alpha ) has the ``minimum curvature"" property,

which implies that it oscillates ``very little"" about the original function [38]. This notion is
made precise by the following result.

Theorem 4.7. Let f \in Cm+1([\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}]) with | f \prime (\alpha )| \geq a > 0, let \alpha be distributed
by c(\alpha )d\alpha , where c \in C1 ([\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}]), and let pf and pfN be the PDFs of f(\alpha ) and of

fN = f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N , its natural, ``not-a-knot,"" or clamped mth order spline interpolant on a uniform

grid of size N . Then, for any 1 \leq q < \infty 

\| pf  - pfN \| q \leq KN - m , N >
m

\sqrt{} 
2C

(1,m)
\mathrm{s}\mathrm{p}\mathrm{l}

\bigm\| \bigm\| f (m+1)
\bigm\| \bigm\| 
\infty 

a
(\alpha \mathrm{m}\mathrm{a}\mathrm{x}  - \alpha \mathrm{m}\mathrm{i}\mathrm{n}) ,(4.4)

where C
(1,m)
\mathrm{s}\mathrm{p}\mathrm{l} is given by Theorem 4.4 and K depends only on f(\alpha ), c(\alpha ), q, and | \alpha \mathrm{m}\mathrm{a}\mathrm{x} - \alpha \mathrm{m}\mathrm{i}\mathrm{n}| .

Proof. See Appendix E.

The proof of Theorem 4.7 only makes use of two properties of spline interpolation: the
accurate approximation of the function and its derivative in L\infty , and the uniform bound on
the second derivatives (Theorem 4.4). Therefore, Theorem 4.7 immediately generalizes to a
broad family of surrogate models, denoted by \{ gN\} .

8In practice, f and f \prime are often unknown, and so Kf needs to be estimated.D
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Corollary 4.8. Let f(\alpha ) and c(\alpha ) be as in Theorem 4.7, and let gN \in C1([\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}]) be a
sequence of approximations of f for which

\| f  - gN\| \infty , \| f \prime  - g\prime N\| \infty \leq KN - \tau , \| g\prime \prime N\| \infty < Cg < \infty ,

where \tau > 0, Cg, and K are independent of N . Then

\| pf  - pgN \| q \leq \~KN - \tau 

for any 1 \leq q < \infty , where pf and pgN are the PDFs of f(\alpha ) and gN (\alpha ), respectively, and \~K
is independent of N .

Remark 4.9. If f is only piecewise Cm+1, then N - m convergence is guaranteed when the
grid points include the discontinuity points of f(\alpha ), since the proof can be repeated in each
interval on which the function is Cm+1 in the same way.

Remark 4.10. Although Theorem 4.7 applies only to functions whose derivatives are bounded
away from 0, in practice we observe cubic convergence for nonmonotone functions as well (see
section 7). Whether Theorem 4.7 generalizes to nonmonotone cases is unclear.

In our numerical simulations (see Figures 2, 4, 8, and 9), we observe that the cubic
convergence is often reached well before N satisfies (4.4). We also observe that the density
approximation error \| pf  - pfN \| 1 decays at a faster than cubic rate. A possible explanation
for this observation is provided by the following.

Lemma 4.11. Assume the conditions of Theorem 4.7 for m = 3, and let JN be the number
of times that d

d\alpha 

\bigl( 
f(\alpha )  - f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}

N (\alpha )
\bigr) 
changes its sign on [\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}]. If JN = O(N r) for

0 \leq r \leq 1, then \| pf  - pfN \| 1 \leq KN - 4+r. Specifically, if JN is uniformly bounded for all
N \in \BbbN , then \| pf  - pfN \| 1 \leq KN - 4.

Proof. See Appendix F.

4.3. Accuracy of moment estimation. While the main focus of this paper is on density
estimation using a surrogate model, we also point out two disadvantages of the gPC method
for moment estimation:

1. The spectral convergence of the gPC method is attained only asymptotically as the
number of sample points N becomes sufficiently large. For small or moderate values
of N , however, its accuracy may be quite poor, due to insufficient resolution, and the
global nature of spectral approximation.

2. The sample points \{ \alpha j\} Nj=1 of the gPC method are predetermined by the quadrature
rule. Therefore, if one wants to adaptively improve the accuracy, one cannot use the
samples from the ``old"" low-resolution grid in the ``new"" high-accuracy approximation.

Similarly to density estimation, the error of the moment estimation of Algorithm 4.1 comes
from both the numerical integration (line 5) and interpolation (line 2). The trapezoidal rule
integration error can be made sufficiently small by increasing the number of samples M at
line 3, at a negligible computational cost. Moreover, if c(\alpha ) \equiv 1, the integration over f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}

N

can be done exactly.9 Hence, the moment estimation error of Algorithm 4.1 is determined by
the accuracy of the spline interpolation.

9When f is sufficiently smooth and \alpha is uniformly distributed, one can approximate \BbbE \alpha [f ] \approx \BbbE \alpha [f
\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N ] and

compute the right-hand side explicitly (in MATLAB, this can be done using the fnint command).D
ow

nl
oa

de
d 

02
/0

4/
20

 to
 1

60
.3

9.
60

.5
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



© 2020  and American Statistical Association

272 ADI DITKOWSKI, GADI FIBICH, AND AMIR SAGIV

Corollary 4.12. Let f \in C4 ([\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}]), let f
\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N be the natural, ``not-a-knot,"" or clamped

cubic spline interpolant of f , and let \alpha be distributed by c(\alpha )d\alpha , where c(\alpha ) \geq 0, and\int \alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}
c(\alpha ) d\alpha = 1. Then \bigm| \bigm| \bigm| \BbbE \alpha [f ] - \BbbE \alpha [f

\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N ]

\bigm| \bigm| \bigm| \leq C
(0)
\mathrm{s}\mathrm{p}\mathrm{l} \| f\| \infty h4\mathrm{m}\mathrm{a}\mathrm{x} ,

where C
(0)
\mathrm{s}\mathrm{p}\mathrm{l} and h\mathrm{m}\mathrm{a}\mathrm{x} are defined in Theorem 4.4.

Proof. By Theorem 4.4, \| f  - f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N \| \infty \leq C

(0)
\mathrm{s}\mathrm{p}\mathrm{l} \| f

(4)\| \infty h4\mathrm{m}\mathrm{a}\mathrm{x}. Hence,\bigm| \bigm| \bigm| \bigm| \int \alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
f(\alpha ) - f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}

N (\alpha )
\bigr) 
c(\alpha ) d\alpha 

\bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm\| \bigm\| \bigl( f  - f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N

\bigr) \bigm\| \bigm\| 
\infty 

\int \alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}

c(\alpha ) d\alpha \leq 
\bigm\| \bigm\| \bigm\| f  - f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}

N

\bigm\| \bigm\| \bigm\| 
\infty 

\cdot 1 \leq C
(0)
\mathrm{s}\mathrm{p}\mathrm{l} \| f

(4)\| \infty h4\mathrm{m}\mathrm{a}\mathrm{x} .

Typically, C
(0)
\mathrm{s}\mathrm{p}\mathrm{l} < 1. For example, for the natural and ``not-a-knot"" cubic spline, C

(0)
\mathrm{s}\mathrm{p}\mathrm{l} is

equal to 5
384 and 1

25 , respectively [4, 25]. On a uniform grid, hj = \alpha \mathrm{m}\mathrm{a}\mathrm{x} - \alpha \mathrm{m}\mathrm{i}\mathrm{n}
N - 1 for 1 < j \leq N ,

and so \BbbE \alpha [f ] - \BbbE \alpha [f
\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N ] = O(N - 4).

As N \rightarrow \infty , the polynomial convergence rate of the spline approximation (Corollary 4.12)
is outperformed by gPC's spectral convergence rate (Corollary 3.1). Quite often, however, the
spline approximation is more accurate for moderate N values. To see that, note that by (3.3),
(3.6), and (3.7), \BbbE \alpha [f

\mathrm{g}\mathrm{p}\mathrm{c}
N ] =

\sum N
j=1 f(\alpha j)wj , which is the Gauss quadrature rule. Hence, if

f \in C2N , then

\BbbE \alpha [f ] - \BbbE \alpha 

\bigl[ 
f\mathrm{g}\mathrm{p}\mathrm{c}
N

\bigr] 
=

f (2N)(\xi )

k2N (2N)!
, \xi \in (\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}) ,

where kN is the leading coefficient of pN (\alpha ) [9]. If for small N , \| f (2N)\| \infty increases faster than
k2N (2N)!, the error initially increases with N . In these cases, the exponential convergence
is only achieved at large N .10 Even when gPC does converge exponentially, i.e., | \BbbE \alpha [f ]  - 
\BbbE \alpha [f

\mathrm{g}\mathrm{p}\mathrm{c}
N ]| \leq Ke - \gamma N , but \gamma is small, then the error of the spline approximation may be smaller

for moderate values of N ; see, e.g., Figure 1(c). To conclude, the accuracy of spline-based
moment approximation is guaranteed also with few samples, and not only asymptotically
as N \rightarrow \infty .

5. Multidimensional noises. To generalize the spline-based density-estimation approach
(Algorithm 4.1) to the case where \alpha \alpha \alpha \in \Omega = [0, 1]d, we use tensor-product splines, which are
defined in the following way. Let m \geq 1, let f(\alpha \alpha \alpha ) \in Cm+1(\Omega ), let \Lambda be the one-dimensional
grid 0 = \alpha 1 < \cdot \cdot \cdot < \alpha n = 1, and let \Lambda d be the respective d-dimensional tensor-product
grid. An mth degree tensor-product spline interpolant of f is a function s(\alpha \alpha \alpha ) \in Cm - 1(\Omega ) that
interpolates f on \Lambda d and reduces to a one-dimensional mth degree spline on every line on \Lambda d;
see [44] for a more precise definition.11,12 The multidimensional extension of Algorithm 4.1
for density estimation is as follows.

10For example, if the numerator grows as K2N , the error only decays for N > K.
11That is, when d - 1 coordinates of \alpha \alpha \alpha are fixed in \Lambda .
12s(\alpha \alpha \alpha ) is unique when endowed with sufficiently many boundary conditions; see the discussion on the one-

dimensional case in section 4. Theorem 5.1 holds for many possible choices of boundary conditions, including
the not-a-knot conditions which we have also used in our simulations.
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Algorithm 5.1. Multidimensional spline-based density estimation.

Let \Lambda d = \{ \alpha 1, . . . , \alpha N\} D be a tensor-product uniform grid on [0, 1]d.

1: For each \alpha \alpha \alpha \bfj \in \Lambda d, solve (2.1) with \alpha = \alpha \alpha \alpha \bfj to obtain u (t,x;\alpha \alpha \alpha \bfj ).

2: Approximate u(t, x;\alpha \alpha \alpha ) \approx u\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}N (t,x;\alpha \alpha \alpha ), where u\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}N is a tensor-product spline interpolant
of order m on \Lambda d.

3: Approximate f(\~\alpha \alpha \alpha m) \approx f(u\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}N (\cdot , \~\alpha \alpha \alpha m)) on a sample of M \gg N points \{ \~\alpha \alpha \alpha m\} Mm=1 which
are i.i.d. according to c(\alpha \alpha \alpha ).

4: Use the histogram method (3.1) with \{ f(\~\alpha \alpha \alpha m)\} Mm=1 to approximate the PDF of f .

As in the one-dimensional Algorithm 4.1, the analysis of the density-estimation error in
Algorithm 5.1 is based on two components:

1. A pointwise error bound for tensor-product spline interpolants, due to Schultz, as in
the following.

Theorem 5.1 (see [40, 44]). Let \Omega = [0, 1]d, f \in Cm+1(\Omega ), and let s(\alpha \alpha \alpha ) be its mth degree
tensor-product spline interpolant. Then for any \alpha \alpha \alpha \in \Omega ,

| Dj(f  - s)
\bigm| \bigm| < Cmhm+1 - j , j = 0, 1, . . .m - 1 ,(5.1)

where Dj is any jth order derivative,13 Cm = Cm(\| Dm+1f\| \infty ) depends only on the L\infty norms
of the m+ 1 order derivatives of f , and h = max1\leq j<n | \alpha j+1  - \alpha j | .

2. A multidimensional generalization of Lemma 4.1,14 as follows.

Lemma 5.2. Let \Omega \subset \BbbR d be a Jordan set, denote by | \cdot | the Euclidean norm in \BbbR d, let f be
piecewise-differentiable with | \nabla f | \not = 0 on \=\Omega , let \alpha \alpha \alpha be an absolutely continuous random variable
in \Omega , i.e., d\mu (\alpha \alpha \alpha ) = c(\alpha \alpha \alpha )d\alpha \alpha \alpha for some nonnegative c \in L1(\Omega ), and denote the PDF associated
with f(\alpha \alpha \alpha ) by pf . Then

pf (y) =
1

\mu (\Omega )

\int 
f - 1(y)

c(\alpha \alpha \alpha )

| \nabla f(\alpha \alpha \alpha )| 
d\sigma ,(5.2)

where d\sigma is a (d - 1) dimensional surface element on f - 1(y).

Proof. See Appendix G.

The generalization of Theorem 4.7 to the case of multidimensional random parameter is
as follows.

Theorem 5.3. Let \Omega = [0, 1]d, let m \geq 1, let f \in Cm+1(\Omega ), let s be the m-degree tensor-
product spline interpolant of f , let \alpha \alpha \alpha be uniformly distributed in \Omega , and let pf and ps be the
PDFs of f and s, respectively. If \kappa \mathrm{f} := min\Omega | \nabla f | > 0, then for sufficiently small h and for
any 1 \leq q < \infty ,

13More explicitly, Dj =
\prod d

k=1(\partial \alpha k )
\ell k , where \ell 1 + \cdot \cdot \cdot \ell d = j, and each \ell k is a nonnegative integer.

14When \Omega \subset \BbbR is a one-dimensional interval, Lemma 5.2 reduces to Lemma 4.1. Indeed, since | f \prime | \not = 0 on \=\Omega ,
then f is piecewise monotonic, and so f - 1(y) consists of a finite number of points. In addition, the surface
element d\sigma is a point-mass distribution. Hence, (5.2) reduces to (4.1).D
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\| pf  - ps\| q \leq Khm(5.3)

for some constant K > 0, where h is defined in Theorem 5.1.

Proof. See Appendix H.

Theorem 5.3 can be extended to any approximation \~f of f and to any bounded domain
\Omega \subseteq \BbbR d, provided that the bound (5.1) holds for j = 0 and j = 1.

The total number of sample points in the special case where \Lambda is the uniform one-
dimensional grid on [0, 1] is N = nd \sim h - d. Therefore, we have the following.

Corollary 5.4. Let \Lambda be the uniform grid on [0, 1]. Then under the conditions of Theorem
5.3, for sufficiently large N ,

\| pf  - ps\| 1 \leq KN - m
d

for some constant K > 0.

As noted in section 3.1, the L1 error of the KDE method scales as N - 2
5 [13]. Therefore, by

Corollary 5.4, Algorithm 5.1 outperforms KDEs for dimensions d \leq 5
2m. Finally, as in the one-

dimensional case (Corollary 4.8), the proof of Theorem 5.3 only makes use of two properties
of spline interpolation: the L\infty approximation of the function and of its gradient, and the
uniform bound on the second derivatives (Theorem 5.1). Theorem 5.3 therefore generalizes
immediately to density estimation using nonspline surrogate models.

Corollary 5.5. Under the conditions and notation of Theorem 5.3, consider gh \in C1[0, 1]d

with uniformly bounded second derivatives such that

\| f  - gh\| \infty , \| \nabla f  - \nabla gh\| \infty \leq Kh - \tau 

for some \tau > 0 independent of f and K = K(f) > 0. Then \| pf  - pgh\| q \leq \~Kh - \tau for any
1 \leq q < \infty .

6. Simulations. In this section, we compute the density and the moments of the function

f(\alpha ) = tanh(9\alpha ) +
\alpha 

2
, \alpha \in [ - 1, 1] ,(6.1)

which is smooth but has a narrow high-derivative region.15

6.1. Interpolation. With N = 12 samples, the spline interpolant f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N of (6.1) is nearly

indistinguishable from f , whereas the gPC interpolant f\mathrm{g}\mathrm{p}\mathrm{c}
n slightly oscillates ``around"" f ;

see Figure 1(a). Although f\mathrm{g}\mathrm{p}\mathrm{c}
N converges exponentially to f in L2 (see Figure 1(b)), its L2

approximation error \| f  - fN\| 2 =
\bigl( \int 1

 - 1 | f(\alpha ) - fN (\alpha )| 2 d\alpha 
\bigr) 1

2 with few samples (10 \leq N \leq 40)
is larger than that of the spline interpolant by more than an order of magnitude. With
sufficiently many samples (N > 70), however, the gPC approximation exponential convergence
outperforms the spline's polynomial convergence rate. This example shows that with few
samples, the occurrence of a ``jump"" in f hurts the accuracy of the gPC interpolant. Spline
interpolation, on the other hand, is less sensitive to the ``jump,"" because it ``confines"" the
approximation error induced by the jump to the jump interval (roughly \alpha \in ( - 0.1, 0.1)); see
Lemma B.2.

15The \alpha 
2
term was added so that df

d\alpha 
is bounded away from zero, in order to prevent singularities in the PDF;

see section 6.3.D
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-1 0 1
-2

0

2

spline
gPC
exact

10 25 50 75 100
10-8

10-6

10-4

10-2

100

10 25 50 75 100
10-14

10-9

10-4

101

Monte-Carlo
gPC
spline

Figure 1. (a) f(\alpha ) (solid) (see (6.1)) and its spline interpolant (dashes) are nearly indistinguishable,
whereas the gPC interpolant (dots) oscillates ``around"" f . Both interpolants use N = 12 grid points. (b) L2

error of both interpolants as a function of the number of samples. (c) Error of the standard deviation when it
is approximated using the Monte Carlo method (dash-dot), the gPC-based method (dots), and the spline-based
method (dashes).

6.2. Moment approximation. The interpolation accuracy is relevant to moment approx-
imation, because a small L2 error implies a small moment-approximation error (Lemma A.1).
For example, Figure 1(c) shows the standard deviation error | \sigma (f) - \sigma (fN )| (see (6.1)) when
\alpha is uniformly distributed in [ - 1, 1]. As expected, the spline-based method (Algorithm 4.1)
is more accurate than the gPC-based method (Algorithm 3.1) with few samples, but the gPC
is more accurate with sufficiently many samples. A purely statistical approach such as Monte
Carlo converges poorly compared to both the spline and the gPC approach, with about 10\%
error with N \leq 100 sample points.

6.3. Density estimation. Consider the PDF induced by f(\alpha ) (see (6.1)) when \alpha is uni-
formly distributed in [ - 1, 1]. The PDF computed by the gPC-based Algorithm 3.1 with
N = 18 sample points deviates considerably from the exact PDF (see Figure 2(a)), whereas
the PDF computed by the spline-based Algorithm 4.1 with N = 18 sample points is nearly
indistinguishable from the exact PDF (see Figure 2(b)).16 This is consistent with our discus-

sion in section 4. Indeed, the derivative of the spline interpolant d
d\alpha f

\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N approximates f \prime (\alpha )

with cubic accuracy, whereas the derivative of the gPC interpolant d
d\alpha f

\mathrm{g}\mathrm{p}\mathrm{c}
N has many artificial

extremal points where d
d\alpha f

\mathrm{g}\mathrm{p}\mathrm{c}
N (\alpha ) = 0, but d

d\alpha f(\alpha ) \not = 0 (see Figure 2(c)).
The L1 distance \| pf  - pfN \| 1 between the exact PDF pf and its approximation pfN is

presented in Figure 2(d). For 10 \leq N \leq 100 the spline-based approximation is more ac-
curate than the gPC-based one by nearly two orders of magnitude. This is in contrast to
moment estimation (see Figure 1(c)), in which the gPC approximation becomes more ac-
curate for N \geq 40. Furthermore, we observe numerically that the spline-based method
converges even faster than the N - 3 rate predicted by Theorem 4.7. The KDE approxi-
mation has roughly 10\% error for N \leq 100.17 Other frequently used distances between

16The MATLAB code that generates this PDF approximation is given in Appendix D.
17The poor accuracy of the KDE method is due to the fact that the KDE does not use the ``functional

information"" \{ fj = f(\alpha j)\} Nj=1 but only the set \{ fj\} Ni=1.D
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-2 -1 0 1 2
0

2

4
gPC
exact

-2 -1 0 1 2
0

2

4 spline
exact

101 102
10-5
10-4
10-3
10-2
10-1
100

KDE
gPC
spline
fit

-1 0 1
-5

0

5

10
exact
gPC
spline

Figure 2. The PDF of f(\alpha ) (see (6.1)), where \alpha is uniformly distributed in [ - 1, 1]. (a) exact PDF (solid)
and its approximation by the gPC-based Algorithm 3.1 (dots) with N = 18 sample points. (b) Same, with the
spline-based Algorithm 4.1 (dashes). The two lines are nearly indistinguishable. (c) Derivatives of f (solid),
f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (dashes), and f\mathrm{g}\mathrm{p}\mathrm{c}

N (dots). (d) L1 error of the PDF approximations as a function of the number of sample
points, for the KDE (dash-dot), gPC-based approximation (dots), the spline-based approximation (dashes), and
its power-law fit 103.2N - 3.29 (solid).

distributions, such as the Hellinger distance 1\surd 
2

\bigm\| \bigm\| \surd pf  - \surd 
pfN

\bigm\| \bigm\| 
2

[29] and the Kullback--

Leibler (KL) divergence18 [28] \int \infty 

 - \infty 
pf (y) log

\biggl( 
pf (y)

pfN (y)

\biggr) 
dy ,(6.2)

produce similar results (data not shown).

6.4. Density estimation of nonsmooth functions. Let

g(\alpha ) = f(\alpha )mod (0.7) ,(6.3)

where f is given by (6.1).19 Because (6.3) is nonsmooth, with few samples neither the
spline nor the gPC interpolant is even remotely close to g(\alpha ); see Figure 3. Therefore, to
approximate the PDF associated with g(\alpha ), we first use Algorithms 3.1 and 4.1 to approxi-
mate f(\alpha ) \approx fN (\alpha ). Since f is smooth, both approximations are reasonable with few samples;

18Intuitively, the d\mathrm{K}\mathrm{L} measures the entropy added, or conversely, the information lost, in approximat-
ing p by pfN .

19This example is motivated by our study of the nonlinear Schr\"odinger equation [41], where the cumulative
phase \varphi (t;\alpha ) = arg [\psi (t, 0;\alpha )] is smooth, but the quantity of interest, the angle \varphi mod (2\pi ), is discontinuous.
See section 7 for another optics application which motivates this example.D
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-1 0 1

0

0.7

exact
spline

-1 0 1

0

0.7

exact
gPC

Figure 3. The discontinuous function g(\alpha ) (solid line; see (6.3)) and its spline interpolation with N = 12
sample points (dashes). (b) Same with the gPC interpolant (dots).

0 0.15 0.7
0

2
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6
gPC
exact

0 0.15 0.7
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4

6
spline
exact

101 102
10-5

10-3

10-1
100

KDE
gPC
spline

Figure 4. Same as Figure 2 for the discontinuous function g(\alpha ); see (6.3). The solid line in subplot (c) is
the power-law fit 1.33 \cdot 104N - 4.75 of the spline-based approximate PDF.

see Figure 1. Next, we approximate g(\alpha m) \approx fN (\alpha m)mod (0.7) and compute the PDF of g us-
ing the histogram method on a high-resolution sampling grid (M = 2 \cdot 106). We again stress
that evaluating fN is computationally cheap and therefore can be easily done with such a
large sample. As in the smooth case (see Figure 2), the PDF approximated by the gPC-based
Algorithm 3.1 with N = 18 sample points has large deviations and converges poorly (see
Figure 4(a)), whereas the PDF approximated by the spline-based Algorithm 4.1 with N = 18
sample points is nearly identical to the exact PDF (see Figure 4(b)). Indeed the L1 error of
the spline-based PDF is smaller than that of the gPC-based PDF by at least an order of mag-
nitude, for 20 < N < 50; see Figure 4(c). Although Theorem 4.7 applies only to C4 functions,
we observe numerically that the convergence rate of the spline-based PDF is faster than N - 3.
The KDE approximation for the PDF of g(\alpha ) is less accurate than that of the spline-based
and gPC-based approximations.

6.5. Multidimensional noise. To numerically confirm the error bound of the density
estimation (Algorithm 5.1) for d > 1, we first consider the two-dimensional function

f2\mathrm{d}(\alpha 1, \alpha 2) = tanh(6\alpha 1\alpha 2 + \alpha 1/2) + (\alpha 1 + \alpha 2)/3 .(6.4)

where \alpha 1 and \alpha 2 are independent and uniformly distributed in [ - 1, 1]. As in the one-
dimensional example (see (6.1)), f2\mathrm{d} is analytic with high-gradients regions; see Figure 5(a).D
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-1 1
1

-1

-1.5 0 1.5
0

1.4

101 102

10-2

10-1

100

Figure 5. (a) Contours of the function f2\mathrm{d}(\alpha \alpha \alpha ); see (6.4). (b) The PDF of f2\mathrm{d}(\alpha \alpha \alpha ) (solid), its approximation
by the spline-based Algorithm 4.1 (dashes), and by the gPC-based Algorithm 3.1 (dots). Here \alpha \alpha \alpha is uniformly
distributed in [ - 1, 1]2, and both approximations use N = 64 sample points. (c) L1 error of the PDF approx-
imations as a function of the number of sample points for the KDE (dash-dots), gPC-based approximation
(dots-squares), and spline-based approximation (circles). The solid line is the power-law fit 1208N - 2.15 (solid).

-2 0 2
0

1

101 102 103 104

10-2

10-1

100

101

Figure 6. (a) The PDF of f3\mathrm{d}(\alpha \alpha \alpha ) (see (6.5)), where \alpha \alpha \alpha is uniformly distributed in [ - 1, 1]3 (solid) and its
approximation by the spline-based Algorithm 4.1 (dashes) with N = 83 sample points. (b) L1 error of the
PDF approximations as a function of the number of sample points for the KDE (dash-dots), the gPC-based
PDF(rectangles), the spline-based PDF (circles), and its power-law fit 354N - 1.11 (solid).

The spline-based PDF approximation with N = 82 sample points is very close to the exact
PDF of f(\alpha 1, \alpha 2), whereas the gPC-based PDF deviates from it substantially (Figure 5(b)).
The convergence rate of Algorithn 5.1 with cubic splines is N - 2.15 (Figure 5(c)), which is con-

sistent with the theoretical N - 3
2 error bound (Corollary 5.4). The convergence rates of both

the KDE and the gPC methods are considerably slower for ``small"" sample sizes (N \leq 200).
Next, consider the three-dimensional function

f3\mathrm{d}(\alpha 1, \alpha 2, \alpha 3) = tanh(8\alpha 1 + 5\alpha 2 + 10\alpha 3) + (\alpha 1 + \alpha 2 + \alpha 3)/3 ,(6.5)

where \alpha 1, \alpha 2, and \alpha 3 are independent and uniformly distributed in [ - 1, 1]. The spline-based
PDF with N = 103 sample points approximates the exact PDF well (see Figure 6(a)), and
its convergence rate is N - 1.1 (see Figure 6(b)), which is consistent with the theoretical N - 1

convergence rate (Corollary 5.4). For comparison, the fitted convergence rate of the KDE

is N - 0.39, which is consistent with the theoretical N - 2
5 rate [13]. Therefore, the spline-basedD
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method is more accurate than the KDE for sufficiently many samples (N > 103). For smaller
values of N (e.g., N = 216), however, the KDE achieves a slightly better accuracy than the
spline-based method. This can be explained by what is known as the ``curse of dimensionality.""
Thus, in the three-dimensional tensor-grid spline, N = 216 sample points correspond to a
mere six sample points in each dimension, which leads to insufficient resolution. The KDE
method, on the other hand, does not approximate the underlying function f3\mathrm{d} and is therefore
``indifferent"" to the noise dimension. See section 9 for further discussion.

7. Application 1: Nonlinear Schr\"odinger equation. The one-dimensional coupled non-
linear Schr\"odinger equation (CNLS)

i
\partial A\pm (t, x)

\partial t
+

\partial 2A\pm 
\partial x2

+
2

3

| A\pm | 2 + 2 | A\mp | 2

1 + \epsilon 
\Bigl( 
| A\pm | 2 + | A\mp | 2

\Bigr) A\pm = 0 ,(7.1)

where 0 < \epsilon \ll 1, t \geq 0, and x \in \BbbR , describes the propagation of elliptically polarized,
ultrashort pulses in optical fibers [2], of elliptically polarized continuous-wave (CW) beams
in a bulk medium [36, 45], Stokes and anti-Stokes radiation in Raman amplifiers [39], and
rogue water-waves formation at the interaction of crossing seas [1]. We consider (7.1) with an
elliptically polarized Gaussian input pulse with a random amplitude [36, 45]\biggl( 

A+

A - 

\biggr) 
= (1 + 0.1\alpha )

\biggl( 
8
4

\biggr) 
e - x2

,(7.2)

where A+ and A - are the clockwise and counterclockwise circularly polarized components,
respectively. The on-axis ellipse rotation angle is defined as

\theta (t;\alpha ) := (\varphi +(t;\alpha ) - \varphi  - (t;\alpha )) mod (2\pi ) ,(7.3)

where \varphi \pm (t;\alpha ) := arg [A\pm (t, 0;\alpha )] are the on-axis phases of the components. The distribution
of \theta (t;\alpha ) indicates to what extent the ellipse rotation angle is ``deterministic.""20

Interpolation. For a given sample grid \{ \alpha j\} Nj=1, we compute \theta (t;\alpha j) for each 1 \leq j \leq N
by solving (7.1)--(7.2) and using (7.3). Figure 7(a) shows the spline and gPC interpolants of
\theta (t = 0.15;\alpha ) with N = 64 points.21 While these interpolants seem nearly identical, the spline
interpolant is more accurate than the gPC interpolant by more than an order of magnitude
(cf. Figures 7(b) and 7(c)). Indeed, the L2 error of the gPC interpolant (0.17\%) is an order
of magnitude larger than that of the spline interpolant (0.017\%).

Density estimation. The gPC-based approximation with N = 64 differs substantially from
the exact PDF; see Figure 8(a). In contrast, the spline-based approximated PDF with N = 64
sample points is indistinguishable from the exact PDF; see Figure 8(b). Indeed, the KL
divergence of the gPC-based approximation (see (6.2)) is about 16,000 times larger than that
of the spline-based approximation, and the L1 error is 200 times larger (46\% versus 0.2\%).

20We solve the CNLS using a fourth-order, compact finite-difference scheme for the spatial discretization
and a predictor-corrector Crank--Nicolson scheme for the temporal integration of the semidiscrete problem [17].

21Because we have no explicit solution for \theta (t;\alpha ), the errors in this section are measured by comparison with
\theta \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}513 (0.15, \alpha ) with N = 513 sample points. We verified that

\bigm\| \bigm\| \theta \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}513 (0.15, \alpha )  - \theta \mathrm{g}\mathrm{p}\mathrm{c}513(0.15, \alpha )
\bigm\| \bigm\| 
2
\approx 5 \cdot 10 - 5,

which is an order of magnitude smaller than the approximation errors noted in the text.D
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-1 0 1
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spline
gPC

-1 0 1
0

0.01

-1 0 1
0

0.01

Figure 7. The polarization angle \theta (t = 0.15;\alpha ) for solutions of the CNLS (7.2) with \epsilon = 10 - 5 and an
elliptically polarized Gaussian initial condition (7.2). (a) Spline interpolation (dashes) and gPC interpolation
(dots), with N = 64 sample points. The two lines are nearly indistinguishable. (b) Pointwise error of the gPC
interpolant. (c) Same for the spline interpolant.

exact
spline

exact
gPC

101 102 103
10-7

10-3

101

spline
fit

Figure 8. Same settings as in Figure 7. The PDF of \theta (0.15, \alpha ), where \alpha \sim U( - 1, 1). (a) Exact PDF
(solid), and GPC-based approximation using N = 64 sample points (dots). (b) Same with the spline-based
approximation (dashes). The two lines are indistinguishable. (c) L1 error of the spline-based PDF as a function
of N (circles) and the power-law fit 1.35 \cdot 104N - 3.76 (solid).

With N = 32, the spline-based is 32 times more accurate than the gPC-approximated PDF,
in terms of KL divergence, and 11 times more accurate in terms of the L1 error (41\% versus
4.5\%). The L1 error of the spline-based PDF decays as N - 3.76; see Figure 8(c). This results
exceed expectations with respect to Theorem 4.7, since \theta \prime (0.15;\alpha ) is not bounded away from 0
(see Figure 7(a)), and so Theorem 4.7 should not, in principle, apply to this case. Since the
PDF of \theta (0.15;\alpha ) has discontinuities and high derivatives, spline smoothing techniques and
KDE methods with smooth kernels were not considered in this case.

Moment approximation. The mean and standard deviation of circular quantities can be
defined as [33]22

\BbbE \mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}
\alpha [\theta (t;\alpha )] =

\int 1

 - 1
ei\theta (t;\alpha ) d\alpha , \sigma \mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}(\theta ) =

\sqrt{} 
 - 2ln | \BbbE \mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}

\alpha [\theta (t;\alpha )]| .(7.4)

22To motivate why a different definition for circular moments is needed, consider y \sim U( - \pi , \pi ) and z \sim 
U(0, 2\pi ). If we consider y and z as angles, or points on the circle, they are identical. Using the conventional
mean definition, however, yields \BbbE [y] = 0, but \BbbE [z] = \pi .D
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Table 1
Approximation error of the circular mean and standard deviation (see (7.4)) of \theta (0.15, \alpha ) (see (7.3)) with

gPC- and spline-based approximations, using N sample points.

N gPC error Spline error \mathrm{g}\mathrm{P}\mathrm{C} \mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}
\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e} \mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

\BbbE \mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}
\alpha [\theta (0.15;\alpha )] 32 2.2\% 0.54\% 4

\BbbE \mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}
\alpha [\theta (0.15;\alpha )] 64 0.089\% 0.006\% 14

\sigma \mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c} (\theta (0.15;\alpha )) 32 0.64\% 0.054\% 12
\sigma \mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c} (\theta (0.15;\alpha )) 64 0.031\% 0.0009\% 33

The advantage of splines over gPC with few samples for moments approximation can be seen
in Table 1. The approximation of \BbbE \mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}

\alpha [\theta (0.15;\alpha )] using the spline approximation with N = 32
is 4 times more accurate than that of the gPC; with N = 64 it is 14 times more accurate.
The approximation of the standard deviation using the spline-based method with N = 32 is
12 times more accurate than the gPC; with N = 64 it is 33 times more accurate than the
gPC-based approximation.

8. Application 2: Inviscid Burgers equation. The inviscid Burgers equation

ut(t, x) +
1

2
(u2)x =

1

2
(sin2(x))x , x \in [0, \pi ] , t \geq 0 ,(8.1)

with the initial and boundary conditions u(0, x) = u0(x) and u(t, 0) = u(t, \pi ) = 0 models
isentropic gas flow in a dual-throat nozzle. Solutions of this equation can develop a static
shock wave at a lateral location x = X\mathrm{s} [42]. Following [6], we consider the case in which \alpha 
is a random variable with a known distribution, u0(x) = u0(x;\alpha ) is random, and we wish to
compute the PDF of X\mathrm{s} using Algorithms 3.1 and 4.1. In general, to do that requires, for
each 1 \leq j \leq N , computing X\mathrm{s}(\alpha j) by solving (8.1) with \alpha j . For the special initial condition

u0(x) = \alpha sin(x);(8.2a)

however, the shock location is explicitly given by [6]

\alpha =  - cos(X\mathrm{s}) .(8.2b)

This explicit expression allows us to sample X\mathrm{s}(\alpha ) without solving (8.1).
Consider the case where

\alpha =

\Biggl\{ 
 - 1+

\surd 
1+4\nu 2

2\nu if \nu \not = 0 ,
0 if \nu = 0 ,

(8.3)

and \nu \sim \scrN (0, \sigma ), i.e., it is normally distributed with a zero mean. Because \alpha is not distributed
by a classical, standard measure, there is no obvious choice of quadrature points to sample by,
nor is there a ``natural"" orthogonal polynomials basis to expand the solution by. Therefore,
the gPC approach cannot be straightforwardly applied.23 We can, however, apply the gPC

23Nevertheless, even for nonstandard distributions, the expansion of \alpha by a classical orthogonal-polynomials
basis can still converge spectrally, under certain conditions [14].D
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Figure 9. PDF of Xs(\alpha ), where \alpha (\nu ) is given by (8.3), and \nu \sim \scrN (0, 0.6). (a) Exact PDF (solid) and gPC-
based approximation (dots) with N = 7 sample points. (b) Same with the spline-based approximation (dashes).
(c) L1 error of the PDF approximations as a function of the number of sample points, and the power-law fit
112N - 3.11 (solid).

approach to this problem by denoting X\mathrm{s}(\nu ) = X\mathrm{s}(\alpha (\nu )) and approximating X\mathrm{s}(\nu ) using the
Hermite polynomials (which are orthogonal with respect to the normal distribution).24 The
gPC-based approximated PDF with N = 7 sample points differs considerably from the exact
PDF; see Figure 9(a). In contrast, the spline-based approximated PDF can be directly applied
to X\mathrm{s}(\alpha ), and it is nearly indistinguishable from the exact PDF already with N = 7 sample
points; see Figure 9(b). In general, the spline-based PDF approximation is more accurate
than the gPC-based approximation by more than one order of magnitude for 5 < N < 50;
see Figure 9(c). The L1 error of the spline-based PDF is observed numerically to decay as
N - 3.11, in accordance with Theorem 4.7.

We repeated these simulations for the case with \alpha \sim B(r, s), where B(r, s) is the Beta
distribution on [ - 1, 1].25 The spline-based approximations are nearly identical to the exact
PDF, whereas the gPC method was less accurate by an order of magnitude with few samples
(results not shown).

9. Discussion. In this paper, we introduced a spline-based method for density and mo-
ment estimation. The advantages of this method are as follows:

1. Our mth-order spline-based method approximates the density at a guaranteed conver-
gence rate of N - m

d , where N is the sample size and d is the noise dimension. Thus,
our method outperforms KDEs for noise dimensions 1 \leq d \leq 5

2m.
2. It provides reasonable approximations for the density and moments using small sample

sizes.
3. Its accuracy is relatively unimpaired by the presence of large derivatives.
4. It is nonintrusive, i.e., it is based solely on solving the underlying deterministic model.
5. It is easy to implement.
6. It is applicable with many choices of sample points.
7. It can be applied to nonsmooth quantities of interest.

24Indeed, in [6] the authors use the gPC-Galerkin method with the Hermite polynomials [23, 61].
25The PDF of the Beta distribution on [0, 1] is p(\alpha ) = (\alpha r - 1(1 - \alpha )s - 1\Gamma (r+s)

\Gamma (r)\Gamma (s)
.D
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When f \in Cm+1, it is tempting to use splines of order m > 3 for density estimation,
in order to attain faster than cubic convergence rate. If one generalizes Algorithm 4.1 to
splines of order m, then, similarly to Theorem 4.7, a convergence of order N - m is guaranteed.
Even if f is analytic, however, it is not advisable to take a large m, for two reasons. First,
for s(\alpha ) to be monotone (and so, by Lemma 4.1 for the PDF to be continuous), N should
scale as m

\sqrt{} 
\| f (m+1)\| \infty ; see (E.1). Therefore, for a large m, high-order convergence might

only be attained for very large sample sizes. Second, the density approximation error depends
linearly on

\bigm\| \bigm\| f (m+1)
\bigm\| \bigm\| 
\infty (see Appendix E), and so it might ``blow-up"" exponentially with m. To

conclude, although we do not know whether the optimal spline order is m = 3, an arbitrarily
high-order spline should not be used.

When approximating a d-dimensional function with a resolution h at each dimension,
the total number of samples N scales as h - d. As a result, for a prescribed accuracy, the
computational cost grows exponentially with the dimension (the ``curse of dimensionality"").
In other words, for a given N , the accuracy decays exponentially with the dimension. Indeed,
this is consistent with the N - m

d error estimate of the spline-based Algorithm 5.1 (Corollary
5.4). In contrast, the KDE method, which is a standard nonparametric statistical density

estimator, converges at a rate of N - 2
5 , regardless of d. Hence, our method will outperform

KDE for ``low"" dimensions (d < 5
2m) but may become inferior to KDE at higher dimensions.

A popular approach for moment estimation of high-dimensional noise is the use of sparse
sampling grids [22, 59]. Recently, a spline approximation based on sparse grids was used in
the context of forward uncertainty propagation [54]. Most sparse-grid methods, however, are
designed with moment estimation in mind. As we have seen, even in the one-dimensional case
(see section 4.1), an accurate moment approximation does not necessarily imply an accurate
density estimation. Whether sparse-grids methods can be adapted to density estimation
remains an open question. The proof of Theorem 5.3 in Appendix H, however, suggests
sufficient conditions by which new approximation methods can be tested for efficient density
estimation: (1) The settings should be such that Lemma 5.2 applies, and (2) the approximation
method should have pointwise error bounds similar to Theorem 5.1.

In this paper we showed that spline-based density estimation is better than gPC-based
density estimation, because it does not produce numerous artificial extremal points (see
Lemma 4.1). An interpolating cubic spline, however, might still produce artificial extremal
points, though not as much as the gPC polynomial. To absolutely prevent artificial ex-
tremal points from being produced, it may be better to use spline interpolants [20] and quasi-
interpolants [11] which are monotonicity-preserving (i.e., splines which are monotone wherever
the sampled data is monotone). Hence, although these methods have the same order of error
(with respect to h) as spline interpolation, they may provide better approximations for small
samples, as they are guaranteed not to produce artificial extremal points. We leave it to future
research to check whether monotonicity-preserving interpolants provide more accurate PDF
approximations than a standard interpolating cubic spline.

As noted throughout the paper, the L\infty error bounds on the quantity of interest and its
gradient are key for the success of our algorithm; see Corollaries 4.8 and 5.5. Since local-
ity plays an important role in the existence of such error bounds for splines, it is natural
to explore the use of other local approximations such as NURBS [37, 52] and radial basis
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functions [19, 43]. An additional improvement may be achieved by designing surrogate mod-
els that are on one hand local but on the other hand supported on an unbounded domain, e.g.,
Gaussian mixtures [49]. While moment approximation in the case of unbounded input random
parameters (e.g., normally or exponentially distributed \alpha \alpha \alpha ) are theoretically well understood,
the rigorous study of density estimation in these setting is left for future research.

Appendix A. Proof of Corollary 3.1. We begin with the following lemma.

Lemma A.1. Let (\Omega , \mu ) be a probability space, denote \| \cdot \| p : = \| \cdot \| Lp(\Omega ), and let f, g \in 
L2 \cap L1. Then

| \BbbE \alpha [f ] - \BbbE \alpha [g]| \leq \| f  - g\| 2 ,(A.1a)

| Var(f) - Var(g)| \leq (\sigma (f) + \sigma (g)) \cdot \| f  - g\| 2 ,(A.1b)

| \sigma (f) - \sigma (g)| \leq \| f  - g\| 2 .(A.1c)

Proof. For all f, g \in L2,\bigm| \bigm| \bigm| \BbbE \alpha [f ] - \BbbE \alpha [g]
\bigm| \bigm| \bigm| \leq \int 

\Omega 
| f(\alpha ) - g(\alpha )| d\mu (\alpha ) =

\int 
\Omega 
1\cdot | f(\alpha ) - g(\alpha )| d\mu (\alpha ) \leq \| 1\| 2\cdot \| f - g\| 2 = \| f - g\| 2 ,

where in the second inequality we used the Cauchy--Schwarz inequality. Thus, we proved (A.1a).
For h \in L2\cap L1, let \~h : = h - \BbbE \alpha [h]. By definition, Var(h) = \| \~h\| 22 and \sigma (h) = \| \~h\| 2. Hence,

| Var(f) - Var(g)| =
\bigm| \bigm| \bigm| \BbbE \alpha [ \~f

2  - \~g2]
\bigm| \bigm| \bigm| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 

( \~f  - \~g)( \~f + \~g) d\mu (\alpha )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \| \~f + \~g\| 2 \cdot \| \~f  - \~g\| 2

\leq 
\Bigl( 
\| \~f\| 2 + \| \~g\| 2

\Bigr) 
\cdot \| \~f  - \~g\| 2 = (\sigma (f) + \sigma (g)) \cdot \| \~f  - \~g\| 2 .

(A.2)

In addition, \| \~h\| 22 = Var(h) = \BbbE \alpha [h
2] - \BbbE 2

\alpha [h] \leq \BbbE \alpha [h
2] = \| h\| 22 , and so \| \~h\| 2 \leq \| h\| 2. Applying

this inequality with h = f  - g to (A.2) yields (A.1b). Finally, by (A.1b),\bigm| \bigm| \sigma (f) - \sigma (g)
\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \sigma 2(f) - \sigma 2(g)

\sigma (f) + \sigma (g)

\bigm| \bigm| \bigm| \bigm| = | Var(f) - Var(g)| 
| \sigma (f) + \sigma (g)| 

\leq \sigma (f) + \sigma (g)

\sigma (f) + \sigma (g)
\| f  - g\| 2 = \| f  - g\| 2,

which proves (A.1c).

In the case of gPC, let g = f\mathrm{g}\mathrm{p}\mathrm{c}
N , the colocation gPC approximation of f ; see (3.7).

Since f\mathrm{g}\mathrm{p}\mathrm{c}
N converges exponentially to f in the L2 norm [59, 26], Lemma A.1 implies that the

moments of f\mathrm{g}\mathrm{p}\mathrm{c}
N converge exponentially to the moments of f .

Appendix B. Local properties of spline interpolation. Let us first recall a classical
result of Birkhoff and de Boor.

Theorem B.1 (see [5, 10]). Let si(\alpha ) be the natural cubic spline that satisfies si(\alpha k) = \delta i,k,
where 1 \leq i, k \leq N and \alpha \mathrm{m}\mathrm{i}\mathrm{n} = \alpha 1 < \alpha 2 < \cdot \cdot \cdot < \alpha N = \alpha \mathrm{m}\mathrm{a}\mathrm{x} is given. Then

max
\alpha \not \in (\alpha i - k,\alpha i+k)

| si(\alpha )| \leq A2 - k , 1 < i < N ,

where A > 0 is a constant that depends on the global mesh ratio
\mathrm{m}\mathrm{a}\mathrm{x}

1<j\leq N
\alpha j - \alpha j - 1

\mathrm{m}\mathrm{i}\mathrm{n}
1<k\leq N

\alpha k - \alpha k - 1
.
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Therefore, the natural cubic spline f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (\alpha ) is essentially a local approximation.

Corollary B.2. Denote the natural cubic spline f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N = f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}

N (\alpha ; f1, . . . , fN ) to emphasize
the dependence of the spline interpolation on the sampled values. Then

max
\alpha \not \in (\alpha i - k,\alpha i+k)

\bigm| \bigm| \bigm| \partial f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (\alpha ; f1, . . . , fN )

\partial fi

\bigm| \bigm| \bigm| \leq A2 - k , 1 < i < N , 1 \leq k \leq N ,

where A > 0 is given by Theorem B.1.

Proof. The function S(\alpha ) =
\sum N

i=1 fisi(\alpha ), where si(\alpha ) are defined in Theorem B.1, is a C2

cubic spline, which by definition satisfies S(\alpha i) = fi and
d
d\alpha S(\alpha 1) =

d
d\alpha S(\alpha N ) = 0. By the

uniqueness of the natural cubic spline, S(\alpha ) = f\mathrm{g}\mathrm{p}\mathrm{c}
N (\alpha ), so,

\partial f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}
N (\alpha ;f1,...,fN )

\partial fi
= si(\alpha ). Hence,

by Theorem B.1, the corollary is proven.

Appendix C. Proof of Lemma 4.1. When f is strictly increasing, its CDF is given by

Pf (y) :=

\int f - 1(y)

\alpha \mathrm{m}\mathrm{i}\mathrm{n}

c(\alpha ) d\alpha .

By the Leibniz rule and the inverse function theorem,

pf (y) =
dPf (y)

dy
= c

\bigl( 
f - 1(y)

\bigr) \bigl( 
f - 1

\bigr) \prime 
= c

\bigl( 
f - 1(y)

\bigr) 1

f \prime (f - 1(y))
.

Similarly, if f is monotonically decreasing, then Pf (y) =
\int \alpha \mathrm{m}\mathrm{a}\mathrm{x}

f - 1(y) c(\alpha ) d\alpha , and so

pf (y) =  - c(f - 1(y))

f \prime (f - 1(y))
.

Note that since f \prime < 0, then pf (y) \geq 0. Finally, if f is piecewise monotonic, we apply this
method separately on each subinterval on which it is monotonic and sum up the contributions.

Appendix D. Sample MATLAB code for Algorithm 4.1. The following MATLAB code
generates the dashed curve in Figure 2(b):

1 alpha min =  - 1; alpha max = 1 ; N = 18 ; \%sample s i z e
2 f = @(x ) tanh (9\ast x ) + x /2 ;
3 \%de f i n e the i n i t i a l sample on the g r id [ alpha 1 , . . . ,

alpha N ]
4 samplingGrid = l i n s p a c e ( alpha min , alpha max , N) ;
5 samples = f ( samplingGrid ) ; \% step 1
6 \%de f i n e the r e f i n e d sample g r id [ t i l d e a l pha 1 , . . .

t i l d e a lpha M ]
7 M = 2e6 ;
8 denseGrid = l i n s p a c e ( alpha min , alpha max ,M) ;
9 fN sp l i n e = sp l i n e ( samplingGrid , samples , denseGrid ) ;

\% s t ep s 2+3D
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10 \%When f i s g iven e x p l i c i t l y , the optimal number o f b ins (L)
11 \%i s g iven by (14)
12 Cf = 1 . 6 9 ; L =Cf\ast M\^(1/3) ;
13 \%step 4  - histogram of fN on denseGrid , not normal ized
14 [ histogram , binsEdges ] = h i s t ( fN sp l i n e , L) ;
15 binWidth = (max( binsEdges ) - min( binsEdges ) ) /L ;
16 \%normal ize the histogram so that i t would be a PDF
17 pdf = histogram /(sum( histogram ) \ast binWidth ) ;
18 p lo t ( binsEdges , pdf )

Appendix E. Proof of Theorem 4.7. Without loss of generality, we can assume that
f \prime (\alpha ) \geq a > 0. For brevity, denote s(\alpha ) = f \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}

N (\alpha ), h = h\mathrm{m}\mathrm{a}\mathrm{x}, and
\bigm\| \bigm\| f (m+1)

\bigm\| \bigm\| 
\infty =\bigm\| \bigm\| f (m+1)

\bigm\| \bigm\| 
L\infty [\alpha \mathrm{m}\mathrm{i}\mathrm{n},\alpha \mathrm{m}\mathrm{a}\mathrm{x}]

. In general, s(\alpha ) can be nonmonotone. By Theorem 4.4, however,

| s\prime (\alpha ) - f \prime (\alpha )| < C
(1,m)
\mathrm{s}\mathrm{p}\mathrm{l}

\bigm\| \bigm\| f (m+1)
\bigm\| \bigm\| 
\infty hm. Hence

s\prime (\alpha ) \geq a

2
> 0, N >

m

\sqrt{} 
2C

(1,m)
\mathrm{s}\mathrm{p}\mathrm{l}

\bigm\| \bigm\| f (m+1)
\bigm\| \bigm\| 
\infty 

a
(\alpha \mathrm{m}\mathrm{a}\mathrm{x}  - \alpha \mathrm{m}\mathrm{i}\mathrm{n}) ,(E.1)

and so s(\alpha ) is monotonically increasing and invertible for sufficiently large N .26 Because s(\alpha )
interpolates f(\alpha ), and because both functions are monotone, then range (s) = range (f). Since
s, f \in C1 and are invertible, by Lemma 4.1

\| pf  - ps\| 1 : =
f(\alpha \mathrm{m}\mathrm{a}\mathrm{x})\int 

f(\alpha \mathrm{m}\mathrm{i}\mathrm{n})

| pf (y) - ps(y)| dy =

f(\alpha \mathrm{m}\mathrm{a}\mathrm{x})\int 
f(\alpha \mathrm{m}\mathrm{i}\mathrm{n})

\bigm| \bigm| \bigm| \bigm| \bigm| c
\bigl( 
f - 1(y)

\bigr) 
f \prime (f - 1(y))

 - 
c
\bigl( 
s - 1(y)

\bigr) 
s\prime (s - 1(y))

\bigm| \bigm| \bigm| \bigm| \bigm| dy .(E.2)

Denote y = f(\alpha ) and \alpha  \star : = \alpha  \star (\alpha ) = s - 1 (f(\alpha )). Then by a change of variable

\| pf  - ps\| 1 =
\int \alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}

\bigm| \bigm| \bigm| \bigm| c(\alpha )f \prime (\alpha )
 - c(\alpha  \star )

s\prime (\alpha  \star )

\bigm| \bigm| \bigm| \bigm| f \prime (\alpha ) d\alpha =

\int \alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}

\bigm| \bigm| s\prime (\alpha  \star )c(\alpha ) - f \prime (\alpha )c(\alpha  \star )
\bigm| \bigm| 1

s\prime (\alpha  \star )
d\alpha .

(E.3)

For all \alpha \in [\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}],

| s\prime (\alpha  \star )c(\alpha ) - f \prime (\alpha )c(\alpha  \star )| \leq c(\alpha )| s\prime (\alpha  \star ) - s\prime (\alpha )| + c(\alpha )| s\prime (\alpha ) - f \prime (\alpha )| + f \prime (\alpha )| c(\alpha ) - c(\alpha  \star )| .

Because s\prime (\alpha ) and c(\alpha ) are differentiable,

| s\prime (\alpha  \star )c(\alpha ) - f \prime (\alpha )c(\alpha  \star )| \leq D| \alpha  - \alpha  \star | + \| c\| \infty | f \prime (\alpha ) - s\prime (\alpha )| ,(E.4)

where D = [\| c\| \infty \cdot \| s\prime \prime \| \infty + \| c\prime \| \infty \cdot \| f\| \infty ].27 By Lagrange's mean-value theorem, there ex-
ists \beta between \alpha and \alpha  \star such that

s(\alpha ) - s(\alpha  \star ) = s\prime (\beta ) (\alpha  - \alpha  \star ) .

26In the numerical example (6.1), this lower bound is roughly N > 30.
27By the same argument as (E.1), for a fixed \epsilon > 0 there exists a sufficiently large N0 such that

s\prime \prime (\alpha ) \leq f \prime \prime (\alpha ) + \epsilon for all N > N0. Therefore max \| s\prime \prime \| \infty \leq max \| f \prime \prime \| \infty + \epsilon , and so D is independent
of N and depends only on f(\alpha ), c(\alpha ), \alpha \mathrm{m}\mathrm{i}\mathrm{n}, and \alpha \mathrm{m}\mathrm{a}\mathrm{x}.D
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On the other hand, since \alpha  \star = s - 1(f(\alpha )), then s(\alpha  \star ) = f(\alpha ), and so

s(\alpha ) - s(\alpha  \star ) = s(\alpha ) - f(\alpha ) .

Therefore \alpha  - \alpha  \star =
s(\alpha ) - f(\alpha )

s\prime (\beta ) . By (E.1), s\prime (\beta ) \geq a
2 , and by Theorem 4.4, we have | f(\alpha ) - s(\alpha )| \leq 

C
(0,m)
\mathrm{s}\mathrm{p}\mathrm{l}

\bigm\| \bigm\| f (m+1)
\bigm\| \bigm\| 
\infty hm+1. Hence,

| \alpha  - \alpha  \star | \leq 
2C

(0,m)
\mathrm{s}\mathrm{p}\mathrm{l}

\bigm\| \bigm\| f (m+1)
\bigm\| \bigm\| 
\infty 

a
hm+1.

By Theorem 4.4, | f \prime (\alpha ) - s\prime (\alpha )| \leq C
(1,m)
\mathrm{s}\mathrm{p}\mathrm{l} \| f (m+1)\| \infty hm. Hence (E.4) reads

| s\prime (\alpha  \star )c(\alpha ) - f \prime (\alpha )c(\alpha  \star )| \leq K1h
m +K2h

m+1 ,(E.5)

where K1 = C
(0,m)
\mathrm{s}\mathrm{p}\mathrm{l} \| c\| \infty \| f (m+1)\| \infty and K2 = 2

aC
(0,m)
\mathrm{s}\mathrm{p}\mathrm{l} \| f (m+1)\| \infty D. Substituting 1

s\prime (\alpha  \star )
\leq 2

a ,

see (E.1), and (E.5) in (E.3), for sufficiently large N such that h = \alpha \mathrm{m}\mathrm{a}\mathrm{x} - \alpha \mathrm{m}\mathrm{i}\mathrm{n}
N - 1 < 1 we have

that

\| pf  - ps\| 1 \leq 
\alpha \mathrm{m}\mathrm{a}\mathrm{x}\int 

\alpha \mathrm{m}\mathrm{i}\mathrm{n}

2(K1 +K2)

a
hm d\alpha =

2(K1 +K2)

a
(\alpha \mathrm{m}\mathrm{a}\mathrm{x}  - \alpha \mathrm{m}\mathrm{i}\mathrm{n})h

m \leq K

Nm
,

where K = 2(K1+K2)
a (\alpha \mathrm{m}\mathrm{a}\mathrm{x}  - \alpha \mathrm{m}\mathrm{i}\mathrm{n})

m+1.
Similarly, by (E.5), we have that for 1 \leq q < \infty ,

\| pf  - ps\| qq \leq 
\int \alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}

\bigm| \bigm| \bigm| \bigm| 2(K1 +K2)

a
hm

\bigm| \bigm| \bigm| \bigm| q d\alpha \leq Kq(q)hqm

for a suitable K(q) > 0, and so \| pf  - ps\| q \leq K(q)hm \leq K(q)N - m.

Remark E.1. If f \prime (\alpha ) = 0 for some values of \alpha , the approximation ps is not guaranteed
to converge in the L1 norm. By (E.5), however, we can guarantee a third-order convergence
for the pointwise error pf (y) - ps(y) for every real number y such that f \prime (\alpha ) does not vanish
on \{ \alpha | f(\alpha ) = y\} .

Appendix F. Proof of Lemma 4.11. Similarly to the proof of (E.4),

| s\prime (\alpha  \star )c(\alpha ) - f \prime (\alpha )c(\alpha  \star )| \leq D| \alpha  - \alpha  \star | + c(\alpha )| f \prime (\alpha ) - s\prime (\alpha )| .

Because | \alpha  - \alpha  \star | \leq K2h
4, then by (E.3),

\| pf  - ps\| 1 \leq 
2K2

a
h4 +

\int \alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}

| f \prime (\alpha ) - s\prime (\alpha )| c(\alpha ) d\alpha .(F.1)

Since f \prime (\alpha ) - s\prime (\alpha ) is continuous on [\alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}], it vanishes and changes its sign only at JN<\infty 
points, denoted by \alpha \mathrm{m}\mathrm{i}\mathrm{n} = \gamma 0 < \gamma 1 < \cdot \cdot \cdot < \gamma JN = \alpha \mathrm{m}\mathrm{a}\mathrm{x}. Using integration by parts, the last
integral readsD
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\int \alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}

| f \prime (\alpha ) - s\prime (\alpha )| c(\alpha ) d\alpha = \eta 

J - 1\sum 
j=1

( - 1)j
\int \gamma j+1

\gamma j

\bigl( 
f \prime (\alpha ) - s\prime (\alpha )

\bigr) 
c(\alpha ) d\alpha 

= \eta 

JN - 1\sum 
j=1

( - 1)j
\Bigl[ 
c(\gamma j+1) (f(\gamma j+1) - s(\gamma j+1)) - c(\gamma j) (f(\gamma j) - s(\gamma j))

 - 
\int \gamma j+1

\gamma j

(f(\alpha ) - s(\alpha )) c\prime (\alpha ) d\alpha 
\Bigr] 
,

where \eta = sign [f \prime (\alpha \mathrm{m}\mathrm{i}\mathrm{n}) - s\prime (\alpha \mathrm{m}\mathrm{i}\mathrm{n})]. By Theorem 4.4,

| c(\gamma j)(f(\gamma j) - s(\gamma j))| \leq \| c\| \infty C
(0)
\mathrm{s}\mathrm{p}\mathrm{l}

\bigm\| \bigm\| \bigm\| f (4)
\bigm\| \bigm\| \bigm\| 
\infty 
h4 , 1 \leq j \leq JN ,

and \bigm| \bigm| \bigm| \bigm| \bigm| 
\int \gamma j+1

\gamma j

(f(\alpha ) - s(\alpha )) c\prime (\alpha ) d\alpha 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \bigm\| \bigm\| c\prime \bigm\| \bigm\| \infty (\gamma j+1  - \gamma j)C
(0)
\mathrm{s}\mathrm{p}\mathrm{l}

\bigm\| \bigm\| \bigm\| f (4)
\bigm\| \bigm\| \bigm\| 
\infty 
h4 , 1 < j \leq JN .

Substituting these bounds in (F.1) yields

\| pf  - ps\| 1 \leq 
2K2

a
h4 +K3h

4 +K4JNh4 ,

where K3 = \| c\prime \| \infty | \alpha \mathrm{m}\mathrm{a}\mathrm{x}  - \alpha \mathrm{m}\mathrm{i}\mathrm{n}| C(0)
\mathrm{s}\mathrm{p}\mathrm{l} \| f

(4)\| \infty and K4 = 2\| c\| \infty C
(0)
\mathrm{s}\mathrm{p}\mathrm{l} \| f

(4)\| \infty . In the case of a

uniform grid, the first two terms are O(N - 4), and the last term is O(N - 4JN ), which completes
the proof.

Appendix G. Proof of Lemma 5.2. For any y \in \BbbR , the CDF of f is

Pf (y) = Prob \{ f(\alpha \alpha \alpha ) \leq y\} =
1

\mu (\Omega )

\int 
D(y)

d\mu (\alpha \alpha \alpha ) =
1

\mu (\Omega )

\int 
D(y)

c(\alpha \alpha \alpha ) d\alpha \alpha \alpha ,(G.1)

where

D(y) := \{ \alpha \alpha \alpha \in \Omega | f(\alpha \alpha \alpha ) \leq y\} .(G.2)

To compute the PDF pf (y) :=
d
dyPf (y), we recall the co-area formula.

Lemma G.1 (see [16]). Let A \subseteq \BbbR d be a Jordan set, let u : A \rightarrow \BbbR be Lipschitz and
piecewise-differentiable such that u - 1(z) \subseteq A is a (d - 1) dimensional manifold for all z \in \BbbR ,
and let g \in L1(A). Then\int 

A
g(\alpha \alpha \alpha )| \nabla u(\alpha \alpha \alpha )| d\alpha \alpha \alpha =

\int 
z\in u(A)

dz

\int 
u - 1(z)

g(\alpha \alpha \alpha ) d\sigma ,(G.3)

where d\sigma is the (d - 1) dimensional surface element of u - 1(z).

We apply the co-area formula to the right-hand side of (G.1) by substituting A = D(y),
g = c

| \nabla f | and u = f in (G.3). The use of (G.3) is justified because of the following:
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1. D(y) is bounded, since \Omega is bounded. We can therefore show that D(y) is Jordan
by proving that m(\partial D(y)) = 0, where m is the Lebesgue measure in \BbbR d. Since
\partial D(y) \subseteq f - 1(y) \cup \partial \Omega , it is sufficient to show that each of these sets is of measure
zero. Indeed, \Omega is Jordan, and so m(\partial \Omega ) = 0. In addition, since | \nabla f | \not = 0 on f - 1(y),
by the implicit function theorem f - 1(y) is a (d  - 1) dimensional manifold, and so
m(f - 1(y)) = 0.

2. f is piecewise-differentiable by the conditions of Lemma 5.2. Furthermore, because f
is piecewise-differentiable on a compact set \=\Omega , it is also Lipschitz.

3. Since f is continuous and | \nabla f | \not = 0 on \=\Omega , then 1
| \nabla f | is bounded from above. Therefore,

since c \in L1, so is g = c
| \nabla f | .

Thus, by Lemma G.1 and (G.1),

Pf (y) =
1

\mu (\Omega )

\int 
D(y)

c(\alpha \alpha \alpha ) d\alpha \alpha \alpha =
1

\mu (\Omega )

\int y

 - \infty 
dz

\int 
f - 1(z)

c

| \nabla f | 
d\sigma .(G.4)

The outer integral on the right-hand side is over ( - \infty , y) since f(D(y)) \subseteq ( - \infty , y); see (G.2).
Finally, since pf (y) = d

dyPf (y), differentiating the last integral using the (one-dimensional)
Leibnitz integral rule yields (5.2).

Appendix H. Proof of Theorem 5.3. Since f \in Cm+1(\Omega ) and \Omega is compact, f is also
Lipschitz. Hence, Lemma 5.2 can be applied with m([0, 1]d) = 1 and c(\alpha \alpha \alpha ) \equiv 1, yielding

\| pf  - ps\| qq =
\int \infty 

 - \infty 
Iq(y) dy, I(y) :=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
f - 1(y)

1

| \nabla f | 
d\sigma  - 

\int 
s - 1(y)

1

| \nabla s| 
d\sigma 

\bigm| \bigm| \bigm| \bigm| \bigm| ,(H.1)

where \sigma is the (d - 1) dimensional surface measures induced by the Lebesgue measure.
The outline of the proof is as follows:
1. For a fixed y in the image of s(\alpha \alpha \alpha ), we construct a cover \{ Aj(y)\} dj=1 of s - 1(y).

2. We then construct a set of maps \phi j : Aj(y) \rightarrow f - 1(y), which are characterized in
Lemma H.1.

3. We construct a disjoint cover \~Aj \subseteq Aj(y) for 1 \leq j \leq d. Lemma H.3 proves that\bigl\{ 
\phi j( \~Aj)

\bigr\} d

j=1
are mutually disjoint, up to an O(hm) error, and almost cover f - 1(y),

up to an O(hm) error.
4. By an inclusion-exclusion argument and the implicit function theorem, we split the

integral of I(y) to d integrals over compact domains in \BbbR d - 1.
5. By Theorem 5.1, and similar to the proof of the one-dimensional counterpart (Theorem

4.7), we bound each of the integrals obtained in step 3. Thus, we obtain a pointwise
bound on pf (y) - ps(y).

6. Finally, we use compactness of \Omega and the fact that f, s \in C1(\Omega ) to bound \| pf  - ps\| 1.
Step 1. For brevity, denote by \partial \alpha j = \partial 

\partial \alpha j
the partial derivative along the jth axis for

1 \leq j \leq d. Fix y, and let Aj = Aj(y) \subseteq s - 1(y) be defined by

Aj : =
\Bigl\{ 
\alpha \alpha \alpha \in s - 1(y)

\bigm| \bigm| \bigm| | \partial \alpha jf(\alpha \alpha \alpha )| >
\kappa \mathrm{f}
d

\Bigr\} 
, j = 1, . . . , d .(H.2)
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Since | \nabla f | =
\sqrt{} \sum d

j=1(\partial \alpha jf)
2 \geq \kappa \mathrm{f} on \Omega , for every \alpha \alpha \alpha \in s - 1(y) at least one component of

\nabla f(\alpha \alpha \alpha ) satisfies | \partial \alpha jf | \geq 
\kappa \mathrm{f}
d .

28 Hence, \alpha \alpha \alpha \in Aj(y) for some 1 \leq j \leq d, and so

s - 1(y) = \cup d
j=1Aj(y) .(H.3)

Step 2. Next, we prove the existence of the maps \phi j : Aj \rightarrow f - 1(y).

Lemma H.1. Let \alpha \alpha \alpha \in Aj(y) and let h be defined as in Theorem 5.1. Then for a sufficiently
small h > 0, there exists a real number \delta = \delta (\alpha \alpha \alpha ) such that

1. \alpha \alpha \alpha + \delta (\alpha \alpha \alpha )\^ej \in f - 1(y), where \^ej is the unit vector in the direction of the jth axis;
2. the maps

\phi j(\alpha \alpha \alpha ) := \alpha \alpha \alpha + \delta (\alpha \alpha \alpha )\^ej , j = 1, . . . , d,(H.4)

are injective from Aj = Aj(y) to f - 1(y);
3. for every \alpha \alpha \alpha \in Aj,

\delta (\alpha \alpha \alpha ) = O(hm+1);(H.5)

4. for every E \subseteq Aj,

| \sigma (E) - \sigma (\phi j(E))| = O(hm) ,(H.6)

where as in (H.1), \sigma is the (d - 1) dimensional surface measure induced by the Lebesgue
measure on \Omega .

Proof. 1. We prove this for the case where y > f(\alpha \alpha \alpha ) and \partial \alpha jf(\alpha \alpha \alpha ) > 0 on \Omega . The
proofs for the three other cases are similar. Since f \in Cm+1(\Omega ) and \Omega is compact, all
the second derivatives of f are bounded, and so | \partial 2

\alpha j
f | < M2 < \infty on \Omega . Hence, since

\partial \alpha jf(\alpha \alpha \alpha ) >
\kappa \mathrm{f}
d , there exists a segment L = L(\alpha \alpha \alpha ) =

\bigl\{ 
\alpha \alpha \alpha + \xi \^ej , | \xi | < \xi \mathrm{m}\mathrm{a}\mathrm{x}

\bigr\} 
, where \xi \mathrm{m}\mathrm{a}\mathrm{x}

depends only on M2, such that \partial \alpha jf > \kappa \mathrm{f}
2d on L. Therefore f(\alpha \alpha \alpha + \xi \mathrm{m}\mathrm{a}\mathrm{x}\^ej) > f(\alpha \alpha \alpha ) +

\kappa \mathrm{f}
2d\xi \mathrm{m}\mathrm{a}\mathrm{x}. By the mean-value theorem, f attains on L all values in [f(\alpha \alpha \alpha ), f(\alpha \alpha \alpha )+ \kappa \mathrm{f}

2d\xi \mathrm{m}\mathrm{a}\mathrm{x}].
Now, by Theorem 5.1, since \alpha \alpha \alpha \in s - 1(y) and since y > f(\alpha \alpha \alpha ),

y  - f(\alpha \alpha \alpha ) = s(\alpha \alpha \alpha ) - f(\alpha \alpha \alpha ) \leq Cmhm+1 .(H.7)

Hence, for h sufficiently small, y \in [f(\alpha \alpha \alpha ), f(\alpha \alpha \alpha ) + \kappa \mathrm{f}\xi \mathrm{m}\mathrm{a}\mathrm{x}

2d ], and so there exists a point
\alpha \alpha \alpha + \delta (\alpha \alpha \alpha )\^ej \in L such that f(\alpha \alpha \alpha + \delta (\alpha \alpha \alpha )\^ej) = y.

2. Assume by negation that \phi j is not injective. Then there exist \alpha \alpha \alpha 1,\alpha \alpha \alpha 2 \in Aj such that
\phi j(\alpha \alpha \alpha 

1) = \phi j(\alpha \alpha \alpha 
2) = \lambda \lambda \lambda . Since \phi j only changes the jth coordinate (see (H.4)), we can

regard s and f as single-variable functions of the jth coordinate \alpha j . Since \phi j(\alpha \alpha \alpha 
1) =

\phi j(\alpha \alpha \alpha 
2) = \lambda \lambda \lambda , from the proof of item 1 in this lemma it follows that \lambda \lambda \lambda \in L(\alpha \alpha \alpha 1) \cap L(\alpha \alpha \alpha 2).

Hence, the segment between \alpha \alpha \alpha 1 and \alpha \alpha \alpha 2 is contained in L(\alpha \alpha \alpha 1)\cup L(\alpha \alpha \alpha 2), where we know
that | \partial \alpha jf | >

\kappa \mathrm{f}
2d . By Theorem 5.1, this means that if h is sufficiently small, | \partial \alpha js| > 0

on the segment between \alpha \alpha \alpha 1 and \alpha \alpha \alpha 2. This leads to a contradiction, since on the one
hand \alpha \alpha \alpha 1,\alpha \alpha \alpha 2 \in Aj(y) \subseteq s - 1(y), and so s(\alpha \alpha \alpha 1) = s(\alpha \alpha \alpha 2) = y, but on the other hand s(\alpha \alpha \alpha )
is strictly monotone on the segment between \alpha \alpha \alpha 1 and \alpha \alpha \alpha 2.

28Since \kappa \mathrm{f} \leq 
\sqrt{} \sum d

j=1(\partial \alpha jf)
2 \leq 

\surd 
dmaxj=1,...,d | \partial \alpha jf | , then maxj=1,...,d | \partial \alpha jf | \geq 

\kappa \mathrm{f}\surd 
d
> \kappa \mathrm{f}

d
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3. Since f \in C2, and by (H.4),

\partial \alpha jf(\phi j(\alpha \alpha \alpha )) - \partial \alpha jf(\alpha \alpha \alpha ) = \partial \alpha jf(\alpha \alpha \alpha + \delta (\alpha \alpha \alpha )\^ej) - \partial \alpha jf(\alpha \alpha \alpha ) = O(\delta (\alpha \alpha \alpha )) .(H.8)

In addition, by the Lagrange mean-value theorem, for any \alpha \alpha \alpha \in s - 1(y)

s(\alpha \alpha \alpha ) - f(\alpha \alpha \alpha ) = y - f(\alpha \alpha \alpha ) = f(\alpha \alpha \alpha + \delta (\alpha \alpha \alpha )\^ej) - f(\alpha \alpha \alpha ) = \partial \alpha jf(\alpha \alpha \alpha + \zeta \^ej) \cdot \delta (\alpha \alpha \alpha ) , 0 \leq \zeta \leq \delta .

Hence, using Theorem 5.1, and since | \partial \alpha jf | \geq 
\kappa \mathrm{f}
2d on the segment between \alpha \alpha \alpha and \phi j(\alpha \alpha \alpha )

(see the proof of item 1 in this lemma), we have that

| \delta (\alpha \alpha \alpha )| =
\bigm| \bigm| \bigm| \bigm| s(\alpha \alpha \alpha ) - f(\alpha \alpha \alpha )

\partial \alpha jf(\alpha \alpha \alpha + \zeta \^ej)

\bigm| \bigm| \bigm| \bigm| \leq Cmhm+1

\kappa \mathrm{f}
2d

= O(hm+1) .(H.9)

4. For brevity of notation and without loss of generality, fix j = d, and let E \subseteq Ad. In
this case, \partial \alpha d

s \not = 0 on E,29 and so by the implicit function theorem there exists a
function S such that if s(\alpha 1, . . . , \alpha d) = y, then \alpha d = S(\alpha 1, . . . , \alpha d - 1). The domain of
S is

GE : =
\bigl\{ 
(\alpha 1, . . . , \alpha d - 1) | \exists \alpha d \in [0, 1] s.t. (\alpha 1, . . . , \alpha d) \in E

\bigr\} 
.

In particular, if (\alpha 1, . . . , \alpha d - 1) \in GE , then s(\alpha 1, . . . , \alpha d - 1, S(\alpha 1, . . . , \alpha d - 1)) = y.
Therefore

\sigma (E) =

\int 
E
1 d\sigma =

\int 
GE

\sqrt{} 
1 + | \nabla S| 2 d\alpha 1 \cdot \cdot \cdot d\alpha d - 1 .

Furthermore, by the implicit function theorem, \partial \alpha jS =  - \partial \alpha j s

\partial \alpha d
s for 1 \leq j < d, and so

\sqrt{} 
1 + | \nabla S| 2 =

\sqrt{}    1 +
d - 1\sum 
j=1

\biggl( 
\partial \alpha js

\partial \alpha d
s

\biggr) 2

=
1

| \partial \alpha d
s| 

\sqrt{}    (\partial \alpha d
s)2 +

d - 1\sum 
j=1

\bigl( 
\partial \alpha js

\bigr) 2
=

1

| \partial \alpha d
s| 
| \nabla s| .

Hence,

\sigma (E) =

\int 
GE

| \nabla s| 
| \partial \alpha d

s| 
d\alpha 1 \cdot \cdot \cdot d\alpha d - 1 .(H.10a)

Next, since | \partial \alpha d
f | \geq \kappa \mathrm{f}

2d on \phi d(E) (see the proof of item 1 in this lemma), we similarly
apply the implicit function on \phi d(E): there exists function F : G\phi d(E) \rightarrow \BbbR where

G\phi d(E) \subset \BbbR d - 1 such that f(\alpha 1, . . . , \alpha d - 1, F (\alpha 1, . . . , \alpha d - 1)) = y. Hence, since \phi d(E) \subseteq 
f - 1(y),

\sigma (\phi d(E)) =

\int 
\phi d(E)

1 d\sigma =

\int 
G\phi d(E)

| \nabla f | 
| \partial \alpha d

f | 
d\alpha 1 \cdot \cdot \cdot d\alpha d - 1 .(H.10b)

Next, by item 2 of this lemma, \phi d induces a bijection \varphi d : GE \rightarrow G\phi d(E). But, because
\phi d only alters the \alpha d coordinate, \varphi d = Id, and so GE = G\phi d(E). Using this equality
and (H.10) yields

29\partial \alpha ds \not = 0 on Ad for sufficiently small h since | \partial \alpha df | \geq 
\kappa \mathrm{f}
d

on Ad, and since by Theorem 5.1 | \partial \alpha ds - \partial \alpha dd| =
O(hm).D
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\bigm| \bigm| \sigma (E) - \sigma (\phi d(E))
\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 

GE

\biggl( 
| \nabla f(\phi d(\beta \beta \beta ))| 
| \partial \alpha d

f(\phi d(\beta \beta \beta ))| 
 - | \nabla s(\beta \beta \beta )| 

| \partial \alpha d
s(\beta \beta \beta )| 

\biggr) 
d\alpha 1 \cdot \cdot \cdot d\alpha d - 1

\bigm| \bigm| \bigm| \bigm| 
\leq 

\int 
GE

\bigm| \bigm| | \nabla f(\phi d(\beta \beta \beta ))| \cdot | \partial \alpha d
s(\beta \beta \beta )|  - | \nabla s(\beta \beta \beta )| \cdot | \partial \alpha d

f(\phi d(\beta \beta \beta ))| 
\bigm| \bigm| 

| \partial \alpha d
f(\phi d(\beta \beta \beta ))| \cdot | \partial \alpha d

s(\beta \beta \beta )| 
d\alpha 1 \cdot \cdot \cdot d\alpha d - 1 ,

(H.11)

where for brevity we denote \beta \beta \beta : = (\alpha 1, . . . , \alpha d - 1, S(\alpha 1, . . . , \alpha d - 1)) \in E and note that
by (H.4)

(\alpha 1, . . . , \alpha d - 1, F (\alpha 1, . . . , \alpha d - 1)) = \phi d(\beta \beta \beta ) .

To bound the right-hand side of (H.11), note that since | \partial \alpha d
f | > \kappa \mathrm{f}

d on E, and since
by Theorem 5.1,

\bigm| \bigm| \partial \alpha d
s  - \partial \alpha d

f
\bigm| \bigm| \leq Cmhm, then for a sufficiently small h,

\bigm| \bigm| \partial \alpha d
s
\bigm| \bigm| > \kappa \mathrm{f}

2d
on E. Substituting these bounds in (H.11) yields

\bigm| \bigm| \sigma (E) - \sigma (\phi d(E))
\bigm| \bigm| 

\leq 2d2

\kappa 2\mathrm{f}

\int 
GE

\bigm| \bigm| | \nabla f(\phi d(\beta \beta \beta ))| \cdot | \partial \alpha d
s(\beta \beta \beta )|  - | \nabla s(\beta \beta \beta )| \cdot | \partial \alpha d

f(\phi d(\beta \beta \beta ))| 
\bigm| \bigm| d\alpha 1 \cdot \cdot \cdot d\alpha d - 1 .

(H.12)

Therefore, we can rewrite and bound the right-hand-side integrand by

\bigm| \bigm| | \nabla f(\phi d(\beta \beta \beta ))| \cdot | \partial \alpha d
s(\beta \beta \beta )|  - | \nabla s(\beta \beta \beta )| \cdot | \partial \alpha d

f(\phi d(\beta \beta \beta ))| 
\bigm| \bigm| 

\leq | \partial \alpha d
s(\beta \beta \beta )| \cdot 

\bigm| \bigm| | \nabla f(\phi d(\beta \beta \beta ))|  - | \nabla f(\beta \beta \beta )| 
\bigm| \bigm| + | \nabla f(\beta \beta \beta )| \cdot 

\bigm| \bigm| | \partial \alpha d
s(\beta \beta \beta )|  - | \partial \alpha d

s(\phi d(\beta \beta \beta ))| 
\bigm| \bigm| 

+ | \nabla f(\beta \beta \beta )| \cdot 
\bigm| \bigm| | \partial \alpha d

s(\phi d(\beta \beta \beta ))|  - | \partial \alpha d
f(\phi d(\beta \beta \beta ))| 

\bigm| \bigm| +| \partial \alpha d
f(\phi d(\beta \beta \beta ))| \cdot 

\bigm| \bigm| | \nabla f(\beta \beta \beta )|  - | \nabla s(\beta \beta \beta )| 
\bigm| \bigm| .

(H.13)

Since s, f \in C2(\Omega ) and \Omega is compact, \partial \alpha d
s, \partial \alpha d

f , and \nabla f are bounded on \Omega . Further-
more, since s, f \in C2, the first and second terms in the right-hand side of (H.13) are
O(\delta ), and so by (H.5) both of these terms are O(hm+1). In addition, by Theorem 5.1
the third and fourth terms on the right-hand side of (H.13) are O(hm). Hence, the
left-hand side of (H.13) is O(hm), and so finally, (H.12) reads

\bigm| \bigm| \sigma (E) - \sigma (\phi d(E))
\bigm| \bigm| \leq 2d2

\kappa 2\mathrm{f}

\int 
GE

Khm d\alpha 1, . . . , d\alpha d - 1
\leq \~Khm

for some constant \~K > 0.

We finish this step by noting that Lemma H.1 would still hold if we interchange f and s.
Hence, we have the following.

Corollary H.2. There exist sets Bj \subseteq f - 1(y) such that f - 1(y) = \cup d
j=1Bj and maps \~\phi j :

Bj \rightarrow s - 1(y) for which items 1--4 of Lemma H.1 hold, interchanging f and s.

Step 3. Next, we repartition s - 1(y) into disjoint sets \{ \~Aj\} dj=1, where
\~Aj \subseteq Aj for every

1 \leq j \leq d. Let \~A1 : = A1, and define

\~Aj : = Aj \setminus 
\Bigl( 
\cup j - 1
k=1

\~Ak

\Bigr) 
, 1 < j \leq d .(H.14)
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Since by construction \cup d
j=1

\~Aj = \cup d
j=1Aj , and since by (H.3) \cup d

j=1Aj = s - 1(y), then

\cup d
j=1

\~Aj = s - 1(y) .

Hence, since the sets
\bigl\{ 
\~Aj

\bigr\} d

j=1
are disjoint, we can rewrite the first component of I(y) (see

(H.1)) as \int 
s - 1(y)

1

| \nabla s| 
d\sigma =

d\sum 
j=1

\int 
\~Aj

1

| \nabla s| 
d\sigma .(H.15)

To prove a counterpart of (H.15) for
\int 
f - 1(y)

1
| \nabla f | 1 d\sigma , we first prove the following lemma.

Lemma H.3. Let \sigma be the surface measure on f - 1(y), let \{ \~Aj\} dj=1 be defined by (H.15),

and let \{ \phi j\} dj=1 be defined by (H.4).
1. For any 1 \leq k, j \leq d with k \not = j, then

\sigma 
\Bigl( 
\phi j( \~Aj) \cap \phi k( \~Ak)

\Bigr) 
= O(hm) .(H.16)

2.

\sigma 
\Bigl( 
f - 1(y) \setminus \cup d

j=1\phi j( \~Aj)
\Bigr) 
= O(hm) .(H.17)

Proof. 1. Fix the indices j \not = k and denote for brevity Djk = \phi j( \~Aj) \cap \phi k( \~Ak). Let
\beta \beta \beta \in Djk. By injectivity of \phi j and \phi k (see Lemma H.1), there exist unique points
\alpha \alpha \alpha (j) \in \~Aj and \alpha \alpha \alpha (k) \in \~Ak such that \phi j(\alpha \alpha \alpha 

(j)) = \phi k(\alpha \alpha \alpha 
(k)) = \beta \beta \beta . By definition (H.4),

\beta \beta \beta  - \alpha \alpha \alpha (j) = \delta (\alpha \alpha \alpha (j))\^ej , \beta \beta \beta  - \alpha \alpha \alpha (k) = \delta (\alpha \alpha \alpha (k))\^ek .

Since \^ej \bot \^ek and since by (H.5) \delta (\alpha \alpha \alpha j), \delta (\alpha \alpha \alpha j) = O(hm+1), then30

| \alpha \alpha \alpha (j)  - \alpha \alpha \alpha (k)| = O(hm+1) .

Next, denote the geodesic distance on s - 1 by | \cdot | s. Since s \in C1, then | \nabla s| is bounded
from above on \Omega and so | \alpha \alpha \alpha (j) - \alpha \alpha \alpha (k)| s = O(hm+1) as well. But since the interiors of \~Aj

and \~Ak are disjoint, then the geodesic path between \alpha \alpha \alpha (j) and \alpha \alpha \alpha (k) must pass through
a point \alpha \alpha \alpha  \star \in \partial \~Aj \cap \partial \~Ak. Hence,

| \alpha \alpha \alpha  \star  - \alpha \alpha \alpha (j)| s = O(hm+1).(H.18)

Since (H.18) holds for any \beta \beta \beta \in Djk and \alpha \alpha \alpha (j) = \phi  - 1
j (\beta \beta \beta ), then

\phi  - 1
j (Djk) \subseteq Ejk(h) :=

\Biggl\{ 
\alpha \alpha \alpha \in s - 1(y) | inf

\alpha \alpha \alpha  \star \in \partial \~Aj\cap \partial \~Ak

| \alpha \alpha \alpha  - \alpha \alpha \alpha  \star | s \leq Khm+1

\Biggr\} 
30Geometrically, the points \alpha \alpha \alpha (j), \alpha \alpha \alpha (k), and \beta \beta \beta are the vertices of a right-angle triangle, where both legs are

O(hm+1). Hence, by the Pythagorean theorem, the length of the hypotenuse is also O(hm+1).D
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for some K > 0. It is therefore sufficient to show that \sigma (Ejk(h)) = O(hm) for 0 <
h \ll 0.
By construction, \partial \~Aj \cap \partial \~Ak \subseteq \cup d

j=1\partial Aj . Since f \in C1, then \sigma (\cup d
j=1\partial Aj) = 0 and so

by monotonicity of measure \sigma (\partial \~Aj \cap \partial \~Ak) = 0 as well.31 Furthermore \partial \~Aj \cap \partial \~Ak, is a
finite union of smooth subsurface of s - 1(y), each of finite (d - 2) dimensional surface
measure.32 Finally, since \partial \~Aj \cap \partial \~Ak is compact in the topology of the smooth (d - 1)
dimensional manifold s - 1(y) (it is bounded and close), and since Ejk(h) is of geodesic
radius Khm+1 from \partial \~Aj \cap \partial \~Ak, then \sigma (Ejk) = O

\bigl( 
(h(m+1))(d - 1)

\bigr) 
\leq O(hm). Hence,

\sigma 
\bigl( 
\phi  - 1
j (Djk)

\bigr) 
\leq \sigma 

\bigl( 
Ejk(h)

\bigr) 
= O(hm) .(H.19)

In addition, since \phi j is injective, \phi j(\phi 
 - 1
j (Djk)) = Djk. Hence, by taking E = \phi  - 1

j (Djk)
in (H.6) yields

| \sigma (\phi  - 1
j (Djk)) - \sigma (Djk)| = | \sigma (E) - \sigma (\phi j(E))| \leq O(hm) .

Combined with (H.19) this proves that \sigma (Djk) = O(hm), as required.
2. Since \cup d

j=1\phi j( \~Aj) \subseteq f - 1(y), then

\sigma 
\Bigl( 
\cup d
j=1\phi j( \~Aj)

\Bigr) 
\leq \sigma 

\bigl( 
f - 1(y)

\bigr) 
.(H.20a)

On the other hand, by item (H.16) and by the inclusion-exclusion argument

\sigma 
\Bigl( 
\cup d
j=1\phi j( \~Aj)

\Bigr) 
=

d\sum 
j=1

\sigma 
\Bigl( 
\phi j( \~Aj)

\Bigr) 
 - 

\sum 
j1,j2

\sigma 
\Bigl( 
\phi j1(

\~Aj1) \cap \phi j2(
\~Aj2)

\Bigr) 
+ \cdot \cdot \cdot + ( - 1)d+1\sigma 

\Bigl( 
\phi 1( \~A1) \cap \cdot \cdot \cdot \cap \phi d( \~Ad)

\Bigr) 
=

d\sum 
j=1

\sigma 
\Bigl( 
\phi j( \~Aj)

\Bigr) 
+O(hm) =

d\sum 
j=1

\sigma 
\bigl( 
\~Aj

\bigr) 
+O(hm),

where the last equality is due to (H.6). Hence,

\sigma 
\Bigl( 
\cup d
j=1\phi j( \~Aj)

\Bigr) 
=

d\sum 
j=1

\sigma 
\bigl( 
\~Aj

\bigr) 
+O(hm) = \sigma (\cup d

j=1
\~Aj) +O(hm) = \sigma (s - 1(y)) +O(hm) ,

(H.20b)

where the second equality follows from the fact that the sets
\bigl\{ 
\~Aj

\bigr\} d

j=1
are disjoint, and

the third equality follows from \cup d
j=1

\~Aj = s - 1(y).
Since the left-hand sides of (H.20a) and (H.20b) are identical, it follows that

31For each 1 \leq j \leq d, the set \partial Aj is the boundary of the smooth manifold Aj , and so it is of measure zero.
32For example, if d = 3, then \partial \~Aj \cap \partial \~Ak is a finite set of curves, each with a finite length.D
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\sigma 
\bigl( 
s - 1(y)

\bigr) 
+O(hm) \leq \sigma 

\bigl( 
f - 1(y)

\bigr) 
.(H.21a)

Crucially, since by Corollary H.2, both Lemma H.1 and item 1 of this lemma remain
valid if we interchange f and s, we also have that

\sigma 
\bigl( 
f - 1(y)

\bigr) 
+O(hm) \leq \sigma 

\bigl( 
s - 1(y)

\bigr) 
.(H.21b)

Combining the two inequalities of (H.21) yields that

| \sigma (f - 1(y)) - \sigma (s - 1(y))| = O(hm) .(H.22)

Finally

\sigma 
\Bigl( 
f - 1(y) \setminus \cup d

j=1\phi j( \~Aj)
\Bigr) 
= \sigma 

\bigl( 
f - 1(y)

\bigr) 
 - \sigma 

\Bigl( 
\cup d
j=1\phi j( \~Aj)

\Bigr) 
\leq 

\bigm| \bigm| \sigma \bigl( 
f - 1(y)

\bigr) 
 - \sigma 

\bigl( 
s - 1(y)

\bigr) \bigm| \bigm| +O(hm) = O(hm) ,

where the inequality in the first line is due to (H.20b), and the last equality is
due to (H.22).

Step 4. By (H.17), and since 1
| \nabla f | \leq 

1
\kappa \mathrm{f}
, then\int 

f - 1(y)

1

| \nabla f | 
d\sigma =

\int 
\cup d
j=1\phi j( \~Aj)

1

| \nabla f | 
d\sigma +O(hm) .

Hence, by an inclusion-exclusion argument,

\int 
f - 1(y)

1

| \nabla f | 
d\sigma = O(hm) +

d\sum 
j=1

\int 
\phi j( \~Aj)

1

| \nabla f | 
d\sigma 

 - 
d\sum 

j1<j2
j1=1

\int 
\phi j1

( \~Aj1
)\cap \phi j2

( \~Aj2
)

1

| \nabla f | 
d\sigma + \cdot \cdot \cdot + ( - 1)d - 1

\int 
\phi 1( \~A1)\cap \cdot \cdot \cdot \cap \phi d( \~Ad)

1

| \nabla f | 
d\sigma .

(H.23)

But, by (H.16), we can reduce all of the higher-order terms to yield\int 
f - 1(y)

1

| \nabla f | 
d\sigma =

d\sum 
j=1

\int 
\phi j( \~Aj)

1

| \nabla f | 
d\sigma +O(hm) .(H.24)

Hence, substituting (H.15) and (H.24) into (H.1) yields

I(y) \leq 
d\sum 

j=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\phi j( \~Aj)

1

| \nabla f | 
d\sigma  - 

\int 
\~Aj

1

| \nabla s| 
d\sigma 

\bigm| \bigm| \bigm| \bigm| \bigm| +O(hm) .(H.25)

Step 5. By (H.25), in order to show that I(y) = O(hm), it is sufficient to prove that
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Ij(y) :=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\phi j( \~Aj)

1

| \nabla f | 
d\sigma  - 

\int 
\~Aj

1

| \nabla s| 
d\sigma 

\bigm| \bigm| \bigm| \bigm| \bigm| = O(hm) , 1 \leq j \leq d .(H.26)

This proof is similar to that of item 4 in Lemma H.1. For ease of notation, we assume with-
out loss of generality that j = d. In this case, \partial \alpha d

s \not = 0 on \~Aj ,
33 and so by the implicit function

theorem there exists a function S such that if s(\alpha 1, . . . , \alpha d) = y, then \alpha d = S(\alpha 1, . . . , \alpha d - 1).
The domain of S is

G \~Ad
: =

\bigl\{ 
(\alpha 1, . . . , \alpha d - 1) | \exists \alpha d \in [0, 1] s.t. (\alpha 1, . . . , \alpha d) \in \~Ad

\bigr\} 
.

In particular, if (\alpha 1, . . . , \alpha d - 1) \in G \~Ad
, then s(\alpha 1, . . . , \alpha d - 1, S(\alpha 1, . . . , \alpha d - 1)) = y. Therefore\int 

\~Ad

1

| \nabla s| 
d\sigma =

\int 
G \~Ad

1

\nabla s (\alpha 1, . . . , \alpha d - 1, S(\alpha 1, . . . , \alpha d - 1))
\bigm| \bigm| \sqrt{} 1 + | \nabla S| 2 d\alpha 1 \cdot \cdot \cdot d\alpha d - 1 .

Furthermore, by the implicit function theorem, \partial \alpha jS =  - \partial \alpha j s

\partial \alpha d
s for 1 \leq j < d, and so

\sqrt{} 
1 + | \nabla S| 2 =

\sqrt{}    1 +
d - 1\sum 
j=1

\biggl( 
\partial \alpha js

\partial \alpha d
s

\biggr) 2

=
1

| \partial \alpha d
s| 

\sqrt{}    (\partial \alpha d
s)2 +

d - 1\sum 
j=1

\bigl( 
\partial \alpha js

\bigr) 2
=

1

| \partial \alpha d
s| 
| \nabla s| .

Hence, \int 
\~Ad

1

| \nabla s| 
d\sigma =

\int 
G \~Ad

1

| \partial \alpha d
s| 

d\alpha 1 \cdot \cdot \cdot d\alpha d - 1 .(H.27a)

Similarly, since | \partial \alpha d
f | \geq \kappa \mathrm{f}

2d > 0 on \phi j( \~Aj), applying the implicit function theorem to f yields a
function F :G\phi d( \~Ad)

\rightarrow \BbbR where G\phi d( \~Ad)
\subset \BbbR d - 1, such that f(\alpha 1, . . . , \alpha d - 1, F (\alpha 1, . . . , \alpha d - 1)) = y,

and \int 
\phi d( \~Ad)

1

| \nabla f | 
d\sigma =

\int 
G\phi d(

\~Ad)

1

| \partial \alpha d
f | 

d\alpha \prime 
1 \cdot \cdot \cdot d\alpha \prime 

d - 1 .(H.27b)

Next, by item 2 of Lemma H.1, \phi d induces a surjective map \varphi d : G \~Ad
\rightarrow G\phi d( \~Ad)

. But,
because \phi d only alters the \alpha d coordinate, \varphi d = Id, and so G \~Aj

= G\phi d( \~Ad)
. Substituting this

equality and (H.27) into (H.26) yields

Id(y) \leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
G \~Ad

\biggl( 
1

| \partial \alpha d
f | 

 - 1

| \partial \alpha d
s| 

\biggr) 
d\alpha \prime 

1 \cdot \cdot \cdot d\alpha \prime 
d - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\int 
G \~Ad

| \partial \alpha d
f  - \partial \alpha d

s| 
| \partial \alpha d

f | \cdot | \partial \alpha d
s| 

d\alpha \prime 
1 \cdot \cdot \cdot d\alpha \prime 

d - 1 .

(H.28)

Bounding (H.28) is similar to its one-dimensional counterpart in Appendix E. Since
| \partial \alpha d

f | > \kappa \mathrm{f}
d , and since by Theorem 5.1,

\bigm| \bigm| \partial \alpha d
s - \partial \alpha d

f
\bigm| \bigm| \leq Cmhm, then for a sufficiently small h,\bigm| \bigm| \partial \alpha d

s
\bigm| \bigm| > \kappa \mathrm{f}

2d on \phi d( \~Ad). Substituting these bounds in (H.28) yields

33As before, this follows for sufficiently small h from the fact that | \partial \alpha df | \geq 
\kappa \mathrm{f}
d
onAd(y) and from Theorem 5.1.D
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Id(y) \leq 
2d2

\kappa 2\mathrm{f}

\int 
G \~Ad

| \partial \alpha d
s(\alpha 1, . . . , \alpha d - 1, S(\alpha 1, . . . , \alpha d - 1))

 - \partial \alpha d
f(\alpha 1, . . . , \alpha d - 1, F (\alpha 1, . . . , \alpha d - 1))| d\alpha 1 \cdot \cdot \cdot d\alpha d - 1 .

Next, if we denote \beta \beta \beta = (\alpha 1, . . . , \alpha d - 1, S(\alpha 1, . . . , \alpha d - 1)), then by (H.4)

\phi d(\beta \beta \beta ) = (\alpha 1, . . . , \alpha d - 1, F (\alpha 1, . . . , \alpha d - 1)) .

Therefore, we can rewrite and bound the left-hand-side integrand by

| \partial \alpha d
s(\beta \beta \beta ) - \partial \alpha d

f(\phi d(\beta \beta \beta ))| \leq | \partial \alpha d
s(\beta \beta \beta ) - \partial \alpha d

f(\beta \beta \beta )| + | \partial \alpha d
f(\beta \beta \beta ) - \partial \alpha d

f(\phi d(\beta \beta \beta ))| .(H.29)

This bound is very similar to its one-dimensional counterpart in (E.3). The first term on the
right-hand side of (H.29) is O(hm); see Theorem 5.1. In addition, since f \in C2, the second
term in the right-hand side of (H.29) reads

| \partial \alpha d
f(\beta \beta \beta ) - \partial \alpha d

f(\phi d(\beta \beta \beta ))| \leq M2| \beta \beta \beta  - \phi d(\beta \beta \beta )| = M2| \delta (\beta \beta \beta )| = O(hm+1) ,

where, as before, M2 = max\Omega | \partial 2
\alpha d
f | and the last equality is due to (H.7). Applying these

bounds to (H.29) yields

Id(y) \leq 
2d2

\kappa 2\mathrm{f}

\~Khm
\int 
G \~Ad

d\alpha 1 \cdot \cdot \cdot d\alpha d - 1 = Khm(H.30)

for some constants \~K,K > 0. Moreover, since (H.30) holds for Ij(y) for all indices 1 \leq j \leq d,
then by (H.25)

I(y) \leq 
d\sum 

j=1

Ij(y) +O(hm) \leq dKhm +O(hm) .

Step 6. Although \| pf - ps\| 1 =
\int \infty 
 - \infty I(y) dy, since \Omega is compact and s and f are continuous,

Q1 \leq s, (\alpha \alpha \alpha ), f(\alpha \alpha \alpha ) \leq Q2,

and so I(y) = 0 for y \not \in [Q1, Q2]. Hence, by (H.30)

\| pf - ps\| q =
\biggl( \int \infty 

 - \infty 
Iq(y) dy

\biggr) 1
q

=

\biggl( \int Q2

Q1

Iq(y) dy

\biggr) 1
q

\leq (Kqhqm(Q2 - Q1))
1
q \leq K(Q2 - Q1)

1
q hm .
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