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a b s t r a c t

We study the nonlinear-damping continuation of singular solutions of the critical and supercritical NLS.
Our simulations suggest that for generic initial conditions that lead to collapse in the undamped NLS, the
solution of the weakly-damped NLS

iψt(t, x)+∆ψ + |ψ |
p−1ψ + iδ|ψ |

q−1ψ = 0, 0 < δ ≪ 1,

is highly asymmetric with respect to the singularity time, and the post-collapse defocusing velocity of the
singular core goes to infinity as the damping coefficient δ goes to zero. In the special case of the minimal-
power blowup solutions of the critical NLS, the continuation is a minimal-power solution with a higher
(but finite) defocusing velocity, whose magnitude increases monotonically with the nonlinear damping
exponent q.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear Schrödinger equation (NLS)

iψt(t, x)+1ψ + |ψ |
p−1ψ = 0, ψ0(0, x) = ψ0(x) ∈ H1, (1)

where x = (x1, . . . , xd) ∈ Rd and ∆ = ∂x1x1 + · · · ∂xdxd , is one
of the canonical nonlinear equations in physics, arising in various
fields such as nonlinear optics, plasma physics, Bose–Einstein
condensates (BECs), and surface waves. When (p − 1)d < 4, the
NLS is called subcritical. In that case, all H1 solutions exist globally.
In contrast, both the critical NLS (p−1)d = 4 and the supercritical
NLS (p−1)d > 4 admit singular solutions. Since physical quantities
do not become singular, this implies that some of the terms that
were neglected in the derivation of the NLS, become important
near the singularity.

The continuation of NLS solutions beyond the singularity has
been an open question formany years. In 1992,Merle [1] presented
a continuation of the explicit blowup solutions ψexplicit,α of the
critical NLS, see (9), which is based on slightly reducing the power
(L2 norm) of the initial condition. This continuation has two key
properties:

1. Property 1: The solution is symmetric with respect to the
singularity time Tc .
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2. Property 2: After the singularity, the solution can only be
determined up to multiplication by a constant phase term eiθ .

More recently, Merle et al. [2] have generalized this continuation
result to Bourgain–Wang singular solutions [3]. Note, however,
that both the explicit solutions ψexplicit,α and the Bourgain–Wang
solutions are unstable.

In [4], Merle presented a different continuation, which is
based on the addition of nonlinear saturation. Merle showed that,
generically, as the nonlinear saturation coefficient goes to zero,
the limiting solution beyond Tc can be decomposed into two
components: a δ-function singular core that extends for Tc ≤ t ≤

T 0, and a regular component elsewhere.
In [5], Tao proved the global existence and uniqueness in the

semi Strichartz class for solutions of the critical NLS. Intuitively,
these solutions are formed by solving the equation in the Strichartz
class whenever possible, and deleting any power that escapes to
spatial or frequency infinitywhen the solution leaves the Strichartz
class. These solutions, however, do not depend continuously on
the initial conditions, and are thus not a well-posed class of
solutions. Recently, Stinis [6] studied numerically the continuation
of singular NLS solutions using the t-model approach.

In [7] we analyzed asymptotically and numerically four poten-
tial continuations of singular NLS solutions: (1) a sub-threshold
power continuation, (2) a shrinking-hole continuation for ring-
type solutions, (3) a vanishing nonlinear-damping continuation,
and (4) a complex Ginzburg–Landau (CGL) continuation. Our main
findings were as follows:
1. The non-uniqueness of the phase of the singular core beyond

the singularity (Property 2) is a universal feature of NLS
continuations.
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2. The symmetry with respect to the singularity time (Property 1)
holds if the continuation model is time reversible and if it leads
to a point singularity (i.e., if it defocuses for t > Tc). Therefore,
it is a non-generic feature.

Recently, the post-collapse loss-of-phase phenomenonwasdemon-
strated experimentally for intense laser beams propagating in wa-
ter [8].

In this paper we further study the effect of small nonlinear-
damping in the NLS

iψt(t, x)+1ψ + |ψ |
p−1ψ + iδ|ψ |

q−1ψ = 0, 0 < δ ≪ 1. (2)
The addition of small nonlinear-damping is physical. Indeed, in
nonlinear optics, experiments suggest that arrest of collapse is
related to plasma formation, and nonlinear damping is used as
phenomenological model for multi-photon absorption by plasma.
In BEC, a quintic nonlinear damping term corresponds to losses
from condensate due to three-body inelastic recombinations [9].
In addition, the nonlinear-damping term appears in the complex-
Ginzburg–Landau (CGL) equation,which arises in amodel of chem-
ical turbulence, Poiseuille flow, Rayleigh–Bérnard convection,
Taylor–Couette flow, and superconductivity.

In [7] we analyzed the continuation of the critical NLS with a
vanishing critical nonlinear damping, i.e., Eq. (2) with p = q =

1 + 4/d. Since the NLS (2) is not time reversible, its solutions are
asymmetric with respect to the time T (δ)arrest at which the collapse
is arrested. In particular, in the limit δn → 0+, the continuation
of ψexplicit,α(t, r) is eiθψ∗

explicit,κα(2Tc − t, r), where κ ≈ 1.614.
Hence, the defocusing velocity κα is higher then the focusing
velocity α. When the initial condition leads to a log–log collapse
in the undamped critical NLS, asymptotic analysis and numerical
simulations suggest that the singular core expands beyond the
singularity at a velocity that goes to infinity as δ → 0+.

The question that we address in this study is whether and how
the results of [7] for q = p = 1 + 4/d will change in the following
cases:
1. The critical NLS with a supercritical damping exponent (i.e.,

q > p = 1 + 4/d).
2. The supercritical NLS with q ≥ p > 1 + 4/d.

The paper is organized as follows. In Section 2 we provide
a short review of NLS theory. In Section 3 we review previous
rigorous, asymptotic, and numerical results on the effect of
damping in the NLS. In Section 4 we show numerically that in
the supercritical NLS, the nonlinear damping exponent q has to be
strictly higher than the nonlinearity exponent p, in order to arrest
the collapse. This is different from the critical case, where collapse
is arrested for q ≥ p. In Section 5 we show that solutions of the
supercritical NLS with a small nonlinear damping are asymmetric
with respect to the arrest-of-collapse time T (δ)arrest, and that the post-
collapse defocusing velocity of the singular core goes to infinity
as the damping coefficient δ goes to zero. In Section 6 we obtain
similar results for the critical NLS with generic initial conditions
that lead to a log–log collapse. In the special case of the minimal-
power explicit blowup solution ψexplicit,α(t, r) of the critical NLS,
however, the continuation beyond the singularity is also defined
for q < p, and is given by eiθψ∗

explicit,κ(q)α(2Tc − t, r), where κ(q)
increases monotonically with q. Final remarks are given in
Section 7.

Overall, the qualitative effect of small nonlinear damping on
the collapse is the same in the critical and the supercritical NLS.
One difference is that in the critical case collapse is arrested for
q ≥ p, whereas in the supercritical case collapse is only arrested for
q > p. Another difference is that the distance between the damped
solution around T (δ)arrest and the asymptotic profile of the undamped
NLS is small in the critical case, but large in the supercritical case.
Surprisingly, in the latter case, the profile near T (δ)arrest appears to be
given by a rescaled supercritical standing wave.
2. Review of NLS theory

The NLS (1) has two important conservation laws: Power
conservation1

P(t) ≡ P(0), P(t) =


|ψ |

2dx,

and Hamiltonian conservation

H(t) ≡ H(0), H(t) =


|∇ψ |

2dx −
2

p + 1


|ψ |

p+1dx. (3)

The NLS (1) admits thewaveguide solutionsψ = eitR(r), where
r = |x|, and R is the solution of

R′′(r)+
d − 1

r
R′

− R + Rp
= 0, R′(0) = 0, R(∞) = 0. (4)

When d = 1, the solution of (4) is unique, and is given by

Rp(x) =


p + 1
2

1/(p−1)

cosh−2/(p−1)

p − 1
2

x

. (5)

When d ≥ 2, Eq. (4) admits an infinite number of solutions. The
solution with the minimal power, which we denote by R(0), is
unique, and is called the ground state.

2.1. Critical NLS

In the critical case (p − 1)d = 4, Eq. (1) can be rewritten as

iψt(t, x)+1ψ + |ψ |
4/dψ = 0, ψ0(0, x) = ψ0(x) ∈ H1, (6)

and Eq. (4) can be rewritten as

R′′(r)+
d − 1

r
R′

− R + R4/d+1
= 0,

R′(0) = 0, R(∞) = 0.
(7)

Theorem 1 (Weinstein [10]). A sufficient condition for global
existence in the critical NLS (6) is ∥ψ0∥

2
2 < Pcr, where Pcr = ∥R(0)∥2

2,
and R(0) is the ground state of Eq. (7).

The critical NLS (6) admits the explicit solution

ψexplicit(t, r) =
1

Ld/2(t)
R(0)


r

L(t)


eiτ+i LtL

r2
4 , (8a)

where

L(t) = Tc − t, τ (t) =

 t

0

1
L2(s)

ds =
1

Tc − t
. (8b)

More generally, applying the dilation transformation with λ = α
and the temporal translation Tc −→ α2Tc shows that the critical
NLS (6) admits the explicit solutions

ψexplicit,α(t, r) =
1

Ld/2α (t)
R(0)


r

Lα(t)


eiτα+i (Lα)tLα

r2
4 , (9a)

where

Lα(t) = α(Tc − t), τα(t) =

 t

0

1
L2α(s)

ds =
1
α2

1
Tc − t

,

α > 0.
(9b)

The explicit solutions (8)–(9) become singular at t = Tc . These
solutions are unstable, however, as the have exactly the critical
power for collapse. Therefore, any infinitesimal perturbation
which decreases their power, will arrest the collapse.

1 We call the L2 norm the power, since in optics it corresponds to the beam’s
power.
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When a solution of the critical NLS, whose power is slightly
above Pcr, undergoes a stable collapse, it splits into two compo-
nents: a collapsing core that approaches the universal ψR profile
and blows up at the log–log law rate, and a non-collapsing tail (φ)
that does not participate in the collapse process:

Theorem 2 (Merle and Raphael [11–16], Raphael [17]). Let d =

1, 2, 3, 4, 5, and let ψ be a solution of the critical NLS (6) that
becomes singular at Tc . Then, there exists a universal constant m∗ >
0, which depends only on the dimension, such that for any ψ0 ∈ H1

such that

Pcr < ∥ψ0∥
2
2 < Pcr + m∗,

HG(ψ0) := H(ψ0)−


Im


ψ∗

0∇ψ0

∥ψ0∥2

2

< 0,

the following hold:
1. There exist parameters (τ (t), x0(t), L(t)) ∈ R × Rd

× R+, and a
function 0 ≠ φ ∈ L2, such that

ψ(t, x)− ψR(t, x − x0(t))
L2

−→ φ(x), t −→ Tc,

where

ψR(t, x) =
1

Ld/2(t)
R(0)


|x|
L(t)


eiτ(t), (10)

and R(0) is the ground state of Eq. (7).
2. As t −→ Tc ,

L(t) ∼
√
2π


Tc − t

log | log(Tc − t)|

1/2

(log–log law). (11)

2.2. Supercritical NLS

In contrast to the extensive theory on singularity formation in
the critical NLS, much less is known about the supercritical case

iψt(t, x)+1ψ + |ψ |
p−1ψ = 0, (p − 1)d > 4. (12)

Numerical simulations and formal calculations (see [18, Chapter
7] and the references therein), and recent rigorous analysis in the
slightly-supercritical regime 0 < (p−1)d

2 − 2 ≪ 1 [19] show that
peak-type singular solutions of the supercritical NLS (12) collapse
with a self-similar asymptotic profile ψQ , where

ψQ (t, r) =
1

L2/(p−1)(t)
Q (ρ) eiτ+i LtL r2 , ρ =

r
L(t)

,

τ =

 t

0

ds
L2(s)

.

(13)

The blowup rate of L(t) is a square root, i.e.,

L(t) ∼ κ

Tc − t, t → Tc, (14)

where κ > 0. In addition, the self-similar profile Q is the zero-
Hamiltonian, monotonically-decreasing solution of

Q ′′(ρ)−


1 + i

p − 5
4(p − 1)

κ2
−
κ4

16
ρ2


Q + |Q |

p−1Q = 0,

Q ′(0) = 0.
(15)

3. Effect of linear and nonlinear damping—review

In [20], Fibich studied asymptotically and numerically the effect
of damping on blowup in the critical NLS. He showed thatwhen the
damping is linear, i.e.,

iψt(t, x)+1ψ + |ψ |
4/dψ + iδψ = 0, ψ(0, x) = ψ0(x), (16)
if the initial condition ψ0(x) is such that the solution of (16)
becomes singular for δ = 0, then the solution of (16) exists globally
only if δ is above a threshold value δc > 0 (which depends on
ψ0). Therefore, linear damping cannot play the role of ‘‘viscosity’’ in
continuations of solutions of the NLS. When, however, the damping
exponent is critical or supercritical, i.e.,

iψt(t, x)+1ψ + (1 + iδ) |ψ |
4/dψ = 0, 0 < δ ≪ 1, (17)

or

iψt(t, x)+1ψ + |ψ |
4/dψ + iδ|ψ |

q−1ψ = 0,
0 < δ ≪ 1 q − 1 > 4/d, (18)

respectively, then regardless of how small δ is, collapse is always
arrested. Therefore, Fibich suggested that nonlinear damping can
‘‘play the role of viscosity’’ in defining weak NLS solutions, i.e., we
can define the continuation

ψ := lim
δ→0+

ψ (δ), (19)

where ψ (δ) is the solution of (17) or (18).
Passot, Sulem and Sulem proved that high-order nonlinear

damping always prevents collapse for d = 2. Antonelli and Sparber
extended this result to d = 1 and d = 3:

Theorem 3 ([21,22]). The d-dimensional cubic NLS with nonlinear
damping

iψt +1ψ + λ|ψ |
2ψ + iδ|ψ |

q−1ψ = 0, λ ∈ R, δ > 0, (20)

where ψ0(x) ∈ H1(Rd), 3 < q < ∞ if d = 1, 2, and 3 < q < 5 if
d = 3, has a unique global in-time solution.

This rigorously shows that high-order nonlinear damping can
play the role of ‘‘viscosity’’. More recently, Antonelli and Sparber
proved global existence for the case where the damping exponent
is equal to that of the nonlinearity:

Theorem 4 ([22]). Consider the cubic NLS with a cubic nonlinear
damping

iψt(t, x)+1ψ + (1 + iδ)|ψ |
2ψ = 0, (21)

where ψ0(x) ∈ H1(Rd), xψ0 ∈ L2(Rd), and d ≤ 3. Then, for any
δ ≥ 1, Eq. (21) has a unique global in-time solution.

Theorem 4 does not show that critical nonlinear damping can
play the role of viscosity. We note, however, that the asymptotic
analysis and simulations of [7,20] strongly suggest that the solution
of (17) exists globally for any 0 < δ ≪ 1.

3.1. Explicit continuation of ψexplicit

In [7], Fibich and Klein calculated explicitly the vanishing
nonlinear-damping limit (19) of the explicit solution ψexplicit:

Continuation Result 1 ([7]). Let ψ (δ)(t, r) be the solution of the
NLS (17) with the initial condition

ψ0(r) = ψexplicit(0, r); (22)

see (8). Then, for any θ ∈ R, there exists a sequence δn → 0+
(depending on θ ), such that

lim
δn→0+

ψ (δn)(t, r) =


ψexplicit(t, r) 0 ≤ t < Tc,
ψ∗

explicit,κ(2Tc − t, r)eiθ Tc < t < ∞,
(23)

where ψexplicit,κ is given by (9a) with α = κ ,

κ = π

Bi(0)A′

i(s
∗)− Ai(0)B′

i(s
∗)


≈ 1.614, (24)

Ai(s) and Bi(s) are the Airy and Bairy functions, respectively, and
s∗ ≈ −2.6663 is the first negative root of G(s) =

√
3Ai(s)− Bi(s).
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In particular, the limiting width of the solution is given by

lim
δ→0+

L(t) =


Tc − t 0 ≤ t < Tc,
κ(t − Tc) Tc < t < ∞.

(25)

Therefore, the continuation is also an explicit minimal-power
solution, but with a higher (defocusing) velocity. In addition, the
solution beyond Tc is only determined up to multiplication by an
unknown constant phase eiθ .

3.2. Continuation for log–log collapse

In [7], Fibich and Klein showed asymptotically and numerically
that the continuation of solutions that undergo a log–log collapse
has an infinite-velocity expanding core, that is determined up to a
multiplicative constant phase eiθ :

Continuation Result 2 ([7]). Let ψ0(r) be a radial initial condition,
such that the corresponding solution ψ of the undamped critical
NLS (6) collapses with the ψR profile at the log–log law blowup rate
at Tc . Let ψ (δ) be the solution of the damped NLS (17) with the same
initial condition. Then,

lim
δ→0+

ψ (δ)
= ψ, 0 ≤ t < Tc .

In addition, for any 0 < δ ≪ 1, there exists θ(δ) ∈ R, and a function
φ ∈ L2, such that

lim
δ→0+


ψ (δ)(t, r)− ψ∗

R (2Tc − t, r; δ)eiθ(δ)
 L2

−→ φ(r),

t −→ Tc+,

where ψR is given by (10) with some function L(t; δ), such that

lim
t→Tc+

lim
δ→0+

L(t; δ) = 0, lim
t→Tc+

lim
δ→0+

Lt(t; δ) = ∞,

lim
δ→0+

θ(δ) = ∞.

Remark 1. We use the terminology Continuation Result, in order
to emphasize that the proofs of Continuation Results 1 and 2 are
based on asymptotic analysis and numerical simulations, and are
not rigorous.

4. The critical damping exponent

The rigorous theorems in Section 3 suggest that solutions of
the NLS (2) with ψ0(x) ∈ H1 always exist globally when p <
q. These theorems, however, do not cover the case p = q. The
asymptotic analysis and simulations of [7,20] strongly suggest that
in the critical case, when p = q the solution always exists globally;
see Continuation Results 1 and 2. Since there are no rigorous and
asymptotic results for the supercritical case with p = q, we study
this case numerically.

Consider the one-dimensional NLS with p = q

iψt(t, x)+ ψxx + (1 + iδ)|ψ |
p−1ψ = 0, (26a)

with the perturbed solitary-wave initial condition
ψ0(x) = 1.05Rp(x), (26b)

where Rp(x) is given by (5). In Fig. 1we solve (26)with δ = 5·10−3,
and plot

L(t) =

ψ(0, 0)ψ(t, 0)

(p−1)/2

. (27)

In the critical case p = 5, the collapse is arrested after focusing by
≈10. In the supercritical case p = 7, however, the collapse is not
arrested after focusing by 105. This and similar simulations suggest
that unlike the critical case, in the supercritical case, the condition
p < q is necessary for ensuring global existence in (2).
Fig. 1. Solution of (26) for δ = 5 · 10−3 with p = 5 (dashes) and p = 7 (solid).

Fig. 2. Solution of (28) for δ = 0 (solid), δ = 5 · 10−3 (dashes–dots), δ = 7.5 · 10−3

(dots), and δ = 10−2 (dashes).

5. Supercritical NLS

We now consider the effect of small nonlinear damping in
the supercritical NLS. Let ψ (δ)(t, x) be the solution of the one-
dimensional supercritical damped NLS (d = 1, p = 7, q = 9)

iψt(t, x)+ ψxx + |ψ |
6ψ + iδ|ψ |

8ψ = 0, (28a)
with the initial condition

ψ0(x) = 1.3e−x2 . (28b)
Let

T (δ)max = argmax
t

∥ψ (δ)(t, x)∥∞, (29)

denote the time at which the focusing is maximal.
In Fig. 2 we plot the solution of (28) for various values of δ. In

all cases, the collapse is arrested in a highly asymmetric way with
respect to T (δ)arrest. In addition, the post-collapse defocusing rate of
the singular core ‘‘appears’’ to increase to infinity as δ → 0+.

In Fig. 3 we compare the profile of the solution of (28) with
δ = 10−3 with the supercritical ψQ and ψR profiles, where

|ψR(t, x)| =
1

L2/(p−1)
R (t)

R


x
LR(t)


,

LR(t) =

 R(0)
ψ (δ)(t, 0)

(p−1)/2

,

(30a)

|ψQ (t, x)| =
1

L2/(p−1)
Q (t)

Q 
x

LQ (t)

 ,
LQ (t) =

 Q (0)
ψ (δ)(t, 0)

(p−1)/2

,

(30b)

and R and Q are the solutions of (4) and (15), respectively, with
d = 1 and p = 7. The NLS solution initially approaches the ψQ
profile; see Fig. 3((a)–(c)). This is to be expected, since when δ = 0
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a b c

d e f

g

h

Fig. 3. Solution of (28) for δ = 5 · 10−3 (solid), and the fitted |ψQ | (dots) and |ψR| (dashes). (a) t ≈ 0.2, L ≈ 0.38 (b) t ≈ 0.227, L ≈ 0.2 (c) t ≈ 0.2368, L ≈ 0.05
(d) t ≈ 0.2376, L ≈ 0.0118 (e) t ≈ 0.23764, L ≈ 0.0119 (f) t ≈ 0.23767, L ≈ 0.135. The stars in (g) and (h) denote the values of t and L(t) for the data in subplots (a)–(f).
Fig. 4. Solution of (31) for δ = 0 (solid), δ = 5 ·10−4 (dots), and δ = 10−3 (dashes).

the solution collapses with the ψQ profile; see Section 2.2. As the
solution approaches T (δ)arrest, however, the collapsing core moves
away from ψQ and toward ψR, see Fig. 3(d), and it remains close
toψR for a ‘‘short time’’ after T (δ)arrest; see Fig. 3(e). Eventually, as the
collapsing core continues to defocus, it interacts with its tail and
‘‘loses’’ its ψR profile; see Fig. 3(f).

Next, we repeat the above simulation with a higher nonlinear
damping exponent (q = 11). Specifically, we solve the NLS

iψt(t, x)+ ψxx + |ψ |
6ψ + iδ|ψ |

10ψ = 0, (31a)
with the initial condition

ψ0(x) = 1.3e−x2 . (31b)
Figs. 4 and 5 show that the qualitative behavior of the solution is
exactly the same as that of the solution of (28).

Therefore, we conclude that solutions of the supercritical NLS
(2) with q > p > 1 + 4/d and 0 < δ ≪ 1:
1. Exist globally.
2. Are highly asymmetric with respect to T (δ)arrest.
3. The post-collapse velocity of the defocusing core goes to infinity

as δ → 0+.
4. The asymptotic profile around T (δ)arrest is ψR, and not ψQ .
The fact that as t → T (δ)arrest the profile is not given by ψQ is not
surprising, since the nonlinear damping perturbation obviously
has a significant effect near T (δ)arrest, and therefore there is no
reason why it should not change the solution profile. What is
surprising is that the profile changes to the supercritical ψR
profile. As far as we know, this is the first observation in which
the asymptotic profile in the supercritical NLS is given by the
supercritical ψR profile.2

6. Critical NLS

6.1. Continuation of log–log collapse

In [7], we studied the effect of nonlinear damping in the critical
NLS with p = q with initial conditions that lead to a log–log
collapse; see Continuation Result 2. We now consider the case
p > q.

Consider the damped one-dimensional critical NLS (d = 1, p =

5, q = 7)

iψt(t, x)+ ψxx + |ψ |
4ψ + iδ|ψ |

6ψ = 0, (32a)

with the initial condition

ψ0(x) = 1.6e−x2 , (32b)

whose power is 4% above the critical power for collapse. When
δ = 0, the NLS solution collapses with theψR profile at the log–log
blowup rate.

In Fig. 6 we solve (32) for various values of δ. In all cases, the
collapse is arrested in a highly asymmetric way with respect to

2 The standing-ring solutions of the undamped supercritical NLS with p = 5 and
d > 1 also collapse with the ψR profile [23–26]. In that case, however, ψR is the
asymptotic profile of the critical one-dimensional quintic NLS.
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a b c

d e f

g

h

Fig. 5. Sameas Fig. 3 for the solution of (31). (a) t ≈ 0.19, L ≈ 0.33 (b) t ≈ 0.211, L ≈ 0.22 (c) t ≈ 0.221, L ≈ 0.033 (d) t ≈ 0.222, L ≈ 0.02341 (e) t ≈ 0.2222, L ≈ 0.02343
(f) t ≈ 0.2223, L ≈ 0.0267.
Fig. 6. Solution of (32) for δ = 10−5 (solid), δ = 2.5 · 10−4 (dots), and δ = 5 · 10−4

(dashes).

T (δ)arrest. In addition, the post-collapse defocusing rate appears to
increase to infinity as δ → 0+. This qualitative behavior is as in
the case p = q; see Continuation Result 2. Therefore, we conclude
that the qualitative behavior for q = p and for q > p is the same.

In Fig. 7 we compare the profile of the solution of (32) with
δ = 10−5 with the best-fitting critical ψR profile; see (30a). The
NLS solution initially approaches the ψR profile, see Fig. 7((a)–(c)).
This is to be expected, since when δ = 0 the solution collapses
with the ψR profile; see Theorem 2. As the solution approaches
T (δ)arrest, however, the collapsing core moves away from ψR; see
Fig. 7((d)–(e)). Unlike the supercritical case, however, the solution
profile near T (δ)arrest is still ‘‘close’’ toψR. This is because in the critical
case, perturbations arrest the collapse when they are still small
compared with the nonlinearity and diffraction [27]. Eventually,
as the collapsing core continues to defocus, it interacts with its tail
and ‘‘loses’’ its ψR profile; see Fig. 7(f).

In summary, nonlinearly-damped log–log solutions of the
critical NLS with q ≥ p have the following properties:
1. The solutions are highly asymmetric with respect to T (δ)arrest.
2. The post-collapse defocusing velocity goes to infinity as δ →

0+.
3. The asymptotic profile near T (δ)arrest is ‘‘slightly’’ different fromψR.

6.2. Continuation of ψexplicit

Consider the critical NLS with nonlinear damping

iψt(t, x)+1ψ + |ψ |
4/dψ + iδ|ψ |

q−1ψ = 0, 0 < δ ≪ 1, (33a)

and the initial condition

ψ0(r) = ψexplicit(0, r). (33b)

When δ = 0, the solution is given by ψexplicit; see Eq. (8). In [7],
we calculated explicitly the continuation of ψexplicit when q = p;
see Continuation Result 1. We now consider the continuation for
q ≠ p.3

As in [7], we can use modulation theory [27] to approximate
equation (33) with a reduced system of ordinary-differential
equations.

Lemma 1. Let

L(t) =

ψ(0, 0)ψ(t, 0)

2/d ,
where ψ is the solution of Eq. (33). Then, as δ −→ 0+, the evolution
of L(t) is governed by the reduced equations

βt(t) = −
2cqδ
M

1
L(q−1)d/2

, Ltt(t) = −
β(t)
L3

, (34a)

3 Sinceψexplicit has exactly the critical power for collapse, any amount of damping
will arrest the collapse. Therefore, the continuation of ψexplicit can also be defined
for q < p.
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Fig. 7. Solution of (32) for δ = 10−5 (solid), and the fitted |ψR| (dashes). (a) t ≈ 0.205, L ≈ 0.45 (b) t ≈ 0.26, L ≈ 0.24 (c) t ≈ 0.28514, L ≈ 0.0037 (d) t ≈ 0.285146,
L ≈ 0.0032 (e) t ≈ 0.285147, L ≈ 0.0032 (f) t ≈ 0.28515, L ≈ 0.0046. The stars in (g) and (h) denote the values of t and L(t) for the data in subplots (a)–(f).
subject to the initial conditions

β(0) = 0, L(0) = 0, Lt(0) = −1, (34b)

where

υ(β) =


cνe−π/

√
β , β > 0,

0, β ≤ 0,

cν =
2A2

R

M
, AR = lim

r→∞
er r (d−1)/2R(0)(r),

M =
1
4


∞

0
r2|R(0)|2rd−1dr, cq = ∥R(0)∥q+1

q+1,

and R(0) is the ground state of (7).

Proof. In [20] it was shown that the reduced equations for the
damped NLS (33a) are given by

βt(t) = −
ν(β)

L2
−

2cqδ
M

1
L(q−1)d/2

, Ltt = −
β(t)
L3

. (35)

In addition, the initial conditions for the reduced equations (35)
that correspond to the initial condition (33b) are β(0) = 0, L(0) =

0, and Lt(0) = 0; see [7]. Since β(0) = 0, and since βt < 0, then
β(t) < 0. Hence, ν(β) ≡ 0. Therefore, the reduced equations are
given by (34). �

The reduced-equations variable L(t) is the solutionwidth, and is
also inversely proportional to the solution amplitude. The reduced
equations variable β(t) is ameasure of the acceleration of L(t), and
is also linearly proportional to the excess power above Pcr of the
collapsing core.

Since modulation theory is not rigorous, in Fig. 8 we compare
the numerical solutions of the reduced equations (34) and the
NLS (32). This comparison shows that the two solutions are
in excellent agreement, thus providing a strong support to the
validity of the reduced equations. Therefore, in what follows we
study asymptotically and numerically the limit δ −→ 0+ within
the framework of the reduced equations, which is considerably
easier than studying the limit δ −→ 0+ of the nonlinearly-
damped NLS.

The extension of Continuation Result 1 to q ≠ p is as follows.

Continuation Result 3. Let ψ (δ)(t, r) be the solution of the NLS
(33). Then, for any θ ∈ R, there exists a sequence δn → 0+ (de-
pending on θ ), such that

lim
δn→0+

ψ (δn)(t, r)

=


ψexplicit(t, r) 0 ≤ t < Tc,
ψ∗

explicit,κ(q)(2Tc − t, r)eiθ Tc < t < ∞.
(36)

In particular, the limiting width of the solution is given by

lim
δ→0+

L(t) =


Tc − t 0 ≤ t < Tc,
κ(q)(t − Tc) Tc < t < ∞.

(37)

Proof. We only provide an informal proof, using the reduced
equations (34). As δ → 0+, βt(t) → 0, see Eq. (34a). Therefore,
since β(0) = 0, then β(t) → 0. Hence, Ltt(t) → 0. Therefore,
limδ→0+ L(t) is linear in t . Since limδ→0+ L(Tc) = 0, it follows that

lim
δ→0+

L(t; δ) =


Tc − t, t < Tc,
κ(q)(t − Tc), Tc < t.

The loss of phase follows from the fact that
limt→Tc arg(ψexplicit(t, 0)) = ∞; see [7]. �

The result of Continuation Result 3 can be explained as follows.
By continuity, limδ→0+ ψ

(δ)
= ψexplicit for 0 ≤ t < Tc . The limiting

solution for t > Tc is an NLS solution that becomes singular as t →

Tc+, and has exactly the critical power at the singularity. Hence,
the limiting solution is a minimal-power solution. Therefore, it has
to be given by ψexplicit,α [1,4].
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Fig. 8. Solution of the reduced equations (34) (solid), and of the NLS (33) (dashes), for δ = 2.5 · 10−5 and d = 1. The two curves are indistinguishable. (a) q = 1. (b) q = 3.
(c) q = 5. (d) q = 7.
In Fig. 9 we solve the reduced equations (34) with δ = 10−7,
and observe that

1. The limiting solutions are indeed linear for t < Tc and t > Tc .
2. The continuation is asymmetric with respect to Tc .
3. The post-collapse slope κ(q) increases with q. In [7] we showed

that the jump discontinuity in limδ→0+ L2t at Tc is related to
the increase of the Hamiltonian as the limiting solution passes
through the singularity. As q increases, damping affects become
more pronounced, hence there is a larger increase of the
Hamiltonian, hence of the post-collapse slope.

4. When q = 1, κ(q = 1) = 1, i.e., L(t) is symmetric with respect
to Tc . Therefore, the linear damping continuation of ψexplicit is
symmetric with respect to Tc , even though the problem is not time-
reversible.

Note that the value of κ(q = 1 + 4/d) ≈ 1.614 was computed
analytically in Continuation Result 1.

7. Final remarks

In this study we used numerical simulations to study the
effect of small nonlinear-damping on singular NLS solutions. These
simulations suggest that the effect of small nonlinear damping
is qualitatively the same in the critical NLS with generic initial
conditions that lead to a log–log collapsewith theψR profile, and in
the supercritical NLS with generic initial conditions that lead to a
square-root collapsewith theψQ profile. Moreover, the qualitative
effect of nonlinear damping is independent of the value of q, so long
as q > p in the supercritical case and q ≥ p in the critical case. Thus,
because nonlinear damping destroys theNLS time reversibility, the
nonlinearly-damped solution is highly asymmetric with respect
to the arrest-of-collapse time T (δ)arrest. The post-collapse defocusing
velocity Lt(t) of the singular core goes to infinity as δ −→ 0+,
since the focusing velocity before the singularity goes to infinity
for log–log and square-root blowup rates, and since nonlinear
damping increases the Hamiltonian,4 hence the ‘‘kinetic energy’’.

Around T (δ)arrest, the collapsing core of the singular core moves
away from the asymptotic profile of the undamped solution. In the
supercritical case the difference between the solution profile and
ψQ for t ≈ T (δ)arrest is large. This is intuitive, since damping effects
have a large effectwhen they arrest the collapse. In the critical case,
however, the difference between the solution profile and ψR for
t ≈ T (δ)arrest is minor. This is because critical collapse has the unique
property that it can be arrested by small perturbations [27].

Surprisingly, in the supercritical case the profile of the nonlinearly-
damped solution near T (δ)arrest appears to be given by the supercritical
ψR profile. To the best of our knowledge, this is the first
observation of a solution of the supercritical NLS that approaches
the supercritical ψR profile.

Acknowledgment

This research was partially supported by grant 1023/08 from
the Israel Science Foundation (ISF).

4 If we multiply the NLS (2) by ψ∗
t , add the complex-conjugate equation, and

integrate by parts, we get that

Ht = iδ


|ψ |
q−1ψψ∗

t + c.c.,

where c.c. stands for complex conjugate. Letψ = AeiS , where A and S are real. Then,

Ht = 2δ


|A|
q+1St .

Since for collapsing solutions St ∼ L−2(t), it follows that Ht > 0.
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Fig. 9. Solution of the reduced equations (34) with δ = 10−7 and various values of q. (a) L(t). (b) κ(q).
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