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Optical light bullets in a pure Kerr medium
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We show that small negative fourth-order dispersion can arrest spatiotemporal collapse of ultrashort pulses
with anomalous dispersion in a planar waveguide with pure Kerr nonlinearity, resulting in �2 1 1�D optical
bullets. Similarly to solitons, these bullets undergo elastic collisions. Since these bullets can self-trap from
noisy Gaussian input beams and propagate without any power losses, this result may be used to realize
experimentally stable, nondissipative optical bullets. © 2004 Optical Society of America
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The idea of an “optical bullet,” a laser pulse local-
ized in space and in time that propagates while
retaining its spatiotemporal shape, has fascinated
the nonlinear optics community ever since it was
proposed by Silberberg,1 and it remains one of the
holy grails of nonlinear optics. To achieve an optical
bullet requires a complete balance of the focusing
Kerr nonlinearity with diffraction and anomalous
dispersion. The corresponding mathematical model
is either the two-dimensional or the three-dimensional
cubic nonlinear Schrödinger equation (NLSE), de-
pending on whether diffraction is limited to one
transverse dimension (a planar waveguide) or two
transverse dimensions (bulk medium), respectively.
Since all solitary-wave solutions of the cubic NLSE in
dimension D $ 2 are unstable, until now it was be-
lieved that optical bullets are unstable in a pure Kerr
medium. Therefore, in all previous theoretical and
experimental studies, optical bullets were obtained
through deviations from a pure Kerr nonlinearity.
Thus, it was shown theoretically that optical bullets
are stable in a saturable Kerr medium.2 In Ref. 3,
it was reported that spatiotemporal compression was
achieved experimentally in a planar waveguide, but
the stabilization was due to multiphoton absorption
and Raman scattering, both of which are dissipa-
tive. Liu et al.4 created an optical bullet in a planar
waveguide with quadratic nonlinearity. In another
experiment, stable optical bullets were realized in
bulk media with normal time dispersion.5 Since,
however, in a pure Kerr medium pulses with normal
dispersion do not undergo temporal compression, it
was suggested that higher-order nonlinearities played
a key role in the pulse compression and bullet stabi-
lization. Recently, stable optical bullets were found
in a medium with quadratic nonlinearity in the case
of normal dispersion at the second harmonic.6

The standard model for propagation of solitons and
optical bullets with anomalous dispersion is the dimen-
sionless NLSE:

icz�z,x� 1 Dc 1 jcj2sc � 0 , c�0,x� � c0�x� , (1)

where c is the electric field amplitude; z is the ax-
ial distance; x � �x1, . . . ,xD�, where �x1, . . . , xD21� are
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the transverse spatial coordinates and xD is time; D �
D� 1 ≠xDxD , where D� � ≠x1x1 1 . . . 1 ≠xD21xD21 is
diffraction and ≠xDxD is anomalous dispersion; and
s � 1 for a Kerr medium. It is well known that the
critical exponent of the NLSE is s�

NLSE � 2�D, i.e.,
when s , 2�D, solutions of Eq. (1) remain bounded
for all z and its solitary-wave solutions are stable, but
when s $ 2�D, Eq. (1) admits of solutions that become
singular (blowup, collapse) at a f inite propagation dis-
tance z, and its solitary-wave solutions are unstable.
Therefore, based on Eq. (1), it was concluded that in a
pure Kerr medium, solitons (i.e., D � 1) are stable but
optical bullets (i.e., D � 2,3) are unstable.

In Eq. (1), physical time is no different than any
of the spatial coordinates in the transverse plane.
There is, however, a fundamental difference between
space and time in spatiotemporal self-focusing, since
the more comprehensive physical model includes
higher-order dispersion terms but no such high-order
diffraction terms. Therefore, a more accurate model
of spatiotemporal self-focusing in a Kerr medium is
given by the NLSE with anisotropic high-order disper-
sion, where by anisotropy we mean that the high-order
dispersion terms are not isotropic in x. In a recent
study7 it was shown that the critical exponent for the
NLSE with a negative one-dimensional fourth-order
dispersion (4OD), i.e.,

icz�z,x� 1 Dc 2 a2cxDxDxDxD 1 jcj2sc � 0 , (2)

where a2 . 0, is given by s
�
anisotropic�D� � 2��D 2 1�2�.

Therefore, when s , s
�
anisotropic solutions of Eq. (2) do

not collapse, and its waveguide solutions are stable.
As we shall see, these new critical exponents imply
that collapse of ultrashort laser pulses can be arrested
by negative 4OD in a planar waveguide but not in a
bulk medium. Indeed, we show that one may be able
to utilize 4OD to create a stable, nondissipative optical
bullet in a planar waveguide geometry. To the best
of our knowledge this constitutes the first theoretical
demonstration of stable, nondissipative �1 1 2�D opti-
cal bullets in a pure Kerr medium.

The propagation of a linearly polarized laser pulse
in a bulk Kerr medium can be modeled by
© 2004 Optical Society of America
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where A is the slowly varying amplitude, D� � ≠xx 1

≠yy is diffraction, k2�v� � v2n2
0�v��c2, and k0 � k�v0�.

Let us change to the moving-frame coordinate system
x̃ � x�r0, ỹ � y�r0, z̃ � z�2Ldiff , t̃ � �t 2 z�cg��T , and
c � r0k0

p
4n2�n0A, where r0 is the initial pulse width,

Ldiff � r20k0 is the diffraction length, T is the pulse du-
ration, and cg � 1�k0�v0� is the group velocity. When
the pulse is sufficiently short that T ,, Ldiff

p
jk0kvv j,

the equation for the nondimensional envelope c can be
approximated with8

icz�z, x, y, t� 1 D�c 1 jcj2c 2 g2ctt

2 ig3cttt 1 g4ctttt � 0 , (3)

where the tildes have been dropped, g2 � Ldiff�Lds,
where Lds � T2�k00�v0� is the dispersion length, g3 �
r20kv0k

000
v0

��3T 3� is third-order dispersion (3OD), g4 �
r20kv0k

000
v0

��12T4� is 4OD, and higher-order dispersion
terms are neglected. Similarly, the propagation in a
planar waveguide is given by

icz�z, x, t� 1 cxx 1 jcj2c 2 g2ctt

2 ig3cttt 1 g4ctttt � 0 . (4)

Let us first consider the case of a laser pulse that
operates in the anomalous time-dispersion regime
(i.e., g2 , 0) at wavelengths for which the effect of
3OD is minimized,9 as, e.g., in the case of dispersion-
f lattened fibers. In this case, pulse propagation in a
planar waveguide geometry is governed by

icz�z, x, t� 1 cxx 1 jcj2c 2 g2ctt 1 g4ctttt � 0 . (5)

When g2 , 0 and g4 , 0, Eq. (5) is (after the rescal-
ing xD � t�p2g2 ) a special case of Eq. (2) with s � 1
and D � 2. Since s

�
anisotropic�2� � 4�3, we conclude

that in a planar waveguide geometry small negative
4OD always arrests spatiotemporal collapse. In ad-
dition, since s , s�, the solitary-wave solutions of
Eq. (5) are stable.7 To confirm this theoretical predic-
tion, in Fig. 1 we solve Eq. (5) with the Gaussian input
beam c0 � 2

p
1.25Nc exp�2x2 2 t2�, where Nc � 1.86

is the dimensionless critical power. In the absence of
4OD the solution undergoes collapse. As predicted,
collapse is arrested by negative 4OD, and subsequently
the pulse undergoes stable focusing–defocusing oscil-
lations that can be interpreted as an optical bullet
(Fig. 2). The robustness of bullet formation is mani-
fested by repeating this simulation with the same input
beam, to which we add input focusing and chirping as
well as 5% complex-valued random noise both in x and
in t; i.e., c0 � 2

p
1.25Nc exp�2x2 2 t2�exp�2i/4 �x2 1

t2�� �1 1 0.05 rand�x, t��. Moreover, these bullets are
also robust when they collide (Fig. 3).

Negative 4OD is unable to arrest collapse in a bulk
medium. Indeed, in that case the propagation is
given by
icz�t,x, y, z� 1 cxx 1 cyy 1 jcj2c 2 g2ctt 1 g4ctttt � 0 .

(6)

When g2 , 0 and g4 , 0, Eq. (6) is a special case of
Eq. (2) with s � 1 and D � 3. Since s

�
anisotropic�3� �

4�5, we conclude that in a bulk medium negative 4OD
does not arrest collapse. To illustrate this we show in
Fig. 4 the solution of Eq. (6) with the Gaussian input
beam c0 � 4 exp�2x2 2 y2 2 t2�. Indeed, collapse is
only delayed, but not arrested, by negative 4OD.

Although there is no rigorous theory for the case of
a positive 4OD, the simulations of Figs. 1 and 4 sug-
gest that positive 4OD arrests collapse in both the
planar waveguide and the bulk media case through
strong temporal dispersion. As a result, in the posi-
tive 4OD case there is only a single focusing event
followed by complete defocusing. Hence, one cannot
stabilize optical bullets by use of positive 4OD.

Fig. 1. Amplitude of the solution of Eq. (5) with g2 � 21,
and g4 � 0 (dashed curve), g4 � 20.04 (solid curve),
g4 � 20.04 with focusing, chirping, and input noise
(dashed–dotted curve), and g4 � 0.04 (dotted curve).

Fig. 2. Isointensity plot of the solid curve solution from
Fig. 1.

Fig. 3. Elastic collision of two bullets.
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Fig. 4. Amplitude of the solution of Eq. (6) with g2 � 21
and g4 � 0 (dashed curve), g4 � 20.05 (solid curve), and
g4 � 0.05 (dashed–dotted curve).

Fig. 5. Optical bullet at 1.8 mm.

Fig. 6. Same as Fig. 5 with the addition of a shock term.

We now study the effect of 3OD on optical bullets.
Let us f irst note that, unlike g2 and g4, the sign of g3
has no effect on the dynamics. Indeed, if we change
g3 to 2g3 and t to 2t, Eq. (3) remains unchanged.
Therefore, the sign of g3 determines only the direction
of the effect of 3OD along the t axis. Indeed, when
g4 � 0, solutions of Eq. (4) satisfy

d
dz

Z
tjcj2dxdt � 2g2 Im

Z
c0c

�
0, tdxdt

1 3g3

Z
jctj

2dxdt . (7)

Therefore, as a result of 3OD, the center of mass moves
in the positive (negative) t direction when g3 . 0
(g3 , 0).

To test whether optical bullets can be realized ex-
perimentally, we wanted to solve Eq. (4) with physical
parameters. For example, for a bullet propagating
through a silica planar waveguide with r0 � 37.7 mm,
T � 30 fs, and l � 1.8 mm, the Sellmeier equation
for silica10 gives g2 � 20.5, g3 � 0.025, and g4 �
29 3 1024. Because of limitations of our computer re-
sources, we could not solve Eq. (4) reliably using these
values. Therefore, in the simulation shown in Fig. 5
we solve Eq. (3) by use of g2 � 21, g3 � 0.052, and g4 �
20.0014 for the input pulse c0 � 2

p
2Nc exp�2x2 2 t2�.

These parameters were chosen to mimic the physical
ones, i.e., 2g2 .. g3 .. 2 g4. Although 3OD is con-
siderably larger in magnitude than 4OD, the pulse still
undergoes spatiotemporal compression that results in
an optical bullet. In fact, the only noticeable effect of
3OD is that the bullet moves in the positive t direction,
in accordance with Eq. (7). We note that the peak
intensity in Fig. 5 is �4 3 1016 W�m2, which is well
below the threshold intensity for optical damage in
fused silica.11 Finally, we repeated this simulation
with the addition of the shock term 0.035i�jcj2c�t to
Eq. (4) and confirmed that it did not disrupt the bullet
behavior (Fig. 6).

In summary, we have used an abstract result on
critical exponents of anisotropic NLSEs, as well as
numerical simulations, to show that with a proper
choice of wavelength (i.e., wavelength that corresponds
to anomalous dispersion and negative 4OD) it may be
possible to realize optical bullets in planar waveguides
with a pure Kerr nonlinearity. This theoretical
observation was recently suggested as a possible
explanation for the experimental results of Cheskis
et al.12
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