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We calculate explicitly the aggregate diffusion dynamics in one-dimensional agent-based models of adop-

tion of new products, without using the mean-field approximation. We then introduce a clusters-dynamics

approach, and use it to derive an analytic approximation of the aggregate diffusion dynamics in multi-

dimensional agent-based models. The clusters-dynamics approximation shows that the aggregate diffusion

dynamics does not depend on the average distance between individuals, but rather on the expansion rate

of clusters of adopters. Therefore, the grid dimension has a large effect on the aggregate adoption dynam-

ics, but a small-world structure and heterogeneity among individuals have only a minor effect. Our results

suggest that the one-dimensional model and the Bass model provide a lower-bound and an upper-bound,

respectively, for the aggregate diffusion dynamics in agent-based models with “any” spatial structure.
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1. Introduction

Diffusion of new products is a fundamental problem in Marketing. This problem has been stud-

ied in diverse areas such as retail service, industrial technology, agriculture, and educational,

pharmaceutical and consumer-durables markets (Mahajan, Muller and Bass 1993). Typically,

the diffusion process begins when the product is introduced into the market, and progresses

through a series of adoption events.

The first quantitative model of diffusion of new products was the Bass model (Bass 1969).

This model inspired a huge body of theoretical and empirical research, and was selected as

one of the ten most cited papers in the 50-year history of Management Science (Management
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Science 2004). In the Bass model, the adoption rate is given by

dn(t)

dt
= [M −n(t)][p +

q

M
n(t)], n(0) = 0, (1)

where n(t) is the number of individuals that adopted the product by time t, and M is the

population size. The parameters p and q describe the likelihood of an individual to adopt the

product due to external influences such as mass-media or commercials, and due to internal

influences by other individuals who have already adopted the product, respectively. Since the

hazard of adoption of each individual is p + q n
M

, each individual is affected by both external

and internal influences.

Equation (1) can be solved explicitly, yielding

nBass(t) = M
1− e−(p+q)t

1 + q
p
e−(p+q)t

,

or, equivalently,

fBass(t) =
1− e−(p+q)t

1 + q
p
e−(p+q)t

, (2)

where f(t) = n(t)/M is the fraction of adopters at time t. Empirically, the Bass model was

found to capture the S-shape of the adoption curve of various products. Typical values for the

parameters were found to be p = 0.03/year and q = 0.38/year, with p often less than 0.01/year

and q typically in the range 0.3–0.5/year (Mahajan, Muller and Bass 1995).

The Bass model is an aggregate model, i.e., it describes the diffusion in terms of the behavior

of the entire population. Therefore, a considerable research effort has been devoted to model

the individual adoption behavior, and to analyze how it affects the aggregate diffusion process.

Thus, Sinha and Chandrashekaran (1992) studied individual adoption behavior using hazard

modeling on empirical data. Subsequently, Van den Bulte and Lilien (2001) used hazard model-

ing to study social contagion with social network data. Bronnenberg and Mela (2004) and Bell

and Song (2007) have done this with spatial data. Beginning with Goldenberg et al. (2000),

this line of research has been carried out by using agent-based (cellular-automata) models to
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Figure 1 The Fully-Connected model. Each individual is able to communicate with any other individual.

compute numerically the aggregate adoption curve from the individual-based behaviors, which

are based on external and internal effects.

In the Bass model, the rate of new adoptions due to internal effects is equal to q
M

(M −n)n.

This expression is based on the assumption that each of the (M − n) non-adopters can be

influenced by all n adopters. In other words, the Bass model implicitly assumes that all indi-

viduals are connected to each other (see Figure 1). The assumption of a full connectivity has

also been used in some of the subsequent agent-based diffusion models. For example, Gold-

enberg, Libai and Muller (2001) used a fully-connected agent-based model to study the effect

of heterogeneity in the values of p and q among individuals. In other agent-based diffusion

models, however, individuals could only communicate with their neighbors, and the population

had a spatial structure such as a one-dimensional grid (e.g., Alkemade and Castaldi (2005)),

a two-dimensional grid (e.g., Goldenberg, Libai and Muller (2002)), or a regular lattice with

some added random links (e.g., Garber et al. (2004), Delre et al. (2007)).

The goal of this study is to study analytically the effect of the spatial structure on the

diffusion process in agent-based models. To do that, we first consider a one-dimensional model

in which each individual can only be influenced by one or two neighbors (see Figure 2). In this

case, we show that the fractional adoption curve f1D(t) can be calculated explicitly, without

making any approximation. In particular, as M −→∞,

f1D(t) = 1− e−(p+q)t+q 1−e−pt

p . (3)
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Figure 2 The 1D diffusion models analyzed in this study. Arrows show the possible flow of communica-

tion/influence. A: The one-sided 1D model. Each individual can be influenced by his left neighbor.

B: The two-sided 1D model. Each individual can be influenced by his two neighbors.

We then introduce a novel analytic approach, the clusters-dynamics method, which allows us to

approximate the adoption curve in higher dimensions when all nodes are “positionally equiv-

alent” to each either, with and without an additional small-world structure. The key finding

of this study is that the fractional adoption curve f(t) in an agent-based model with “any”

spatial structure is slower than in the Bass model and faster than in the 1D model, i.e.,

fBass(t)≤ f(t)≤ f1D(t). (4)

The paper is organized as follows. In Section 2 we study the diffusion in the simplest pos-

sible spatial model, the one-sided one-dimensional model, in which a population of size M is

positioned on a circle, and each individual can only be influenced by his left neighbor (see

Figure 2A). Even for such a simple structure, the number of possible configurations of adopters

and non-adopters increases exponentially with the length of the configuration. In such cases,

the common approach to compute analytically the aggregate diffusion dynamics has been to

calculate only the probabilities of short configurations, and close the system using the mean-

field approximation (see, e.g., Matsuda et al. (1992)). In Section 2.2 we show, however, that

we can close the system without making any approximation, by utilizing the translation invari-

ance property of the model. Furthermore, this system of equations can be solved, yielding

an explicit expression of the aggregate diffusion dynamics (Proposition 1). This expression is,

however, cumbersome, and not very informative. Fortunately, it can be substantially simpli-

fied in the limit as M −→ ∞ (Proposition 2), yielding equation (3). Numerical simulations
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show that already for M as small as 20, this limiting expression is in excellent agreement with

simulation results of agents-based models. Since typical values of M are much larger, expres-

sion (3) provides an excellent approximation to the aggregate diffusion process in the one-sided

one-dimensional spatial model.

In Section 3 we study the diffusion in a two-sided one-dimensional model, in which a popula-

tion of size M is positioned on a circle, but each individual can influence his two neighbors (see

Figure 2B). In this model, we allow for an asymmetry of the internal influence parameters in the

right and left directions (i.e., qR is not necessarily equal to qL). We again utilize the translation

invariance property to compute analytically the aggregate diffusion dynamics without making

any mean-field approximation (Proposition 3), and obtain a simpler expression as M −→ ∞

(Proposition 4).

The results of Propositions 1 and 3 show that the aggregate diffusion dynamics in the one-

sided 1D model is identical to that in the two-sided 1D model, provided that the internal

influence parameter q in the one-sided model is equal to the sum of the internal influence

parameters in the two-sided model (i.e., q = qR + qL). Therefore, in Section 4 we define the

parameter qeffective as the sum of the internal influences parameters on all neighbors. The results

of Sections 2 and 3 thus show that in the one-dimensional models, the aggregate diffusion

dynamics depends on the values of p and qeffective = qR + qL.

In Section 5 we show that as M −→∞, the adoption curve in the fully-connected model (see

Figure 1) is given by the Bass formula, equation (2). Then, in Section 6 we show that the aggre-

gate adoption level in the 1D model is significantly lower than in the Bass model. Since the Bass

model can be viewed as a mean-field approximation of the 1D model (Section 6.1), this shows

the advantage of using the translation invariance property over the mean-field approximation

in the analytic calculation of the adoption curve in the 1D models.

The one-dimensional model and the fully-connected Bass model can be viewed as the least-

connected and most-connected spatial models, respectively. From this perspective, any other
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spatial structure “lies between” these two cases. Therefore, in Section 7 we formulate Conjec-

ture 1 that the diffusion in any spatial structure is faster than in the 1D model, and slower

than in the Bass model, see equation (4). In other words, the explicit expressions (2) and (3)

provide an upper-bound and a lower-bound to the fractional adoption curve.

In general, the aggregate adoption dynamics depends on two independent parameters,

p and q. In Section 8, however, we use dimensional analysis to show that regardless of the

spatial structure, the adoption curve can be written as a function of a single parameter — the

dimensionless parameter q̃ = q/p. Moreover, we show that the domain of interest in diffusion

models is q̃ � 1. This observation implies that it is “sufficient” to prove Conjecture 1 (or to

confirm it numerically) for q̃ � 1, rather than for any p > 0 and q > 0.

In Section 9 we derive an approximation for f(t), by visualizing the diffusion process as a

random creation and subsequent expansion of clusters of adopters. Unlike the explicit calcula-

tion of f(t) in the 1D models which utilized the translation invariance property, the clusters-

dynamics approach only provides an approximation for f(t). Nevertheless, it has the advantages

that it is intuitive, and that it can be applied in any dimension. Indeed, using the cluster-

dynamics approach, we show analytically that the aggregate adoption level in multidimensional

Cartesian grids increases with the grid dimension, but remains below that of the Bass model

(Section 10). A priori, one could argue that these results are not surprising, since as the dimen-

sion increases, the average distance between adopters decreases, thereby resulting in a faster

diffusion. If this explanation is correct, then the addition of a small-world structure should

result in a considerable speedup of the adoption process. In Section 11 we show, however, that a

small-world structure has a small effect on the diffusion of new products. Indeed, a small-world

structure has a large effect when diffusion starts from a single external adopter and progresses

only through internal adoptions. This may be the case in diffusion of epidemics such as AIDS

or SARS, but not in diffusion of new products. In Section 12 we use the clusters-dynamics

approach and agent-based simulations to show that heterogeneity among individuals has a

minor effect on the aggregate diffusion process.
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The results of Sections 10–12 show, in particular, that Conjecture 1 holds for Cartesian

grids of any dimension, with or without a small-world structure, with either homogeneous or

heterogeneous individuals. The role of the spatial structure in the diffusion process is discussed

in Section 13. The main conclusion of this discussion is that the spatial structure can have a

large effect on the diffusion process. This effect is not related to the effect of the spatial structure

on the average distance between individuals, but rather to its effect on the expansion rate of

clusters of adopters. We conclude with some final remarks in Section 14.

While the focus of this study in on agent-based modeling in Marketing, we note that agent-

based models have been used in studies of social, economical, and biological models (see, e.g.,

Samuelson and Macal (2006), Gilbert and Troitzsch (2005), Grimm and Railsback (2005),

Bonabeau (2002), Epstein and Axtell (1996), Kim et al (2007)). From a mathematical perspec-

tive, the key novelty of this study, compared with the existing literature on agent-based models,

is the analytic calculation of the aggregate diffusion dynamics in a grid with a spatial structure,

both exactly for the 1D case, and approximately (using the clusters-dynamics approach) in any

dimension. In contrast, most previous agent-based studies computed the aggregate diffusion

dynamics only numerically. The studies that did calculate the aggregate dynamics analytically,

either employed some type of a mean-field approximation, or obtained analytical results for

steady-state solutions, such as the fraction of the population that will become infected by an

epidemic at equilibria (López-Pintado 2008, Jackson and Rogers 2007, Jackson 2006, Vega-

Redondo 2006, Pastor-Satorrás and Vespignani 2001). Note that in all the agent-based models

considered in this study, once an individual becomes an adopter, he remains so at all later time.

This assumption is reasonable in the product-innovation context, where diffusion models try to

forecast first-purchase sales of innovations, such as fax machines, Skype, Ipod, and Facebook. In

such models, one is only interested in the adoption dynamics, since the steady-state equilibria

is for the entire population to become adopters.
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2. One-sided 1D model

We begin with the simplest one-dimensional model, in which a population of size M is positioned

on a circle, such that each individual can only be influenced by his left neighbor (see Figure 2A).

We assume that at time t = 0 no individual has adopted the product, and that once an individual

adopts, he remains an adopter at all later times.

Assume that at time t individual j has not yet adopted. Let p be his adoption rate due to

external influences, let q be his adoption rate due to internal influence from his left neighbor

(provided that his left neighbor has already adopted), and let the probability that he adopts

between times t and t+ ∆t be given by

Prob{j adopts in (t, t+ ∆t)}=

{

P0∆t+ o(∆t), j − 1 did not adopt by time t,

P1∆t+ o(∆t), otherwise,
(5a)

as ∆t→ 0, where

P0 = p, P1 = p + q. (5b)

Here and elsewhere we use the convention that when j = 1, then j − 1“=”M .

Let us denote the number of adopters by n(t). Then, we can calculate explicitly the expected

fraction of adopters f(t) = E[n(t)]/M :

Proposition 1. The expected fraction of adopters in the one-sided 1D model is given by

f(t) = 1−
M−1∑

k=1

ck

(−q)k−1

pk−1(k− 1)!
e(−kp−q)t + cM

(−q)M−1

∏M−1

j=1 (jp− q)
e−Mpt. (6a)

Here, the constants {ck}M
k=1 are the solutions of the linear system

M∑

k=1

ckvk =






1
...

1




 , (6b)

where
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vk =

















(
− q

)k−1
/
(
pk−1(k− 1)!

)

(
− q

)k−2
/
(
pk−2(k− 2)!

)

...
(
− q

)
/p

1
0
...

0

















, k = 1, . . . ,M −1; vM =













(
− q

)M−1
/
∏M−1

j=1

(
jp− q

)

(
− q

)M−2
/
∏M−2

j=1

(
jp− q

)

...
(
− q

)2
/
(
p− q

)(
2p− q

)

(
− q

)
/
(
p− q

)

1













.

(6c)

Proof: see Section 2.2.

Although we obtained an explicit expression for the expected fraction of adopters, this expres-

sion is cumbersome and not very informative. Fortunately, as M →∞, this explicit expression

becomes considerably simpler:

Proposition 2. The expected fraction of adopters in the one-sided 1D model as M →∞ is

lim
M→∞

f(t) = 1− e−(p+q)t+q 1−e−pt

p . (7)

Proof: see Section 2.3.

This expression for the expected fraction of adopters is different from the one obtained from

the Bass model, see Section 6.

2.1. Simulations

In Figure 3 we show the average number of adopters, calculated from 10,000 agent-based

simulations of the one-sided 1D model. For both M = 10 and M = 20, the average fraction

of adopters is well approximated by the explicit expression (6) for a finite M . When M = 10

the average fraction of adopters is below the M → ∞ limit, equation (7). However, already

for M = 20, the average fraction of adopters is very close to the M →∞ limit. This shows that

even for rather small populations, the M →∞ limit describes the adoption in the one-sided

1D model extremely well.

The results shown in Figure 3 are the average of 10,000 agents-based simulations. Note,

however, that as M −→∞, the normalized variance of the adoption process goes to zero. Hence,
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Figure 3 Fraction of adopters as a function of time in the one-sided 1D model, as calculated from agent-based

simulations which are averaged over 10,000 runs (dashes). Also shown are the explicit expression (6)

for a finite M (dots), and the explicit expression (7) for an infinite population (solid). Here, p = 0.01,

q = 0.6 and ∆t = 0.05. (A) M = 10. Dashed and dotted lines are indistinguishable. (B) M = 20. All

three lines are indistinguishable.
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Figure 4 Fraction of adopters as a function of time in the one-sided 1D model, as calculated from a single

agent-based simulation (dashes). Also shown is the explicit expression (7) for an infinite population

(solid). Here, p = 0.01, q = 0.6 and ∆t = 0.05. (A) M = 100, (B) M = 106. In B, the two lines are

indistinguishable.
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the M −→∞ limit, equation (7), will match any simulation result and not just the average

over many simulations. To illustrate this, in Figure 4 we compare the M −→∞ limit with a

single agent-based simulation. When M = 100, there is a considerable difference between the

two cases. When M = 106, however, the two cases are indistinguishable.

2.2. Proof of Proposition 1

We denote the state of individual j by the random variable Xj(t), where Xj(t) = 0 if j has not

adopted by time t, and Xj(t) = 1 if j has adopted by time t. Since at time t = 0 no one has

adopted,

Xj(0) = 0, j = 1, . . . ,M. (8)

Recall that once Xj(t) changes to 1, it remains so at all later times.
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Using the adoption probabilities in equation (5a), we calculate the following conditional

probabilities:

Prob
{
Xj(t+ ∆t) = 1|Xj(t) = 1

}
= 1,

Prob
{
Xj(t+ ∆t) = 1|Xj−1(t) = 0,Xj(t) = 0

}
= P0∆t+ o(∆t), (9)

Prob
{
Xj(t+ ∆t) = 1|Xj−1(t) = 1,Xj(t) = 0

}
= P1∆t+ o(∆t).

Therefore,

Prob
{
Xj(t+ ∆t) = 1

}
= Prob

{
Xj(t) = 1

}
· 1 + Prob

{
Xj−1(t) = 0,Xj(t) = 0

}
·
(

P0∆t+ o(∆t)
)

+ Prob
{
Xj−1(t) = 1,Xj(t) = 0

}
·
(

P1∆t+ o(∆t)
)

.

Taking the limit as ∆t goes to zero gives

d

dt
Prob

{
Xj(t) = 1

}
= P0 ·Prob

{
Xj−1(t) = 0,Xj(t) = 0

}
+ P1 ·Prob

{
Xj−1(t) = 1,Xj(t) = 0

}
.

(10)

In order to proceed we adopt the following notations. We denote the probability of an indi-

vidual j to be in state ’I’ (infected) at time t by [I]. We denote the probability of individual j

to be in state ’S’ (susceptible) at time t by [S]. The position of individual j (the “anchor”)

in these configurations is underlined. The probability of a larger configuration that includes

individual j at time t is denoted accordingly. For example, the probability of j−1 and j to be

in state ’SS’ at time t is [SS], etc. We denote a configuration with parentheses, so that (SS) is

the configuration and [SS] is the probability of that configuration.

Using this notation, equation (10) can be rewritten as

˙[I] = P0[SS] + P1[IS], (11)

where the dot stands for time differentiation. This equation is referred to as the master equation

for [I], and it describes the time evolution of [I] given the probabilities [SS] and [IS].

2.2.1. Translation Invariance
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Equation (11) is not closed, since it is a single equation with three unknown state variables.

In order to have a closed system of equations, we need to derive the master equations for [SS]

and [IS]. These equations, however, depend on the probabilities of various configurations of

length 3, whose master equations depend on configurations of length 4, etc. Since the number

of configurations increases exponentially with the length of the configurations, it seems that

even writing down the entire system of equations is a formidable task. In such cases, a common

approach is to calculate only the probabilities of short configurations and close the system using

some mean-field approximation (see, e.g., Matsuda et al. (1992)). We now show that in the

one-sided 1D model it is possible to close the system without making any approximation, by

utilizing the translation invariance property of the diffusion process.

Lemma 1. The adoption process in the one-sided 1D model is translation invariant, i.e., the

probability of each configuration does not depend on its position. In other words, for any k,

Prob
{
Xj(t) = σj , . . . ,Xr(t) = σr

}
= Prob

{
Xj+k(t) = σj, . . . ,Xr+k(t) = σr

}
, (12)

where each σk is either 0 or 1.

Proof. The initial condition (8) is the same for all j, and the adoption rate (5) does not

depend on the position of the individual. �

Therefore,

Corollary 1. The position of the “anchor” in the configuration does not affect the probability

of that configuration.

Thus, for example [SIS] = [SIS] = [SIS]. In particular, [I] = [I ].

Lemma 2.

[I ] = f(t). (13)

Proof. The number of adopters at time t is n(t) =
∑M

j=1 Xj(t). Therefore, the expected

number of adopters at time t is

E
[
n(t)

]
= E

[
M∑

j=1

Xj(t)
]
=

M∑

j=1

E
[
Xj(t)

]
=

M∑

j=1

Prob
{
Xj(t) = 1

}
.
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From translation invariance, we have [I ] = Prob
{
Xj(t) = 1

}
for all j, which gives (13). �

2.2.2. Larger Configurations

Let us denote by (Sk) a configuration that consists of a sequence of k adjacent non-adopters,

i.e.,

(Sk) = (S . . .S
︸ ︷︷ ︸

k times

).

We have the following result:

Lemma 3.

[ISk] = [Sk]− [Sk+1]. (14)

Proof. The configuration (Sk) = (Sk−1S) may be written as a union of two disjoint config-

urations

(Sk−1S) = (SSk−1S)∪ (ISk−1S).

Therefore, its probability is the sum of the probabilities of the disjoint configurations:

[Sk] = [Sk+1] + [ISk].

�

We now derive the master equation of any (Sk) configuration:

Lemma 4. The master equation for [Sk] is

˙[Sk] =
(

− kp− q
)

[Sk] + q[Sk+1], k = 1, . . . ,M − 1. (15)

Proof. A configuration (Sk−1S) cannot be created, as the only possible transformation is

an ’S’ becoming an ’I ’.

A configuration (Sk−1S) is destroyed on the k + 1 occasions:

1. When any of the rightmost k− 1 ’S’s in a configuration (Sk−1S) turns into an ’I ’, which

happens at a rate of P0.

2. When a configuration (SSSk−2S) transforms into the configuration (SISk−2S), which

happens at a rate of P0.
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3. When a configuration (ISSk−2S) transforms into the configuration (IISk−2S), which hap-

pens at a rate of P1.

The master equation for [Sk] is therefore

˙[Sk] =−(k− 1)P0[Sk]−P0[Sk+1]−P1[ISk].

Substituting (5b) and (14) gives (15). �

Lemma 5. The master equation for [SM ] is:

˙[SM ] =−Mp[SM ]. (16)

Proof. A configuration (SM ) cannot be created, as the only possible transformation is

an ’S’ becoming an ’I ’. A configuration (SM ) is destroyed when any of the M ’S’s turns into

an ’I ’, which happens at a rate of P0 = p. The master equation for [SM ] is therefore given

by (16). �

Combining equations (15) and (16) shows that the time evolution of {[Sk]}M
k=1 is given by

˙[S] = A[S], (17a)

together with the initial condition

[S]|t=0 =








1

...

1








, (17b)

where

[S] =








[S1]

...

[SM ]








, ˙[S] =








˙[S1]

...

˙[SM ]








, A =
























−p−q q 0 0 ... ... 0

0 −2p−q q 0
.. .

.. .
. ..

0 0 −3p−q q
.. .

.. .
. ..

...
.. . 0

...
.. .

.. . 0

...
.. . 0

... −kp−q q 0

...
.. .

. ..
...

.. .
.. . q

0
.. .

. .. ... 0 0 −Mp
























.
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Equation (17) is a system of linear, constant-coefficients ordinary differential equations, which

can be explicitly solved as follows. The eigenvalues of A are its diagonal elements, i.e.,

λk =

{

−kp− q, k = 1, . . . ,M − 1,

−Mp, k = M.

The corresponding eigenvectors {vk}M
k=1 are given by equation (6c). Therefore, the solution of

equation (17) is given by

[S] =
M∑

k=1

ckvke
λkt.

The coefficients {ck}M
k=1 are determined from the initial condition (17b), hence are given in

equation (6b). Since E
[
f(t)

]
= [I ] = 1− [S1], this concludes the proof of Proposition 1.

2.3. Proof of Proposition 2

We first note that when M =∞, the solution of the infinite system of ODEs (17) is given by

[Sk] = e−(k−1)pt[S1], k = 1,2, . . . (18)

Indeed, substituting (18) in (15) yields

(

− (k− 1)p
)

e−(k−1)pt[S1] + e−(k−1)pt ˙[S1] =
(

− kp− q
)

e−(k−1)pt[S1] + qe−kpt[S1],

or after some rearranging,

˙[S1] =−(p + q)[S1] + qe−pt[S1].

The solution of this equation with the initial condition [S1]|t=0 = 1 is given by equation (7). �

Remark: A system of differential equations similar to equations (17) was derived by Alfrey

and Lloyd (1963) in a model of the accumulation of gas or liquid molecules on the surface of

a solid, as they form long molecular films. Our solution for M =∞ is similar to the one found

by Keller (1963) for that problem.
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3. Two-sided 1D model

In this section we analyze a 1D model in which a population of size M is positioned on a circle,

and each member of the population can communicate with his two neighbors (see Figure 2B).

Let p be his adoption rate due to external influences, let qL be his adoption rate due to internal

influence from his left neighbor if he has already adopted, let qR be his adoption rate due to

internal influence from his right neighbor if he has already adopted, and let the overall adoption

probability be given by

Prob{j adopts in (t, t+∆t)}=







P0∆t+ o(∆t), j − 1 and j + 1 did not adopt by time t,

PL∆t+ o(∆t), j − 1 has adopted by time t, and j + 1 has not,

PR∆t+ o(∆t), j + 1 has adopted by time t, and j − 1 has not,

P2∆t+ o(∆t), both j − 1 and j + 1 have adopted by time t,
(19a)

as ∆t→ 0, where1

P0 = p, PL = p + qL, PR = p + qR, P2 = p + qR + qL. (19b)

We now show that the expected fraction of adopters in the two-sided 1D model is the same

as in the one-sided 1D model with q = qR + qL:

Proposition 3. The expected fraction of adopters in the two-sided 1D model is given by equa-

tion (6) with q = qR + qL.

Proof: see Section 3.2.

Therefore, it immediately follows that

Proposition 4. The expected fraction of adopters in the two-sided 1D model as M →∞ is

given by equation (7) with q = qR + qL.

The implications of this result will be discussed in Section 4.

3.1. Simulations

In Figure 5 we show the average of 10,000 agent-based simulations of the two-sided 1D model.

For both M = 10 and M = 40, the average fraction of adopters is well approximated by the
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Figure 5 Comparison of agent-based simulations of the two-sided 1D model, averaged over 10,000 runs

(dashes) with the explicit expression (6) for a finite M (dots), and with the explicit expression (7)

for an infinite population (solid). Here, p = 0.01, q = 1.2 and ∆t = 0.05. (A) M = 10. Dashed and

dotted lines are indistinguishable. (B) M = 40. The three lines are nearly indistinguishable.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

t

f(t)       

A

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

t

f(t)       

B

explicit expression (6) for a finite M . When M = 10, the average fraction of adopters is below

the M →∞ limit, equation (7). However, already for M = 40, the average fraction of adopters

is very close to the M → ∞ limit. This shows that even for rather small populations, the

expression (7) describes the growth of the two-sided 1D model very well. As in the one-sided

case, as M → ∞, the normalized variance of the process vanishes, and the M → ∞ limit,

equation (7), will match any simulation result, and not just the average over many simulations.

3.2. Proof of Proposition 3

The proof is similar to the one-sided case. The two-sided 1D model is also translation invariant,

so the position of the anchor has no effect. We first note the following relations:

Lemma 6.

[ISk] = [Sk]− [Sk+1]. (20a)

[SkI ] = [Sk]− [Sk+1]. (20b)

Proof. The configuration (Sk) = (Sk−1S) may be written as a union of two disjoint config-

urations (or events) (Sk−1S) = (ISk−1S) ∪ (SSk−1S). Hence, its probability is the sum of the

probabilities of the disjoint events: [Sk] = [ISk] + [Sk+1], which gives equation (20a). The con-

figuration (Sk) can also be written as (Sk−1S) = (Sk−1SI)∪ (Sk−1SS), i.e. [Sk] = [SkI ] + [Sk+1],

which gives equation (20b). �
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Lemma 7.

[ISkI ] = [Sk]− 2[Sk+1] + [Sk+2]. (21)

Proof. The configuration (ISk) = (ISk−1S) may be written as a union of two disjoint

configurations (or events) (ISk−1S) = (ISk−1SS)∪ (ISk−1SI). Hence, its probability is the sum

of the probabilities of the disjoint events: [ISk] = [ISk+1] + [ISkI ]. Equation (21) then follows

from Lemma 6. �

Using these lemmas we can write the master equations for [Sk]:

Lemma 8. The master equation for [Sk] is:

˙[Sk] =
(

− kp− q
)

[Sk] + q[Sk+1], k = 1, . . . ,M − 1. (22)

Proof. We first consider the case k = 1. A configuration (S) cannot be created. It is

destroyed on the following occasions:

1. When (SSS) turns into (SIS) (with rate P0).

2. When (ISS) turns into (IIS) (with rate PL).

3. When (SSI) turns into (SIS) (with rate PR).

4. When (ISI) turns into (III) (with rate P2).

The master equation for [S] is then

˙[S] =−P0[SSS]−PL[ISS]−PR[SSI ]−P2[ISI ].

Using equation (19b), Lemma 3, Lemma 6 and Lemma 7, we get equation (22) for k = 1.

We now consider the case k > 1. A configuration (Sk−1S) cannot be created. It is destroyed

on the following occasions:

1. When (SSk−2S) turns into (SSlISrS) (with rate P0, where l = 0,1,2, . . . , k − 3 and r =

k− 3− l).

2. When (SSk−1S) turns into (SISk−2S) (with rate P0).

3. When (Sk−1SS) turns into (Sk−1IS) (with rate P0).
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4. When (ISk−1S) turns into (IISk−2S) (with rate PL).

5. When (Sk−1SI) turns into (Sk−1II) (with rate PR).

The master equation for [Sk] is therefore

˙[Sk] =−(k− 2)P0[Sk]− 2P0[Sk+1]−PL[ISk]−PR[SkI ].

Using equation (19b), Lemma 3, Lemma 6 and Lemma 7 we get equation (22) for any k > 1. �

Lemma 9. The master equation for [SM ] is:

˙[SM ] =−Mp[SM ]. (23)

Proof. Same as for Lemma 5. �

Equation (22) and (23) show that the time evolution of {[Sk]}M
k=1 is given by equation (17),

i.e. the same system of equations as in the one-sided 1D model. As we have seen, the solution

of these equations is given by equation (6).

4. Effective q

From Proposition 3 it follows, in particular, that:

Corollary 2. For any given p and M , if q = qR + qL, then the expected fraction of adopters

in the one-sided and in the two-sided 1D models are identical.

Since in the one-sided model each individual influences a single “neighbor” with parameter q,

while in the two-sided model he influences two “neighbors” with parameters qL and qR, this

suggests that the overall diffusion rate depends on the “sum” of the internal influences of each

adopter on all its “neighbors”.

In order to motivate this finding, we note that for any cluster of adopters , only the two

adopters at the two ends of the cluster can influence individuals who have not yet adopted

(see Sections 9 and 13 for further discussion of the clusters-dynamics approach). Therefore, the

expected adoption at the time interval (t, t+∆t) due to internal influences is k(t)(qL + qR)∆t,
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Figure 6 The effective q of individual j is qeffective

j = qj,1 + qj,2 + qj,3 + qj,4.

where k(t) is the number of clusters. Hence, diffusion due to internal influences depends on qL +

qR.

The result of Corollary 2 leads to the following definition (which is also valid for diffusion in

models with a more complex spatial structure:)

Definition 1. Let Kj be the number of neighbors of j, and let qj,i (1≤ i≤Kj) be the influence

parameter of j on its neighbor i. Then, the effective q of individual j is

qeffective
j =

Kj∑

i=1

qj,i.

A typical case of an effective q is depicted in Figure 6.

Thus, Corollary 2 shows that when the values of M , p and qeffective are the same in the

one-sided and two-sided 1D models, the aggregate adoption dynamics is identical in the two

models.

5. The fully-connected model

So far, we considered 1D models in which each individual is connected to his two nearest

neighbors. We now consider the other extreme, the fully-connected model,see Figure 1, in which

each individual can communicate with all the other M − 1 individuals. We assume that the

adoption probability of individual j which has not yet adopted is

Prob{j adopts in (t, t+ ∆t)}= [p +
q

M − 1
· n(t)]∆t+ o(∆t), (24)

as ∆t→ 0, where n(t) is the number of adopters . Note that the internal influence parameter q

has been divided by M − 1, the total number of neighbors, in order to have the same qeffective

as in the 1D models.
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Figure 7 Comparison of a single agent-based simulation of the fully-connected model with M = 105 (dashes),

with the solution of the Bass model (solid). Here, p = 0.01, q = 0.6 and ∆t = 0.05. The two lines are

nearly indistinguishable.
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Let us denote by f(t) the solution of the deterministic equation

df(t)

dt
= [1− f(t)][p + qf(t)], f(0) = 0, (25)

which is the Bass model (1), rewritten for the fraction of adopters. In this case, it follows

from Niu (2002) that

lim
M→∞

f(t) = f(t). (26)

Therefore,

Corollary 3. The Bass model can be viewed as the M → ∞ limit of the Fully-Connected

model.

To illustrate this result, in Figure 7 we compare the solution of the Bass model (25) with a

single agent-based simulation of the fully-connected model with M = 105. As expected, the two

lines are nearly indistinguishable.

6. Comparison of the 1D models with the Bass model

In Section 4 we saw that the adoption curve in the 1D models depends only on the values of p

and qeffective. Therefore, it is natural to ask whether the Bass model with the same values of p

and qeffective would yield the same adoption curve. To answer this, we first note that when q = 0,

f1D(t)≡ fBass(t) = 1− e−pt,
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i.e., the adoption curve in the two models in identical. Indeed, the difference between the two

models is due to internal influences, which do not exist when q = 0. Once we allow for internal

influences, however, the adoption levels in the two models increase. Therefore,

f1D(t) > 1− e−pt, fBass(t) > 1− e−pt, t > 0, q > 0. (27)

Moreover, for any t > 0, the adoption level in the Bass model is higher than in the 1D model:

Lemma 10. For any p > 0, q > 0 and t > 0,

f1D(t) < fBass(t). (28)

Proof. See Appendix A. �

The role of the spatial structure in diffusion models is of most interest for products that are

predominantly adopted through internal influences, i.e., when p � q (see Section 8). In this

case, one can quantify the aggregate adoption rate in the 1D model and in the Bass model as

follows:

Lemma 11. Let T1D and TBass denote the time for half of the population to adopt in the

1D model and in the Bass model, respectively. If p� q, then

T1D ∼
√

2 log 2√
pq

, TBass ∼
log(q/p)

q
.

Proof. Let 0≤ t� 1/p. Then, a Taylor expansion of relation (3) gives

f1D ∼ 1− e−pt− pqt2/2 ∼ 1− e−pqt2/2. (29)

Therefore, T1D ∼√
2 log 2/

√
pq. Note that since T1D � 1/p, the validity of the Taylor expansion

is a posteriori justified.

In the Bass model, the time for half of the population to adopt can be calculated directly

from relation (2), yielding

TBass =
log(2 + q/p)

p + q
.

Therefore, the result follows. �
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Lemma 11 shows that the adoption level in the Bass model is considerably higher than in

the 1D model, and that the difference between the two models increases with q/p:

Corollary 4. If p� q, then

1. T1D � TBass.

2. The ratio T1D/TBass is monotonically increasing in q/p. In particular,

lim
q/p→∞

T1D

TBass

=∞.

Proof. From Lemma 11 we have that

T1D

TBass

∼
√

2 log2

√

q/p

log(q/p)
.

Therefore, the results follow. �

Figure 8 shows a comparison of the adoption curves in the Bass model and in the 1D model

with the same values of p and q. In accordance with Lemma 10, the adoption level in the

Bass model is higher than in the 1D model. In addition, in accordance with Corollary 4, the

difference between the Bass model and the 1D model increases with q/p.
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Figure 8 Fractional adoption in the Bass model (equation (1), solid) and in the 1D model (equation (7),

dashes), for q = 0.6 and (A) p = 0.01, (B) p = 0.001, (C) p = 0.0001.
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6.1. Mean-Field Approximation

In many cellular-automata models, it is not easy to solve, or even just to write explicitly, the

master equations for all the possible configurations. Indeed, this is the reason why we did not

extend the analysis of diffusion in the 1D models (see Sections 2.2 and 3.2) to multi-dimensional

grids. In such cases, a common approach is to write the master equations only for the small

configurations, and close the system using the mean-field approximation, i.e., the assumption

that the state of each individual is independent of the state of its neighbors.

For example, under the mean-field approximation, we can approximate the probabilities in

equation (11) of the 1D model as

[SS]≈ [S][S], [IS]≈ [I ][S].

Under these approximations, the master equation (11) can be replaced with

˙[I ]≈P0[S][S] +P1[I ][S], [I ]|t=0 = 0.

Since [I ] + [S]= 1, we have

˙[I ]≈ P0(1− [I ])2 + P1[I ](1− [I ]), [I ]|t=0 = 0. (30)

Substituting P0 = p and P1 = p + q in equation (30) yields

˙[I ]≈ (1− [I ])
(

p(1− [I ]) + (p + q)[I]
)

= (1− [I ])(p + q[I ]). (31)

This equation is identical to equation (51) which governs the Bass model. Therefore, we conclude

that

Lemma 12. The Bass model is a mean-field approximation of the 1D model.

Since the results of these two models are very different (see Corollary 4 and Figure 8), this

shows that the mean-field approximation can lead to very inaccurate results.
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7. The lower-bound and upper-bound conjecture

The one-dimensional model and the fully-connected Bass model can be viewed as the least-

connected and most-connected spatial models, respectively. From this perspective, any other

spatial structure “lies between” these two cases. Therefore, the diffusion in any spatial structure

can be expected to be faster than in the 1D model, and slower than in the Bass model:

Conjecture 1. Let f(t) be the expected fractional adoption rate in a spatial model with given p

and qeffective = q. Then, f(t) can be bounded from below and from above by

f1D(t)≤ f(t)≤ fBass(t). (32)

In particular, as M −→∞,

1− e−(p+q)t+q 1−e−pt

p ≤ f(t)≤ 1− e−(p+q)t

1 + q
p
e−(p+q)t

. (33)

A rigorous proof of Conjecture 1 is beyond the scope of this study. In order to begin to

address this problem analytically, we first show in Section 8 that it is “enough” to prove

Conjecture 1 for q/p � 1, rather than for any p > 0 and q > 0. Then, in Section 9 we intro-

duce a clusters-dynamics approach, and use it to approximate the adoption curve f(t) in D-

dimensional Cartesian grids. The clusters-dynamics approximation shows that as D increases,

the adoption becomes faster, but that it remains slower than in the Bass model (Section 10),

thereby showing that Conjecture 1 holds for Cartesian grids of any dimension. In Section 11 we

show that the addition of a small-world randomness has a minor effect of the diffusion curve.

Hence, Conjecture 1 also holds for D-dimensional Cartesian grids with a small-world structure.

Assuming that Conjecture 1 is correct, then it provides the “maximal possible deviation”

of the actual adoption curve from that of the Bass model. Indeed, there are various empirical

findings that are inconsistent with the Bass model. For example, in the Bass model, f ′(t) is sym-

metric with respect to its maximum, see Figure 9A. However, empirical data shows that f ′(t)

can be asymmetric (Mahajan, Muller and Bass 1993). Easingwood, Mahajan and Muller (1983)
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Figure 9 f ′(t) as a function of t for p = 0.01 and q = 0.6. (A) The Bass model. (B) The 1D model.
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suggested that this asymmetry may be the result of a time-varying impact of the word-of-mouth

effect. This study shows that some of the asymmetry may be due to the spatial structure.

Indeed, Figure 9B shows that in the 1D model, f ′(t) is highly asymmetric with respect to its

peak.

8. Parameter reduction using dimensional analysis

Consider a spatial diffusion model with parameters p and qeffective = q. We now use an applied

mathematics technique, known as dimensional analysis, to show that the diffusion process

depends on the single non-dimensional parameter q/p. For an introduction to dimensional

analysis, see e.g., Chapter 6 in Lin and Segel (1988).

Let t̃ = pt. Then, the external and internal adoption parameters, measured in the t̃ time-

variable, are p̃ = p/p = 1 and q̃ = q/p. Therefore, the function f(t̃) depends on the single

parameter q̃, i.e.,

f(t;p, q) = g(t̃; q̃),

where g is some unknown function. For example, in the Bass model and in the 1D model,

gBass(t̃; q̃) =
1− e−(1+q̃)t̃

1 + q̃e−(1+q̃)t̃
, g1D(t̃; q̃) = 1− e−(1+q̃)t̃+q̃(1−e−t̃),

see equations (2) and (3), respectively.

The parameter q/p is dimensionless, and it expresses the ratio of external and internal influ-

ences. Thus, when q/p � 1, most adoptions occur through external adoptions, whereas when
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q/p � 1, most adoptions occur through internal adoptions. Obviously, analyzing the role of

the spatial structure in diffusion models is of most interest in the latter case, i.e., when q � p.

Therefore, in what follows, we focus on this regime.

The above dimensional analysis shows that it is “enough” to prove Conjecture 1 for q/p� 1,

rather than for any p > 0 and q > 0. Another application of this observation is as follows. In

Section 9 we will derive a clusters-dynamics approximation for f(t). In principle, a numerical

verification of this approximation should be carried out over the two-dimensional parameter

space p > 0 and q > 0. The above dimensional analysis implies, however, that it is enough to

test the validity of this approximation over the one-dimensional parameter space q̃ > 0, and

even just for q̃ � 1.

9. Clusters-dynamics analysis

In Sections 2 and 3 we derived an explicit expression for the expected fractional adoption

curve f(t) in one-dimensional grids. Unfortunately, it is not clear whether this approach can be

extended to higher dimensions. In addition, this approach does not provide any insight as to the

way in which the diffusion process progresses. Therefore, in what follows, we present a different

analytic approach to this problem. While this method only provides an approximation for f(t),

it has the advantages that it is intuitive, and that it can be extended to higher dimensions

(Sections 9.2 and 9.3), as well as to grids with a small-world structure (Section 11) and to

models with heterogeneous individuals (Section 12).

9.1. One dimension

Let us define a cluster of adopters as a maximal group of connected adopters. We can “visualize”

the diffusion process as follows:

1. A random creation of external adopters (seeds).

2. Each external adopter (seed) expands into a cluster of adopters through internal influences.

3. As clusters expand, they can merge into larger clusters.
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We now construct the corresponding mathematical model. The rate at which new seeds are

created is equal to p(M −n(t)). In the 1D model, for any cluster, only the two individuals at

its two ends can influence non-adopters. Therefore, regardless of the cluster size, the expected

increase in the cluster size between t and t+ ∆t is q∆t.

The main issue is how to incorporate the effect of clusters merging into the model. Let us

first assume that the effect of clusters merging can be neglected. Then, the fractional number

of adopters satisfies the equation

f(t)∼
∫ t

0

p(1− f(τ))(1 + q(t− τ))dτ, (34)

where p(1− f(τ)) = p(M − n(τ))/M is the fractional rate of new external adopters at time τ ,

and (1 + q(t − τ)) is the number of adopters in a cluster which was ‘born’ at time τ . This

integral equation can be solved explicitly (see Appendix B), yielding

f(t)∼ 1− e−pt/2

(

cos(yt)− p

2

sin(yt)

y

)

, y =
√

pq − p2/4. (35)

In Figure 10 we compare the approximation (35) with the exact expression given by equa-

tion (3). As expected, this approximation is in good agreement with the exact expression during

the initial phase of the diffusion, where the probability for clusters merging is small. As the

adoption level increases, the probability of clusters merging increases, hence the accuracy of the

approximation (35) deteriorates. At these high adoption levels the approximation (35) provides

a significant overestimate, because it neglects the reduction in the number of clusters, hence in

the number of new internal adoptions, as a result of clusters merging.

In order to incorporate clusters merging into the model, it is conceptually useful to allow

clusters to overlap with each other, and to allow new clusters to form both inside and outside

the existing clusters. Indeed, under this description,

1. The expected rate of new seeds (clusters) is constant, and is equal to 1/Mp.

2. The probability P (t) = 1−f(t) that a given person has not adopted by time t, is equal to

the product of the probabilities that that person does not belong to any of the existing clusters,
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Figure 10 Fractional adoption in a 1D model with q = 0.6 and with A) p = 0.01 and B) p = 0.0001. The

approximation (35) which neglects clusters merging (dashed line) is in good agreement with the

exact expression (equation (3), solid line) during the early adoption state, but provides a significant

overestimate afterwards.

since these probabilities are independent. Since the probability that a given person belongs to

a cluster of size mj is mj/M , we have that

P (t) =

k(t)
∏

j=1

(
1− mj

M

)
,

where k(t) is the number of clusters .

To simplify the calculations, we assume that at each ∆tp = 1/Mp time-step, exactly one new

cluster is formed, and that once a new cluster appears, it expands at a constant rate of q.

We now calculate the number of adopters under the above assumptions:

• At time t = 0, there are no adopters. Therefore, P (t = 0) = 1.

• At time t = ∆tp, there is a single cluster of size 1. Therefore,P (t = ∆tp) = 1− 1/M .

• At time t = 2∆tp the size of the first cluster is 1+ q∆tp and the size of the second cluster

is 1. Therefore,

P (t = 2∆tp) =
(
1− 1 + q∆tp

M

)
·
(
1− 1

M

)
.

• At time t = k∆tp, there are k clusters of sizes {1 + (k − 1)q∆tp, 1 + (k − 2)q∆tp, . . . , 1}.

Therefore,

P (t = k∆tp) =
k−1∏

j=0

(
1− 1 + jq∆tp

M

)
. (36)

From equation (36) we have that

logP (t = k∆tp) =
k−1∑

j=0

log
(
1− 1 + jq∆tp

M

)
.
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Figure 11 Fractional adoption in a 1D model with q = 0.6, and with p = 0.01 (left), p = 0.001 (center), and

p = 0.0001 (right). Solid lines are the exact expression (3). Dashed lines are the clusters-dynamics

approximation (37). In all three cases, the solid and dashed lines are nearly indistinguishable.

In addition, from the definitions of ∆tp and t = k∆tp we have that k = Mpt. Since each cluster

only contains a small fraction of the population, we can use the approximation log(1−x)≈−x

to get,

logP (t = k∆tp)∼−
k−1∑

j=0

(1 + jq∆tp

M

)
=− k

M
− k(k− 1)

2

q∆tp

M
∼− k

M
− k2

2

q∆tp

M
=−pt− qpt2/2.

Therefore, P (t)∼ e−pt−qpt2/2, and

f1D(t) = 1−P (t)∼ 1− e−pt−qpt2/2. (37)

The clusters-dynamics approximation (37) agrees with the Taylor approximation of the exact

expression, see equation (29). Indeed, in Figure 11 we see that there is an excellent agreement

between the clusters-dynamics approximation (37) and the exact expression (3). In particu-

lar, unlike approximation (35) which neglects clusters merging, see Figure 10, the excellent

agreement between the clusters-dynamics approximation (37) and the exact expression (3) is

maintained throughout the adoption process.

9.2. Two dimensions

Let us consider a 2D model in which the population is laid on a rectangular grid (with toroidal

boundary conditions), and each member of the population is able to communicate with his four

nearest neighbors, see Figure 12. The adoption probability of each individual which has not yet

adopted is

Prob{j adopts in (t, t+ ∆t)}= [p +
q

4
·Aj(t)]∆t+ o(∆t), (38)
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Figure 12 The 2D model. Each individual is able to communicate with his 4 nearest neighbors.
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Figure 13 Expansion of a single cluster whose seed was generated at t = 0, in an agent-based simulation of

the 2D model with q = 0.6.

as ∆t → 0, where Aj(t) is the number of neighbors of j that adopted by time t. Note that

the influence parameter of each neighbor is q/4, in order to have the same qeffective as in the

1D models (see Section 4).

We now apply the clusters-dynamics approach to the 2D case. As in the 1D case, cluster

seeds are randomly generated, and then they expand (and merge) with time. The analysis is

considerably more complex, however, since the expansion rate of a two-dimensional cluster is

not constant, but rather increases with its size mj . Moreover, even for a given cluster size, the

expansion rate depends on its shape. More precisely, a cluster expands at the rate of

m′
j(t) = lj(t)q/4, (39)

where lj is the length of the cluster circumference, i.e., the number of non-adopters that are

nearest-neighbors of the cluster.

It may thus seem that in order to implement the clusters dynamics approach, one needs to

keep track of all possible 2D cluster configurations, which is a formidable task. The analysis
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can be considerably simplified, however, if one notes that clusters tend on average to expand

as squares, which later turn into circles (see e.g., Figure 13 and also (Wolf 1987, Evans 1993)).

Therefore, the cluster circumference lj scales as
√

mj . Hence, the cluster growth rate m′
j(t), see

equation (39) scales as
√

mjq. In other words, the radius of the square/circle increases linearly

in time. Therefore, we can make the simplifying assumption that the number of adopters in a

cluster can be approximated with

mj(t)≈ 1 + (c2q(t− tj))
2, (40)

where tj is the time at which the cluster was ‘born’, and c2 is a constant.

Proceeding as in the 1D case, see equation (36), we have that

P (t = k∆tp) =
k−1∏

j=0

(
1− 1 + (jc2q∆tp)

2

M

)
. (41)

Hence,

logP (k∆tp) ≈ −
k∑

j=1

(1 + (jc2q∆tp)
2

M

)
=− k

M
− (k− 1)k(2k− 1)

6

(c2q∆tp)
2

M

≈ − k

M
− k3

3

(c2q∆tp)
2

M
=−pt− (c2q)

2pt3/3.

Therefore,

P (t)≈ e−pt−c22q2pt3/3,

and

f2D(t) = 1−P (t)≈ 1− e−pt−c22q2pt3/3. (42)

In Figure 14 we compare the 2D clusters-dynamics approximation (42) with c2 = 0.8, with

the average of 10 cellular-automata simulations. The approximation is reasonably accurate as

the non-dimensional parameter q̃ = q/p changes over two orders of magnitude (60≤ q̃ ≤ 6000).

It is not, however, as accurate as in the 1D case, see Figure 11. We note that the only difference

between the derivations of the 1D and 2D clusters-dynamics approximations is that in the

1D case we used the exact expression for the expected rate of a cluster growth, whereas in the

2D case we used the approximation (40). Therefore, the approximation (40) is probably the

main reason for the larger approximation error in the 2D case.
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Figure 14 Fractional adoption in a 2D model with q = 0.6, and with p = 0.01 (left), p = 0.001 (center), and

p = 0.0001 (right). Solid lines are averages over 10 cellular automata simulations, dashed lines are

the clusters-dynamics approximation (42) with c2 = 0.8.

9.3. Three and higher dimensions

In the 3D model the population is laid on a box grid (with toroidal boundary conditions), each

member of the population is connected to his six nearest neighbors, and the overall adoption

rate is

Prob{j adopts in (t, t+ ∆t)}= [p +
q

6
·Aj(t)]∆t+ o(∆t), (43)

as ∆t → 0, where Aj(t) is the number of neighbors of j that adopted by time t. In this case,

clusters expand on average as cubes, which later turn into spheres. Therefore, we make the

assumption that

mj(t)≈ 1 + (c3q(t− tj))
3. (44)

Hence, a similar derivation shows that

f3D(t)≈ 1− e−pt−c3
3
q3pt4/4. (45)

The extension to higher dimensions is similar.

In Figure 15 we compare the approximation (45) with the average of 10 cellular automata

simulations. The approximation is reasonably accurate as the dimensionless parameter q̃ = q/p

changes over two orders of magnitude (60 ≤ q̃ ≤ 6000). It is, however, not as accurate as in

the 2D case, see Figure 14. This is probably because the error introduced by the assumption

that three-dimensional clusters expand as cubes/spheres, see equation (44), is larger than the

one introduced by the assumption that two-dimensional clusters expand as squares/circles, see

equation (40).
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Figure 15 Fractional adoption in a 3D model with q = 0.6, and with either p = 0.01 (left), p = 0.001 (middle)

or p = 0.0001 (right). Solid lines are averages over 10 cellular automata simulations with M =

27000, dashed lines are the clusters-dynamics approximation (45) with c3 = 0.635.

10. Effect of grid dimensionality

In Section 9 we used the clusters-dynamics approach to show that when p � q, the adoption

curve in a D-dimensional Cartesian grid can be approximated with

fD(t)∼ 1− e−pt(1 + aDqDtD),

where aD is a constant which depends on D. Therefore, we have the following result:

Lemma 13. Consider the diffusion in a D-dimensional Cartesian grid with parameters p and

qeffective = q. If p� q, the time for half of the population to become adopters scales as

TD ∼ 1

(qDp)1/(D+1)
.

Thus,

T1D ∼ 1

(pq)1/2
, T2D ∼ 1

(pq2)1/3
, T3D ∼ 1

(pq3)1/4
, . . . ,

Therefore, when q � p,

T1D � T2D � T3D � . . .

i.e., the adoption-rate increases with the grid dimensionality. In particular,

TD < T1D, D = 2,3, . . . (46)

In addition, from Lemmas 11 and 13 it follows that

TD > TBass, D = 1,2,3, . . . (47)
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Figure 16 Comparison of a single agent-based simulation of the 1D model (solid), the 2D model (dash-

dots), the 3D model (dots), and the fully-connected model (dashes). Here, q = 0.6, M = 46,656,

∆t = 0.05, and (A) p = 0.01, (B) p = 0.0001.
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The above analysis would remain unchanged if we redefine T to be the time for any fraction

of the population to become adopters. Therefore, grid dimensionality affects the entire adoption

curve. Hence, relations (46) and (47) show that Conjecture 1 holds for Cartesian grids of any

dimension. To see that, in Figure 16 we plot the adoption dynamics in agent-based simulations

of the 1D, 2D, 3D and fully-connected models with qeffective = 0.6, and with either p = 0.01 or

with p = 0.0001. In both cases, the adoption becomes faster as D increases. Thus, the adoption

in the 2D model is faster than in the 1D model, the adoption in the 3D model is even faster,

and the fully-connected model is faster than all other models.

From Lemma 13 it follows that

TD+1

TD

∼
(

q

p

)1/(D+1)(D+2)

. (48)

Therefore, we conclude that the relative increase in the adoption-rate decreases as D increases.

Indeed, in Figure 16 we see that the increase in the adoption rate between D = 1 and D = 2 is

significantly larger than the increase between D = 2 and D = 3. Relation (48) also implies that

the relative increase in the adoption-rate increases as q̃ = q/p increases. Indeed, the effect of the

increasing dimension is more pronounced in Figure 16B where q/p = 6000, than in Figure 16A

where q/p = 60.

11. Small-world networks

So far, we only considered populations with a deterministic Cartesian structure, in which there

are no connections between non-adjacent neighbors. In 1998, Watts and Strogatz suggested
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that social networks have a small-world structure, in which most connections are local, but

there are also some random long-range connections between non-adjacent neighbors (Watts and

Strogatz 1998). Watts and Strogatz showed that the addition of a small fraction of long-range

connections leads to a considerable reduction in the average distance between any two members

of the population (the “six degrees of separation” concept), and that, as a result, diffusion

progresses significantly faster than without these random connections.

We now use the clusters-dynamics approach that was developed in Section 9 to analyze the

effect of a small-world structure in the diffusion models considered in this study. Clearly, the

addition of long-range connections has no effect on the creation of new clusters. In addition, a

small fraction of long-range connections has a minor effect on the expansion of a cluster. For

example, if 1% of the individuals have long-range connections, then there is a probability of

0.9920 ≈ 82% that a cluster of 20 individuals will not feel the small-world structure. Therefore,

we reach the surprising conclusion that the addition of a small fraction of long-range connections

has a minor effect on the fractional adoption curve.

Why is it, then, that the small-world structure had such a large effect in the original 1998

paper of Watts and Strogatz? The answer is that in that study, adoption always started from a

single adopter at t = 0 (“patient zero”), and then progressed only through internal influences.

In that case, the key parameter is the average distance from the first adopter, which is highly

sensitive to the addition of long-range connections. This is not the case, however, in the models

considered in this study, where diffusion starts from numerous external adopters (which expand

into numerous clusters), and not from a single adopter.

In order to illustrate numerically the effect of a small-world structure on the diffusion process,

in Figure 17A we plot the fractional adoption curve in a two-dimensional network with and

without 1% random links, with p = 0.001, q = 0.6, M = 10,000 and zero adopters at t = 0.

As predicted by the clusters-dynamics approach, the two adoption curves are nearly identical.

In Figure 17B we plot the fractional adoption curve in a two-dimensional network, using the

same random grid structure as in Figure 17A with q = 0.6 and M = 10,000, but with a single
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Figure 17 Agent-based simulation of the adoption in a two-dimensional network with (dashed line) and

without (solid line) 1% random links. In all simulations, q = 0.6 and M = 10,000. A: p = 0.001

and no adopters at t = 0. B: p = 0 and a single adopter at t = 0.

adopter at t = 0 and with no subsequent external adoptions (i.e., p = 0 for t > 0). In that case,

the addition of 1% random links indeed has a large effect on the diffusion curve, in agreement

with Watts and Strogatz (1998). Finally, we note that we repeated the simulations of Figure 17

with a one-dimensional network, with and without 1% random links, and obtained similar

results (data not shown).

12. Effect of heterogeneity

So far, we only considered agent-based models in which all individuals have the same p and q.

Since individuals are more likely to be heterogeneous, an important question is whether our

results will remain “the same” if we allow for heterogeneity in the values of p and q among

individuals.

Goldenberg, Libai and Muller (2001) studied numerically the effect of heterogeneity in p

and q in the fully-connected agent-based model. Their simulations showed that heterogeneity

has a minor effect on the diffusion. This result can be explained as follows. The expected rate

of new external adopters depends on the average of p among the individuals who have not

yet adopted. Therefore, heterogeneity in p should have no effect on the rate of new external

adopters. Similarly, the expected rate of new internal adopters depends on the cumulative

effect of the internal influences of all the adopters. Therefore, the expected rate of new internal

adopters depends on the average of q. Hence, heterogeneity in q should have no effect on the

rate of new external adopters.
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Figure 18 The aggregate adoption dynamics in agent-based simulations: A Comparison between the cases of

homogeneous and heterogeneous individuals. Solid line corresponds to homogeneous individuals

with p = p̄ and q = q̄, where p̄ = 0.01 and q̄ = 0.6. Dashed line corresponds to heterogeneous

individuals with values of p and q that are uniformly drawn from [0.8p̄, 1.2p̄] and [0.8q̄, 1.2q̄],

respectively. Dashed and solid lines are nearly indistinguishable. Dash-dot line corresponds to

heterogeneous individuals with values of p and q that are uniformly drawn from [0.5p̄, 1.5p̄] and

[0.5q̄, 1.5q̄], respectively. In all simulations M = 1,000,000 and ∆t = 0.05. A: 1D simulations.

B: 2D simulations. .

The cluster-dynamics approach allows us to analyze the effect of heterogeneity in p and q

in agent-based models with a spatial structure. Since external adoptions are independent of

the spatial structure, heterogeneity in p should have no effect on the rate of new external

adopters. Similarly, the expansion rate of a cluster depends on the cumulative effect of the

internal influences of all the adopters on the boundary of the cluster. Therefore, heterogeneity

in q should only have a minor effect on the rate of new external adopters.

In order to confirm this prediction, in Figure 18 we compare the aggregate adoption curve

with homogeneous individuals, to the adoption curve with heterogeneous individuals, in 1D and

2D agent-based simulations. When the values of p and q of the heterogeneous individuals are

uniformly distributed within ±20% of the corresponding values of the homogeneous individuals,

the two curves are nearly indistinguishable. As we further increase the heterogeneity level to

±50%, the two curves are not identical, but are still very close. These simulations thus confirm

the clusters-dynamics prediction that heterogeneity in p and q can only have a minor effect, if

at all, on the aggregate diffusion dynamics.
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13. Discussion - the effect of the spatial structure

The overall goal of this study has been to gain insight into the effect of the spatial structure on

the diffusion of new products. We saw that it is useful to visualize the diffusion process as the

combination of two separate processes: Random creation of external adopters, followed up by

the expansion of each external adopter into a cluster of adopters through internal influences.

Since the creation of new clusters is independent of the spatial structure, the spatial structure

affects the diffusion only through its effect on the expansion of clusters.

The clusters-dynamics method provides a unified approach for explaining the various findings

of this study:

1. In Section 4 we proved that in the two-sided 1D models, the diffusion depends only on

qeffective = qR + qL. Indeed, this is because the expansion rate of a 1D cluster depends on the

sum of the internal influences of the adopters at the two sides of the cluster.

2. In Section 10 we saw that increasing the dimension of the grid leads to a faster diffusion.

In order to explain this observation, we note that clusters expand via the internal influences

of the adopters located on the boundary of the cluster, since only the “boundary adopters”

can influence non-adopters. For a given cluster size, as we increase the dimension, the average

number of adopters at the cluster boundary increases. Therefore, the expansion rate of the

cluster increases with the dimension.

3. In Section 11 we used the cluster-dynamics description to predict that a small-world

structure has a minor effect on the aggregate diffusion dynamics, since it hardly affects the

expansion rate of the clusters.

4. In Section 12 we used the cluster-dynamics description to explain why heterogeneity in p

and q has a minor effect on the aggregate diffusion dynamics.

For a given population size, increasing the dimension reduces the average distance between

individuals. Therefore, this provides an alternative explanation to the observation that increas-

ing the dimension leads to a faster diffusion. If this explanation is correct, then the addition of
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a small-world structure should have a large effect on the adoption curve. Our simulations show,

however, that this is not the case. Indeed, the average distance between individuals is the key

factor when there is a singe external adopter (“patient zero”), and all subsequent adoptions are

internal. In product diffusion models, however, the population size M is large. Since the number

of external adopters is proportional to M , adoption starts from numerous external adopters.

Each of these external adopters then influences its neighbors, leading to the cluster-dynamics

scenario of the diffusion process, rather than to a “patient-zero” single-cluster scenario.2

14. Final remarks

Agent-based models provide a powerful tool for studying the diffusion of new products. Until

now, these models were used to compute the adoption curve numerically. In this study we

introduced several analytical approaches to this problem: An explicit calculation of the adoption

curve in the one-dimensional case, a cluster-dynamics approximation of the adoption curve in

the multi-dimensional case, and a parameter reduction using dimensional analysis. The clusters-

dynamics approach allowed us to better understand the effect of the spatial structure on the

diffusion process, and to provide analytic support to the validity of Conjecture 1 that the

diffusion rate is bounded from below by the Bass model and from above by the 1D model,

for Cartesian grids with or without a small-world structure, and for either homogeneous or

heterogeneous individuals.

This study raises several important questions which require further research. For example,

what is the effect of a scale-free social network (Barabási and Albert 1999), or of other network

structures, on the diffusion? Can the clusters-dynamics approximation be made more accurate,

as well as more rigorous? Under which conditions does Conjecture 1 hold? What is the “correct”

structure of social networks which is to be used in agent-based models of diffusion of new

products?

Endnotes



Author: Spatial Diffusion Models

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 41

1. For simplicity, we assume here that if both neighbors have already adopted then their com-

bined influence is qL + qR. However, even if P2 is different, it is possible to use our method to

calculate explicitly the expected fraction of adopters (Gibori 2007).

2. This conclusion is consistent with the explicit expressions (2) and (3) for the fully-connected

and 1D models, respectively. Indeed, these expressions show that as M increases, the fractional

adoption curve f(t) becomes independent of M . Therefore, for example, doubling the population

size will double the number of external adopters.
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Appendix

A. Proof of Lemma 10

Since

f1D = 1− e

(

− (p + q)t+ q
1− e−pt

p

)

,

the adoption rate in the 1D model is given by

ḟ1D(t) = (1− f1D)[p + q(1− e−pt)]. (49)

Therefore, by equation (27), for any q > 0 and t > 0,

ḟ1D(t) < (1− f1D)(p + qf1D). (50)

For comparison, the adoption rate in the Bass model is given by

ḟBass(t) = (1− fBass)(p + qfBass). (51)

Equation (28) follows from explicit integration of equation (50). Indeed, from equation (50)

we have that

ḟ1D

(1− f1D)(p + qf1D)
=

ḟ1D

p + q

(
1

1− f1D

+
q

p + qf1D

)

< 1.

Taking the integral between 0 and t gives

1

p + q

(

− ln(1− f1D) + ln(p + qf1D)
)∣
∣
∣

t

0
< t.
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Since f1D(0) = 0, we have that

ln(p + qf1D(t))− ln(1− f1D(t))− lnp < t(p + q).

Therefore, p + qf1D(t) < p(1− f1D)et(p+q). Hence,

f1D(t) <
1− e−(p+q)t

1 + q
p
e−(p+q)t

= fBass(t).

B. Proof of equation (35)

Let f(t) be the solution of

f(t) = p

∫ t

0

(1− f(τ))(1 + q(t− τ))dτ. (52)

and let F (s) =L(f(t)) =
∫ ∞

0
f(t)e−st dt be the Laplace transform of f(t). Equation (52) can be

rewritten as

f = p(1− f) ? (1 + qt),

where ? is the Laplace transform convolution. Therefore, if we take the Laplace transform of

both sides and use the relation

L(tk−1) =
Γ(k)

sk
, k > 0,

we get that

F = p

(
1

s
−F

)(
1

s
+

q

s2

)

.

Therefore,

F =
p

s

s+ q

s2 + ps+ pq
.

In order to transform back, we first rewrite F as

F =
p

s

s+ q

(s− s1)(s− s2)
, s1,2 =

−p±√
p2 − 4pq

2
. (53)

Recall that

L−1

(
1

(s− s1)(s− s2)

)

=
1

s1 − s2

(es1t − es2t) , L−1

(
s

(s− s1)(s− s2)

)

=
1

s1 − s2

(s1e
s1t − s2e

s2t) ,
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and

L−1

(
1

s
G

)

=

∫ t

0

g(τ)dτ, G =L(g).

Therefore, transforming equation (53) back gives

f = p

∫ t

0

1

s1 − s2

(

(s1 + q)es1τ − (s2 + q)es2τ
)

dτ.

Integrating the right-hand-side gives, after some technical calculations, the result.


