Supporting Information

Fibich et al. 10.1073/pnas.1206867109

SI Text

Proof of Theorem 1 and Corollary 3. Because of the differentiability of F, there exist positive constants $\delta(\overline{\mu}_A)$ and $C(\overline{\mu}_A)$, such that for all μ that satisfy Eq. 3,

$$\left| F(\boldsymbol{\mu}) - F(\overline{\boldsymbol{\mu}}_{A}) - \sum_{j=1}^{k} \left(\mu_{j} - \overline{\mu}_{A} \right) \frac{\partial F}{\partial \mu_{j}} \right|_{\overline{\boldsymbol{\mu}}_{A}} \right| \leq C(\overline{\mu}_{A}) \left\| \boldsymbol{\mu} - \overline{\boldsymbol{\mu}}_{A} \right\|^{2}.$$

If F is symmetric, then

$$\frac{\partial F}{\partial \mu_i}\Big|_{\overline{\mu}_4} = \frac{\partial F}{\partial \mu_1}\Big|_{\overline{\mu}_4}, \quad j = 1, \dots, k.$$
 [S1]

Because $\overline{\mu}_A$ is the arithmetic average,

$$\sum_{i=1}^k \left(\mu_j - \overline{\mu}_A\right) \frac{\partial F}{\partial \mu_j}\bigg|_{\overline{\mu}_A} = \frac{\partial F}{\partial \mu_1}\bigg|_{\overline{\mu}_A} \sum_{i=1}^k \left(\mu_j - \overline{\mu}_A\right) = 0.$$

Hence, the result follows.

Note that symmetry was used only to derive Eq. S1. Because

$$\left.\frac{\partial F}{\partial \mu_i}\right|_{\overline{\mu}_A} = \lim_{\eta \to 0} \frac{F\left(\overline{\mu}_A + \eta \hat{e}_i\right) - F\left(\overline{\mu}_A\right)}{\eta},$$

deriving Eq. **S1** requires only weak symmetry. Therefore, *Corollary 3* follows.

Proof of Lemma 2. We calculate $F(\mu_1, \mu_2)$ explicitly, using the steady-state transition diagram that is shown in Fig. S1. We denote by p_i the steady-state probability for the system to be with i customers and by $p_1^{(1,0)}$ and $p_1^{(0,1)}$ the steady-state probability for the system to be with one customer in servers 1 and 2, respectively. In particular, $p_1 = p_1^{(1,0)} + p_1^{(0,1)}$. Because in steady state the amount of inflow is equal to the amount of outflow, the following equalities hold:

$$\lambda p_0 = \mu_1 p_1^{(1,0)} + \mu_2 p_1^{(0,1)}, \qquad \qquad \textbf{[S2a]}$$

$$\frac{\lambda}{2}p_0 + \mu_2 p_2 = (\lambda + \mu_1) p_1^{(1,0)}, \qquad \qquad \textbf{[S2b]}$$

$$\frac{\lambda}{2}p_0 + \mu_1 p_2 = (\lambda + \mu_2) p_1^{(0,1)}, \qquad \qquad \text{[S2c]}$$

$$\lambda p_1^{(1,0)} + \lambda p_1^{(0,1)} + (\mu_1 + \mu_2)p_3 = (\lambda + \mu_1 + \mu_2)p_2,$$
 [S2d]

$$\lambda p_n + (\mu_1 + \mu_2)p_{n+2} = (\lambda + \mu_1 + \mu_2)p_{n+1}, \quad n = 2, 3, \dots$$
 [S2e]

We can view Eqs. **S2a–S2c** as a linear system for the three unknowns $p_0, p_1^{(1,0)}, p_1^{(0,1)}$. Solving this system for p_0 yields

$$p_0 = \frac{2\mu_1\mu_2}{\lambda^2}p_2.$$

In addition, the solution of Eqs. **S2d** and **S2e** is $p_n = \left(\frac{\lambda}{\mu_1 + \mu_2}\right)^{n-2}$ $p_2 = \rho^{n-2}p_2$ for $n \ge 1$. Substituting the above in

$$1 = \sum_{n=0}^{\infty} p_n = p_0 + \sum_{n=1}^{\infty} \rho^{n-2} p_2 = \left(\frac{2\mu_1 \mu_2}{\lambda^2} + \frac{1}{\rho} \frac{1}{1 - \rho}\right) p_2$$

gives $p_2 = \left(\frac{2\mu_1\mu_2}{\lambda^2} + \frac{1}{\rho}\frac{1}{1-\rho}\right)^{-1}$. Therefore,

$$\begin{split} F(\mu_1, \mu_2) &= \sum_{n=0}^{\infty} n p_n = \sum_{n=0}^{\infty} n \rho^{n-2} p_2 = \frac{p_2}{\rho} \sum_{n=0}^{\infty} n \rho^{n-1} \\ &= \frac{p_2}{\rho} \left(\sum_{n=0}^{\infty} \rho^n \right)' = \frac{p_2}{\rho} \left(\frac{1}{1-\rho} \right)' = \frac{p_2}{\rho} \frac{1}{(1-\rho)^2}, \end{split}$$

and the result follows.

M/M/3 Queue. Consider the case of three heterogeneous servers with average service times μ_1 , μ_2 , and μ_3 . Denote by p_0 , $p_1^{(1,0,0)}$, $p_1^{(0,0,1)}$, $p_2^{(0,1,1)}$, $p_2^{(0,1,1)}$, and p_3 , p_4 , ..., the steady-state probabilities. Thus, for example, $p_2^{(1,0,1)}$ is the steady-state probability that servers 1 and 3 are busy, server 2 is free, and there are no waiting customers in the queue (we denote by p_n , $n \ge 2$ the probability of having n customers in the system). The transition diagram for k=3 servers is given in Fig. S2. The steady-state equations are

$$\lambda p_0 = \mu_1 p_1^{(1,0,0)} + \mu_2 p_1^{(0,1,0)} + \mu_3 p_1^{(0,0,1)},$$

$$\frac{\lambda}{3} p_0 + \mu_2 p_2^{(1,1,0)} + \mu_3 p_2^{(1,0,1)} = (\mu_1 + \lambda) p_1^{(1,0,0)},$$

$$\frac{\lambda}{3} p_0 + \mu_1 p_2^{(1,1,0)} + \mu_3 p_2^{(0,1,1)} = (\mu_2 + \lambda) p_1^{(0,1,0)},$$

$$\frac{\lambda}{3} p_0 + \mu_1 p_2^{(1,0,1)} + \mu_2 p_2^{(0,1,1)} = (\mu_3 + \lambda) p_1^{(0,0,1)},$$

$$\frac{\lambda}{2} p_1^{(1,0,0)} + \frac{\lambda}{2} p_1^{(0,1,0)} + \mu_3 p_3 = (\lambda + \mu_1 + \mu_2) p_2^{(1,1,0)},$$

$$\frac{\lambda}{2} p_1^{(1,0,0)} + \frac{\lambda}{2} p_1^{(0,0,1)} + \mu_2 p_3 = (\lambda + \mu_1 + \mu_3) p_2^{(1,0,1)},$$

$$\frac{\lambda}{2} p_1^{(0,1,0)} + \frac{\lambda}{2} p_1^{(0,0,1)} + \mu_1 p_3 = (\lambda + \mu_2 + \mu_3) p_2^{(0,1,1)},$$

$$= (\lambda + \mu_1 + \mu_2 + \mu_3) p_3,$$

$$= (\lambda + \mu_1 + \mu_2 + \mu_3) p_3,$$

$$\lambda p_n + (\mu_1 + \mu_2 + \mu_3)p_{n+2} = (\lambda + \mu_1 + \mu_2 + \mu_3)p_{n+1}, \quad n \ge 3,$$

$$\sum_{n=0}^{\infty} p_n = 1.$$

The solution of the last two equations is $p_n = \left(\frac{\lambda}{\mu_1 + \mu_2 + \mu_3}\right)^{n-3} p_3$ for $n \ge 2$. The values of p_0, p_1, p_2 as a function of p_3 can be evaluated explicitly with MAPLE, by solving the first $2^3 - 1 = 7$ linear equations for $p_0, p_1^{(1,0,0)}, p_1^{(0,1,0)}, p_1^{(0,0,1)}, p_1^{(1,1,0)}, p_2^{(1,0,1)}$, and

 $p_2^{(0,1,1)}$. The resulting expression for $F(\mu_1, \mu_2, \mu_3)$, however, is extremely cumbersome and not informative.

Proof of Theorem 4. Because customers are randomly assigned to the available servers, $F(\mu_1, \ldots, \mu_k)$ is symmetric. To see that F is differentiable in (μ_1, \ldots, μ_k) , we note that $F = \sum_{n=0}^{\infty} np_n$, where p_n is the steady-state probability that there are n customers in the system. In addition, $\{p_n\}_{n=1}^k$ are the solutions of a linear system with coefficients that depend smoothly on (μ_1, \ldots, μ_k) , and $p_n = \left(\frac{\lambda}{\mu_1 + \cdots + \mu_k}\right)^{n-k} p_k$ for $n \ge k-1$. This was shown explicitly for the cases k=2 and k=3; the proof for k>3 is similar.

Averaging Principle for Functions (Proof of Eq. 12). Let F_1, \ldots, F_k belong to a function space \mathcal{F} , let $\epsilon \in \mathbb{R}$, and let $R:(F_1,\ldots,F_k) \mapsto R[F_1,\ldots,F_k] \in \mathbb{R}$ be a functional. We say that the functional R is differentiable if it is twice differentiable in the sense of Fréchet. (We can also relax this assumption and assume that R is once differentiable in the sense of Fréchet, and the scalar function $\tilde{R}(\epsilon) := R[F_1 = F + \epsilon H_1, \ldots, F_k = F + \epsilon H_k]$ is twice differentiable at and near $\epsilon = 0$, for every $F, H_1, \ldots, H_k \in \mathcal{F}$.) By Taylor expansion,

$$\tilde{R}(\epsilon) = \tilde{R}(0) + \epsilon \sum_{j=1}^{k} \frac{d}{d\epsilon} \bigg|_{\epsilon=0} R \left[(\underbrace{F, \dots, F}_{\times k}) + \epsilon H_j \hat{e}_j \right] + O(\epsilon^2),$$

where

$$\frac{d}{d\epsilon}\Big|_{\epsilon=0} R\Big[(F,\ldots,F) + \epsilon H_j \hat{e}_j\Big] = \frac{\delta R}{\delta F_j} \Big[H_j\Big],$$

and $\frac{\delta R}{\delta F_j}$ is the Fréchet derivative of $R[F_1, \ldots, F_k]$ with respect to F_j . Therefore,

$$\tilde{R}(\epsilon) = \tilde{R}(0) + \epsilon \sum_{i=1}^{k} \frac{\delta R}{\delta F_{i}} [H_{i}] + O(\epsilon^{2}).$$

Because R is symmetric and the Fréchet derivative is a linear operator,

$$\tilde{R}(\epsilon) = \tilde{R}(0) + \epsilon \frac{\delta R}{\delta F_1} \left[\sum_{i=1}^k H_i \right] + O(\epsilon^2).$$

Denote $\overline{F}:=\frac{1}{k}\sum_{j=1}^{k}F_{j}$ and $H_{j}:=F_{j}-\overline{F}.$ Then $\sum_{j=1}^{k}H_{j}=0.$ Hence, $\tilde{R}(\epsilon)=R(0)+O(\epsilon^{2}),$ which is Eq. 12.

Proof of Theorem 6. We first prove that F is differentiable. Denote $\delta_{i,i'}=1$ if individuals i and i' influence each other and $\delta_{i,i'}=0$ otherwise. For every k, every set of k consumers $\{i_1,i_2,\ldots,i_k\}$, and every increasing sequence of times $0 \le t_1 \le \ldots \le t_k$, denote by $P(i_1,t_1,i_2,t_2,\ldots,i_k,t_k)$ the probability that consumer i_1 adopts the product before time t_1 , consumer i_2 adopts the product between times t_1 and t_2 , etc., and all consumers who are not in $\{i_1,\ldots,i_k\}$ do not adopt the process by time t_k . Then,

$$P(i_1,t_1) = (1 - \exp(-p_{i_1}t_1)) \prod_{i \neq i_1} \exp(-p_{i_1}t_1).$$

Similarly,

$$\begin{split} &P(i_1,t_1,i_2,t_2,\ldots,i_k,t_k) = \\ &P(i_1,t_1,i_2,t_2,\ldots,i_{k-1},t_{k-1}) \\ &\times \left(1 - \exp\left(-\left(p_{i_k} + \sum_{m=1}^{k-1} \delta_{i_k,i_m} q_{i_m}\right)(t_k - t_{k-1})\right)\right) \\ &\times \prod_{j \notin \{i_1,\ldots,i_k\}} \exp\left(-\left(p_j + \sum_{m=1}^{k-1} \delta_{j,i_m} q_{i_m}\right)(t_k - t_{k-1})\right). \end{split}$$

Hence, the function $P(i_1, t_1, i_2, t_2, ..., i_k, t_k)$ is differentiable in $\{p_i, q_i\}$. Finally,

$$E[N(t; \{p_j\}, \{q_j\})] = \frac{1}{M} \sum_{\pi} \sum_{k=1}^{M} \frac{k}{(M-k)!}$$

$$\times \int_{t_1=0}^{t} \int_{t_2=t_1}^{t} \cdots \int_{t_{k-1}=t_{k-2}}^{t} P(i_1, t_1, \dots, i_{k-1}, t_{k-1}, i_k, t) dt_{k-1} \dots dt_1,$$

where π ranges over all permutations on the set of M individuals. Therefore, the differentiability of $E[N(t;\{p_j\},\{q_j\})]$ follows.

Because the network is translation invariant, F is weakly symmetric in $\{p_j\}$ and in $\{q_j\}$. By this we mean that

If $p_m = \tilde{p}$, $p_j = p$ for all $j \neq m$, and $q_j = q$ for all j, then F is independent of the value of m.

If $q_n = \tilde{q}$, $q_j = q$ for all $j \neq n$, and $p_j = p$ for all j, then F is independent of the value of n.

Therefore, the result follows from a slight modification of the proof of *Theorem 1*.

Proof of Eq. 14. Because F is symmetric, the quadratic term in the Taylor expansion of $F(\mu_1, \ldots, \mu_k)$ around the arithmetic mean is equal to

$$\begin{split} & \sum_{i,j=1}^{k} \left(\mu_{i} - \overline{\mu}_{A}\right) \left(\mu_{j} - \overline{\mu}_{A}\right) \frac{\partial^{2} F}{\partial \mu_{i} \partial \mu_{j}} \bigg|_{\overline{\mu}_{A}} \\ & = \frac{\partial^{2} F}{\partial \mu_{1} \partial \mu_{2}} \bigg|_{\overline{\mu}} \sum_{i,j=1, i \neq j}^{k} \left(\mu_{i} - \overline{\mu}_{A}\right) \left(\mu_{j} - \overline{\mu}_{A}\right) + \frac{\partial^{2} F}{\partial \mu_{1} \partial \mu_{1}} \bigg|_{\overline{\mu}} \sum_{i=1}^{k} \left(\mu_{i} - \overline{\mu}_{A}\right)^{2}. \end{split}$$

Because $\overline{\mu}_A$ is the arithmetic mean,

$$\sum_{i,j=1}^k \left(\mu_i - \overline{\mu}_A\right) \left(\mu_j - \overline{\mu}_A\right) = \sum_{i=1}^k \left(\mu_i - \overline{\mu}_A\right) \sum_{j=1}^k \left(\mu_j - \overline{\mu}_A\right) = 0.$$

Therefore, the result follows.

Proof of Lemma 3. Consider the case where $\mu_i = \overline{\mu} + h$ for $i = 1, \ldots, k$. By Eq. 14,

$$\frac{1}{2}\sum_{i,j=1}^k \left(\mu_i - \overline{\mu}\right) \left(\mu_j - \overline{\mu}\right) \frac{\partial^2 F}{\partial \mu_i \partial \mu_j} \bigg|_{\overline{\mu}} = \frac{1}{2} \frac{\partial^2 F}{\partial \mu_1 \partial \mu_2} \bigg|_{\overline{\mu}} k(k-1)h^2 + \frac{1}{2} \frac{\partial^2 F}{\partial \mu_1 \partial \mu_1} \bigg|_{\overline{\mu}} kh^2.$$

On the other hand, because

$$F(\overline{\mu}+h,\ldots,\overline{\mu}+h)=F_{\text{homog.}}(\overline{\mu}+h),$$

we have

$$\frac{1}{2} \sum_{i,j=1}^{k} \left(\mu_i - \overline{\mu} \right) \left(\mu_j - \overline{\mu} \right) \frac{\partial^2 F}{\partial \mu_i \partial \mu_j} \bigg|_{\overline{\mu}} = \frac{h^2}{2} F_{\text{homog.}}''(\overline{\mu}).$$

Therefore,

$$\frac{1}{2}\frac{\partial^2 F}{\partial \mu_1 \partial \mu_2}\bigg|_{\overline{\mu}}k(k-1)h^2 + \frac{1}{2}\frac{\partial^2 F}{\partial \mu_1 \partial \mu_1}\bigg|_{\overline{\mu}}kh^2 = \frac{h^2}{2}F''_{\text{homog.}}(\overline{\mu}).$$

Hence,

$$\left. \frac{\partial^2 F}{\partial \mu_1 \partial \mu_2} \right|_{\overline{\mu}} = \frac{1}{k-1} \left(\frac{1}{k} F_{\text{homog.}}''(\overline{\mu}) - \frac{\partial^2 F}{\partial \mu_1 \partial \mu_1} \right|_{\overline{\mu}} \right).$$

Calculation of α . We illustrate the computation of the coefficient α for a queue with eight servers. Consider then the case of a single server with service time μ_1 and seven servers with service time μ , such that $\rho := \frac{\lambda}{7\mu + \mu_1} < 1$. Denote by $p_{0,n}$ and $p_{1,n}$, $n = 1, \ldots, 6$, the steady-state probabilities that n of the homogeneous servers are busy and that the single heterogeneous server is free or busy, respectively. The equations for the $2 \cdot 8 - 1 = 15$ variables p_0 , $p_{0,1}, p_{1,0}, \ldots, p_{1,6}, p_{0,7}$ are

$$\begin{split} &\lambda p_{0,0} = \mu p_{0,1} + \mu_1 p_{1,0}, \\ &- p_{0,0} \frac{\lambda}{8} + p_{1,0} (\lambda + \mu_1) - p_{1,1} \mu = 0, \\ &p_{0,n} (\lambda + n\mu) = p_{0,n-1} \frac{8 - n}{9 - n} \lambda + p_{1,n} \mu_1 + p_{0,n+1} (n+1) \mu, \\ &n = 1, \dots, 6, \\ &p_{1,n} (\mu_1 + \lambda + n\mu) = p_{1,n-1} \lambda + p_{1,n+1} (n+1) \mu + p_{0,n} \frac{\lambda}{8 - n}, \\ &n = 1, \dots, 5, \\ &p_{0,7} (\lambda + 7) \mu) = p_{0,6} \frac{\lambda}{2} + p_7 \mu_1 \rho, \end{split}$$

where $p_n = \rho^{n-7}p_7$ for $n \ge 8$, and $\sum_{n=0}^{\infty}p_n = 1$. These equations can be solved with Maple and the solution can be used to calculate $F(\mu_1, \underbrace{\mu, \dots, \mu}_{x^7})$ explicitly. (The Maple code is available at

www.bgu.ac.il/~ariehg/averagingprinciple.html.) Differentiating this expression twice with respect to μ_1 , differentiating $F_{\text{homog.}}$ (Eq. 6) twice with respect to μ , and using Lemma 3 yields Eq. 15. Substituting $\overline{\mu}_A = 5$ and $\lambda = 28$ gives $\alpha \sim 0.00837$. In addition, $\sum_{i=1}^8 (\mu_i - \overline{\mu})^2 = \epsilon^2 \sum_{i=1}^8 h_i^2 = 71\epsilon^2$. Therefore, $\alpha \sum_{i=1}^8 (\mu_i - \overline{\mu})^2 \approx 0.594\epsilon^2$.

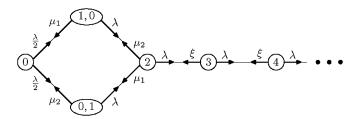


Fig. 51. Transition diagram of a queue with two heterogeneous servers. State "0" corresponds to the situation in which no server is busy. State (1, 0) corresponds to the situation in which server 1 is busy and server 2 is busy. State (0, 1) corresponds to the situation in which server 1 is not busy and server 2 is busy. State "k" for $k \ge 2$ corresponds to the situation in which both servers are busy and k - 2 customers wait in the queue. Here, $\xi = \mu_1 + \mu_2$.

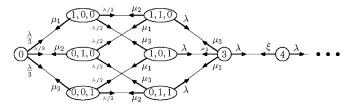


Fig. S2. Same as Fig. S1 with three heterogeneous servers. For example, state (0, 1, 1) corresponds to the situation in which server 1 is not busy and servers 2 and 3 are busy. Here, $\xi = \mu_1 + \mu_2 + \mu_3$.