
PHYSICAL REVIEW E 112, L012302 (2025)
Letter

Phase transition in the susceptible-infected model on hypernetworks
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We derive the master equations for the Susceptible-Infected (SI) model on general hypernetworks with N-
body interactions. We solve these equations exactly for infinite d-regular hypernetworks, and obtain an explicit
solution for the expected infection level as a function of time. The solution shows that the epidemic spreads out
to the entire population as t → ∞ if and only if the initial infection level exceeds a positive threshold value. This
phase transition is a high-order interaction effect, which is absent with pairwise interactions.
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Introduction. Spreading models on complex networks
have been used to understand how diseases and informa-
tion propagate through populations [1,2]. Traditional models
represent all the interactions as pairwise contacts between
individuals, neglecting the fact that many real-world interac-
tions involve groups larger than two, such as meetings, social
gatherings, or coauthorship networks [3]. In recent years,
there has been a growing interest in modeling high-order in-
teractions using hypergraphs and simplicial complexes, which
can capture multibody interactions more accurately [4,5].

The Susceptible-Infected-Susceptible (SIS) model and the
Susceptible-Infected-Recovered (SIR) model on networks
with pairwise interactions can exhibit nontrivial final states
and phase transitions that are characterized by critical in-
fection and recovery rates that distinguish disease-free from
endemic states [6,7]. Moreover, in the SIS and SIR models
on hypernetworks, high-order interactions can lead to critical
phenomena that are absent in traditional pairwise interactions
[8–10].

In contrast, the Susceptible-Infected (SI) model on con-
nected networks [11] and on hypernetworks [12] has so far
shown a simpler spreading dynamics where, for any initial
infection level, the epidemic spreads out to the entire network.
This can be attributed to the fact that the SI model only
allows for a single unidirectional transition. For example, in
Ref. [11], the authors obtained an exact explicit expression
for the expected infection level as a function of time in the
SI model on infinite d-regular networks, which shows that
for any positive initial infection level, the entire population
becomes infected as t → ∞.

In this work, we extend the calculations in Ref. [11] to
the SI model on hypernetworks with high-order interactions,
and obtain an exact explicit solution for the expected infec-
tion level as a function of time. We show analytically and
numerically that the solution undergoes a phase transition at
a positive initial infection level I0

c . Specifically, the epidemic
spreads to only a fraction of the population if 0 < I0 � I0

c ,
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but to the entire population if I0
c < I0 � 1, where I0 denotes

the initial infection level. To our knowledge, this is the first
demonstration that even in the SI model, higher-order inter-
actions can lead to critical phenomena, which is absent with
pairwise interactions.

The Si model on N-body hypernetworks. Consider M indi-
viduals/nodes M := {1, . . . , M}. The state of individual j at
time t is

Xj (t ) =
{

1, if j is infected at time t,
0, otherwise, j ∈ M. (1a)

The initial states at t = 0 are stochastic, so that

Xj (0) = X 0
j ∈ {0, 1}, j ∈ M, (1b)

and

P
(
X 0

j = 1
) = I0, P

(
X 0

j = 0
) = 1 − I0, j ∈ M, (1c)

where 0 < I0 < 1, and the random variables {X 0
j } j∈M are

independent.
The nodes belong to a directed hypergraph, where every

hyperedge links N − 1 “tail” nodes to a single “head” node.
A hyperedge can transmit the infection to the head node only
if all the N − 1 tail nodes are infected. If j is susceptible, its
infection time is piecewise exponentially distributed with the
infection rate

λ j (t ) =
∑

k⊂M
qk→ j

N−1∏
i=1

Xki (t ), k := {ki}N−1
i=1 , j ∈ M.

(1d)
Here, qk→ j � 0 is the infection rate of j due to the set of
N − 1 nodes k, provided that all the nodes in k are infected.
In addition, qk→ j > 0 if and only if j �∈ k and the directional
hyperdge k → j exists. Once j becomes infected, it remains
so at later times.

The quantity of most interest is the expected infection
level,

[I](t ) := 1

M

M∑
j=1

[I j](t ), [I j](t ) := E[Xj](t ), (2)
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where [I j] is the infection probability of node j. To compute
[I](t ), let S�(t ) denote the event that all the nodes in � ⊂
M are susceptible at time t , and let [S�](t ) := P (S�(t )). The
stochastic dynamics of Eq. (1) can be modeled by the master
equations

d[S�]

dt
= −

∑
k⊂�c, |k|=N−1

qk→�[S� ∩ Ik], (3a)

where �c := M \ �, qk→� := ∑
m∈� qk→m is the infection

rate of the nodes in � due to the N − 1 in k, and [S� ∩ Ik]
is the probability that all the nodes in � are susceptible and
all the nodes in k are infected. Using the inclusion–exclusion
principle, [S� ∩ Ik] can be expressed as

[S� ∩ Ik] =
N−1∑
i=0

(−1)i
∑

n⊆k, |n|=i

[S�∪n]. (3b)

Combining Eqs. (3a) and (3b), we obtain

d[S�]

dt
= −

∑
k⊂�c, |k|=N−1

qk→�

N−1∑
i=0

(−1)i
∑

n⊆k, |n|=i

[S�∪n]. (4a)

The initial conditions are [see Eq. (1c)]

[S�](0) = (1 − I0)|�|. (4b)

The master equations [Eq. (4)] are a closed system of 2M −
1 equations for {[S�]}∅�=�⊂M. These equations are valid for
every N-body hypernetwork (i.e., for any choice of {qk→ j}).
The master equations are exact, as they are derived without
making any approximation. For N = 3, the system [Eq. (4)]
reduces to the one derived in Ref. [12].

d-regular N-body hypernetworks. An undirected N-body
hypergraph H is called d-regular if every node has a hyperde-
gree d . Let E = (ek, j ) be the adjacency tensor of H , and let all

the hyperedges have weight
q

d
. The corresponding d-regular

N-body hypernetwork is given by

qk→ j = q

d
ek, j, j ∈ M, k ⊂ M, |k| = N − 1. (5)

As M → ∞, the master equations [Eqs. (4) and (5)] for in-
finite d-regular N-body hypernetwork have the exact explicit
solution (see Supplementary Material [SM] [13]),[

Id−reg
N−body

]
(t ) = 1 − (1 − I0)ud

( q

d
t
)
, (6a)

where u(·)
1−I0 is the susceptible probability of a degree-one node

in an otherwise infinite d-regular N-body hypernetwork,

du

dτ
= Fd−reg

N−body
(u, I0), u(0) = 1, (6b)

and

Fd−reg
N−body

:= 1 − u − (1 − (1 − I0)ud−1)N−1. (6c)

On two-body networks (N = 2), the explicit solution
[Eq. (6)] reduces to the one obtained in Ref. [11].

Figure 1 confirms the excellent agreement between numer-
ical simulations of the SI model [Eqs. (1) and (5)] on d-regular
networks and hypernetworks, and the exact explicit solution
[Eq. (6)]. All the numerical experiments were carried out on

FIG. 1. The infection level on 3-regular N-body hypernetworks
as a function of time, for I0 = 0.1, 0.25, and 0.4. The numerical
solution of the Susceptible-Infected model [Eqs. (1) and (5)] (red
dots) is indistinguishable from the explicit solution [Eq. (6)] (blue
dashes). (a) N = 2. (b) N = 3. (c) N = 4.

hypergraphs of size M = 105. We generated 10 independent
quenched hypergraphs, evolved the SI model on each of them
10 times, and present ensemble-averaged results over the
100 runs [14]. When N = 2, the final infection level I∞ :=
limt→∞[Id−reg

N−body
](t ) is equal to one (i.e., the infection spreads

to the entire network) for I0 = 0.1, 0.25, 0.4. When N = 3
or 4, however, I∞ = 1 only if I0 is sufficiently large. Indeed,
plotting I∞ as a function of I0 reveals a jump discontinuity at
I0 = I0

c (see Fig 2), where I0
c = 0 on networks (N = 2), and

I0
c > 0 on hypernetworks (N � 3).

To prove these numerical observations, we note that
the critical (equilibrium) points of Eq. (6b) are obtained
by equating Fd−reg

N−body
to zero. Since u(0) = 1 and du

dτ
(0) =

Fd−reg
N−body

(1, I0) < 0, u(τ ) is monotonically decreasing toward

the first critical point below 1, which we shall denote by

u∞(I0) := max
u<1

{
u | Fd−reg

N−body
(u, I0) = 0

}
. (7a)

Thus, u∞ := limτ→∞ u(τ ), and so by Eq. (6a),

I∞ = 1 − (1 − I0)(u∞)d . (7b)

Specifically, on two-body networks (N = 2),

Fd−reg
2−body

:= u((1 − I0)ud−2 − 1) < 0, 0 < u < 1.

(a) (b) (c)

FIG. 2. The final infection level as a function of the initial in-
fection level in the Susceptible-Infected model on 3-regular N-body
hypernetworks. The red circles are numerical simulations of the
Susceptible-Infected model [Eqs. (1) and (5)]; The blue line is the ex-
plicit solution [Eq. (7)]. The insets show the infection levels at t = t1

and t = t2 for initial infection levels slightly above the critical thresh-
old I0

c . (a) N = 2, I0
c = 0, t1 = 5, t2 = 7. (b) N = 3, I0

c = 5
32 , t1 = 40,

t2 = 100. (c) N = 4, I0
c = 1

108 (6 + 7
√

21), t1 = 40, t2 = 100.
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(a) (b) (c)

FIG. 3. The critical points F3−reg
N−body

(u, I0) = 0 (blue solid line)

in [0, 1]2. (a) N = 2, I0
c = 0. (b) N = 3, I0

c = 5
32 . (c) N = 4, I0

c =
1

108 (6 + 7
√

21).

Therefore u∞ ≡ 0 for any 0 < I0 < 1 [see Fig 3(a)], and so

I∞ = 0, if I0 = 0,

I∞ = 1, if 0 < I0 � 1.

Hence, I0
c = 0 [see Fig 2(a)].

On N-body hypernetworks with N � 3, however,
Fd−reg

N−body
= uP(u), where P(u) is a polynomial of degree

(N − 1)(d − 1) − 1 that has two real roots in (0, 1) for
0 < I0 < I0

c , a double root at I0
c , and no real roots in (0, 1) for

I0
c < I0 < 1 [see SM [13] and Fig 3(b) and 3(c)]. Therefore,

I0
c � I∞ < 1, if 0 � I0 � I0

c ,

I∞ = 1, if I0
c < I0 � 1.

In particular, 0 < I0
c < 1. The dynamical system [Eq. (6)]

thus admits a saddle-node bifurcation that leads to a phase
transition at I0

c [Fig. 3(b) and 3(c)]. This results in a critical
slowdown of the dynamics for I0 slightly above I0

c (see in-
sets of Fig 2), so that the time that the solution [Id−reg

N−body
](t )

“lingers” around I∞
c scales as (see SM [13])

Tslowdown ∼ 1√
I0 − I0

c

, 0 < I0 − I0
c � 1. (8)

Intuitively, on infinite d-regular networks (N = 2), any two
nodes are connected by a finite path, with probability one
[15]. Hence, a single infected node at t = 0 is sufficient for the
epidemic to spread out to the entire network as t → ∞, and
so I0

c = 0. Similarly, on infinite d-regular N-body hypernet-
works, any two nodes are connected by a finite hyperpath with
probability one [16]. Maintaining the propagation of an infec-
tion along a hyperpath, however, requires more than just for
the first hyperedge to propagate the infection. Indeed, assume
that N − 1 nodes within a hyperedge are initially infected.
Then the hyperedge propagates the infection to its N th node.
To further propagate the infection to additional hyperedges,
N − 2 nodes of the new hyperedge should be infected, in
addition to the infected node from the previous hyperedge.
Therefore, the initial infection level I0 should be sufficiently
large for the infection to be able to spread out to the entire
hypernetwork.

The explicit expression [Eq. (7)] for the final infection level
I∞ has the following interpretation. As t → ∞, an arbitrary
node j is susceptible (with probability 1 − I∞) if and only if j
was not infected initially (with probability 1 − I0) and if none

(a) (b)

FIG. 4. (a) The initial infection level threshold I0
c as a function

of N for d = 3. (b) I0
c as a function of d for N = 3, see Eq. (10), and

N = 4, see Eq. (11).

of its d hyperedges {ei}d
i=1 transmitted the infection to j. Let θ

denote the probability that a hyperedge ei that contains j has
not transmitted the infection to j as t → ∞. Then

1 − I∞ = (1 − I0)θd . (9a)

Thus, θ is the probability that a hyperedge ei that contains
j has at most N − 2 infected nodes as t → ∞, conditioned
on the event that j is susceptible as t → 0. Let φ denote the
probability that a node k ∈ ei \ { j} is infected as t → ∞. Then

θ = 1 − φN−1. (9b)

The node k is susceptible as t → ∞ if and only if it was not
infected initially, and if none of its other d − 1 hyperedges
transmitted the infection to it. Therefore,

1 − φ = (1 − I0)θd−1. (9c)

Substituting (25) in (24) and rearranging (23) gives

I∞ = 1 − (1 − I0)θd , θ = 1 − (1 − (1 − I0)θd−1)N−1,

which, after replacing θ with u∞, gives Eqs. (6c) and (7b).
The initial infection level threshold I0

c increases as N
increases and d is held fixed [Fig. 4(a)]. This is because
each hyperedge requires more infected nodes to propagate
the infection. Similarly, I0

c decreases as d increases and N is
held fixed, since the hypernetwork becomes more connected
[Fig. 4(b)]. Indeed, for N = 3, we can derive the explicit
expression (see SM [13])

I0
c = 1 − (d − 2)2−d (d − 1)1−d

(
d − 3

2

)2d−3
. (10)

The corresponding final infection level is [see Eq. (6a)]

I∞
c = 4d2 − 10d + 5

(2d − 3)3
.

Similarly, for N = 4 we have

I0
c = 1 − u−(d−1)

c (1 − (1 − uc)
1
3 ), (11a)

where

uc = 3(d − 1)(18d (d − 3) − √
12d − 15 + 39)

2(3d − 4)3
. (11b)

Furthermore, for any N � 3 we have that (see SM [13])

I0
c ∼ N − 2

(N − 1)
N−1
N−2

d− 1
N−2 , d → ∞. (12)
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As expected, the three explicit expressions, Eqs. (10), (11),
and (12), are decreasing in d .

The final infection level I∞ of the stochastic SI model
[Eqs. (1) and (5)] on N-body hypernetworks is equal to
the size of the final active set in the deterministic bootstrap
percolation model [17]. Our dynamical system formulation
provides an alternative approach for obtaining the bootstrap
percolation threshold, which is different from those used
in graph theory. In Ref. [17], Morrison and Noel derived
the asymptotic limit of the percolation threshold in infinite
d-regular N-body hypergraphs that undergo a thinning pro-
cess, whereby each hyperedge is independently kept with a
probability that diminishes to zero as d → ∞. Remarkably,
although their analysis does not cover the case of d-regular
hypergraphs that do not undergo a thinning process, our
asymptotic limit [Eq. (12)] as d → ∞ precisely matches
theirs. Note, however, that in Ref. [17], they did not obtain the
exact critical infection level for finite d , they did not derive the
explicit expression [Eq. (6)] for the infection level as a func-
tion of time, and they did not show that I∞ < 1 when I0 = I0

c .

Conclusion. In conclusion, while previous work on the SI
model on hypernetworks with N-body interactions showed
a dynamics that is qualitatively similar to that on networks
[12], this work shows that high-order interactions can lead to
a dramatic change in the dynamics. This change is manifested
by a phase transition at a positive threshold of the initial
infection level, which is absent in networks with pairwise
interactions. We expect that high-order interactions will lead
to critical dynamics in other N-body hypernetworks, such
as sparse Erdős–Rényi hypernetworks. From a methodolog-
ical perspective, this paper differs from most studies of the
spreading dynamics on hypernetworks by deriving an exact
expression for the infection level as a function of time, which
is obtained by solving the master equations without making
any approximation.
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