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Abstract
We present four continuations of the critical nonlinear Schrödinger equation
(NLS) beyond the singularity: (1) a sub-threshold power continuation,
(2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing
nonlinear-damping continuation and (4) a complex Ginzburg–Landau (CGL)
continuation. Using asymptotic analysis, we explicitly calculate the limiting
solutions beyond the singularity. These calculations show that for generic
initial data that lead to a loglog collapse, the sub-threshold power limit is
a Bourgain–Wang solution, both before and after the singularity, and the
vanishing nonlinear-damping and CGL limits are a loglog solution before the
singularity, and have an infinite-velocity expanding core after the singularity.
Our results suggest that all NLS continuations share the universal feature that
after the singularity time Tc, the phase of the singular core is only determined
up to multiplication by eiθ . As a result, interactions between post-collapse
beams (filaments) become chaotic. We also show that when the continuation
model leads to a point singularity and preserves the NLS invariance under
the transformation t → −t and ψ → ψ∗, the singular core of the weak
solution is symmetric with respect to Tc. Therefore, the sub-threshold power
and the shrinking-hole continuations are symmetric with respect to Tc, but
continuations which are based on perturbations of the NLS equation are
generically asymmetric.
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1. Introduction

The focusing nonlinear Schrödinger equation (NLS),

iψt(t, x) + �ψ + |ψ |2σψ = 0, ψ0(0, x) = ψ0(x) ∈ H 1, (1)

where x = (x1, . . . , xd) ∈ R
d and � = ∂x1x1 + · · ·∂xdxd

, is one of the canonical nonlinear
equations in physics, arising in various fields such as nonlinear optics, plasma physics, Bose–
Einstein condensates (BEC) and surface waves. In the two-dimensional cubic case, this
equation models the propagation of intense laser beams in a bulk Kerr medium. In that case,
ψ is the electric field envelope, t is the direction of propagation, d = 2, x1 and x2 are the
transverse coordinates, and σ = 1 (cubic nonlinearity).

In 1965, Kelley showed that the two-dimensional cubic NLS admits solutions that collapse
(become singular) at a finite time (distance) Tc [1]. Since physical quantities do not become
singular, this implies that some of the terms that were neglected in the derivation of the NLS,
become important near the singularity. Therefore, the standard approach for continuing the
solution beyond the singularity has been to consider a more comprehensive model, in which
the collapse is arrested.

In this study, we adopt a different approach, and ask whether singular NLS solutions can
be continued beyond the singularity, within the NLS model. By this we mean that the solution
satisfies the NLS both before and after the singularity, and a matching (‘jump’) condition
at the singularity. The motivation for this approach comes from hyperbolic conservation
laws, where in the absence of viscosity, the solution can become singular (develop shocks).
In that case, there is a huge body of literature on how to continue the inviscid solution
beyond the singularity, which consists of Riemann problems, vanishing-viscosity solutions,
entropy conditions, Rankine-Hugoniot jump conditions, specialized numerical methods, etc.
In contrast, two studies from 1992 by Merle [2, 3], and a recent study by Merle et al [4],
addressed this question in the NLS. Tao [5] proved the global existence and uniqueness in the
semi Strichartz class for solutions of the critical NLS. Intuitively, these solutions are formed
by solving the equation in the Strichartz class whenever possible, and deleting any power that
escapes to spatial or frequency infinity when the solution leaves the Strichartz class. These
solutions, however, do not depend continuously on the initial conditions, and are thus not a
well-posed class of solutions. Stinis [6] studied numerically the continuation of singular NLS
solutions using the t-model approach.

In [2], Merle presented an explicit continuation of a singular NLS solution beyond the
singularity, which is based on reducing the power (L2 norm) of the initial condition of the
explicit blowup solution ψexplicit,α , see (8a) and (8b), below the critical power for collapse Pcr.
This continuation has two key properties:

(i) Property 1: the solution is symmetric with respect to the singularity time Tc.
(ii) Property 2: after the singularity, the solution can only be determined up to multiplication

by a constant phase term.

Merle’s breakthrough result, however, applies only to the critical NLS (σd = 2), and only
to the explicit blowup solutions ψexplicit,α . Recently, Merle et al [4] generalized this result
to Bourgain–Wang singular solutions [7], i.e. solutions that have a singular component that
collapses as ψexplicit,α , and a non-zero regular component that vanishes at the singularity point
and does not participate in the collapse process.

In [3], Merle presented a different continuation, which is based on the addition of nonlinear
saturation. This study showed that, generically, as the nonlinear-saturation parameter goes to
zero, the limiting solution can be decomposed beyond Tc into two components: a δ-function
singular component with power m(t) � Pcr, and a regular component elsewhere. Similar
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results follow from the asymptotic analysis of Malkin [8], which suggests that m(t) ≡ Pcr for
Tc � t < ∞.

It is thus useful to distinguish between two types of continuations:

(i) A point singularity, in which the weak solution is singular at Tc, but regular (i.e. in H 1)
for t > Tc.

(ii) A filament singularity, in which the weak solution has a δ-function singularity for
Tc � t � T0, where Tc < T0 � ∞. The motivation for this terminology comes from
nonlinear optics, where collapsing beams can form long and narrow filaments (which, to
leading order, can be viewed as an ‘extended’ δ-function).

In this work we propose four novel continuations that lead to a point singularity, and obtain
explicit formulae for the solution beyond the singularity. Our main findings are the following:

(i) The non-uniqueness of the phase beyond the singularity (property 2) is a universal feature
of NLS continuations.

(ii) The symmetry with respect to the singularity time (property 1) holds only if the
continuation is time reversible and leads to a point singularity. Therefore, it is non-generic.

The paper is organized as follows. In section 2 we provide a short review of NLS theory.
In section 3 we present Merle’s continuation of ψexplicit,α , and illustrate it numerically. In
section 4 we generalize this approach and present a sub-threshold power continuation, which
can be applied to the generic initial condition of the critical NLS. We compute asymptotically
the limiting solution, and show that it is a Bourgain–Wang solution, both before and after
the singularity. In particular, this continuation preserves the two key properties of Merle’s
continuation. In section 5 we show that property 1 (symmetry with respect to Tc) holds for
time-reversible continuations that lead to a point singularity. In section 6 we discuss the
nonlinear-saturation continuation, which leads to a filament singularity. In section 7 we show
that because of the phase non-uniqueness (property 2), the interaction between post-collapse
beams is chaotic. In section 8 we present a vanishing-hole continuation, which is suitable for
ring-type singular solutions. This continuation is time reversible, and it satisfies properties 1
and 2. In section 9 we present a vanishing nonlinear-damping continuation, and compute the
continuation asymptotically in two cases:

(i) The nonlinear-damping continuation of the explicit solution ψexplicit,α is, up to an
undetermined constant phase, given by ψexplicit,κα with κ ≈ 1.614.

(ii) The nonlinear-damping continuation of solutions that undergo a loglog collapse has an
infinite-velocity expanding core, with an undetermined constant phase.

Therefore, the phase becomes non-unique beyond the singularity (property 2). In contrast with
previous continuations, however, the solution is asymmetric with respect to the singularity time
(i.e. the solution does not satisfy property 1). This is to be expected, as the nonlinear-damping
continuation is not time reversible. In section 10 we show that the continuation which is based
on the complex Ginzburg–Landau (CGL) limit of the NLS, is equivalent to the vanishing
nonlinear-damping continuation. In section 11 we show a continuation of singular solutions
of the linear Schrödinger equation. In this case, the limiting phase beyond the singularity
is unique. This shows that the post-collapse non-uniqueness of the phase (property 2) is a
nonlinear phenomenon. Section 12 concludes with a discussion.

1.1. Level of rigour

The results which are derived in this manuscript are non-rigorous, and are based on asymptotic
analysis, numerical simulations, and physical arguments. To emphasize this, we use the
terminology continuation results, rather than propositions or theorems.
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2. Review of NLS theory

We briefly review NLS theory, for more information see [9–11]. The NLS (1) has two important
conservation laws: power conservation1

P(t) ≡ P(0), P (t) =
∫

|ψ |2 dx

and Hamiltonian conservation

H(t) ≡ H(0), H(t) =
∫

|∇ψ |2 dx − 1

σ + 1

∫
|ψ |2σ+2 dx. (2)

The NLS admits the waveguide solutions ψ = eitR(r), where r = |x|, and R is the
solution of

R′′(r) +
d − 1

r
R′ − R + R2σ+1 = 0, R′(0) = 0, R(∞) = 0. (3)

When d = 1, the solution of (3) is unique, and is given by

Rσ (x) = (1 + σ)1/2σ cosh−1/σ (σx). (4)

When d � 2, equation (3) admits an infinite number of solutions. The solution with the
minimal power, which we denote by R(0), is unique, and is called the ground state.

When σd < 2, the NLS is called subcritical. In that case, all H 1 solutions exist globally.
In contrast, both the critical NLS (σd = 2) and the supercritical NLS (σd > 2) admit singular
solutions.

Let ψ(t, x) be a solution of the NLS (1). Then, ψ remains a solution of the NLS (1) under
the following transformations:

(i) Spatial translations: ψ(t, x) → ψ(t, x + x0), where x0 ∈ R
d .

(ii) Temporal translations: ψ(t, x) → ψ(t + t0, x), where t0 ∈ R.
(iii) Phase change: ψ(t, x) → eiθψ(t, x), where θ ∈ R.
(iv) Dilation: ψ(t, x) → λ1/σψ(λ2t, λx), where λ ∈ R

+.
(v) Galilean transformation: ψ(t, x) → ψ(t, x − ct)eic·x/2−i|c|2t/4, where c ∈ R

d .

Therefore, multiplying the initial condition by a constant phase eiθ does not affect the solution.
In addition, by the Galilean transformation, multiplying the initial condition by a linear phase
term ψ0(x) → ψ0(x)eic·x/2 does not affect the dynamics, but rather causes the solution to be
tilted in the direction of n = (1, c) ∈ R × R

d .

2.1. Critical NLS

In the critical case σd = 2, equation (1) can be rewritten as

iψt(t, x) + �ψ + |ψ |4/dψ = 0, ψ0(0, x) = ψ0(x) ∈ H 1, (5)

and equation (3) can be rewritten as

R′′(r) +
d − 1

r
R′ − R + R4/d+1 = 0, R′(0) = 0, R(∞) = 0. (6)

Theorem 1 (Weinstein [12]). A sufficient condition for global existence in the critical NLS (5)
is that ‖ψ0‖2

2 < Pcr, where Pcr = ‖R(0)‖2
2, and R(0) is the ground state of equation (6).

1 We call the L2 norm the power, since in optics it corresponds to the beam’s power.



Continuations of the nonlinear Schrödinger equation beyond the singularity 2007

The critical NLS (5) admits the explicit solution

ψexplicit(t, r) = 1

Ld/2(t)
R(0)

(
r

L(t)

)
eiτ+i Lt

L
r2

4 , (7a)

where

L(t) = Tc − t, τ (t) =
∫ t

0

1

L2(s)
ds = 1

Tc − t
. (7b)

More generally, applying the dilation transformation with λ = α and the temporal translation
Tc −→ α2Tc shows that the critical NLS (5) admits the explicit solutions

ψexplicit,α(t, r) = 1

L
d/2
α (t)

R(0)

(
r

Lα(t)

)
eiτα+i (Lα )t

Lα

r2

4 , (8a)

where

Lα(t) = α(Tc − t), τα(t) =
∫ t

0

1

L2
α(s)

ds = 1

α2

1

Tc − t
, α > 0. (8b)

Even more generally, by the Galilean transformation,

ψ
tilt,c
explicit,α(t, x) = ψexplicit,α(t, x − c · t)eic·x/2−i|c|2t/4 (9)

are also explicit solutions of the critical NLS (5).
The explicit solutions (7a), (7b)–(9) become singular at t = Tc. These solutions are

unstable, however, as they have exactly the critical power for collapse. Therefore, any
infinitesimal perturbation which decreases their power will arrest the collapse.

The only minimal-power blowup solutions (i.e. singular solutions whose power is
exactly Pcr) are given by ψ

tilt,c
explicit,α:

Theorem 2 (Merle [2, 3]). Let ψ be a solution of the critical NLS (5) which blows up at a
finite time Tc > 0, such that ||ψ0||22 = Pcr. Then, there exist α ∈ R

+, θ ∈ R, and x0, c ∈ R
d ,

such that for 0 � t < Tc,

ψ(t, x) = ψ
tilt,c
explicit,α(t, x − x0)e

iθ . (10)

When an NLS solution whose power is slightly above Pcr undergoes a stable collapse, it
splits into two components: a collapsing core that approaches the universal ψR(0) profile and
blows up at the loglog law rate, and a non-collapsing tail (φ) that does not participate in the
collapse process:

Theorem 3 (Merle and Raphael [13–19). Let d = 1, 2, 3, 4, 5, and let ψ be a solution of the
critical NLS (5) that becomes singular at Tc. Then, there exists a universal constant m∗ > 0,
which depends only on the dimension, such that for any ψ0 ∈ H 1 such that

Pcr < ‖ψ0‖2
2 < Pcr + m∗, HG(ψ0) := H(ψ0) −

(
Im
∫

ψ∗
0 ∇ψ0

||ψ0||2

)2

< 0,

the following hold:

(i) There exist parameters (τ (t), x0(t), L(t)) ∈ R × R
d × R

+, and a function 0 
= φ ∈ L2,
such that

ψ(t, x) − ψR(0) (t, x − x0(t))
L2−→ φ(x), t −→ Tc,

where

ψR(0) (t, x) = 1

Ld/2(t)
R(0)

( |x|
L(t)

)
eiτ(t),

and R(0) is the ground state of equation (6).



2008 G Fibich and M Klein

(ii) As t −→ Tc,

L(t) ∼
√

2π

(
Tc − t

log | log(Tc − t)|
)1/2

(logloglaw). (11)

NLS solutions whose power is slightly above Pcr can also undergo a different type of
collapse, in which the collapsing core approaches the explicit blowup solution ψexplicit,α and
blows up at a linear rate, but the solution also has a nontrivial tail (φ) that does not participate
in the collapse process:

Theorem 4 (Bourgain and Wang [7]). Let d = 2, let A0 be a given integer, and let A � A0

be a large enough integer. Let φ ∈ XA = {f ∈ HA with (1 + |x|A)f ∈ L2}, and
let z ∈ C((T ∗, Tc], XA) be the solution to the critical NLS (5), subject to z(t = Tc) = φ,
where T ∗ < Tc is the maximal time of existence of z. Assume that φ vanishes to high order at
the origin, i.e. Dαφ(0) = 0 for |α| � A − 1. Then, there exists T ∗ <t0 < Tc and a unique
solution ψBW ∈ C([t0, Tc), XA0) to (5), such that

‖ψBW(t) − ψexplicit,α(t) − z(t)‖XA0
� |Tc − t |A0 . (12)

The Bourgain–Wang solutions ψBW(t, x) are unstable [4], since their singular core is the
unstable blowup solution ψexplicit,α .

3. Merle’s first continuation

In [2], Merle presented a continuation of the explicit blowup solution ψexplicit,α beyond the
singularity. To do that, he considered the solution ψ(ε)(t, r) of the critical NLS (5) with the
initial condition

ψ
(ε)
0 (r) = (1 − ε)ψexplicit,α(t = 0, r), 0 < ε  1. (13)

Since the power of ψ(ε) is below Pcr, it exists globally. Therefore, it is possible to continue
the singular solution ψexplicit,α beyond the singularity, by taking the limit of ψ(ε) as ε → 0+.
The limiting solution is given in the following theorem:

Theorem 5 ([2]). Let ψ(ε)(t, r) be the solution of the critical NLS (5) with the initial
condition (13). Then, for any θ ∈ R, there exists a sequence εn → 0+ (depending on θ ),
such that

ψ(εn)(t, r)
H 1−→

{
ψexplicit,α(t, r) 0 � t < Tc,

eiθψ∗
explicit,α(2Tc − t, r) Tc < t < ∞,

(14)

where ψexplicit(t, r) is given by (8a) and (8b).

Theorem 5 shows that after the singularity, the limiting solution is completely determined,
up to multiplication by eiθ , and is symmetric with respect to Tc, i.e.

lim
εn→0+

ψ(εn)(Tc + t, r) = eiθ lim
εn→0+

ψ∗(εn)(Tc − t, r), t > 0. (15)

3.1. Simulations

In order to provide a numerical illustration of theorem 5, let ψ(ε)(t, x) be the solution of the
one-dimensional critical NLS

iψt(t, x) + ψxx + |ψ |4ψ = 0, (16a)
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Figure 1. Solution of (16a) and (16b). (a) Lε(t) for ε = 5×10−4, 2.5×10−4 and 10−4. The solid
line is L = |Tc − t |. (b) Accumulated phase at x = 0 for ε = 0.9 × 10−3, 10−3 and 1.1 × 10−3.
Solid line is arg (ψexplicit(t, 0)).

with the initial condition

ψ
(ε)
0 (x) = (1 − ε)ψexplicit(0, x) = (1 − ε)

1

T
1/2
c

R

(
x

Tc

)
ei 1

Tc
−i x2

4Tc , Tc = 0.25. (16b)

Let us define the width of the solution ψ(ε)(t, x) as

Lε(t) :=
∣∣∣∣ R(0)

ψ(ε)(t, 0)

∣∣∣∣2/d

, (17)

see (7a), (25a) and (25b). Figure 1(a) shows that limε→0+ Lε(t) = |Tc − t |, both for t < Tc

and for Tc < t , in agreement with theorem 5.
In order to observe the loss of the phase after the singularity, we compute the effect of

small changes in the initial condition on the phase, by solving equations (16a) and (16b)
with ε = 0.9 × 10−3, 10−3 and 1.1 × 10−3. Figure 1(b) shows that these O(10−4) changes in
the initial condition lead to O(1) changes in the phase for t > Tc, which is a manifestation of
the post-collapse phase loss as ε → 0+.

4. Sub-threshold power continuation

The main weakness of theorem 5 is that it only applies to the explicit solutions ψexplicit,α . We
now generalize Merle’s continuation to generic initial profile F(x) ∈ H 1 as follows. Consider
the solution ψ(t, x; K) of the critical NLS (5) with the initial condition

ψ0(x; K) = K · F(x), F (x) ∈ H 1, K > 0. (18)

Let

Kth = inf{K | ψ(t, x; K) collapses at some 0 < Tc(K) < ∞}. (19)

Let us consider the case where the infimum is attained, i.e. when ψ(t; x; Kth) becomes singular
at a finite time. By construction, the solution ψ(ε) of the critical NLS (5) with the initial
condition

ψ
(ε)
0 (x) = (1 − ε) · ψ

(F)
0 (x), ψ

(F)
0 (x) = Kth · F(x) (20)

exists globally for 0 < ε  1, but collapses for −1  ε < 0. Therefore, as in theorem 5,
we can define the continuation of ψ(t, x; Kth) beyond the singularity, by considering the limit
of ψ(ε) as ε → 0+. Using asymptotic analysis, in section 4.2 we derive the following result,
which is the non-rigorous asymptotic analogue of theorem 5:
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Continuation result 1. Let ψ(ε)(t, r) be the solution of the critical NLS (5) with the
initial condition (20), where F(r) is radial. Assume that ψ(ε=0)(t, r) becomes singular
at 0 < Tc < ∞. Then, for any θ ∈ R, there exists a sequence εn → 0+ (depending on θ ) and
a function φ ∈ L2, such that

lim
t→Tc−

[ lim
ε→0+

ψ(ε)(t, r) − ψexplicit,α(t, r)eiθ0 ] = φ(r)

= lim
t→Tc+

[ lim
εn→0+

ψ(εn)(t, r) − ψ∗
explicit,α(2Tc − t, r)eiθ ], (21)

where the above limits are in L2, ψexplicit,α is given by (8a) and (8b), Tc, α ∈ R
+ and θ0 ∈ R.

Therefore, locally near the singularity, the limiting solution satisfies properties 1 and 2.
In particular, the limiting width of the collapsing core is given by

L(0)(t) := lim
ε→0+

L(t; ε) ∼ α|t − Tc|, t → Tc ± . (22)

By theorem 2, if ψ(t; x; Kth) is a singular solution which is not given by (10), then
||ψ(t; x; Kth)||22 > Pcr. In that case,

||φ||22 = lim
ε→0+

||ψ(ε)||22 − Pcr = ||ψ(t; x; Kth)||22 − Pcr > 0.

Corollary 1. If

ψ
(F)
0 (x) 
= 1

αTc

R(0)

( |x − x0|
αTc

)
eiθ−i |x−x0 |2

4Tc
+i c·(x−x0)

2 ,

the limiting solution in continuation result 1 is a Bourgain–Wang solution ψBW, both before
and after the singularity.

4.1. Simulations

In order to illustrate the results of continuation result 1, we solve numerically the one-
dimensional critical NLS (16a) with the initial condition

ψ
(ε)
0 (x) = (1 − ε) · ψ

(F)
0 (x), ψ

(F)
0 (x) = Kthe−x2

. (23)

We first compute the value of Kth. We solve the NLS (16a) with the initial
condition ψ0 = Ke−x2

. Figure 2(a) shows that for K = 1.481 40 the beam collapses, while
for K = 1.481 39 the collapse is arrested. Therefore, Kth = 1.481395 ± 5 × 10−6.

In figure 2(b) we plot the solution of (16a) with the initial condition (23), as a function
of t . The solution amplitude increases up to t = T ε

max := arg maxt‖ψ(ε)(t, x = 0)‖∞, and
then decreases. As expected, both T ε

max and the maximal amplitude |ψ(ε)(T ε
max, 0)| increase

as ε → 0+. In figure 2(c) we plot T ε
max as a function of ε. Extrapolation of these values

to ε = 0 shows that

Tc := lim
ε→0+

T ε
max ≈ 8.00. (24)

Since Tc < ∞, ψ(t, x; Kth) is a singular solution.
In order to confirm that the profile of the collapsing core is a rescaled R(0) profile, see

equation (21), in figure 2(d) we plot |ψ(ε)| for ε = 2 × 10−5 at t = 10 ≈ 1.35T ε
max, i.e. after

its collapse has been arrested, and observe that for 0 � x/L(t) � 5, the rescaled profile is
indistinguishable from R(0), while for 6 < x/L(t) the two curves are different. This confirms
that the inner core collapses with the ψexplicit,α profile, but the outer tail does not.

In figure 2(e) we plot the solution width Lε(t) for various values of ε. The extrapolation
of these curves to ε = 0 is in good agreement with the predicted linear limit (22) for
0.25 � t/Tc � 1.2, see figure 2(f ). Finally, in order to observe the loss of the phase
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Figure 2. Solution of the one-dimensional critical NLS (16a) with (a) the initial condition (18)
with K = 1.481 39 (solid) and K = 1.481 40 (dashes). (b)–(g) The initial condition (23)
with Kth = 1.481 395 with various values of ε. (b) Solution for ε = 2 × 10−5, 4 × 10−5

and 6 × 10−5. (c) The maximum focusing time T ε
max. (d) Rescaled solution for ε = 2 × 10−5

at t = 10 ≈ 1.35T ε
max (solid), and the R(x) profile (dashes), on a semi-logarithmic scale. (e) Lε(t)

for ε = 6×10−5, 4×10−5, 2×10−5 and 1×10−5. (f ) Extrapolation of {Lε(t)} from (e) to ε = 0
(solid). The dashed line is L = α|Tc − t | with α = 0.0777 and Tc = 7.96. (g) Accumulated phase
at x = 0.

after the singularity, we compute the effect of O(10−5) changes in the initial condition
on the phase, by solving the one-dimensional NLS (16a) with the initial condition (23)
with ε = 2 × 10−5, 4 × 10−5 and 6 × 10−5. Figure 2(g) shows that these O(10−5) changes in
the initial condition lead to O(1) changes in the phase for 8 � t � 10. Since Tc ≈ 8, see (24),
these O(1) changes occur after the singularity, in agreement with continuation result 1.

4.2. Proof of continuation result 1

4.2.1. Adiabatic collapse—review. In order to compute asymptotically the limit of ψε

as ε → 0+, we recall that, in general, the collapse of radial solutions with power close
to Pcr can be divided into two stages, see [9]:

(i) During the initial non-adiabatic self-focusing stage, the solution ‘splits’ into a collapsing
core ψcore and a non-collapsing ‘tail’, i.e.

ψ(t, r) ∼
ψcore 0 � r

L(t)
� ρ0,

ψtail ρ0  r

L(t)
,

(25a)

where L(t) is the collapsing core ‘width’ and ρ0 = O(1).
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(ii) As t → Tc, ψcore approaches the self-similar profile

ψR(0) = 1

Ld/2(t)
R(0)(ρ)eiS, ρ = r

L
, S = τ(t) +

Lt

L

r2

4
,

τ =
∫ t

0

1

L2(s)
ds, (25b)

where R(0) is the ground state of (6). In contrast, the ‘tail’ continues to propagate forwards.
In particular, limt→Tc

ψtail = φ(x) ∈ L2, see theorem 3.
Once the profile of ψcore is close enough to ψR(0) , the dynamics of the collapsing
core becomes nearly adiabatic, and is governed, to leading order, by the reduced
equations [20–22]

βt (t) = −υ(β)

L2
, Ltt = − β

L3
, (26)

where

υ(β) =
{
cνe−π/

√
β, β > 0,

0, β � 0,
(27a)

and

cν = 2A2
R

M
, AR = lim

r→∞ er r(d−1)/2R(0)(r), M = 1

4

∫ ∞

0
r2(R(0))2rd−1 dr. (27b)

In addition, the parameter β is proportional to the excess power above Pcr of the collapsing
core ψcore, i.e.

β ∼ ‖ψcore‖2
2 − Pcr

M
, (28)

see [8, 9].

4.2.2. Asymptotic analysis. For simplicity, we assume that the initial condition (20) is radial.
By construction, for the initial condition (20),{‖ψcore‖2

2 > Pcr ε < 0,

‖ψcore‖2
2 < Pcr ε > 0.

Therefore, by (28),{
β > 0 ε < 0,

β < 0 ε > 0.
(29)

Hence, by (27a), υ(β) ≡ 0 for ε > 0. Therefore βt (t; ε) ≡ 0. Thus, the self-focusing
dynamics is governed by

Ltt (t; ε) = −β(ε)

L3
, (30)

where β(ε) is independent of t .
Let tad(ε) > 0 denote the time at which ψ(ε) ‘enters’ the adiabatic stage, i.e., when ψ(ε) ∼

ψR(0) , so that equations (26) hold. Therefore, for t � tad(ε), the dynamics is given by

Ltt (t) = −β(ε)

L3
, L(tad) = Lad(ε), Lt (tad) = L′

ad(ε). (31)
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Lemma 1. Let L(t; ε) be the solution of (31). Denote

tad := lim
ε→0+

tad(ε), α := lim
ε→0+

Lt(tad(ε); ε), Tc := lim
ε→0+

− Lad(ε)L
′
ad(ε)

(L′
ad(ε))

2 − β(ε)

L2
ad(ε)

 .

(32)

Then,

lim
ε→0+

L(t; ε) = α|t − Tc|, tad � t < ∞. (33)

Proof. Two integrations show that the solution of (31) is given by

L2(t; ε) = c1(ε)

(
t +

Lad(ε)L
′
ad(ε)

c1(ε)

)2

− β(ε)

c1(ε)
, c1(ε) = (L′

ad(ε))
2 − β(ε)

L2
ad(ε)

.

By (29), limε→0+ β(ε) = 0. Therefore, limε→0+ c1(ε) = α2. Hence, limε→0+ L2(t; ε) =
α2(t − Tc)

2. �

Corollary 2. limε→0+ τ(t = Tc; ε) = ∞.

Proof. By (25b) and (33),

lim
ε→0+

τ(t = Tc; ε) = lim
ε→0+

∫ Tc

0

dt

L2(t; ε)
=
∫ Tc

0

dt

α2(Tc − t)2
= ∞. �

In order to go back from L(t) to ψ , let us note that:

Lemma 2. Let ψR(0) be given by (25b). If L(t) = α|Tc − t |, then

ψR(0) (t, r) =
{

eiθ0ψexplicit,α(t, r), 0 � t < Tc,

eiθ1ψ∗
explicit,α(2Tc − t, r), t > Tc,

(34)

where ψexplicit,α(t, r) is given by (8a) and (8b), and θ0, θ1 ∈ R.

4.2.3. Proof of continuation result 1. In lemma 1 we saw that the solution L(t) of
the reduced system is given by (33) for tad � t < ∞. Therefore, by lemma 2,
when tad � t < Tc, ψR(0) (t, r) = ψexplicit,α(t, r)eiθ0 , and when Tc < t , ψR(0) (t, r) =
ψ∗

explicit,α(2Tc − t, r) limεn→0 eiθ1(εn).
Since arg ψ(t, 0) ∼ arg ψR(0) (t, 0) = τ(t), corollary 2 shows that the limiting phase

becomes infinite at Tc, hence also for t > Tc. Therefore, for a given t > Tc and θ ∈ R, there
exists a sequence εn → 0+, such that limεn→0+ arg ψ(εn)(t, 0) = θ . Since as t → Tc, ψcore →
ψR(0) and ψtail → φ(x) ∈ L2, the proposition follows.

5. Time-reversible continuations

The continuation in continuation result 1 preserves properties 1 and 2 of Merle’s first
continuation. We now show that these two properties hold for continuations of the NLS
that preserve the NLS invariance under the transformation,

t → −t and ψ → ψ∗, (35)

and also satisfy some additional conditions.



2014 G Fibich and M Klein

Continuation result 2. Let ψ(t, x) be a solution of the NLS (1) that blows up at Tc, and
let ψ(ε)(t, x) be a smooth continuation of ψ(t, x), such that

(i) ψ(ε) exists globally for 0 < ε  1.
(ii) limε→0+ ψ(ε)(t, x) = ψ(t, x) in L2σ+2 for 0 � t < Tc.

(iii) ψ(ε) is invariant under the transformation (35).
(iv) limt→Tc

arg ψ(t, 0) = ∞.
(v) Let T ε

max := arg maxt‖ψ(ε)(t, r)‖2σ+2 denote the time at which the collapse of ψ(ε) is
arrested. Then, for all x ∈ R

d ,

arg ψ(ε)(T ε
max, x) ≡ α(ε), αε ∈ R. (36)

Then, for any θ ∈ R, there exists a sequence εn → 0+ (depending on θ ), such that

lim
εn→0+

ψ(εn)(Tc + t, x) = eiθψ∗(Tc − t, x), t > 0.

Hence, the continuation satisfies properties 1 and 2.

Proof. Assume first that α(ε) = 0. Then, from the invariance of ψ(ε) under (35) it follows that

ψ(ε)(T ε
max + t, x) = ψ∗(ε)(T ε

max − t, x), t > 0. (37)

If α(ε) 
= 0, then (37) holds for e−iα(ε)

ψ(ε), i.e.

e−iα(ε)

ψ(ε)(T ε
max + t, x) = eiα(ε)

ψ∗(ε)(T ε
max − t, x), t > 0. (38)

Hence,

ψ(ε)(T ε
max + t, x) = eiθ(ε)

ψ∗(ε)(T ε
max − t, x), t > 0, (39)

where θ(ε) = 2α(ε). Since limε→0+ θ(ε) = limε→0+ arg ψ(ε)(T ε
max, 0) = ∞, there

exists εn → 0+ such that θ = limεn→0+ θ(εn). In addition, from limt→Tc
||ψ(t)||2σ+2 = ∞

and limε→0 ||ψε(t)||2σ+2 = ||ψ(t)||2σ+2 for 0 � t < Tc, it follows that limε→0+ T ε
max = Tc.

The result follows by taking the limit of (39). �
Continuation result 2 holds for both the critical and the supercritical NLS. The

interpretation of the conditions of continuation result 2 is as follows. Conditions 1 and 2
say that ψ(ε) is a continuation of ψ . Condition 3 says that the continuation is time reversible.
Condition 4 says that the phase of the singular solution becomes infinite at the singularity.
This condition holds for all known singular solutions of the critical and supercritical NLS.
Condition 5 says that at t = T ε

max, the solution is collimated. Intuitively, this is because the
solution is focusing for t < T ε

max, and defocusing for t > T ε
max.

We now confirm that the sub-threshold power continuation of continuation result 1 satisfies
the conditions of continuation result 2. By (25b),

ψ(ε)(t, r) ∼ 1

L
d/2
ε (t)

R(0)
( r

L

)
eiτε+ (Lε )t

Lε

r2

4 ,
dτε

dt
= 1

L2
ε

.

Since Lε(t) attains its minimum at T ε
max, then L′

ε(T
ε

max) = 0. Therefore, arg ψ(ε)(T ε
max, r) ≡

α(ε), where α(ε) = τε(T
ε

max). Furthermore, since L2
ε(t) ∼ 1

‖∇ψ(ε)‖2
2

∼ 1
‖∇ψ‖2

2
, and since in the

critical NLS ‖∇ψ‖2
2 � M(Tc − t)−1 [23],

lim
ε→0+

τε(T
ε

max) = lim
ε→0+

∫ T ε
max

0

dt

L2
ε

� M

∫ Tc

0

dt

Tc − t
= ∞.

Therefore, limε→0+ α(ε) = ∞. Hence, limε→0+ θ(ε) = ∞.
From all the conditions of continuation result 2, the only one whose validity is questionable

is condition 5. It is reasonable to expect that this condition would hold for the collapsing core.
There is no reason, however, why it should hold for the non-collapsing tail.

An immediate consequence of continuation result 2 is that:
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Corollary 3. Under the conditions of continuation result 2, the limiting solution limεn→0+ ψ(εn)

is in H 1for t > Tc. Hence, the continuation leads to a point singularity, and not to a filament
singularity.

In section 6 we will see that time-reversible continuations can also lead to a filament
singularity. In that case, however, condition 5 does not hold.

6. Vanishing nonlinear-saturation continuation

6.1. Merle’s second continuation

In [3], Merle presented a different continuation, which is based on arresting the collapse with
an addition of nonlinear saturation.

Theorem 6 ([3]). Let d � 2, and consider radial initial data ψ0(r) ∈ H 1⋂{rψ0 ∈ L2},
such that the solution ψ(t, x) of the critical NLS (5) blows up in finite time Tc. For ε > 0
and 1 + 4/d < q < (d + 2)/(d − 2), let ψε(t, x) be the solution of the saturated critical NLS

iψt(t, x) + �ψ + |ψ |4/dψ − ε|ψ |q−1ψ = 0, ψ(0, x) = ψ0(r). (40)

If for T0 > Tc, there is a constant C > 0 such that
∫ |x|2|ψε(T0, x)|2 dx � C, then:

(i) There is a function ψ̃(t, x) defined for t < T0, such that for all r0 > 0, ψ̃ ∈
C([0, T0), L

2(|x| � r0)), and ψε(t, x) → ψ̃(t, x) in C([0, T0), L
2(|x| � r0)) as ε → 0.

(ii) For t < T0, there is m(t) � 0 such that |ψε(t, x)|2 → m(t)δ(x) + |ψ̃(t, x)|2 as ε → 0 in
the distribution sense. Furthermore,
(a) If m(t) 
= 0, then ‖ψε(t, x)‖H 1 → +∞ as ε → 0 and m(t) � Pcr .
(b) If m(t) = 0, there is a constant c > 0 such that for all ε, ‖ψε(t, x)‖H 1 < c,

and ψε(t, x) → ψ̃(t, x) in L2.
(iii) For all t < T0, m(t) +

∫ |ψ̃(t, x)|2 dx = ∫ |ψ0(x)|2 dx.

Theorem 6 shows that the vanishing nonlinear-saturation continuation can lead to a
filament singularity. The condition

∫ |x|2|ψε(T0, x) dx � C is believed to hold generically.

6.2. Malkin’s analysis

In [8], Malkin analysed asymptotically the solutions of the saturated critical NLS (40)
with d = 2 and q = 5. Malkin showed that initially, the solution follows the non-saturated NLS
solution and self-focuses. Then, the collapse is arrested by the nonlinear saturation, leading to
focusing–defocusing oscillations. During each oscillation, the collapsing core loses (radiates)
some power. As a result, the magnitude of the oscillations decreases, so that ultimately, the
solution approaches a standing-wave solution of the saturated NLS.

If we fix the initial condition ψ0 and let ε −→ 0+, then as ε decreases, the collapse is
arrested at a later stage. For example, in figure 3 we plot the solution of the saturated critical
NLS (40) with d = 2 and q = 5 with the initial condition ψ0(r) = 3.079e−r2

, and observe
that as ε decreases, the collapse is arrested at a later stage, and the oscillations occur at higher
amplitudes. In addition, we observe that as t increases, the oscillations decreas. Hence, it is
reasonable to assume that the amplitude of the limiting standing-wave increases as ε decreases,
and goes to infinity as ε −→ 0+. In addition, as ε −→ 0+, the power of the standing-wave
of (40) approaches Pcr. Therefore, Malkin’s analysis suggests that

m(t) ≡ Pcr, Tc � t < ∞,

i.e., after the singularity the limiting solution consists of a semi-infinite filament with power Pcr,
and a regular part with power ||ψ0||22 − Pcr.



2016 G Fibich and M Klein

0 2 4 6 8
0

5

10

15

20

25

|ψ(t,0)|        

t

Figure 3. Solution of the saturated NLS (40) with d = 2 and q = 5 for ε = 0.5 × 10−3 (solid),
and ε = 2 × 10−3 (dashes). Here, ψ0(r) = 3.079e−r2

.

6.3. Importance of power radiation

The above results of Merle and Malkin strongly suggest that the continuation of singular NLS
solutions with a vanishing nonlinear saturation generically leads to a filament singularity. Since
the NLS with a nonlinear saturation is time reversible, these results seem to be in contradiction
with continuation result 2, see corollary 3. Note, however, that in continuation result 2 we
assumed that the solution phase is constant at the time T ε

max where its collapse is arrested
(condition 5). If this condition were to hold for the solution of the saturated NLS, then by
continuation result 2, the solution at t = 2T ε

max would be given by ψ∗
0 . As figure 3 shows, this

is not the case.
The mechanism which enables the filamentation is the loss (radiation) of power from

the collapsing core to the surrounding background. Indeed, in the absence of radiation,
the collapsing core of the solution of saturated NLS undergoes periodic oscillations, rather
than approaches a standing wave [8]. We stress that the constant phase condition does hold
asymptotically for the collapsing core [8]. It does not, however, hold for the regular part of
the solution (the ‘tail’)2.

7. Chaotic interactions

In sections 3–5 we saw that time-reversible continuations have the property whereby the phase
becomes non-unique after the blowup time. A priori, this phase loss should have no effect,
since multiplying the NLS solution by eiθ does not affect the dynamics. Nevertheless, we
now show that this phase loss can affect the interaction between two post-collapse beams
(filaments).

Consider first the initial condition

ψ0(x) = ψ
tilt,±c
explicit(0, x ∓ x0) = ψexplicit(0, x ∓ x0)e

±ic·(x∓x0)/2. (41)

By (9), the solution of the critical NLS (5) with the initial condition (41) is given by

ψ
tilt,±c
explicit(t, x ∓ x0) = ψexplicit(t, x ∓ x0 ± c · t)e±ic·(x∓x0)/2−i|c|2t/4.

2 In the terminology of theorem 3, it holds for ψR(0) , but not for φ.
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Figure 4. Solution of the one-dimensional critical NLS (16a) with the initial condition (42)
with Tc = 0.25, x0 = 6, c = 8 and ε = 10−3. (a) In-phase identical beams (�θ = 0 and �ε = 0).
(b) Out-of-phase identical beams (�θ = π and �ε = 0). (c) In-phase non-identical beams
(�θ = 0 and �ε ≈ 2.7 × 10−4).

Therefore, ψ
tilt,±c
explicit(t, x) is the explicit blowup solution (7a) and (7b) centered initially

at x = ±x0, and tilted at the angle of ± arctan(|c|).
We now consider the one-dimensional critical NLS (16a) with the two tilted-beams’ initial

condition

ψ0(x) = (1 − ε)ψ
tilt,+c
explicit(0, x − x0) + (1 − (ε + �ε))ψ

tilt,−c
explicit(0, x + x0))e

i�θ , (42)

where ψ
tilt,±c
0,ex is defined in (41) and ε = 10−3. This initial condition correspond to two

input beams, centred at ±x0, titled towards each other, possible with a different power (when
�ε 
= 0), and with a relative phase difference �θ . In figure 4(a) we plot the solution
when �ε = 0 and �θ = 0 (equal-power, in-phase input beams). Since the power of each beam
is slightly below Pcr, each beam focuses up to a certain time (t ≈ 0.3), and then defocuses.
Subsequently, the two beams intersect around t ≈ 0.6. Since the beams are in phase, they
interact constructively. As a result, their total power is ≈2Pcr. Hence, the solution collapses
at Tc ≈ 0.6.

In figure 4(b) we repeat this simulation with �ε = 0 and �θ = π (equal-power, out-
of-phase input beams). Before the two beams intersect, their dynamics is the same as in
figure 4(a). When they intersect at t ≈ 0.6, however, the two beams are out-of-phase. Hence,
they repel each other. Since each beam has power below Pcr, there is no collapse.

In figure 4(c) we repeat this simulation with �θ = 0 and �ε ≈ 2.7 × 10−4 (in-phase
and slightly different input powers), and observe that at t ≈ 0.6 the two beams repel each
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Figure 5. arg ψ1(t, x = x0 − ct) − arg ψ2(t, x = −x0 + ct).

other and there is no collapse. In particular, comparison of figures 4(a) and 4(c) shows that
the O(10−4) change in the initial condition leads to a completely different ‘post collapse’
interaction pattern between the two beams.

The dynamics in figure 4(c) is qualitatively the same as in figure 4(b). This suggests
that when the two beams in figure 4(c) intersect, their phase difference is ≈π . Indeed,
let ψ1(t, x) and ψ2(t, x) be the solutions of the one-dimensional critical NLS (16a) with the
initial conditions (1 − ε)ψ

tilt,+c
explicit(0, x −x0) and (1 − (ε + �ε))ψ

tilt,−c
explicit(0, x + x0)), respectively.

In figure 5 we plot the difference between the phases of ψ1(t, x) and ψ2(t, x), and observe
that around t ≈ 0.6, this phase difference is indeed ≈π .

We thus see that,

Conclusion 1. Because of the loss of phase after the collapse, the phase difference between
post-collapse intersecting beams becomes unpredictable.

Therefore, as noted by Merle [2], the interactions between two post-collapse beams are chaotic.

8. Ring-type singular solutions

In this section we propose a continuation of ring-type singular solutions, which is based on
adding a reflecting hole with radius r0 around the origin, and then letting r0 → 0+.

8.1. Theory review

Consider the two-dimensional, radially symmetric critical NLS

iψt(t, r) + ψrr +
1

r
ψr + |ψ |2ψ = 0, ψ(0, r) = ψ0(r). (43)

Let us denote the location of the maximal amplitude by

rmax(t) = arg max
r

|ψ |. (44)

Singular solutions of (43) are called ‘peak-type’ when rmax(t) ≡ 0 for 0 � t � Tc, and
‘ring-type’ when rmax(t) > 0 for 0 � t < Tc.

Let

ψ
(ex)
G (t, r) = 1

L(t)
G

(
r

L(t)

)
eiτ(t)+i Lt

L
r2

4 , (45a)
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where

L(t) =
√

1 − α2t, τ =
∫ t

0

1

L2(s)
ds = − 1

α2
ln(1 − α2t), (45b)

and G(ρ) is a solution of

G′′(ρ) +
G′

ρ
+

[
α4

16
ρ2 − 1

]
G + G3 = 0, 0 
= G(0) ∈ R, G′(0) = 0. (46)

In [24], Fibich et al showed that ψex
G is an explicit ring-type solution of the radially symmetric

critical NLS (43) that blows up (in L4) at Tc = 1/α2. Setting t = 0 in (45a), (45b) gives the
corresponding initial condition

ψ0
G(r) = G(r)e−i(α2/8)r2

. (47)

Equation (46) has the two free parameters α and G(0). However, in the case of a single-
ring G profile, these two parameters are related [25]. For example, in the numerical simulations
in this section, the G profile is the single-ring solution of (46) with

G(0) ≈ 7.6 × 10−6, α ≈ 0.357832. (48)

8.2. Vanishing-hole continuation

The sub-threshold power continuation approach of section 4 cannot be applied to ψ
(ex)
G , since

these solutions have an infinite power. In addition, this continuation cannot be applied to the
ring-type singular solutions which are in H 1, since these solutions exist only for P � Pcr [24].
Therefore, we now develop a different continuation approach, which is based on a vanishing-
hole limit.

Let ψ(t, r) be a shrinking-ring singular solution of the critical NLS (43) with an initial
condition ψ0(r). Let us add a hole around the origin with radius r0, and impose a Dirichlet
boundary condition at r = r0, which is equivalent to placing a reflecting conductor at r = r0.
In order for the initial condition ψ0

G(r) to satisfy the Dirichlet boundary condition, we slightly
modify it with a cut-off function Hs(r/r0), i.e.3

ψ0
G(r) → ψ

0,r0
G (r) := ψ0

G(r) · Hs

(
r

r0

)
.

We thus solve the two-dimensional, radially symmetric critical NLS

iψt(t, r) + ψrr +
1

r
ψr + |ψ |2ψ = 0, r0 < r < ∞, (49a)

with the initial condition

ψ
0,r0
G (r) ≡ G(r)e−i α2

8 r2 · Hs

(
r

r0

)
, (49b)

and the Dirichlet boundary condition

ψ(t, r0) = 0, t � 0. (49c)

A typical simulation is shown in figure 6. Initially, the ring solution shrinks and becomes
higher and narrower as it approaches the hole. After the solution is reflected outwards by the
hole, it expands and becomes lower and wider.

3 For example, in our simulations we used the cut-off function

Hs(ρ) =


0 0 � ρ � 1,

P5(ρ) 1 < ρ < 2,

1 ρ � 2,

, P5(ρ) = 6

(
ρ − 3

2

)5

− 5

(
ρ − 3

2

)3

+
15

8

(
ρ − 3

2

)
+

1

2
.
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Figure 6. Solution of the NLS (49a)–(49c) with r0 = 0.08 at (a) t0 ≈ 7.806, (b) t1 ≈ 7.808,
(c) t2 ≈ 7.8095 , (d) t3 ≈ 7.8100, (e) t4 ≈ 7.8110, (f ) t5 ≈ 7.8126. The arrows denote the
direction in which the ring moves.

We now show that the conditions of continuation result 2 hold:

(i) The solution of (49a)–(49c) exists globally, since otherwise it collapses at some 0 < rc <

∞ (a standing ring), or at r → ∞ (an expanding ring). The first possibility is only
possible, however, if the nonlinearity is quintic or higher, and the second possibility is not
possible for any power-nonlinearity, see [26].

(ii) By continuity, limr0→0+ ψ = ψ
(ex)
G for 0 � t < Tc.

(iii) The solution of (49a)–(49c) is invariant under the transformation (38).
(iv) limt→Tc

arg ψ
(ex)
G = ∞, see (45b).

(v) Let T
r0

ref := arg mint rmax(t) denote the reflection time, where rmax(t) is given by (44).
Since the solution focuses for 0 � t < T

r0
ref and defocuses for T

r0
ref � t < ∞, it is

collimated at t = T
r0

ref . Therefore,

arg ψ(T
r0

ref , r; r0) ≡ αr0 , αr0 ∈ R. (50)

Hence, by the arguments in the proof of continuation result 2,4,

ψ(T
r0

ref + t, r; r0) = eiθ(r0)ψ∗(T r0
ref − t, r; r0), t > 0. (51)

Indeed, in figure 7 we plot the solution at t = T
r0

ref ± �t for three different values of �t ,
and observe that in all three cases, the two curves lie on top of each other.

Therefore, we get the following result:

4 Here T
r0

ref is the analogue of T ε
max and (51) is the analogue of (39).
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Figure 7. Solution of figure 6 at t = T
r0

ref − �t (solid) and at t = T
r0

ref + �t (dashes),
where T

r0
ref ≈ 7.8096. The dotted line is the best fitting ψG profile. All three curves are

indistinguishable. (a) �t = 0.0035. (b) �t = 0.0037. (c) �t = 0.0039.

Continuation result 3. Let ψ(t, r; r0) be the solution of the NLS (49a)–(49b), and assume
that (50) holds. Then, for any θ ∈ R, there exists a sequence r0,n → 0+ (depending on θ ),
such that

lim
r0,n→0+

ψ(t, r; r0,n) =
{

ψ
(ex)
G (t, r) 0 � t < Tc,

ψ
∗(ex)
G (2Tc − t, r)eiθ Tc < t,

(52)

where ψ
(ex)
G (t, r) is given by (45a), 45b and Tc = 1/α2. Hence, this continuation satisfies

properties 1 and 2.
In particular, the limiting width is given by

lim
r0→0+

L(t; r0) =
√∣∣∣∣1 − t

Tc

∣∣∣∣.
8.2.1. Simulations. In figure 8 we plot the reflection time as a function of r0, and observe
that these data are in excellent fit with the parabola

T
r0

ref = T̂c + k2 · r2
0 , T̂c = 7.809 81, k2 = −0.035 85. (53)

Since Tc = 1/α2 ≈ 7.809 83, see (48), the extrapolation error is |Tc−T̂c|
Tc

= 0.0002%. The

observation that Tc−Tref(r0) scales as r2
0 and not only as r0, will allow us to extrapolate ψ

r0
G (t, r)

and L(t; r0) as a function of r2
0 , rather than of r0, leading to more accurate extrapolations.

We now present simulation results that support continuation result 3:

(i) In figure 9(a) we plot L(t; r0) for r0 = 0.15, 0.125, 0.1 and 0.08. The curve which is
obtained from the extrapolation of these curves to r2

0 = 0 is nearly identical to the limiting

curve L =
√

|1 − t
Tc

|, see figure 9(b).

(ii) In figure 10(a) we fix the time at t1 = 7.8124 > Tc, and plot the solution profile
for r0 = 0.15, 0.125, 0.1 and 0.08. The curve which is obtained from the extrapolation
of the profiles {|ψ(t1, r; r0)|} to r2

0 = 0 is nearly identical to |ψ∗(ex)
G (2Tc − t1, r)|, see

figure 10(b).
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Figure 8. The reflection time T
r0

ref as a function of the hole radius r0, for the solution of the
NLS (49a)–(49c). The solid line is the parabola (53).

  

Figure 9. Solution of the NLS (49a)–(49c). (a) Solution width for r0 = 0.15 (dots), r0 = 0.125
(dashed–dotted), r0 = 0.1 (dashes) and r0 = 0.08 (solid). (b) Extrapolation of the curves {L(t; r0)}
from (a) to r0 = 0 (dashes). The solid line is L(t) = √|1 − t/Tc|.

(iii) In figure 11 we plot the accumulated phase at the ring peak, i.e., arg ψ
r0
G (t, rmax(t)), and

observe that small changes in r0 hardly affect the phase before the singularity, but lead
to O(1) changes in the phase after the singularity.

9. Vanishing nonlinear-damping solutions

In this section, we propose a continuation which is based on the addition of nonlinear
damping. The motivation for this approach comes from the vanishing-viscosity solutions of
hyperbolic conservation laws. Of course, the key question is which physical mechanism should
play the role of ‘viscosity’ in the NLS. In the nonlinear optics context, there are numerous
candidates, which correspond to the mechanisms that are neglected in the derivation of the
NLS from Maxwell’s equations: Nonparaxial effects, high-order nonlinearities, dispersion,
plasma effects, Raman, damping, etc. Of course, for a physical mechanism to be able to play
the role of ‘viscosity’, it should arrest the collapse regardless of how small it is (so that we
can take the limit of this term to zero, and still have global solutions). This requirement rules
out some candidates (such as linear damping, see below), but still leaves plenty of potential
candidates (such as nonlinear saturation, see section 6).
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Figure 10. (a) Solution of the NLS (49a)–(49c) at t = 7.8124 = 1.0003Tc for r0 = 0.15
(dots), r0 = 0.125 (dashed–dotted), r0 = 0.1 (dashes) and r0 = 0.08 (solid). The solid bold line
is the extrapolation of these curves to r0 = 0. (b) The extrapolated profile from (a) (solid bold).
The dotted line is |ψ∗(ex)

G (2Tc − 7.8214, r)|. The two curves are indistinguishable.

 

Figure 11. Accumulated phase as a function of t , for the solution of the NLS (49a)–(49c)
with r0 = 0.08 (solid), r0 = 0.1 (dashes), r0 = 0.125 (dots) and r0 = 0.15 (dashed–dotted).

In this study we consider the case when the role of viscosity is played by nonlinear damping.
The addition of small nonlinear damping is ‘physical’. Indeed, in nonlinear optics, experiments
suggest that arrest of collapse is usually related to plasma formation, and nonlinear damping
can be used as a phenomenological model for the multi-photon absorption by the plasma.
In BEC, a quintic nonlinear damping term corresponds to losses from the condensate due to
three-body inelastic recombinations. In [27], Bao et al showed numerically that the arrest of
collapse by the addition of a quintic nonlinear damping to the cubic three-dimensional NLS
is in good agreement with experimental measurements. Nonlinear damping arises also in the
context of the CGL equation, see section 10.

9.1. Effect of linear and nonlinear damping—review

In [28], Fibich studied asymptotically and numerically the effect of damping on blowup in the
critical NLS, and showed that when the damping is linear, i.e.,

iψt(t, x) + �ψ + |ψ |4/dψ + iδψ = 0, ψ(0, x) = ψ0(x), (54)

if the initial condition ψ0(x) is such that the solution of (54) becomes singular for δ = 0, then
the solution of (54) exists globally only if δ is above a threshold value δc > 0 (which depends
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on ψ0). Therefore, linear damping cannot play the role of viscosity in defining weak solutions
of the NLS. When, however, the damping exponent is critical or supercritical, i.e.

iψt(t, x) + �ψ + (1 + iδ)|ψ |4/dψ = 0, δ > 0, (55)

or

iψt(t, x) + �ψ + |ψ |4/dψ + iδ|ψ |pψ = 0, δ > 0, p > 4/d, (56)

respectively, then regardless of how small δ is, collapse is always arrested. Therefore, Fibich
suggested that nonlinear damping can ‘play the role of viscosity’ in defining weak NLS
solutions, i.e. we can define the continuation

ψ := lim
δ→0+

ψ(δ), (57)

where ψ(δ) is the solution of (55) or (56).
Since the results in [28] are not rigorous, we now present the relevant rigorous results that

exist in the literature. Passot, Sulem and Sulem proved that high-order nonlinear damping
always prevents collapse for d = 2. Antonelli and Sparber extended this result to d = 1
and d = 3:

Theorem 7 ([29, 30]). The d-dimensional cubic NLS with nonlinear damping

iψt(t, x) + �ψ + λ|ψ |2ψ + iδ|ψ |p−1ψ = 0, λ ∈ R, δ > 0, (58)

where ψ0(x) ∈ H 1(Rd), 3 < p < ∞ if d = 1, 2 and 3 < p < 5 if d = 3, has a unique global
in-time solution.

This rigorously shows that high-order nonlinear damping can play the role of ‘viscosity’.
More recently, Antonelli and Sparber proved global existence for the case where the damping
exponent is equal to that of the nonlinearity:

Theorem 8 ([30]). Consider the cubic nonlinear NLS with a cubic nonlinear damping

iψt(t, x) + �ψ + (1 + iδ)|ψ |2ψ = 0, (59)

where ψ0(x) ∈ H 1(Rd), xψ0 ∈ L2(Rd), and d � 3. Then, for any δ � 1, equation (59) has
a unique global in-time solution.

Unfortunately, because of the constraint δ � 1, theorem 8 does not show that critical
nonlinear damping can play the role of viscosity. We note, however, that the asymptotic
analysis and simulations of [28] strongly suggest that the solution of (55) exists globally for
any 0 < δ  1.

9.2. Explicit continuation when ψ0(r) = ψexplicit(0, r)

In the special case where ψ(δ) is the solution of (55) with the initial condition ψexplicit(t = 0),
we can calculate explicitly the vanishing nonlinear-damping limit (57):

Continuation result 4. Let ψ(δ)(t, r) be the solution of the NLS (55) with the initial condition

ψ0(r) = ψexplicit(0, r), (60)

see (7a), (7b). Then, for any θ ∈ R, there exists a sequence δn → 0+ (depending on θ ),
such that

lim
δn→0+

ψ(δn)(t, r) =
{
ψexplicit(t, r) 0 � t < Tc,

ψ∗
explicit,κ (2Tc − t, r)eiθ Tc < t < ∞,

(61)
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Figure 12. The vanishing nonlinear-damping limit (61) for d = 1 and Tc = 1. (a) Colour
plot. (b) Contour plot. (c) Surface plot.

where ψexplicit,κ is given by (8a) with α = κ ,

κ = π
[
Bi(0)A′

i (s
∗) − Ai(0)B ′

i (s
∗)
] ≈ 1.614, (62)

Ai(s) and Bi(s) are the Airy and Bairy functions, respectively, and s∗ ≈ −2.6663 is the first
negative root of G(s) = √

3Ai(s) − Bi(s).
In particular, the limiting width of the solution is given by

lim
δ̃→0+

L(t; δ) =
{
Tc − t 0 � t < Tc,

κ(t − Tc) Tc < t < ∞,
(63)

Proof. See section 9.4. �

Equation (61) provides a continuation of the explicit blowup solution ψexplicit beyond
the singularity. As with all the continuations that we saw so far, the weak solution is only
determined up to a multiplicative phase constant eiθ (property 1). In contrast with these
continuations, however, the continuation (61) is asymmetric with respect to Tc, since κ 
= 1.
Therefore, it does not satisfy property 2. This is due to the directionality in t of the damping
effect, i.e. the fact that equation (55) is not invariant under the transformation (35).

Remark 1. The value of κ is also given by, see (94),

κ = Ai(0)

−Ai(s∗)
.

Remark 2. The limiting solution in continuation result 4 does not have a non-collapsing ‘tail’,
since the power of ψ∗

explicit,κ (2Tc − t, r)eiθ is equal to that of ψ0(r).

Remark 3. In order to understand why L2
t increases (and not decreases) after the singularity,

we note that while the vanishing nonlinear damping does not affect the solution power, it
increases the Hamiltonian, see section 9.5. Since

H(ψexplicit,α) = L2
t

4
||rR(0)||22 = Mα2,

the increase in the Hamiltonian implies that the defocusing velocity (angle) should be higher
than the focusing velocity (angle), see figure 12.
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Figure 13. Solution of the damped NLS (55) with d = 1 and the initial condition (60) with Tc = 1
for δ = 10−5 (dashed–dotted), δ = 10−6 (dashes) and δ = 1.25 × 10−7 (dots). (a) ‖ψ‖∞.
(b) L(t; δ), recovered from ψ using (17). The solid line is (63). (c) Lt (t; δ). The solid line is (64).
(d) Accumulated phase at x = 0.

9.2.1. Simulations. In order to provide numerical support to continuation result 4, we solve
numerically the damped NLS (55) with d = 1 and the initial condition (60) with Tc = 1, for
various values of δ. Figure 13(a) shows that as δ → 0+, the maximal amplitude increases,
and that it is attains at T δ

max → Tc. Figures 13(b) and (c) show that limδ→0+ L(t; δ) is given
by (63), and that

lim
δ̃→0

Lt(t; δ) =
{−1 0 � t < Tc,

κ Tc < t < ∞,
(64)

respectively, where κ is defined in (62).
In figure 13(d) we plot the accumulated phase at x = 0, and observe that small changes

in δ have a negligible effect on the phase before the singularity, but an O(1) effect on the
phase after the singularity, which is an indication that phase of the weak solution becomes
non-unique for t > Tc.

9.3. Continuation for loglog collapse

Let ψ be a solution of the undamped critical NLS that undergoes a loglog collapse. Since
nonlinear damping leads to defocusing (and not to oscillations) after it arrests the collapse [28],
the limiting solution has a point singularity and not a filament singularity. Indeed, the
continuation has an infinite-velocity expanding core5:

5 The observation that the velocity of the expanding solution is infinite, is due to Merle [31].
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Figure 14. L(t) for the solution of the damped NLS (55) with d = 1, and the initial condition
ψ0(r) = √

1.05ψexplicit(t = 0, r; Tc = 1) for δ = 10−3 (solid), δ = 2 × 10−3 (dots)
and δ = 2.5 × 10−3 (dashes).

Continuation result 5. Let ψ0(r) be a radial initial condition, such that the corresponding
solution ψ of the undamped critical NLS (5) collapses with the ψR(0) profile at the loglog law
blowup rate at Tc. Let ψ(δ) be the solution of the damped NLS (55) with the same initial
condition. Then,

lim
δ→0+

ψ(δ) = ψ, 0 � t < Tc.

In addition, for any 0 < δ  1, there exists θ(δ) ∈ R, and a function φ ∈ L2, such that

lim
δ→0+

[ψ(δ)(t, r) − ψ∗
R(0) (2Tc − t, r; δ)eiθ(δ)]

L2−→ φ(r), t −→ Tc+,

where ψR(0) is given by (25b) with some function L(t; δ), such that

lim
t→Tc+

lim
δ→0+

L(t; δ) = 0, lim
t→Tc+

lim
δ→0+

Lt(t; δ) = ∞, lim
δ→0+

θ(δ) = ∞.

Proof. See section 9.6. �
The post-collapse infinite velocity of the expanding core is a consequence of the infinite

velocity of the loglog collapse before the singularity, and the increase in the velocity after the
singularity (see remark 3).

Remark 4. Because of the infinite velocity of the expanding core, it ‘immediately’ interacts
with the non-collapsing tail. Therefore, the validity of the reduced equations that are used in
the derivation of continuation result 5 breaks down ‘shortly’ after the arrest of collapse. See
section 9.6.4 for further discussion.

9.3.1. Simulations. In order to illustrate continuation result 5 numerically, in figures 14 and
15 we solve the damped NLS (55) with ψ0 = √

1.05ψexplicit(t = 0) for δ = 2 × 10−3, δ =
1.5 × 10−3 and δ = 10−3, and observe that the solutions are highly asymmetric with respect
to T

(δ)
max. In addition, as δ → 0+, the post-collapse expansion of the singular core becomes

faster and faster.

9.4. Proof of continuation result 4

In order to prove continuation result 4, we first approximate the NLS (55) with a reduced system
of ordinary differential equations. Then, we solve the reduced system explicitly as δ → 0+.
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Figure 15. Same as figure 12 for the numerical solution of the damped NLS (55) with d = 1,
δ = 10−3, and the initial condition ψ0(r) = √

1.05ψexplicit(t = 0, r; Tc = 1).

9.4.1. Reduced equations.

Lemma 3. Let ψ(δ) be the solution of the damped NLS (55) with the initial condition (60).
If ψ(δ) ∼ ψR(0) , see (25a), (25b) the reduced equations for L(t) are given by

βt (t) = − δ̃

L2
, δ̃ = 2cdδ

M
, (65a)

Ltt (t) = −β(t)

L3
, (65b)

where cd = ‖R(0)‖4/d+2
4/d+2, and M is given by (27a) and (27b), with the initial conditions

β(0) = 0, L(0) = Tc, Lt (0) = −1. (66)

Proof. In [28], Fibich used modulation theory [9] to show that when ψcore ∼ ψR(0) , self-
focusing in (55) is given, to leading order, by

βt (t) = −υ(β)

L2
− 2cdδ

M

1

L2
, β(t) = −L3Ltt , (67)

where υ(β) is given by (27a) and (27b). We recall that when δ = 0, the initial condition (60)
leads to the explicit blowup solution (7a), (7b) for which L(t) = Tc−t . Therefore, when δ = 0,

L(0) = Tc, Lt (0) = −1, Ltt (0) = 0. (68)

The initial condition is independent of the subsequent dynamics, hence it is independent of δ.
Therefore, the initial condition is also given by (68) for δ > 0. Therefore, since β(t) = −L3Ltt ,
then β(0) = 0. Now, since υ(β = 0) = 0, see (27a) and (27b), by (67) we have that βt < 0.
Therefore, β � 0, and consequently υ(β) ≡ 0, see (27a) and (27b). �

9.4.2. Simulations. The derivation of the reduced equations (65a) and (65b) is based on
modulation theory, which is not rigorous. Therefore, we now provide numerical support for
the validity of (65a) and (65b). In figure 16 we solve (65a) and (65b) numerically for d = 1
and various values of δ. We compare these solutions with direct simulations of the damped
NLS (55) with d = 1 and the initial condition (60), from which we extract the value of L(t)

using (17). When δ = 10−2, the two curves are similar, and for δ � 10−4 the two curves are
indistinguishable. This confirms that as δ → 0+, the dynamics of the solution of the damped
NLS (55) with the initial condition (60) is given by the reduced equations (65a) and (65b).

In figure 17 we plot the rescaled profile L1/2(t)|ψ(t, x/L)| at t = 0.6 < Tc and
at t = 1.4 > Tc. The two rescaled profiles are indistinguishable from each other and also
from R(x), providing support to the assumption that ψ(δ) ∼ ψR(0) , which was used in the
derivative of the reduced equations [9].
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Figure 16. Width L(t) of the solution of the damped NLS (55) with d = 1 and the initial
condition (60) with Tc = 1 (solid). The dashed line is the solution of the reduced equations (65a),
(65b) and (66). (a) δ = 10−2. (b) δ = 10−4. (c) δ = 10−5. (d) δ = 1.25 × 10−7.

9.4.3. Analysis of the reduced equations. Our ultimate goal is to solve the ODE system (65a)
and (65b) with the initial conditions (66) explicitly as δ → 0+. We first prove the following
lemma:

Lemma 4. The solution of the reduced equations (65a) and (65b) with the initial
conditions (66) can be written as

L(t) = 1/A(s(t)),

where

A(s) = π

[
δ̃−1/3Ai(0) − 1

Tc

A′
i (0)

]
[
√

3Ai(s) − Bi(s)] +
1

Tc

Bi(s)

Bi(0)
, (69)

Ai(s) and Bi(s) are the Airy and Bairy functions, respectively, and

s(t) = −δ̃1/3
∫ t

0
A2(w) dw. (70)

Proof. Equation (65b) can be rewritten as

βτ = −δ̃, τ =
∫ t

0

1

L2(s)
ds.

Since β(t = 0) = β(τ = 0) = 0,

β(τ) = −δ̃τ. (71)
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Figure 17. Rescaled profile L1/2(t)|ψ(t, x/L)| of the solution of the damped NLS (55) with d = 1
and the initial condition (60) with Tc = 1 and δ = 1.25 × 10−7, at t = 0.6 < Tc (solid) and
at t = 1.4 > Tc (dots), where L(t) is given by (17). The dashed curve is R(x). All three curves
are indistinguishable.

We recall that [9]

β = Aττ

A
, A = 1

L
. (72)

Substituting (71) in (72) gives Aττ = −δ̃τA. The variable change s = −δ̃1/3τ transforms this
equation into Airy’s equation

Ass = sA. (73)

Since A = 1/L, then by (66) and (70), the initial conditions for (73) are

A(s = 0) = A(t = 0) = 1

Tc

, (74a)

As(s = 0) = −δ̃−1/3At(t = 0)A−2(t = 0) = −δ̃−1/3. (74b)

The solution of Airy’s equation is a linear combination of the Airy and Bairy functions:

A(s) = k1Ai(s) + k2Bi(s). (75)

Substituting (74a) and (74b) in (75) gives

k1 =
δ̃−1/3Bi(0) + 1

Tc
B ′

i (0)

Ai(0)B ′
i (0) − A′

i (0)Bi(0)
, k2 = −

δ̃−1/3Ai(0) + 1
Tc

A′
i (0)

Ai(0)B ′
i (0) − A′

i (0)Bi(0)
.

The Airy and Bairy functions satisfy the Wronskian relation

Ai(s)B
′
i (s) − A′

i (s)Bi(s) = 1

π
. (76)

Therefore,

k1 = π

(
δ̃−1/3Bi(0) +

1

Tc

B ′
i (0)

)
, k2 = −π

(
δ̃−1/3Ai(0) +

1

Tc

A′
i (0)

)
. (77)

The Airy and Bairy functions satisfy

Ai(0) = Bi(0)/
√

3, A′
i (0) = −B ′

i (0)/
√

3. (78)

Substituting of (77) in (75), using relations (78) and (76), leads to (69). �
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9.4.4. δ̃ → 0+.

Lemma 5. Let s∗
δ̃

be the first negative root of A(s; δ̃), see (69). Then, lims→s∗
δ̃
t (s; δ) = ∞.

Proof. Inverting (70) gives

t (s∗
δ̃
) = δ̃−1/3

∫ 0

s∗
δ̃

1

A2(s)
ds.

Let 0 < ε  1. Then,

t (s∗
δ̃
) > δ̃−1/3

∫ s∗
δ̃

+ε

s∗
δ̃

1

A2(s)
ds.

By definition, A(s∗
δ̃
; δ̃) = 0. Furthermore, since A(s; δ̃) is a nontrivial solution of Airy’s

equation, then As(s
∗
δ̃
; δ̃) 
= 0, since otherwise from uniqueness it follows that A(s; δ̃) ≡ 0.

Therefore, there exists 0 < ε such that

A(s; δ̃) ∼ (s − s∗
δ̃
)As(s

∗
δ̃
; δ̃), s∗

δ̃
� s � s∗

δ̃
+ ε. (79)

Hence, ∫ s∗
δ̃

+ε

s∗
δ̃

1

A2(s)
ds ∼ 1

A2
s (s

∗
δ̃
; δ̃)

∫ s∗
δ̃

+ε

s∗
δ̃

1

(s − s∗
δ̃
)2

ds = ∞.

Therefore, t (s∗
δ̃
) = ∞. �

By (70), s(t) is monotonically decreasing from s(t = 0) = 0. Hence, the interval
0 � t < ∞ transforms to 0 � s > s∗

δ . Since the Airy and the Bairy functions are bounded
for s � 0, then A(s; δ̃) is finite for s � 0, see (69). This shows that the solution of the damped
NLS (55) does not collapse. Note that A(s = s∗

δ̃
) = 0 corresponds to an infinite beam width,

i.e. to a complete diffraction.

Lemma 6. Let s∗ = limδ̃→0+ s∗
δ̃
. Then, s∗ ≈ −2.6663 is the first negative root of

G(s) = 0, G(s) :=
√

3Ai(s) − Bi(s). (80)

Proof. By (69), as δ̃ → 0+,

A(s) ∼ πAi(0)δ̃−1/3
[√

3Ai(s) − Bi(s)
]

= πAi(0)δ̃−1/3G(s). (81)

Therefore, s∗ satisfies (80). The value of s∗ was computed numerically, see figure 18(a). �
In figure 18(b) we plot s(t) by numerically integrating (70), where A(s) is given by (69),

and observe that as δ̃ → 0+, s(t) tends to the step function

lim
δ̃→0+

s(t) =
{

0 0 � t < Tc,

s∗ Tc < t < ∞.

Therefore, the inverse function t (s) tends to the step function,

lim
δ̃→0+

t (s) =


∞ s = s∗,
Tc s∗ < s < 0,

0 s = 0,

see figure 18(c). We now prove these limits analytically.

Lemma 7. For any s1 such that −1  s1 < 0, limδ̃→0+ t (s1) = Tc.
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Figure 18. (a) The function G(s), see (80). Here, s∗ is the first negative root of G(s). (b) s(t),
as calculated from numerical integration of (70) for δ = 10−4 (dashed–dotted), δ = 10−5

(dashes), δ = 10−6 (dots) and δ = 1.25×10−5 (solid). (c) Same as (b) for the inverse function t (s).

Proof. Equation (69) can be rewritten as

A(s; δ̃) = R(s)δ̃−1/3 +
1

Tc

F (s),

where

R(s) = πAi(0)G(s), F (s) = Bi(s)

Bi(0)
− πA′

i (0)G(s). (82)

Therefore,

t (s1) = δ̃−1/3
∫ 0

s1

1

A2(s)
ds =

∫ 0

s1

δ̃1/3[
R(s) + δ̃1/3

Tc
F (s)

]2 ds. (83)

By (78), (80) and (82),

R(0) = 0, F (0) = 1, (84)

and

R′(0) = πAi(0)(
√

3A′
i (0) − B ′

i (0)) = −2πAi(0)B ′
i (0). (85)

Furthermore, by (78),

Ai(0)B ′
i (0) + A′

i (0)Bi(0) = 0, (86a)

and by the Wronskian relation (76),

Ai(0)B ′
i (0) − A′

i (0)Bi(0) = 1

π
. (86b)

Adding (86a) to (86b), gives 2πAi(0)B ′
i (0) = 1. Therefore, by (85),

R′(0) = −1. (87)

Thus, by (84) and (87),

R(s) ∼ −s, F (s) ∼ 1, −1  s � 0.

Substituting this in (83) gives

t (s1) ∼
∫ 0

s1

δ̃1/3[
−s + δ̃1/3

Tc

]2 ds =
Tc − δ̃1/3

−s1 + δ̃1/3

Tc

 . (88)

Therefore, limδ̃→0+ t (s1) = Tc. �
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From (88) it follows that

lim
δ̃→0+

t (s = −cδ̃1/3) = Tc − 1

c +
1

Tc

= Tc

1 +
1

c

1

Tc

.

Therefore, t (s) has a boundary layer at s = 0 with thickness δ̃1/3, in which it increases
monotonically from 0 to Tc. Hence,

Corollary 4. limδ̃→0+ s(t; δ̃) = 0, 0 � t < Tc.

Lemma 8. For any s∗ < s2 < s1 < 0, limδ̃→0(t (s2) − t (s1)) = 0.

Proof. By (83),

t (s2) − t (s1) =
∫ s1

s2

δ̃1/3[
R(s) +

δ̃1/3

Tc

F (s)

]2 ds.

Since R(s) = πAi(0)G(s) and G(s) > 0 in (s∗, 0), then R(s) � c > 0 for any s∗ < s2 �
s � s1 < 0, where c is independent of δ̃. Therefore, as δ̃ → 0+,

lim
δ̃→0

(t (s2) − t (s1)) ∼ lim
δ̃→0

δ̃1/3
∫ s1

s2

1

R2(s)
ds = 0. �

From lemma 7 and lemma 8 it follows that

Corollary 5. lim
δ̃→0

t (s) = Tc, s∗ < s < 0.

Lemma 9. limδ̃→0+ s(t; δ̃) = s∗ for Tc < t < ∞.

Proof. Since s(t; δ̃) is monotonically decreasing (see equation (70)), t (s; δ̃) ≈ Tc for s∗
δ̃

<

s < 0 (corollary 5), and lims→s∗
δ̃
t (s; δ̃) = ∞ (lemma 5), then near s∗

δ̃
there is a boundary layer

in which t changes from Tc to ∞. Therefore, the values (Tc, ∞) are attained in the boundary
layer around s∗

δ̃
. Since limδ̃→0+ s∗

δ̃
= s∗, the result follows. �

From corollary 4 and lemma 9 it follows that, see figure 18(b),

Corollary 6.

lim
δ̃→0+

s(t; δ̃) =
{

0 0 � t < Tc,

s∗ Tc < t < ∞.
(89)

Our next observation concerns L(t).

Lemma 10.

lim
δ̃→0+

L(t) =
{
Tc − t 0 � t < Tc,

κ(t − Tc) Tc < t < ∞,
(90)

where κ is defined in equation (62).
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Proof. Using L = A−1 and (75),

Lt = −A−2As

ds

dt
= −A−2As(−δ̃1/3A2) = δ̃1/3As = δ̃1/3

[
k1A

′
i (s) + k2B

′
i (s)

]
. (91)

By (77),

lim
δ̃→0+

δ̃1/3k1 = πBi(0), lim
δ̃→0+

δ̃1/3k2 = −πAi(0).

Therefore,

lim
δ̃→0

Lt(t) = π [Bi(0)A′
i (s̃(t)) − Ai(0)B ′

i (s̃(t))], s̃(t) = lim
δ̃→0

s(t; δ̃).

Hence, by (89),

lim
δ̃→0

Lt(t) =
{
π
[
Bi(0)A′

i (0) − Ai(0)B ′
i (0)

]
0 � t < Tc,

π
[
Bi(0)A′

i (s
∗) − Ai(0)B ′

i (s
∗)
]

Tc < t < ∞.

Since π [Bi(0)A′
i (0) − Ai(0)B ′

i (0)] = −1, see equation (76),

lim
δ̃→0

Lt(t) =
{−1 0 � t < Tc,

κ Tc < t < ∞,

where κ is given by (62). Since L(0) = Tc, (90) follows. �
Our last observation concerns the solution phase. By definition (25b),

τ(t) =
∫ t

0

1

L2(s)
ds.

Therefore, by (90),

lim
δ̃→0+

τ(Tc) =
∫ Tc

0

1

(Tc − s)2
ds = ∞. (92)

Therefore, the phase information is lost at the singularity.

9.4.5. Proof of continuation result 4. We have that ψδ ∼ ψR(0) , where L(t) is given by (90).
Therefore, by lemma 2, when 0 � t < Tc, ψR(0) (r, t) = ψexplicit(t, r), and when Tc <

t , ψR(0) (t, r) = ψ∗
explicit,α(2Tc − t, r). In addition, since arg ψ(t, 0) ∼ arg ψR(0) (t, 0) = τ(t),

equation (92) shows that the limiting phase becomes infinite at and after the singularity.
Hence, for a given given t > Tc and θ ∈ R, there exists a sequence δn → 0+, such
that limδn→0+ arg ψ(δn)(t, 0) = θ . Hence, continuation result 4 follows.

9.5. Hamiltonian dynamics

In the case of a non-conservative perturbation such as nonlinear damping, the Hamiltonian
of ψ can be approximated with, see [9, equation (H.5)],

H(ψ) ∼ M

2
(L2)tt . (93)

Since βt = − 1
2L2(L2)ttt , then

Ht ∼ M

2
(L2)ttt = −M

βt

L2
= M

δ̃

L4
.

Therefore, the Hamiltonian increases with t . Moreover, by (70) and (81),

Hs = Ht

dt

ds
= M

δ̃

L4

1

−δ̃1/3A2
= −Mδ̃2/3A2 ∼ −Mπ2A2

i (0)G2(s).
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Therefore,

�H := H(t = ∞) − H(0) =
∫ s∗

s=0
Hs ds = Mπ2A2

i (0)

∫ 0

s=s∗
G2(s) ds.

Now, ∫ 0

s=s∗
G2(s) ds = G2s|0s=s∗ −

∫ 0

s=s∗
2sGGs(s) ds = −2

∫ 0

s=s∗
sGGs(s) ds.

Since Gss = sG, then∫ 0

s=s∗
G2(s) ds = −2

∫ 0

s=s∗
GssGs(s) ds = −G2

s |0s=s∗ .

Therefore,

�H = −Mπ2A2
i (0)G2

s |0s=s∗ .

Since the Wronskian of the Airy equation is a constant,

W(G, A) = G(s)A′
i (s) − Ai(s)G

′(s) ≡ G(0)A′
i (0) − Ai(0)G′(0).

Therefore, since G vanishes at s = 0, s∗,

G′(s∗) = Ai(0)G′(0)

Ai(s∗)
.

Also, by (87),

−1 = R′(0) = πAi(0)G′(0).

Therefore,

�H = −Mπ2A2
i (0)G2

s (0)

(
1 −

(
Ai(0)

Ai(s∗)

)2
)

= M

((
Ai(0)

Ai(s∗)

)2

− 1

)
.

On the other hand, by (93), H ∼ M(L2
t − β/L2). In addition, since the limiting solution

has exactly the critical power, then limδ̃→0+ β = 0, see (28). Therefore, limδ̃→0+ H = ML2
t .

Hence, by (64),

�H = M(κ2 − 1).

Comparison of the last two expressions for �H shows that

κ = Ai(0)

|Ai(s∗)| . (94)

9.6. Proof of continuation result 5

9.6.1. Analysis of the reduced equations. We first analyse the dynamics of the collapsing
core under the assumption that it is governed by the reduced equations (67)6. By continuity,
as δ −→ 0+, the limiting solution undergoes a loglog collapse as t −→ Tc−. Therefore, as
t −→ Tc−, the amount of power that collapses into the singularity is exactly Pcr. Hence,
by (28), limδ→0+ β(Tc) = 0. Therefore, since βt < 0, see (67), and since ν(β) ≡ 0 for β < 0,
we have that limδ→0+ βt = 0 for t > Tc. Therefore, limδ→0+ β ≡ 0− for t > Tc. Hence, the
collapsing core expands linearly with the ψR(0) profile. Therefore, the expanding core is given
by ψ∗

explicit,α(2Tc − t, r).

6 The validity of this assumption is discussed in section 9.6.4.
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The above arguments show that, according to the reduced equations, after the singularity
the solution is of a Bourgain–Wang type, but do not provide the value of the expansion
velocity α. In order to do so, we now solve the reduced equations. By (67),

βτ = −ν(β) − δ̃, τ =
∫ t

0

1

L2(s)
ds. (95)

For solutions that undergo a loglog collapse we have that β(0) > 0, see (28). For a fixed δ̃ > 0,
as β ↘ 0+, ν(β) becomes negligible compared with δ̃. Therefore, to leading order, βτ = −δ̃.7

Hence,

β(τ) = β0 − δ̃τ, β0 = β(0) > 0. (96)

Substituting (96) in (72) gives Aττ = (β0 − δ̃τ )A. The variable change

s = δ̃−2/3β0 − ˜δ1/3τ (97)

transforms this equation into Airy’s equation (73).
Let A(t = 0) = A0 = 1/L0 and At(t = 0) = A′

0 = −L′
0/(L0)

2 be the initial conditions
for A(t). Therefore, the initial conditions for A(s; δ̃) are

A(s = s0) = A0, (98a)

As(s = s0) = −δ̃−1/3At(t = 0)A−2(t = 0) = −δ̃−1/3 A′
0

(A0)2
, (98b)

where

s0 := δ̃−2/3β0. (98c)

Therefore, A(s; δ̃) is given by (75) with

k1 = π

(
A′

0

(A0)2
δ̃−1/3Bi(s0) + A0B

′
i (s0)

)
, k2 = −π

(
A′

0

(A0)2
δ̃−1/3Ai(s0) + A0A

′
i (s0)

)
.

(99)

9.6.2. δ̃ → 0+. In figure 19(a) we plot t (s; δ̃), and observe that

Lemma 11.

lim
δ̃→0+

t (s; δ̃) =


0 s = s0,

Tc s∗ < s and s0 − s � 1
∞ s = s∗.

(100)

Proof. By (95) and (97), ds
dt

= −δ̃1/3A2. Therefore,

t (s; δ̃) = − 1

δ̃1/3

∫ s

s0

1

A2(s)
ds = − 1

δ̃1/3

∫ s

s0

1

[k1Ai(s) + k2Bi(s)]2
ds. (101)

Following [32], it is easy to verify by direct differentiation and using the Wronskian
relation (76) that

t (s; δ̃) = π

k1δ̃1/3

[
Bi(s0)

A(s0; δ̃)
− Bi(s)

A(s; δ̃)

]
= − π

k2δ̃1/3

[
Ai(s0)

A(s0; δ̃)
− Ai(s)

A(s; δ̃)

]
. (102)

Therefore, by (98b),

t (s; δ̃) = π

k1δ̃1/3

[
Bi(s0)

A0
− Bi(s)

A(s; δ̃)

]
= π

k2δ̃1/3

[
Ai(s)

A(s; δ̃)
− Ai(s0)

A0

]
. (103)

7 In other words, we approximate (67) with (65a) and (65b). The validity of neglecting ν(β) is discussed in
section 9.6.4.
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Figure 19. (a) t (s; δ). (b) s(t; δ). For 0 < δ̃  1.

Lemma 12. Let s∗
δ̃

be the first negative root of A(s; δ̃). Then, lims→s∗
δ̃
t (s; δ) = ∞.

Proof. This follows by direct substitution of s∗
δ̃

in (103). �

Lemma 13. Let s∗ := limδ̃→0+ s∗
δ̃
. Then, s∗ ≈ −2.338 is the first (negative) root of Ai(s).

Proof. By (98c), s0 � 1 for 0 < δ̃  1. Therefore,

Ai(s0) ∼ 1

2
√

π
s
−1/4
0 e− 2

3 s
3/2
0 , Bi(s0) ∼ 1√

π
s
−1/4
0 e

2
3 s

3/2
0 . (104)

Hence, by (99),

lim
δ̃→0+

k2

k1
= 0. (105)

Therefore,

A(s; δ̃) ∼ k1Ai(s), s = O(1), 0 < δ̃  1.

Thus, the result follows. �
From lemma 12 and lemma 13 it follows that:

Corollary 7. t (s∗; δ̃) := limδ̃→0+ t (s∗
δ̃
; δ̃) = ∞.

Equation (103) can be written as

t (s; δ̃) = T
(δ̃)
c

1 −
Bi(s)

Bi(s0)

A(s; δ̃)

A0

 , T
(δ̃)
c := π

k1δ̃1/3

Bi(s0)

A0
. (106)

By (99) and (106),

T
(δ̃)
c =

πBi(s0)

k1δ̃1/3A0

π

(
A′

0Bi(s0)

(A0)2δ̃1/3
+ A0B

′
i (s0)

) .

By (98c) and (104), B ′
i (s0) ∼ Bi(s0) · s

1/2
0 = Bi(s0) · δ−1/3β

1/2
0 . Therefore, since L = 1/A,

T (δ̃)
c ∼

1

(A0)2

A′
0

(A0)3
+ β

1/2
0

= (L0)
2

β
1/2
0 − L0L

′
0

,

which is the adiabatic approximation of Tc, see [9, equation (3.31)].
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By (104), Bi(s)/Bi(s0) is exponentially decreasing as s decreases from s0. Let us assume
for simplicity that A′

0 � 0. Then, A(s; δ̃) > A(s0). Therefore, Bi(s)/Bi (s0)

A(s;δ̃)/Ai (s0)
is exponentially

decreasing as s decreases from s0. Hence,

t (s; δ̃) ≈ T (δ̃)
c ≈ Tc, s∗ < s and s0 − s � 1.

This concludes the proof of lemma 11. �
From lemma 11 it follows that

s(t) ∼
{
O(s0) 0 < t < Tc,

s∗ Tc < t,
as δ̃ → 0+, (107)

see figure 19(b). We recall that

Lt(t; δ̃) = δ̃1/3[k1A
′
i (s(t)) + k2B

′
i (s(t))],

see (91). Hence, by (107),

Lt(t; δ̃) ∼ δ̃1/3[k1A
′
i (s

∗) + k2B
′
i (s

∗)], Tc < t, 0 < δ̃  1.

Therefore, by (105),

Lt(t; δ̃) ∼ δ̃1/3k1A
′
i (s

∗), Tc < t, 0 < δ̃  1.

Hence, L(t) is linear for Tc < t .
By (104) and (106),

k1δ̃
1/3 ∼ π

A0

1

Tc

Bi(s0) ∼
√

π

A0

1

Tc

s
−1/4
0 e

2
3 s

3/2
0 .

Therefore,

Lt(t; δ̃) ∼
√

π

A0

1

Tc

s
−1/4
0 e

2
3 s

3/2
0 A′

i (s
∗), Tc < t, 0 < δ̃  1. (108)

Since limδ̃→0+ s0 = ∞,

lim
δ̃→0+

δ̃1/3k1A
′
i (s

∗) = ∞.

Therefore, the post-collapse slope of L(t) becomes infinite as δ̃ → 0+. �

9.6.3. Simulation. In figure 20 we solve the reduced equations (65a) and (65b), and observe
that for t > Tc, Lt(t) is indeed in excellent agreement with the asymptotic prediction (108).

9.6.4. Validity of the reduced equations? In the asymptotic analysis in section 9.6 we
approximated the critical NLS with the reduced equations (67). Then, we approximated the
reduced equations (67) with the reduced equations (65a) and (65b), by neglecting ν(β). We
now consider the validity of these approximations.

In figure 21(a) we plot L(t) for the solutions of the reduced equations (67), and (65a) and
(65b). Although δ̃ ≈ 0.0019 is not much larger then ν(β(0)) ≈ 0.0016, the two solutions are
‘close’. Plotting Lt(t) shows that in both cases, Lt(t) is a constant after the collapse is arrested,
see figure 21(b). The ‘addition’ of ν(β), however, decreases this constant by a factor of ≈ 4.
Therefore, when ν(β) is not neglected, the approximation (108) for Lt(t) is not accurate, but
the solution still expands linearly at a velocity that goes to infinity as δ → 0+.

In order to check the validity of the reduced equations (67) with ν(β), we solve the damped
NLS (55) for d = 1 with the initial condition

√
1.05ψexplicit(t = 0, r; Tc = 1), for various

values of δ. Then, we extract from ψ the value of L(t) using (17). These NLS solutions
are compared with solutions of the reduced equations (67). The initial conditions for the
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Figure 20. Solution of the reduced equations (65a) and (65b) with d = 1, δ = 2.5 × 10−4, and
the initial conditions L(0) = 1, L′

0 = −1, and β(0) = 0.1. The solid line is Lt (t). The dashed
line is the prediction (108).

  

Figure 21. Solution of the reduced equations (67) (solid) and (65a) and (65b) (dots) with δ = 10−4,
and the initial conditions β(0) = 0.1, L0 = 1, and Lt (0) = −1. (a) L(t). (b) Lt (t).

reduced equations are as follows. By (28), β(0) ∼ ‖√1.05ψexplicit‖2
2−Pcr

M
= 0.05Pcr

M
≈ 0.3242.

By (17), L(0) ≈ 0.9524. For ψexplicit(t = 0, r; Tc = 1), Lt(0) = −1, see (66). The
multiplication by

√
1.05 leads to a small change in Lt(0). We found that Lt(0) = −1.02

provides the best fitting.
Figure 22 shows that there is good agreement between L(t) of the reduced equations (67)

and of the NLS. In addition, in both cases, the post-collapse defocusing velocity increases
as δ decreases. The curves of Lt(t) show good agreement when the solutions focus, but differ
when the solutions defocus. In particular, Lt(t) of the NLS solution is not a constant after the
arrest of collapse. We relate this difference to the interaction between the expanding core and
the tail, which is ignored in the reduced equations. This core–tail interaction did not occur
in the explicit continuation case, see section 9.2, since in that case the power of the initial
condition ψexplicit is equal to Pcr , hence there is no tail. In addition, this phenomenon did not
occur in the sub-threshold continuation (see section 4), since there the expansion velocity was
finite. Therefore, sufficiently close to Tc+, the expanding core had a negligible interaction with
the tail.

In summary, the asymptotic analysis and numerical simulations suggest that in the
nonlinear-damping continuation of NLS solutions that undergo a loglog collapse, the singular
core of the NLS solution expands after the singularity with a velocity that goes to infinity
as δ → 0+. The post-collapse expansion velocity is, however, probably not linear in t .
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Figure 22. Solution of the damped NLS (55) with d = 1 and the initial condition
√

1.05ψexplicit(t =
0, r; Tc = 1) (solid). The dashed line is the solution of the reduced equations (67) with the
initial condition β(0) ≈ 0.3242, L(0) ≈ 0.9524 and Lt (0) = −1.02. (a) δ = 10−3. (b) δ =
1.5 × 10−3. (c) δ = 2 × 10−3. Top row: L(t). Bottom row: Lt (t).

10. CGL continuation

The two-dimensional CGL equation (CGL)

iψt(t, x, y) + �ψ + |ψ |2ψ − iε1ψ − iε2�ψ + iε3|ψ |2ψ = 0

arises in a variety of physical problems: models of chemical turbulence, analysis of Poiseuille
flow, Rayleigh–Bérnard convection and Taylor–Couette flow. Its name comes from the field
of superconductivity, where it models phase transitions of materials between superconducting
and non-superconducting phases.

In [33], Fibich and Levy showed that as ε1, ε2, ε3 −→ 0, the collapse dynamics is
governed, to leading order, by the reduced equations (65a) and (65b) with

δ̃ = 2Pcr

M
(ε2 + 2ε3).

Therefore, continuation results 4 and 5 hold also for the CGL continuation of the critical NLS.

11. Continuation in the linear Schrödinger equation

It is well known that in the linear Schrödinger equation, under the geometrical-optics
approximation, a focused input beam becomes singular at the focal point. When, however,
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diffraction is not neglected, the focused beam does not collapse to a point, but rather
narrows down to a positive diffraction-limited width, and then spreads out with further
propagation. Therefore, diffraction can play the role of ‘viscosity’ in the continuation of
singular geometrical-optics linear solutions. In what follows, we compare this continuation
with those in the nonlinear case.

Consider the d-dimensional linear Schrödinger equation

2ik0ψt(x, t) + �ψ = 0, x = (x1, . . . , xd), (109a)

with a focused Gaussian initial condition

ψ0(x) = e−r2/2e−ik0r
2/2F , r = |x|, (109b)

where F > 0 is the focal point. We can look for a solution of the form

ψ(x, t) = A(x, t)eik0S(x,t), (110)

where A and S are real. Substitution in equations (109a) and (109b) gives

(∇S)2 + 2St − 1

k2
0

�A

A
= 0, (111a)

and (
A2
)
t

+ ∇S · ∇ (A2
)

+ A2�S = 0, (111b)

with initial conditions

S(x, 0) = − r2

2F
, A2(x, 0) = e−r2

. (112)

Since k0 � 1, we can apply the geometrical-optics approximation, and neglect the diffraction
term �A. In this case, equation (111a) becomes

(∇S)2 + 2St = 0, (113)

while equation (111b) remains unchanged.
The solution of equations (111b) and (113), subject to the initial conditions (112), is

given by

S = r2

2

Lt

L
, A2(x, t) = 1

Ld(t)
e
− r2

L2(t) , L(t) = 1 − t

F
.

Therefore, under the geometrical-optics approximation, the solution of (109a) and (109b) is
given by

ψ
go
lin(t, x) = 1

L
d/2
go (t)

e
− 1

2
r2

L2
go(t) e

ik0
r2

2

L′
go(t)

Lgo(t) , 0 � t < F, (114a)

where

Lgo(t) = 1 − t

F
. (114b)

Since limt→F |ψgo
lin |2 = ‖ψ0‖2

2 · δ(x), the geometrical-optics solution becomes singular at the
focal point t = F .

Equations (109a) and (109b) can also be solved exactly (i.e. without making the
geometrical-optics approximation) yielding

ψlin(t, x) = 1

Ld/2(t)
e
− 1

2
r2

L2(t) eik0
r2

2
Lt
L

+iτ(t;k0), (115)
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where

L(t; k0) =
√

1

F

(t − tmin)2

tmin
+ L2

min,

τ (t; k0) = −d

2

[
atan

(
t − tmin

Lmin
√

F · tmin

)
+ atan

(
k0

F

)]
, (116)

and

tmin = F

1 + F 2/k2
0

, Lmin = F√
F 2 + k2

0

.

Since L(t; k0) does not shrink to zero at any t > 0, ψlin exists for all 0 � t < ∞, and in
particular for t > F .

It is easy to verify that the limiting width of ψlin is given by

lim
k0→∞

L(t; k0) = |Lgo(t)|. (117)

In addition, since limk0→∞ tmin = F and limk0→∞ Lmin = 0, then

lim
k0→∞

τ(t; k0) =
0 0 � t < F,

−d

2
· π F < t < ∞.

(118)

Therefore,

Lemma 14.

lim
k0→∞

ψlin(t, x) =
{
ψ

go
lin(t, x) 0 � t < F,(
ψ

go
lin

)∗
(2F − t, x)e−i d

2 ·π F < t < ∞.
(119)

Hence, limk0→∞ ψ coincides with ψ
go
lin before the focal point. Beyond the focal point, there is a

bounded jump in the limiting phase, and the continuation is symmetric with respect to Tc = F .
This symmetry is to be expected, since the linear continuation is invariant under (35).

By (118), the limiting phase is unique, both before and after the singularity. This is the
opposite from the nonlinear case, where the limiting phase is non-unique beyond the singularity.
We thus conclude that

Conclusion 2. The post-collapse non-uniqueness of the phase is a nonlinear phenomena.

11.1. Simulations

In order to illustrate these results numerically, in figure 23(a) we plot L(t; k0), and observe
that it approaches |Lgo(t)| as k0 → ∞, both before and after the singularity point at t = F .
In figure 23(b) we plot τ(t; k0) = arg ψ(t, 0; k0) as a function of t , and observe that as k0

increases, τ(t; k0) approaches the step function (118).

12. Discussion

In this study, we presented several ‘old’ continuations and four novel continuations of NLS
solutions. At this stage, it is not clear whether any of these continuations is the ‘physical’ one.
In fact, it is possible that there is no ‘universal continuation’, i.e. that different physical setups
call for different continuations.

This study suggests that all continuations share the property that the post-collapse phase
becomes non-unique. Indeed, this property follows from the fact that the phase of the singular
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Figure 23. Solution of the linear Schrödinger (109a) and (109b) with d = 1 and F = 4.
(a) Width L(t), see (116), for k0 = 10 (dashed–dotted), k0 = 20 (dots) and k0 = 35 (dashes). The
solid line is |Lgo(t)| = |1− t

F
|. (b) arg ψ(t, 0; k0) as a function of t for k0 = 50 (dashes), k0 = 100

(dots) and k0 = 500 (dashed–dotted). The solid line is (118).

solution becomes infinite at the singularity, and is thus independent of the specific continuation
which is used. Therefore, even without knowing the ‘correct’ continuation, we can conclude
that interactions between post-collapse filaments are chaotic.

Since the Bourgain–Wang blowup solutions are unstable, they are typically classified as
‘non-generic’ solutions. This study shows, however, that these solutions are ‘generic’, in the
sense that they arise as the sub-threshold power continuation of NLS solutions, both before
and after the singularity.

It is instructive to compare this study with [4]. In [4], Merle et al showed that the Bourgain–
Wang blowup solutions lie on the boundary of an H 1 open set of global solutions that scatter
forwards and backwards in time, and also on the boundary of an H 1 open set of solutions
that undergo a loglog blowup in finite time. This result follows immediately from the reduced
equations (26)–(27a) and (27b) of the sub-threshold power continuation, see section 4.2, since

• The Bourgain–Wang blowup solutions correspond to β(0) = 0.
• For any β(0) < 0, L(t) remains strictly positive and satisfies limt→±∞ L(t) = 0.
• For any β(0) > 0, L(t) goes to zero at some finite Tc, at the loglog rate.

An interesting difference between the approaches of this study and [4] is that Merle et al start
from the Bourgain–Wang solution at the singularity time Tc, and then find a smooth deformation
such that the deformed solutions belong to the above two open sets on either side of the
Bourgain–Wang solution. In this study, we start from a generic initial condition ψ0 = K ·F(x),
and obtain the Bourgain–Wang solution as K −→ Kth

8.
The ‘global’ picture that emerges from this study is as follows. Consider a stable singular

solution of the critical NLS that undergoes a loglog collapse. Since the singular core ψR(0)

approaches a δ-function with power Pcr, it can be continued with a δ-function filament with
power Pcr. Such a filament singularity can occur when the collapse-arresting mechanism
leads to focusing–defocusing oscillations. Since this is the generic effect of conservative
perturbations of the critical NLS (such as nonlinear saturation), see [9, section 4.1.2], we
expect that continuations that are based on conservative perturbations of the NLS will lead to
a filament singularity.

When the collapse-arresting mechanism is non-conservative (e.g., nonlinear damping), the
solution defocuses (scatters) after its collapse has been arrested, since its power gets below Pcr.
Therefore, we expect that continuations that are based on non-conservative perturbation of

8 Of course, another difference is that, unlike this study, the results of [4] are rigorous.
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the NLS will lead to a point singularity. In addition, the same arguments as in the proof of
continuation result 2 suggest that non-conservative continuations of solutions that undergo a
loglog collapse have an infinite-velocity expanding core.

In continuation result 2 we saw that when the continuation leads to a point singularity and is
time-reversible, the continuation is symmetric with respect to Tc (property 1). For this to occur,
however, the continuation should be conservative (in order to be time reversible), yet it should
not lead to focusing–defocusing oscillations. While this holds for the sub-threshold power
and the shrinking-hole continuations, it is not expected to hold for conservative perturbations
of the NLS, which generically lead to a focusing–defocusing oscillations, hence to a filament
singularity. Therefore, we expect that continuations which are based on perturbations of
the NLS equation are asymmetric with respect to Tc. Hence, we believe that property 1 is
non-generic.
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