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Self-focusing in the presence of small
time dispersion and nonparaxiality
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We analyze the combined effect of small time dispersion and nonparaxiality on self-focusing and its ability
to arrest the blowup of laser pulses by deriving reduced equations that depend on only the propagation
distance and time. We calculate the pulse duration for which time dispersion dominates over nonparaxiality,
or vice versa. We identify additional terms (shock term, group-velocity nonparaxiality, etc.) that should be
retained when time dispersion and nonparaxiality are of comparable magnitude. These additional terms
lead to temporal asymmetry, and in the visible spectrum they can dominate over both time dispersion and
nonparaxiality.  1997 Optical Society of America
The simplest model for optical self-focusing is the
nonlinear Schrödinger equation (NLS):

icz 1 D'c 1 jcj2c ­ 0, cs0, rd ­ c0srd . (1)

Here csz, rd is the electric field envelope of a laser
beam propagating in a medium with Kerr nonlinearity,
z is the distance in the direction of the propagation,
r ­ sx2 1 y2d1/2 is the radial coordinate, and D' ­
≠2y≠r2 1 s1yrd s≠y≠rd is the Laplacian in the transverse
two-dimensional (2D) plane. It is well known that if
the initial power is more than a critical value (i.e.,R

jc0j2rdr $ Nc > 1.86), solutions of Eq. (1) may blow
up in a finite distance z. Since physical quantities
do not become infinite, it is clear that the validity
of Eq. (1) breaks down near the focal point and that
additional physical mechanisms, which are initially
small, become important there and prevent singularity
formation.

In this Letter we focus on the combined effect of
two mechanisms that may arrest blowup and that
are neglected when one is approximating Maxwell’s
equations by use of the NLS: small time disper-
sion and beam nonparaxiality. Previously it was sug-
gested that small nonparaxiality arrests self-focusing
and leads to an oscillatory focusing–defocusing behav-
ior.1,2 In other studies it was shown that small nor-
mal time dispersion delays the onset of self-focusing
and causes the temporal splitting of the pulse into two
peaks that continue to focus.3,4 However, it is still un-
known at present whether the solution will ultimately
blow up or not. Recently, pulse splitting was observed
experimentally.5

An important question that arises when one is mod-
eling physical self-focusing is whether time disper-
sion and (or) nonparaxiality should be included in
the model. In this Letter we answer this question
by identifying the regimes in which each mechanism
dominates. While we are doing this, additional terms
are identified that should be kept in the model when
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time dispersion and nonparaxiality are of the same or-
der. In fact, these additional terms can even dominate
over both time dispersion and nonparaxiality in the vis-
ible spectrum. We then derive reduced equations that
describe self-focusing when all the above mechanisms
are present. We use these reduced equations to ana-
lyze the combined effect of normal time dispersion and
nonparaxiality (both of which arrest self-focusing), the
case of anomalous time dispersion and nonparaxiality,
(which have opposite focusing effects), and the inf lu-
ence of the additional terms.

We begin by deriving the NLS with nonparaxiality
and time dispersion. If we neglect vectorial effects,6

the electric f ield can be assumed to have the form

Esx, y, z, td ­ eAsx, y, z, tdexpsik0z 2 iv0td ,

where the unit vector e is perpendicular to the z axis.
The equation for the slowly varying envelope A is7
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where k ­ vn0svdyc, k0 ­ ksv0d, cg
21 ­ sdkydvdv0 , n0

is the linear index of refraction, and n2 is the Kerr
coefficient. We change to a nondimensional moving-
frame coordinate system with
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r
r0
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z

2Ldiff
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t 2 zycg

T
,

c ­ r0k0

s
2n2
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where r0 is the initial pulse width, Ldiff ­ r0
2k0 is

the diffraction length, and T is the pulse duration.
Dropping the tilde and neglecting the sjAj2Adtt term,
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which is Ose2
2d, we find that the equation for the

nondimensional envelope c is

icz 1 D'c 1 jcj2c 1 e1czz

1 e2

∑
2i

n0cg

c
sjcj2cdt 2 czt

∏
2 e3ctt ­ 0 , (2)

where
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1

4r0
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, e2 ­

1
cgk0T

­
1
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c

n0cg

,

e3 ­
Ldiffkvv

T2
. (3)

The dimensionless parameter e1 , swavelengthyradial
pulse widthd2, e2 ,(period of one oscillationypulse du-
ration), and e3 is a dimensionless measure of group-
velocity dispersion. Note that

e2
2 ­ e1e3F , F ­

4
cg

2k0kvv

.

The f irst component of the e2 term is sometimes
called the shock term.8 The second component can be
replaced with

2e2czt , 2ie2fD'ct 1 sjcj2cdtg , (4)

and its linear part s2ie2D'ctd was interpreted by
Rothenberg as the effect of the variation of the group
velocity of a tilted ray projected onto the z axis.8

Let us define Tb as the pulse duration for which
time dispersion and nonparaxiality are of the same
magnitude (i.e., e1 ­ je3j):

Tb ­ 2Ldiff

q
jk0kvvj ­

4p
jF j

Ldiff

cg

.

If F is Os1d, then, when T ø Tb, time dispersion will
initially dominate and e1 ø e2 ø e3, but as the pulse
becomes narrower e1 , r22 increases while e3 , r2

decreases. When T ¿ Tb, nonparaxiality dominates
and e1 ¿ e2 ¿ e3. Note that it is not possible to
include in the model both the e1 and the e3 terms
without also retaining the e2 term.

The e2 term is usually assumed to be small com-
pared with either time dispersion or nonparaxiality.
However, we now show that in the visible spectrum
it can dominate both. The index of refraction of op-
tical materials such as water9 or silica10 in the range of
transparency is almost constant, and jvnvj ø 1.11 For
example, by use of data digitized from Ref. 9 it was es-
timated that for water in the visible spectrum jvnv j ,
0.03.12 Therefore, cg , cyn0, e2 . 0 and

jF j ,
2n0

jvnvj
¿ 1 ,

with F , 100 for water, for example. This implies
that in the visible regime and with T ­ OsTbd both e1

and e3 are small fOs1y
p

jF j dg compared with e2. When
T ­ Tb

p
jF j (or T ­ Tby

p
jF j), e1 ­ e2 (or e3 ­ e2) and

e3ye2 ­ Os1yF d [or e1ye2 ­ Os1yF d]. Only when T ¿

Tb

p
jF j (or T ø Tby

p
jF j) do we have that e3 ø e2 ø e1

(or e1 ø e2 ø e3). Moreover, using relation (4) and
cg , cyn0, we f ind that Eq. (2) reduces to

icz 1 D'c 1 jcj2c 1 e1czz 1 ie2f sjcj2cdt 2 D'ctg

2 e3ctt ­ 0 . (5)

The separate effects of small time dispersion and
nonparaxiality were analyzed before2,4 by use of a
perturbation method that permits the derivation of
simplified equations.13 Brief ly, near the focal point
the solutions of Eq. (2) or (5) have the form

csz, t, rd ,
1

Lsz, td
R

µ
r
L

∂
exp

"
izsz, td 1 i

Lzr2

4L

#
,

where Rsrd . 0, the radial profile (Townes soliton), sat-
isfies D'R 2 R 1 R3 ­ 0 and

R
R2rdr ­ Nc. By aver-

aging over the transverse coordinates we find that the
modulation functions L and z must satisfy the reduced
equations

zzsz, td ­
1

L2
, Lzzsz, td ­ 2

bsz, td
L3

, (6)

bzsz, td ­ 2g1

µ
1

L2
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z

2 g2

µ
1

L2

∂
t

1 g3ztt , (7)

where g1 ­ 2e1NcyM, g2 ­ e2s6cgn0yc 2 2dNcyM for
Eq. (2) and g2 ­ 4e2NcyM for Eq. (5), g3 ­ 2e3NcyM
and M ­ 1y4

R
R2r3rdr > 0.55. The modulation

functions have the following meaning13,14: b is pro-
portional to the excess cross-sectional power above
critical, L is the nondimensional radial pulse width and
is also inversely proportional to the on-axis intensity
jcsz, t, r ­ 0dj so that blowup occurs when L ­ 0, and
z is the rescaled axial distance. The system of equa-
tions (6) and (7) is much easier than Eq. (2) for both
analysis and simulations, since the radial dependence
has been eliminated.

In the pulse-splitting experiment5 the values of
the nondimensional parameters are e1 ­ 1.3 3 1026,
e2 ­ 5 3 1023, e3 ­ 1.5 3 1021. Using these val-
ues and the initial conditions Ls0, td ; 1, bs0, td ­
Ncf1.05 exps2t2d 2 1gyM , we integrated Eqs. (6) and
(7). These initial conditions may not be close to those
of the experiment in the focusing regime, which are
unknown, but they do give an idea of how the pulse
evolves. We observe (Fig. 1) pulse splitting (owing to
normal time dispersion), accompanied by a temporal

Fig. 1. Evolution of the on-axis intensity s1yLd versus time
according to Eqs. (6) and (7) at the propagation distances
indicated.
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shift of the focus toward later times and enhanced fo-
cusing of the second peak (owing to the e2 term).

Following Ref. 4, we can analyze the initial effect
of the three terms in Eq. (2) by looking at special
solutions of Eqs. (6) and (7). Away from the focal
point, the three perturbing terms in Eq. (2) are small
and each t cross section of the pulse [i.e., the 2D plane
t ­ const in the sx, y, td space] focuses independently
with

Lsz, td ­ LsZcstd 2 zd, bsz, td ­ bsZcstd 2 zd,

z sz, td ­ z sZcstd 2 zd . (8)

Here Zcstd is the location of the focus in the sz, td plane
when e1 ­ e2 ­ e3 ­ 0.14 Therefore, Eq. (7) becomes

bz ­ 2g1

√
1

L2

!
z

1 g2
ÙZc

√
1

L2

!
z

1 g3s2Z̈czz 1 ÙZc
2zzzd,

where . ­
d
dt

. (9)

Equation (9) can be transformed into a nonlinear Airy
equation4

gss ­ sg 1 kg3, with g ­ L21 . 0 . (10)

Here

s ­ sb0 2 g3Z̈cz d sg3Z̈cd22/3, b0 , bs0, td ,

k ­ 2sg1 2 g2
ÙZc 2 g3

ÙZc
2d sg3Z̈cd22/3.

The initial conditions for Eq. (10) are given at

s0std :­ ssz ­ 0, td , bs0, td sg3Z̈cd22/3.

At time t0 of the initial peak power of the pulse,
Zcstd attains its minimum, ÙZcst0d ­ 0, and the evolution
is given by Eq. (10) with k ­ 2g1sg3Z̈cd22/3 , 0.
Because Z̈cst0d . 0, as z ! Zc and z ! 1`, s ! 2`
for normal time dispersion se3 . 0d, and both time
dispersion and nonparaxiality [the first and second
terms on the right-hand side of Eq. (10), respectively]
contribute to the arrest of the blowup by preventing
g from becoming infinite. When time dispersion is
anomalous se3 , 0d, it enhances blowup ss ! 1`d,
whereas nonparaxiality opposes it. Eventually, as
s ! 1` nonparaxiality prevails and the solution of
Eq. (10) will decay (no blowup).

In the case of normal time dispersion and e1 ­ e2 ­
0, blowup is arrested only in an exponentially small
neighborhood of t0, where pulse splitting occurs.4 To
assess the added effects of nonparaxiality and the
mixed term, we note that the condition for blowup4 in
Eq. (10) as s ! 2` is k . 2L2s0, tdAi2ss0d or

g3
ÙZc

2 . g1 2 g ÙZc 1 2L2s0, tdAi2ss0d sg3Z̈cd2/3,

where Aissd is the Airy function. Therefore, if non-
paraxiality dominates, arrest of blowup occurs over a
much larger region (possibly everywhere). If the e2

term dominates, blowup will occur when e3 . 2e2y ÙZc,
i.e., only for t . t0. Note that as the solution starts to
deviate from that of the unperturbed NLS, the 2D self-
similar structure [Eqs. (8)] will gradually break down.
Therefore, for later z this 2D self-similar argument be-
comes invalid, and the full three-dimensional nature of
Eq. (7) has to be considered.

From Eq. (9) we see that the effect of the e2 term
on a self-focusing pulse is a temporal power transfer
toward later times (recall that b is proportional to the
excess power above critical). This will result in an
asymmetric temporal development of the pulse, with
a greatly enhanced trailing portion and a suppressed
leading part, in agreement with previous results on the
effect of the shock term15 and of the linear component
of the e2 terms.8
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