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Proof of Theorem 1 and Corollary 3. Because of the differentiability
of F, there exist positive constants 5(si,) and C(fi4), such that for
all p that satisfy Eq. 3,

k
2
Flu)=F(q) = Y (w < C(a) =R
j=1 J #a
If F is symmetric, then
oF :i , J=1,... k. [S1]
OH; Ha Oy Ha

Because iy is the arithmetic average,
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Hence, the result follows.
Note that symmetry was used only to derive Eq. S1. Because

or

OH; i

i T4+ né0) —F(ﬁA)7
n—0 n

deriving Eq. S1 requires only weak symmetry. Therefore, Corol-
lary 3 follows.

Proof of Lemma 2. We calculate F(uj, up) explicitly, using the
steady-state transition diagram that is shown in Fig. S1. We
denote by p; the steady-state probablhty for the system to be with
i customers and by p; 9 and )2 O the steady-state probability
for the system to be with one customer 1n servers 1 and 2, re-
(1,0)
spectively. In particular, py =p; " + p . Because in steady
state the amount of inflow is equal to the amount of outflow, the

following equalities hold:

apo = mpy™” + uop™, [S2a]

4 _ (10)
3P0 +upr = (A+p)py [S2b]

4 _ (0.1)
3P0+ pp2 = (A+p)py s [S2c]

(1.0) ©.1) _

Apy "+ Apy T 4 (g F pa)ps = (A4 py + up)pa, [S2d]
APn 4 (1 + p)pnv2 = A+ py + o)1, n=2,3,... [S2e]

We can view Eqs SZa—SZc as a linear system for the three un-

knowns py, p; 10 ,P1 - Solving this system for p, yields

2uipy
12

Po = P2

n-2
In addition, the solution of Eqs. S2d and S2e is p, = (M—ih)
p2 = p""2p, for n > 1. Substituting the above in
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gives pp = ( +,1,) - Therefore,

/’lla/’lz

ann—znp p2= —Zn/)

n=0 n=0 n()
pz”n'pz(l)’pzl
=== p

ﬂ<2;> L=p (1-p)”

and the result follows.

M/M/3 Queue. Consider the case of three heterogeneous servers
with average service times {41, {42, and p3. Denote by py, p<1 ),

PR D p2 , and , the steady-
state probabilities. Thus for example, Dy’ i is the steady-state
probability that servers 1 and 3 are busy, server 2 is free, and
there are no waiting customers in the queue (we denote by p,,
n > 2 the probability of having n customers in the system). The
transition diagram for k = 3 servers is given in Fig. S2. The
steady-state equations are

(1,0,0)

0,1,0
Ipo = mp} -

0,0.1)
+ Hopy (
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3170 + pHop,” O M3P2 (100

= (m+2py 7,

1)

A (1,1,0) o1, 0,1,0
3170 +ﬂ1pz )+ M3P2 = (up + /1)175 : >v

(1,0,1)

A (0,0,
3P0+ b Y,

011) — (45

+ papS +A)p!

A 100 , A (010

_ (1,1,0)
§P1 +§P1 + p3p3 =

A+ +u)py

A (100) , A (001 1,01
o 5, (1 + )™,

2p1 2 + ﬂ2p3

A 010 , 4 (001

(0,1,1)
jpl + §P1 +mp3 =

(A+uy +p3)py s

= (A4 1 + pp + u3)p3,

Wpn + (1 + My + p3)Pni2 = (A+ py + po + H3)Pnr1, n 23,
Z pn=1
n=0
n-3
The solution of the last two equations is p, = ( ) p3for
n > 2. The values of p, p1, p» as a function of p3 can Zb valuated
explicitly with MAPLE, by solving the firs 1= 7 linear
1,007 (0,1,00° (0,0,1) (110) (1,0,1)
equations for py, p; ", pl »py s Py, py s and
10f3
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. The resulting expression for F(uj, uz, uz), however, is
extremely cumbersome and not informative.

0,1,1
po

Proof of Theorem 4. Because customers are randomly assigned to
the available servers, F(uy, .. ., pix) is symmetric. To see that F is
differentiable in (uy, ..., px), we note that F = > np,, where
Pn is the steady-state probablhty that there are n customers in
the system. In addition, {pn} _, are the solutions of a linear
system with coefficients that depend smoothly on (uy, ..., u),
n—k
and p, = (m) pr for n > k — 1. This was shown explic-

itly for the cases k = 2 and k& = 3; the proof for £ > 3 is similar.

Averaging Principle for Functions (Proof of Eq. 12). Let Fy, ..., F;
belong to a function space F,lete € R, and letR : (Fy, ..., Fy) ~
R[F}, ..., F;] € R be a functional. We say that the functional R is
differentiable if it is twice differentiable in the sense of Fréchet.
(We can also relax this assumption and assume that R is once
differentiable in the sense of Fréchet, and the scalar function

R(e) :=R[Fy =F + €H,,...,Fy = F + eH,] is twice differentia-
ble at and near € = 0, for every F, Hy, ..., H, € F.) By Taylor
expansion,

. . d
R(e):R(O)—I—eZd— R| (F,...,F)+eHie;| +O(€)
j:1 6620 xk
where
d . 6R
del RIPsoP) ] = G [H],

and 28 o, is the Fréchet derivative of R[F1, ..

F,. Therefore,

., Fi] with respect to

k
R(e) = R(0) + ezg—g [H;] +0(€).

Because R is symmetric and the Fréchet derivative is a linear
operator,

~ ~ 6R 2

R(e) = R(0) +e5r ;Hj +0(€)
Denote F:=15" F; and H;:=F;—F. Then Z] H;=0.
Hence, R(e) = R 0) +O( 2), Wthh is Eq. 12.
Proof of Theorem 6. We first prove that F is differentiable. De-
note & =1 if individuals i and i’ influence each other and
6;; = 0 otherwise. For every k, every set of k consumers {iy, i,

, ix}, and every increasing sequence of times 0 <#; < ... <
t,, denote by P(iy, ty, is, t2, ... , i, t;) the probability that
consumer i; adopts the product before time #;, consumer i,
adopts the product between times ¢; and t,, etc., and all con-
sumers who are not in {iy, ..., i} do not adopt the process by
time f;. Then,

Plis,ti) = (1-exp(-piyn) TTexp(~pin )-
J#i
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Similarly,
P(i15t17i27t21 s 7ikatk) =
P(l'1,l‘1,l'2,l‘2, ... 7ik—17tk—1)

k-1
X <1 —exp (— (Pik + > 5ik,iqu'm) (t —fk—l)))
m=1

k-1
x [I exp (— (Pj + 2 5j‘iqu‘n,) (tx —fk—l))-
i } m=1

JE{irsd

Hence, the function P(iy, t1, ip, t3, ... ,
{pi» q;}- Finally,

ix, 1) is differentiable in

(e fo} o)) =3 S o
X iz Juma

where 7z ranges over all permutations on the set of M individ-
uals. Therefore, the differentiability of E[N(t;{p;},{g;})]
follows.

Because the network is translation invariant, F is weakly
symmetric in {p;} and in {g;}. By this we mean that

J;kflztksz(l.htl’ s 7ik—17tk—17ik7t)dtk—l B 'dth

If p =p, pj = p for all j # m, and g; = q for all j, then F is
independent of the value of m.

If g, =g, q; = q for all j # n, and p; = p for all j, then F is

independent of the value of n.

Therefore, the result follows from a slight modification of the
proof of Theorem 1.

Proof of Eq. 14. Because F is symmetric, the quadratic term in the
Taylor expansion of F(uy, ..., u) around the arithmetic mean is
equal to

S (= 7ia) () 2

=1 Op; Optj|
O’F k ~ PP | &
Ot 04ty ﬁi_j:u#j(ﬂi _”A) (/’tj /’lA aﬂlaﬂl g
Because iy is the arithmetic mean,
k k k
> (ui—1a) = (wi—Fa) > (4 -
ij=1 i=1 Jj=1

Therefore, the result follows.

Proof of Lemma 3. Consider the case where y; = +h fori = 1,
, k. By Eq. 14,

1< 7 oF 1 &*F , 1 &F | ,
2 Z O 0ﬂ,0/4, = 2 gy | DR +§3ﬂ1‘3ﬂ1 '
= I3
On the other hand, because
F(ﬁ+h,. ~~7/7+h) :Fhomog.(ﬁ+h)7

20of3
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APo.0 = ppo + H1P10,
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~Poog +p1o(d+u) —prip =0,
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(9]
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<
S~—

8—n
Therefore, Pon(A+np) = pon- 19 nl +Ppiaty +Ppon1(n+ Dy,
=1,...,6
1 &F 1 &F ? = LD
E k(k 1)h2 2 kh2 = ?F}/l/omog. (17) A
" OH 1Ot P 6ﬂ16/41 Pia(py + A4 np) = pra1d +pia(n+ p +p0’"8Tn’

Hence, n=1,...,5,
A
A+ Tu) = poss + ,
2F| 1 <1F” . PF Po1(i+7k) = poss +prp
| k=1 \k moe ¥ o0
otz otz where p, = p"'p; forn > 8, and 3_°  p, = 1. These equations

can be solved with Maple and the solution can be used to calcu-
Calculation of a. We illustrate the computation of the coefficient «  late F(uy,u,...,u) explicitly. (The Maple code is available at

for a queue with eight servers. Consider then the case of a single <7
server with service time y, and seven servers with service time , www.bgu.ac.il/~ariehg/averagingprinciple.html.) Differentiating
such that p := + < 1. Denote by pg,, and py,,,n = 1, .., 6, the this expression twice with respect to pu,, differentiating

steady-state probaf)llltles that n of the homogeneous servers are Fromog. (Eq. 6) twice with respect to u, and using Lemma 3
busy and that the single heterogeneous server is free or busy, yields Eq. 15. Substltutlng fys=5 and A = 28 gives a ~
respectively. The equations for the 2 - 8 — 1 = 15 variables py, 0.00837. In addltlzon Z 12(,u,—;4) = ezzl h? = 71€*. There-
Po1 P1os -+ 5 P16 Po,7 are fore, “Z; 1(ui—p)" ~0.594€.

Fig. S1. Transition diagram of a queue with two heterogeneous servers. State “0” corresponds to the situation in which no server is busy. State (1, 0) cor-
responds to the situation in which server 1 is busy and server 2 is not busy. State (0, 1) corresponds to the situation in which server 1 is not busy and server 2 is
busy. State “k” for k > 2 corresponds to the situation in which both servers are busy and k — 2 customers wait in the queue. Here, & = py + 5.
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Fig. S2. Same as Fig. S1 with three heterogeneous servers. For example, state (0, 1, 1) corresponds to the situation in which server 1 is not busy and servers 2
and 3 are busy. Here, & = puq + pp + p3.
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